Generic Termination

Roland Backhouse and Henk Doornbos 26th July 2001

Outline

- Well-founded and Admits-Induction
- Hylomorphisms
- F-well-founded and F-inductive
- (Some) rules for reductivity
- Conclusions

Well-Founded, Admits Induction

Monotype (coreflexive, proposition)
Relation
empty, universal, identity relation
Converse
Left and right domains (range and domain)
Composition of relations
Weakest subspecification
Weakest (liberal) precondition
Composition of functions (on relations)
admits induction
admits induction
well-founded
well-founded

> A, B, C
> $\mathrm{R}, \mathrm{S}, \mathrm{T}$
> \Perp, Π, id

Ru
$R<, R>$
R.S
$R \backslash S$
$R \nmid A$
$f \circ g$
$\mu(R \nmid)=i d$
$\mu(R \backslash)=\Pi$
$v(\cdot R)=\Perp$
$\nu\langle A \mapsto(A \cdot R)>\rangle=\Perp$

$$
\neg(v(\cdot R))=(\mu(R \backslash)) \cup .
$$

Relator

A relator F is a function to the objects of an allegory \mathcal{C} from the objects of an allegory \mathcal{D} together with a mapping to the arrows (relations) of \mathcal{C} from the arrows of \mathcal{D} satisfying the following properties:

$$
\begin{aligned}
& \text { F.R :: F.I } \stackrel{\mathcal{C}}{\leftrightarrows} \text { F.J whenever } \mathrm{R}:: \mathrm{I} \stackrel{\mathcal{D}}{ } \mathrm{~J} . \\
& \text { F.R.F.S }=F .(R \cdot S) \quad \text { for each } R \text { and } S \text { of composable type, } \\
& \text { F.id }_{A}=\text { id }_{\text {F.A }} \quad \text { for each object } A, \\
& \text { F.R } \subseteq \text { F. } S \Leftarrow R \subseteq S \quad \text { for each } R \text { and } S \text { of the same type, } \\
& (F . R) \cup=F \cdot(R \cup) \quad \text { for each } R .
\end{aligned}
$$

The Hylo Theorem

Definition 1 Assume that F is an endorelator. Then (I, in) is a relational initial F -algebra iff in $:: \mathrm{I} \leftarrow \mathrm{F}$.I and there is a mapping ($(-)$ defined on all F -algebras such that

$$
\begin{aligned}
& (R):: A \leftarrow I \quad \text { if } R:: A \leftarrow F . A \\
& (\text { in })=i d_{I} \\
& (R) \cdot(S D) \cup=\mu\langle X \mapsto R \cdot F . X \cdot S \cup\rangle
\end{aligned}
$$

Theorem 2 (Hylo Theorem) Suppose F is an endorelator on a locally-complete, tabular allegory \mathcal{A}. Let F^{\prime} denote the endofunctor obtained by restricting F to the objects and arrows of $\operatorname{Map}(\mathcal{A})$. Then in is an initial F^{\prime}-algebra if and only it is a relational initial F-algebra.

Hylo Programs

$$
\begin{aligned}
& \text { fact }=\text { one } \nabla\left(\text { times } \cdot \operatorname{succ} \times \mathrm{id}_{N a t}\right) \cdot \mathrm{id}_{\mathbb{1}}+\left(\mathrm{id}_{N a t} \Delta \text { fact }\right) \cdot \text { zerou } \mathrm{v}_{\text {succ }} \\
& \text { suffix }=\text { nil } \nabla((\text { cons } \cdot \mathrm{exl}) \cup(\text { exr } \cdot \mathrm{exr})) \cdot \mathrm{id}_{\mathbb{1}}+\left(\mathrm{id}_{\mathrm{I}} \times\left(\mathrm{id}_{\text {List.I }} \triangle \text { suffix }\right)\right) \cdot \text { nilu } \vee \text { cons } \cup \\
& \mathrm{qs}=\text { nil } \nabla\left(\mathrm{join} \cdot \mathrm{id}_{\mathrm{I}} \times \text { cons }\right) \cdot \mathrm{id}_{\mathbb{1}}+\left(\mathrm{qs} \times\left(\mathrm{id}_{\mathrm{I}} \times \mathrm{qs}\right)\right) \cdot \text { nilu } \cdot \mathrm{dnf} \\
& X=R \nabla \text { conquer } \cdot \operatorname{id}_{I}+(X \times X) \cdot i d_{I}+\text { divide } \cdot A \cdot B \\
& \text { do }=\operatorname{id}_{I \nabla i d_{I}} \cdot \operatorname{id}_{I}+d o \cdot \sim B \mathbf{r}(S \cdot B) \\
& L=(\text { concat } \cdot \mathrm{a} \times \mathrm{id} \times \mathrm{b}) \nabla \mathrm{c} \cdot(\mathrm{a} \times \mathrm{L} \times \mathrm{b})+\mathrm{c} \cdot(\mathrm{a} \times \mathrm{id} \times \mathrm{b} \cdot \text { concatu }) \vee \mathrm{c} \\
& \text { slsrt } \left.=\text { nil } \nabla \text { cons } \cdot \mathrm{id}_{\mathbb{1}}+\mathrm{id}_{\mathrm{I}} \times \text { slsrt } \cdot \text { niluv (cons } \cdot \text { select }\right) \\
& \text { join }=\text { post } \cdot\left(\mathrm{id}_{\mathbb{I}}+\left(\mathrm{id}_{\mathrm{I}} \times \text { join }\right)\right) \times \mathrm{id}_{\text {List.I }} \cdot \text { pass } \Delta \mathrm{exr} \cdot(\text { nilu } \cdot \text { consu }) \times \mathrm{id}_{\text {List.I }} \\
& \mathrm{fib}=\text { zero } \nabla \text { one } \nabla \mathrm{add} \cdot \mathrm{id}+\mathrm{id}+(\mathrm{fib} \times \mathrm{fib}) \cdot \mathrm{id}+\mathrm{id}+(\mathrm{id} \Delta \mathrm{succ}) \cdot \text { zerouvone } \cup\left(\operatorname{succ}^{2}\right) \cup
\end{aligned}
$$

Generalisations of wf and admits-induction

Relation R :: F.I $\leftarrow \mathrm{I}$ is F-well-founded iff, for all relations $S:: \mathrm{I} \leftarrow \mathrm{F} . \mathrm{I}$,

$$
\nu\langle X \mapsto R \cdot F . X \cdot S \cup\rangle=\mu\langle X \mapsto R \cdot F . X \cdot S \cup\rangle .
$$

A relation $\mathrm{R}:: \mathrm{I} \leftarrow \mathrm{F}$.I is F -inductive iff

$$
v\langle A \mapsto(R \cdot F . A)<\rangle=\operatorname{id}_{I}
$$

Relation $\mathrm{R}:: \mathrm{F} . \mathrm{I} \leftarrow \mathrm{I}$ is F -reductive iff

$$
\mu\langle A \mapsto R \downarrow F . A\rangle=\mathrm{id}_{I}
$$

Reducing Problem Size

Relation mem $:: \mathrm{I} \leftarrow$ F.I is a membership relation of relator F if and only if it satisfies, for all coreflexives $A, A \subseteq I$:

$$
F . A=\operatorname{mem} \not \subset A
$$

Pointwise:

$$
x s \in F . A \equiv \forall(x: x\langle\text { mem }\rangle x s: x \in A)
$$

Theorem (Hoogendijk and De Moor):
R is F-reductive \equiv mem $\cdot \mathrm{R}$ is well-founded .

Basic F-reductive relations

Theorem The converse of an initial F-algebra is F-reductive.
Corollary The cata program

$$
X=R \cdot F . X \cdot i n \cup
$$

is terminating.
Theorem Let \oplus be a binary relator, in_{I} an initial $(\mathrm{I} \oplus)$-algebra, and T the tree relator corresponding to \oplus and $\mathrm{in} \mathrm{I}_{\mathrm{I}}$. Then $\mathrm{in}_{\mathrm{I}} \cup \cdot \mathrm{T} . \mathrm{T}_{\mathrm{I} \leftarrow \mathrm{I}}$ is ($\mathrm{I} \oplus$)-reductive.

Corollary Selection sort

$$
\text { slsrt }=\text { nil } \nabla \text { cons } \cdot \mathbb{1}+\mathrm{I} \times \text { slsrt } \cdot \text { nil } \cup(\text { cons } \cup \cdot \text { select })
$$

is terminating.
Proof

$$
\text { nilu } \vee(\text { cons } \cup \text { select }) \subseteq \text { nil } \cup \text { cons } \cup \cdot \text { List. } T \top
$$

New From Old

Theorem Suppose R $::$ F.I $\leftarrow I$ is F-reductive. Define the function f on positive numbers by $f .1=R, f .(n+1)=F .(f . n) \cdot R$. Then $f . n$ is F^{n}-reductive.

Example The fibonacci program
fib $=$ zero ∇ one ∇ add $\cdot \mathrm{id}+\mathrm{id}+(\mathrm{fib} \times \mathrm{fib}) \cdot \mathrm{id}+\mathrm{id}+(\mathrm{id} \triangle \mathrm{succ}) \cdot$ zero $\cup \boldsymbol{v}_{\text {one }} \cup\left(\operatorname{succ}^{2}\right) \cup$ is terminating.

New From Old

Theorem Suppose R :: F.I $\leftarrow \mathrm{I}$ is F-reductive, $\mathrm{S}:: \mathrm{H} .(\mathrm{G} . \mathrm{I}) \leftarrow$ G.(F.I) is such that $S:: H \circ G \& G \circ F$, and G is a relator that is a lower adjoint in a Galois connection. Then S.G.R is H-reductive.

Examples

$$
\begin{array}{lll}
0+n=n & \text { and } & (m+1)+n=(m+n)+1 \\
0 \times n=0 & \text { and } & (m+1) \times n=m \times n+n \\
n^{0}=1 & \text { and } & n^{m+1}=n^{m} \times n \\
\text { nil }+y s=y s \text { and } & (x x s)+y s=x(x s+y s)
\end{array}
$$

Generically:

$$
X=R \cdot F \cdot X \times P \cdot F \cdot(I \times S) \times P \cdot \text { pass } \triangle \text { exr } \cdot \text { in } \cup \times P
$$

where pass $\cdot F . A \times P \subseteq F .(A \times P) \cdot$ pass
I.e. pass :: $F \circ(\times P) \dot{\sim}(\times P) \circ F$

Hence $F .(P \times S) \times P$. pass \triangle exr $::(\times P) \circ F \circ(\times P) \dot{\sim}(\times P) \circ F$
and $\quad F .(I \times S) \times P \cdot$ pass $\triangle e x r \cdot$ in $\cup \times P$ is $(\times P) \circ F$ reductive.

New From Old

Corollary If R is F-reductive and $S:: H \approx F$ then $S \cdot R$ is H-reductive.

Theorem Let Q be G -reductive and $\mathrm{S}:: \mathrm{F} \dot{\text { \& } \mathrm{Id} \text {, where } \mathrm{Id} \text { denotes }}$ the identity relator. Then F.Q•S is (FoG)-reductive.

Proof Follows from:

$$
\mu(A \mapsto Q \nmid G . A) \subseteq \mu(A \mapsto(F . Q \cdot S) \nmid F \cdot(G . A)) .
$$

Conclusions

- Discipline of (recursive) programming based on virtual data structures.
- Introduction of explicit parameter encourages analysis of dependance on the structure of the parameter.
- Proof of termination akin to type checking.

Reference: Henk Doornbos, "Reductivity arguments and program construction", PhD thesis (1996). Available at http://www.cs.nott.ac.uk/~rcb/papers.

