
1

Generic Termination

Roland Backhouse and Henk Doornbos

26th July 2001

2

Outline

• Well-founded and Admits-Induction

• Hylomorphisms

• F-well-founded and F-inductive

• (Some) rules for reductivity

• Conclusions

3

Well-Founded, Admits Induction

Monotype (coreflexive, proposition) A, B, C
Relation R, S, T
empty, universal, identity relation ⊥⊥, >>, id

Converse R∪

Left and right domains (range and domain) R<, R>
Composition of relations R ·S
Weakest subspecification R\S

Weakest (liberal) precondition R\A

Composition of functions (on relations) f ◦g

admits induction µ(R\) = id

admits induction µ(R\) = >>
well-founded ν(·R) = ⊥⊥
well-founded ν〈A 7→ (A ·R)>〉 = ⊥⊥

¬(ν(·R)) = (µ(R\))∪ .

4

Relator

A relator F is a function to the objects of an allegory C from the
objects of an allegory D together with a mapping to the arrows
(relations) of C from the arrows of D satisfying the following
properties:

F.R :: F.I �
C

F.J whenever R :: I �
D

J .

F.R · F.S = F.(R ·S) for each R and S of composable type,

F.idA = idF.A for each object A ,

F.R ⊆ F.S ⇐ R ⊆ S for each R and S of the same type,

(F.R)∪ = F.(R∪) for each R .

5

The Hylo Theorem

Definition 1 Assume that F is an endorelator. Then (I , in) is a
relational initial F-algebra iff in :: I← F.I and there is a mapping ([])
defined on all F-algebras such that

([R]) :: A← I if R :: A← F.A
([in]) = idI

([R]) · ([S])∪ = µ〈X 7→ R · F.X · S∪〉

2

Theorem 2 (Hylo Theorem) Suppose F is an endorelator on a
locally-complete, tabular allegory A. Let F ′ denote the endofunctor
obtained by restricting F to the objects and arrows of Map(A). Then
in is an initial F ′-algebra if and only it is a relational initial F-algebra.

2

6

Hylo Programs

fact = one5 (times · succ×idNat) · id11 +(idNat4fact) · zero∪ H succ∪

suffix = nil5 ((cons · exl)∪ (exr · exr)) · id11 +(idI× (idList.I4suffix)) · nil∪ H cons∪

qs = nil5(join · idI×cons) · id11 +(qs×(idI×qs)) · nil∪ Hdnf

X = R5conquer · idI+(X×X) · idI+divide · AHB
do = idI5idI · idI+do · ∼B H (S ·B)

L = (concat ·a×id×b)5 c · (a×L×b)+ c · (a×id×b · concat∪) H c

slsrt = nil5cons · id11+idI×slsrt · nil∪ H (cons∪ · select)

join = post · (id11 +(idI× join))× idList.I · pass4 exr · (nil∪ H cons∪)× idList.I

fib = zero5one5add · id+id+(fib×fib) · id+id+(id4succ) · zero∪Hone∪H(succ2)∪

7

Generalisations of wf and admits-induction

Relation R :: F.I← I is F-well-founded iff, for all relations S :: I← F.I ,

ν〈X 7→ R · F.X · S∪〉 = µ〈X 7→ R · F.X · S∪〉 .

A relation R :: I← F.I is F-inductive iff

ν〈A 7→ (R · F.A)<〉 = idI .

Relation R :: F.I← I is F-reductive iff

µ〈A 7→R\F.A〉 = idI

8

Reducing Problem Size

Relation mem :: I← F.I is a membership relation of relator F if and
only if it satisfies, for all coreflexives A, A⊆ I:

F.A = mem\A .

Pointwise:
xs∈F.A ≡ ∀(x: x〈mem〉xs: x∈A) .

Theorem (Hoogendijk and De Moor):

R is F-reductive ≡ mem ·R is well-founded .

9

Basic F-reductive relations

Theorem The converse of an initial F-algebra is F-reductive.

Corollary The cata program

X = R · F.X · in∪

is terminating.

Theorem Let ⊕ be a binary relator, inI an initial (I⊕)-algebra, and
T the tree relator corresponding to ⊕ and inI. Then inI∪ · T.>>I←I is
(I⊕)-reductive.

Corollary Selection sort

slsrt = nil5cons · 11+I×slsrt · nil∪ H (cons∪ · select)

is terminating.

Proof
nil∪ H (cons∪ · select) ⊆ nil∪ H cons∪ · List.>> .

10

New From Old

Theorem Suppose R :: F.I← I is F-reductive. Define the function f
on positive numbers by f.1=R, f.(n+1) = F.(f.n) ·R. Then f.n is
Fn-reductive.

Example The fibonacci program

fib = zero5one5add · id+id+(fib×fib) · id+id+(id4succ) · zero∪Hone∪H(succ2)∪

is terminating.

11

New From Old

Theorem Suppose R :: F.I← I is F-reductive, S :: H.(G.I)←G.(F.I)
is such that S :: H◦G

.
<∼ G◦F, and G is a relator that is a lower

adjoint in a Galois connection. Then S ·G.R is H-reductive.

Examples

0+n = n and (m+1)+n = (m+n)+1

0×n = 0 and (m+1)×n = m×n+n

n0 = 1 and nm+1 = nm×n
nil ++ ys = ysand (x xs) ++ ys = x (xs ++ ys)

Generically:

X = R · F.X×P · F.(I×S)×P · pass4 exr · in∪×P
where pass · F.A×P ⊆ F.(A×P) · pass .

I.e. pass :: F ◦ (×P) .
<∼ (×P) ◦ F

Hence F.(P×S)×P · pass4 exr :: (×P) ◦ F ◦ (×P) .
<∼ (×P) ◦ F

and F.(I×S)×P · pass4 exr · in∪×P is (×P) ◦ F reductive.

12

New From Old

Corollary If R is F-reductive and S :: H
.
<∼ F then S ·R is

H-reductive.

Theorem Let Q be G-reductive and S :: F
.
<∼ Id, where Id denotes

the identity relator. Then F.Q ·S is (F◦G)-reductive.

Proof Follows from:

µ(A 7→ Q\ G.A) ⊆ µ(A 7→ (F.Q ·S)\ F.(G.A)) .

13

Conclusions

• Discipline of (recursive) programming based on virtual data
structures.

• Introduction of explicit parameter encourages analysis of
dependance on the structure of the parameter.

• Proof of termination akin to type checking.

Reference: Henk Doornbos, ”Reductivity arguments and program
construction”, PhD thesis (1996). Available at
http://www.cs.nott.ac.uk/~rcb/papers.

