
Quantitative Comparison of Xen and KVM

Todd Deshane,
Zachary Shepherd,

Jeanna N. Matthews
Computer Science
Clarkson University

Potsdam, NY 13699 USA

{deshantm, shephezj,
jnm}@clarkson.edu

Muli Ben-Yehuda
IBM Haifa Research Lab
Haifa University Campus

Mount Carmel, Haifa 31905
Israel

muli@il.ibm.com

Amit Shah
Qumranet

B-15, Ambience Empyrean
64/14 Empress County

Behind Empress Gardens
Pune 411001 India

amit.shah@
qumranet.com

Balaji Rao
National Institute of

Technology Karnataka
Surathkal 575014 India

balajirrao@gmail.com

ABSTRACT
We present initial results from and quantitative analysis of two
leading open source hypervisors, Xen and KVM. This study
focuses on the overall performance, performance isolation, and
scalability of virtual machines running on these hypervisors. Our
comparison was carried out using a benchmark suite that we
developed to make the results easily repeatable. Our goals are to
understand how the different architectural decisions taken by
different hypervisor developers affect the resulting hypervisors,
to help hypervisor developers realize areas of improvement for
their hypervisors, and to help users make informed decisions
about their choice of hypervisor.

1. INTRODUCTION
IT professionals, developers, and other users of virtualization on
Linux often look for quantitative results to compare their
hypervisor options. In this study, we compare two open source
hypervisors: the established Xen hypervisor and the more recent
Kernel-based Virtual Machine (KVM) driver.

Since its public release in 2003, Xen has been the subject of
many performance comparisons [3, 4, 6, 14, 15, 28, 29, 30, 35,
46, 48, 49]. Xen is well-known for its near-native performance
and its use of paravirtualization. KVM, a relative new-comer to
the virtualization market with its debut in early 2007, relies on
CPU support for virtualization and leverages existing Linux
kernel infrastructure to provide an integrated hypervisor
approach (as opposed to Xen's stand-alone hypervisor approach).
KVM is known for its rapid inclusion into the mainline Linux
kernel. As KVM matures, more performance testing and
comparisons are being done with it, like those at IBM [21].

With the wide variety of virtualization options available, several
efforts to provide benchmarks specifically designed for
comparing different virtualization systems have been initiated [8,
12, 27, 40, 42]. For this study, we developed an open source
virtualization benchmark suite named benchvm [8] to help
automate testing, including setting up the guests and running
some of the tests. Our goal in using and developing benchvm has
been to provide repeatability and transparency so that others can
easily validate the results. The benchvm suite is still under heavy
development and, although still useful, should not yet be
considered production-ready.

For our initial set of tests, the experimental setup consisted of
Ubuntu Linux 8.04 AMD64 on the base machine. The Linux
kernel 2.6.24-18, Xen 3.2.1+2.6.24-18-xen, and KVM 62 were
all installed from Ubuntu packages. All guests were
automatically created by a benchvm script that called debootstrap
and installed Ubuntu 8.04 AMD64. The guests were then started
with another benchvm script that passed the appropriate kernel
(2.6.24-18-xen for Xen and 2.6.24-18 for KVM). The hardware
system was a Dell OptiPlex 745 with a 2.4 GHz Intel Core 2
CPU 6600, 4 GB of RAM, 250 GB hard drive, and two 1 Gigabit
Ethernet cards. Test results from more software versions and
hardware configurations are reported on our Benchvm Results
website [9].

Our benchmark testing focuses on three pillars of virtualization
benchmarking: overall performance, performance isolation, and
scalability. We discuss the testing process and present our
quantitative results from the tests in each of these categories. Due
to space limitations, we then briefly mention related work and list
it as further reading at the end of this paper.

2. OVERALL PERFORMANCE
To measure overall system performance, we ran a CPU-intensive
test, a kernel compile, an IOzone [22] write test, and an IOzone
read test. We compared the Xen and KVM numbers against the
non-virtualized (native) Linux baseline, shown in Table 1.

For the CPU-intensive test, Xen was very close to Linux and
KVM had slightly more degradation than Xen. For the kernel
compile, the degradation for Xen was about half that of Linux
(likely due to less memory). KVM again had slightly more
degradation than Xen. On the other hand, KVM had higher write
and read performance than Xen according to our results. We
believe that KVM may have performed better than Xen in terms
of I/O due to disk caching.

The Phoronix Test Suite [37] was useful for running and
publishing the kernel compile and IOzone tests. Additional
performance results including running the Phoronix Test Suite's
Universe Command Line Interface (CLI) tests with the command
line parameter universe-cli, and testing on other platforms
and with other benchmarks including Bonnie++ [11], Iperf [23],
and Netperf [34], are reported on the Benchvm Results website
[9].

Xen Summit, June 23-24, 2008, Boston, MA, USA.

Table 1. Overall performance of base Linux, Xen, and KVM

3. PERFORMANCE ISOLATION
Performance isolation is a measure of how well guests are
protected from extreme resource consumption in other guests.
We used the testing methodology and isolation benchmark suite
that some of the authors of this paper developed previously [28].
For the isolation tests in this study, we ran SPECweb2005 [43]
on four virtual machine clients. The guest that runs a stress test is
referred to as the Stressed VM, since it is under a significant load
specific to the type of resource being tested. We measured the
percent of degradation in good response rate for the SPECweb
clients running the support workload with the stress test versus
the baseline without the stress test.

In Table 2, we show the results of the performance isolation tests
for Xen and KVM. Degradation of the Stressed VM is expected.
Isolation problems are indicated by degradation in the
performance of the Normal VM. Low degradation percentages
are better and DNR is the worst possible percent degradation.
DNR means that the guest “did not return” results and usually
indicates a kernel panic or network problem for the guest.

Xen shows good isolation properties for the memory, fork, CPU,
and disk stress tests as seen in the Normal VM column. Xen
shows very little isolation for the network sender and no isolation
for the network receiver. Xen shows unexpectedly good
performance for the disk test and unexpectedly poor performance
for the network sender test.

KVM shows good isolation properties for all of the stress tests
and unexpectedly good performance for the network sender.
However, KVM shows unexpectedly poor performance for the
disk test and the network receiver test.

Table 2. Performance isolation of Xen versus KVM
Higher degradation percentages are bad and DNR is the worst possible.

4. SCALABILITY
A virtualization system's level of scalability is determined by its
ability to run more virtual machines without loss of performance.
To measure scalability in this study, we first compiled Apache
source code on one guest and then we increased the number of
guests that were each doing an Apache compile. In the following
graphs, lower compile times (except 0) and more simultaneous
guests indicate better scalability. Gaps in the graph (compile
times of 0 seconds) indicate that the guests crashed and therefore
were unable to report results.

For Xen, in Figure 1, as we increased the number of guests, the
time to compile Apache increased at a linear rate compared to the
number of guests. This shows that Xen had excellent scalability
and that Xen was able to share resources among guests well.

For KVM, in Figure 2, as we increased the number of guests to 4,
1 of the four guests crashed. As the guests were increased to 8, 4
guests crashed. With 16 guests, 7 guests crashed. With 30 guests,
the system crashed during the compile. This indicates that KVM
was not able to maintain performance as the number of guests
increased.

Figure 1. Scalability of building Apache on Xen guests
Higher compile times are bad and more simultaneous guests are better.

Figure 2. Scalability of building Apache on KVM guests
Higher compile times are bad and more simultaneous guests are better.

A compile time of 0 seconds indicates that the guest crashed (did not report results).

5. RELATED WORK
There are countless performance studies on virtualization,
including [2, 4, 6, 10, 14, 15, 17, 19, 20, 21, 25, 26, 28, 29, 30,
31, 33, 35, 36, 39, 41, 44, 46, 47, 48, 49]. In addition to our
benchvm test suite [8], other virtualization benchmark suites
include vConsolidate [3, 12], VMmark [27], and Virtbench [40].
There are a number of general test suites, test harnesses, and
related tools such as the Autotest Framework [5], BCFG2 [7],
CFengine [13], DejaGnu [16], Expect [18], Kvm-test [24],
Phoronix Test Suite [37], Puppet [38], Tcltest [45], and Xm-test
[50]. General performance studies are in [1, 32].

Xen Summit, June 23-24, 2008, Boston, MA, USA.

6. CONCLUSION
We have presented a quantitative comparison of Xen and KVM
focusing on overall performance, performance isolation, and
scalability. The most striking difference between the two systems
was in scalability. KVM had substantial problems with guests
crashing, beginning with 4 guests. KVM had better performance
isolation than Xen, but Xen's isolation properties were also quite
good. The overall performance results were mixed, with Xen out-
performing KVM on a kernel compile test and KVM out-
performing Xen on I/O-intensive tests. We would like to extend
our comparison to include Xen with full virtualization (HVM)
and KVM with paravirtualized I/O.

7. ACKNOWLEDGMENTS
We acknowledge Wenjin Hu and Madhujith Hapuarachchi for
their Master's thesis work on performance isolation and
scalability benchmarking. We would also like to thank Cyrus
Katrak and Martin McDermott for early development and testing
of benchvm. Lastly, we very much appreciate the feedback and
support of the Xen and KVM communities.

8. REFERENCES
[1] K. Adams and O. Agesen, A Comparison of Software and Hardware Techniques for x86

Virtualization, International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2006.

[2] P. Apparao, R. Iyer, and D. Newell, Towards Modeling & Analysis of Consolidated CMP
Servers, Workshop on the Design, Analysis, and Simulation of Chip Multi-Processors
(dasCMP), 2007.

[3] P. Apparao, R. Iyer, X. Zhang, D. Newell, and T. Adelmeyer, Characterization & Analysis
of a Server Consolidation Benchmark, ACM/USENIX International Conference on Virtual
Execution Environments (VEE), 2008.

[4] P. Apparao, S. Makineni, and D. Newell, Characterization of Network Processing
Overheads in Xen, IEEE International Workshop on Virtualization Technology in
Distributed Computing (VTDC), 2006.

[5] Autotest Framework, http://test.kernel.org/autotest.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield, Xen and the Art of Virtualization, ACM Symposium on Operating Systems
Principles (SOSP), 2003.

[7] BCFG2, http://www.bcfg2.org/.

[8] Benchvm, http://code.google.com/p/benchvm/.

[9] Benchvm Results, http://www.clarkson.edu/projects/virtualization/benchvm/.

[10] H.K.F. Bjerke, R.J. Andresen, and J. Amundsen, Virtualization in Clusters, Course Project,
Norwegian University of Science and Technology (NTNU),
http://haavard.dyndns.org/virtualization/clust_virt.pdf, 2004.

[11] Bonnie++, http://www.coker.com.au/bonnie++/.

[12] J.P. Casazza, M. Greenfield, and K. Shi, Redefining Server Performance Characterization
for Virtualization Benchmarking, Intel Technology Journal, 2006.

[13] CFengine, http://www.cfengine.org/.

[14] L. Cherkasova and R. Gardner, Measuring CPU Overhead for I/O Processing in the Xen
Virtual Machine Monitor, USENIX Annual Technical Conference, 2005.

[15] B. Clark, T. Deshane, E. Dow, S. Evanchik, M. Finlayson, J. Herne, and J.N. Matthews,
Xen and the Art of Repeated Research, USENIX Annual Technical Conference, 2004.

[16] DejaGnu, http://www.gnu.org/software/dejagnu/.

[17] U. Drepper, The Cost of Virtualization, ACM Queue Magazine, 2008.

[18] Expect, http://expect.nist.gov/.

[19] S.S. Foley, V. Pandey, M. Tang, F. Terkhorn, and A. Venkatraman, Benchmarking Servers
using Virtual Machines, Indiana University, http://www.cs.indiana.edu/~mhtang/paper.pdf,
2007.

[20] D. Gupta, R. Gardner, and L. Cherkasova, XenMon: QoS Monitoring and Performance
Profiling Tool, Technical Report, Internet Systems and Storage Laboratory at HP
Laboratories, 2005.

[21] R. Harper and K. Rister, KVM Limits: Arbitrary or Architectural?, Presentation, KVM
Forum, http://kvm.qumranet.com/kvmwiki/KvmForum2008?
action=AttachFile&do=get&target=kdf2008_6.pdf, 2008.

[22] IOzone Filesystem Benchmark, http://www.iozone.org/.

[23] Iperf, http://iperf.sourceforge.net/.

[24] Kvm-test, http://kvm.qumranet.com/kvmwiki/KVMTest.

[25] J. LeVasseur, V. Uhlig, M. Chapman, P. Chubb, B. Leslie, and G. Heiser, Pre-
virtualization: Soft Layering for Virtual Machines, Technical Report, Fakultat fur
Informatik, Universitat Karlsruhe (TH), 2006.

[26] J. Liu, W. Huang, B. Abali, and D.K. Panda, High Performance VMM-Bypass I/O in
Virtual Machines, USENIX Annual Technical Conference, 2006.

[27] V. Makhija, B. Herndon, P. Smith, L. Roderick, E. Zamost, and J. Anderson, VMmark: A
Scalable Benchmark for Virtualized Systems, Technical Report, VMware, 2006.

[28] J.N. Matthews, W. Hu, M. Hapuarachchi, T. Deshane, D. Dimatos, G. Hamilton, M.
McCabe, and J. Owens, Quantifying the Performance Isolation Properties of Virtualization
Systems, ACM Workshop on Experimental Computer Science (ExpCS),
http://www.clarkson.edu/class/cs644/isolation/, 2007.

[29] A. Menon, A.L. Cox, and W. Zwaenepoel, Optimizing Network Virtualization in Xen,
USENIX Annual Technical Conference, 2006.

[30] A. Menon, J.R. Santos, Y. Turner, G.J. Janakiraman, and W. Zwaenepoel, Diagnosing
Performance Overheads in the Xen Virtual Machine Environment, ACM/USENIX
International Conference on Virtual Execution Environments (VEE), 2005.

[31] Microsoft, Comparing Web Service Performance: WS Test 1.5 Benchmark Results for .NET
3.5/Windows Server 2008 vs. IBM WebSphere 6.1/Red Hat Linux Advanced Platform 5,
http://msdn.microsoft.com/en-us/netframework/cc302396.aspx, 2008.

[32] J.C. Mogul, Brittle Metrics in Operating Systems Research, IEEE Workshop on Hot Topics
in Operating Systems (HotOS), 1999.

[33] K.T. Moller, Virtual Machine Benchmarking, Diploma Thesis, Universitat Karlsruhe (TH),
2007.

[34] Netperf, http://www.netperf.org/netperf/.

[35] D. Ongaro, A.L. Cox, and S. Rixner, Scheduling I/O in Virtual Machine Monitors,
ACM/USENIX International Conference on Virtual Execution Environments (VEE), 2008.

[36] P. Padala, K.G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant, and K. Salem,
Adaptive Control of Virtualized Resources in Utility Computing Environments, ACM
European Conference on Computer Systems (EuroSys), 2007.

[37] Phoronix Test Suite, http://www.phoronix-test-suite.com/.

[38] Puppet, http://www.reductivelabs.com/projects/puppet/.

[39] B. Quetier, V. Neri, and F. Cappello, Selecting A Virtualization System For Grid/P2P Large
Scale Emulation, Workshop on Experimental Grid Testbeds for the Assessment of Large-
Scale Distributed Applications and Tools (EXPGRID), 2006.

[40] R. Russell, Virtbench, http://www.ozlabs.org/~rusty/virtbench/.

[41] S. Soltesz, H. Potzl, M.E. Fiuczynski, A. Bavier, and L. Peterson, Container-based
Operating System Virtualization: A Scalable, High-performance Alternative to Hypervisors,
ACM European Conference on Computer Systems (EuroSys), 2007.

[42] SPEC to Develop Standard Methods of Comparing Virtualization Performance, Press
Release, http://www.spec.org/specvirtualization/pressrelease.html, 2006.

[43] SPECweb2005, http://www.spec.org/web2005/.

[44] Sun Microsystems, Web Services Performance Comparing Java 2 Enterprise Edition (J2EE
platform) and .NET Framework,
http://java.sun.com/performance/reference/whitepapers/WS_Test-1_0.pdf, 2004.

[45] Tcltest, http://www.tcl.tk/man/tcl/TclCmd/tcltest.htm.

[46] A. Theurer, K. Rister, O. Krieger, R. Harper, and S. Dobbelstein, Virtual Scalability:
Charting the Performance of Linux in a Virtual World, Ottawa Linux Symposium, Volume
2, http://www.linuxsymposium.org/2006/proceedings.php, 2006.

[47] A. Venkatraman, V. Pandey, B. Plale, and S.S. Shei, Benchmarking Effort of Virtual
Machines on Multicore Machines, Technical Report, Indiana University,
http://www.cs.indiana.edu/Research/techreports/, 2007.

[48] VMware, A Performance Comparison of Hypervisors,
http://www.vmware.com/pdf/hypervisor_performance.pdf, 2007.

[49] XenSource, A Performance Comparison of Commercial Hypervisors,
http://www.xensource.com/Documents/hypervisor_performance_comparison_1_0_5_with_
esx-data.pdf, 2007.

[50] Xm-test, http://www.xen.org/files/summit_3/xs0906-xmtest.pdf.

Xen Summit, June 23-24, 2008, Boston, MA, USA.

	1.INTRODUCTION
	2.OVERALL PERFORMANCE
	3.PERFORMANCE ISOLATION
	4.SCALABILITY
	5.RELATED WORK
	6.CONCLUSION
	7.ACKNOWLEDGMENTS
	8.REFERENCES

