Generic Termination

Roland Backhouse and Henk Doornbos 26th July 2001 1

Outline

- Well-founded and Admits-Induction
- Hylomorphisms
- F-well-founded and F-inductive
- (Some) rules for reductivity
- Conclusions

Well-Founded, Admits Induction

Monotype (coreflexive, proposition)	A, B, C
Relation	R, S, T
empty, universal, identity relation	$\perp\!\!\!\perp, \top \!\!\!\top, id$
Converse	Ru
Left and right domains (range and domain)	R<, R>
Composition of relations	$R \cdot S$
Weakest subspecification	$R \setminus S$
Weakest (liberal) precondition	$R \downarrow A$
Composition of functions (on relations)	$f \circ g$
admits induction	$\mu(R{}_{\underline{k}}) = id$
admits induction	$\mu(\mathbb{R}\setminus) = \top$

admits induction admits induction well-founded well-founded

$$\mu(R \setminus) = id \mu(R \setminus) = \top \nu(\cdot R) = \bot \nu\langle A \mapsto (A \cdot R)^{>} \rangle = \bot \bot$$

 $\neg(\nu(\,\cdot\,R))\,=\,(\mu(R\backslash))\cup\ .$

Relator

A *relator* F is a function to the objects of an allegory C from the objects of an allegory D together with a mapping to the arrows (relations) of C from the arrows of D satisfying the following properties:

F.R :: F.I $\leftarrow^{\mathcal{C}}$ F.J whenever R :: I $\leftarrow^{\mathcal{D}}$ J.F.R \cdot F.S = F.(R \cdot S) for each R and S of composable type,F.id_A = id_{F.A} for each object A ,F.R \subseteq F.S \leftarrow R \subseteq S for each R and S of the same type,(F.R) \cup = F.(R \cup) for each R .

The Hylo Theorem

Definition 1 Assume that F is an endorelator. Then (I, in) is a *relational initial* F-algebra iff in $:: I \leftarrow F.I$ and there is a mapping (_) defined on all F-algebras such that

Theorem 2 (Hylo Theorem) Suppose F is an endorelator on a locally-complete, tabular allegory \mathcal{A} . Let F' denote the endofunctor obtained by restricting F to the objects and arrows of $Map(\mathcal{A})$. Then in is an initial F'-algebra if and only it is a relational initial F-algebra.

5

Hylo Programs

 $\mathsf{suffix} = \mathsf{nil} \triangledown ((\mathsf{cons} \cdot \mathsf{exl}) \cup (\mathsf{exr} \cdot \mathsf{exr})) \cdot \mathsf{id}_1 + (\mathsf{id}_I \times (\mathsf{id}_{\mathsf{List}.I} \triangle \mathsf{suffix})) \cdot \mathsf{nil} \cup \mathsf{vcons} \cup \mathsf{suffix})$

- $\mathsf{qs} = \mathsf{nil}_{\triangledown}(\mathsf{join} \cdot \mathsf{id}_I \times \mathsf{cons}) \cdot \mathsf{id}_1 + (\mathsf{qs} \times (\mathsf{id}_I \times \mathsf{qs})) \cdot \mathsf{nil}_{\triangledown} \mathsf{dnf}$
- $X = R_{\triangledown} conquer \cdot id_{I} + (X \times X) \cdot id_{I} + divide \cdot A \bullet B$

$$\mathsf{do} = \mathsf{id}_{\mathrm{I}} \triangledown \mathsf{id}_{\mathrm{I}} \cdot \mathsf{id}_{\mathrm{I}} + \mathsf{do} \cdot \sim \mathsf{B} \bullet (\mathsf{S} \cdot \mathsf{B})$$

 $L = (\operatorname{concat} \cdot a \times \operatorname{id} \times b) \triangledown c \cdot (a \times L \times b) + c \cdot (a \times \operatorname{id} \times b \cdot \operatorname{concat} \cup) \checkmark c$

- $slsrt = nil_{\nabla}cons \cdot id_{1} + id_{I} \times slsrt \cdot nil_{\nabla} \cdot (cons_{\nabla} \cdot select)$
- $\mathsf{join} = \mathsf{post} \cdot (\mathsf{id}_{1} + (\mathsf{id}_{I} \times \mathsf{join})) \times \mathsf{id}_{\mathsf{List}.I} \cdot \mathsf{pass} \, \triangle \, \mathsf{exr} \, \cdot \, (\mathsf{nil} \cup \, \blacktriangledown \, \mathsf{cons} \cup) \times \mathsf{id}_{\mathsf{List}.I}$
 - $fib = zero = one = add \cdot id + id + (fib \times fib) \cdot id + id + (id = succ) \cdot zero = (succ^2) = (succ^2)$

Generalisations of wf and admits-induction

Relation $R :: F.I \leftarrow I$ is F-*well-founded* iff, for all relations $S :: I \leftarrow F.I$,

 $\nu \langle X \mapsto R \, \cdot \, F.X \, \cdot \, S \cup \rangle \ = \ \mu \langle X \mapsto R \, \cdot \, F.X \, \cdot \, S \cup \rangle \ .$

A relation $R :: I \leftarrow F.I$ is F-*inductive* iff

 $u \langle A \mapsto (R \cdot F.A) < \rangle = \mathsf{id}_{\mathrm{I}} \quad .$

Relation $R :: F.I \leftarrow I$ is F-*reductive* iff

$$\mu \langle A \mapsto R \downarrow F.A \rangle = \mathsf{id}_{\mathrm{I}}$$

Reducing Problem Size

Relation mem :: $I \leftarrow F.I$ is a *membership* relation of relator F if and only if it satisfies, for all coreflexives A, $A \subseteq I$:

F.A = mem A.

Pointwise:

$$xs \in F.A \equiv \forall (x: x \langle mem \rangle xs: x \in A)$$
.

Theorem (Hoogendijk and De Moor):

 $R \mbox{ is F-reductive } \equiv mem \cdot R \mbox{ is well-founded } .$

Basic F-reductive relations

Theorem The converse of an initial F-algebra is F-reductive.

Corollary The cata program

 $X = R \cdot F.X \cdot in \cup$

is terminating.

Theorem Let \oplus be a binary relator, in_I an initial $(I \oplus)$ -algebra, and T the tree relator corresponding to \oplus and in_I . Then $\mathsf{in}_{I} \cup \cdot \mathsf{T}$. $\forall \mathsf{T}_{I \leftarrow I}$ is $(I \oplus)$ -reductive.

Corollary Selection sort

 $slsrt = nil \neg cons \cdot 1 + I \times slsrt \cdot nil \cup (cons \cup \cdot select)$

is terminating.

Proof

```
\mathsf{nil} \cup {\color{black}{\bullet}} (\mathsf{cons} \cup {\color{black}{\cdot}} \, \mathsf{select}) \ \subseteq \ \mathsf{nil} \cup {\color{black}{\bullet}} \, \mathsf{cons} \cup {\color{black}{\cdot}} \, \mathsf{List}. \top {\color{black}{\top}} \ .
```

New From Old

Theorem Suppose $R :: F.I \leftarrow I$ is F-reductive. Define the function f on positive numbers by f.1 = R, $f.(n+1) = F.(f.n) \cdot R$. Then f.n is F^n -reductive.

 $\label{eq:example} \mathbf{Example} \ \mathbf{The} \ \mathbf{fibonacci} \ \mathbf{program}$

 $\mathsf{fib} = \mathsf{zero} \lor \mathsf{one} \lor \mathsf{add} \cdot \mathsf{id} + \mathsf{id} + (\mathsf{fib} \times \mathsf{fib}) \cdot \mathsf{id} + \mathsf{id} + (\mathsf{id} \land \mathsf{succ}) \cdot \mathsf{zero} \lor \mathsf{vone} \lor \mathsf{v(succ}^2) \lor$

is terminating.

New From Old

Theorem Suppose $R :: F.I \leftarrow I$ is F-reductive, $S :: H.(G.I) \leftarrow G.(F.I)$ is such that $S :: H \circ G \stackrel{\sim}{\sim} G \circ F$, and G is a relator that is a lower adjoint in a Galois connection. Then $S \cdot G.R$ is H-reductive.

Examples

Generically:

 $\begin{array}{rcl} X &=& R \ \cdot \ F.X \times P \ \cdot \ F.(I \times S) \times P \ \cdot \ pass \, \vartriangle \, exr \ \cdot \ in \cup \times P \\ \mathrm{where} & \mathsf{pass} \ \cdot \ F.A \times P \ \subseteq \ F.(A \times P) \ \cdot \ \mathsf{pass} \end{array}$

I.e. pass :: $F \circ (\times P) \stackrel{\cdot}{\sim} (\times P) \circ F$ Hence $F.(P \times S) \times P \cdot pass \triangle exr$:: $(\times P) \circ F \circ (\times P) \stackrel{\cdot}{\sim} (\times P) \circ F$ and $F.(I \times S) \times P \cdot pass \triangle exr \cdot in \cup \times P$ is $(\times P) \circ F$ reductive.

New From Old

Corollary If R is F-reductive and S :: $H \stackrel{\cdot}{\sim} F$ then $S \cdot R$ is H-reductive.

Theorem Let Q be G-reductive and S :: $F \stackrel{\cdot}{\sim} Id$, where Id denotes the identity relator. Then $F.Q \cdot S$ is $(F \circ G)$ -reductive.

 \mathbf{Proof} Follows from:

 $\mu(A \mapsto Q \searrow G.A) \ \subseteq \ \mu(A \mapsto (F.Q \cdot S) \searrow F.(G.A)) \ .$

Conclusions

- Discipline of (recursive) programming based on virtual data structures.
- Introduction of explicit parameter encourages analysis of dependance on the structure of the parameter.
- Proof of termination akin to type checking.

Reference: Henk Doornbos, "Reductivity arguments and program construction", PhD thesis (1996). Available at http://www.cs.nott.ac.uk/~rcb/papers.