
100 Digital Technical Journal Vol. 10 No. 1 1998

The Testing Problem

Successful commercial computer systems contain tens
of millions of lines of handwritten software, all of
which is subject to change as competitive pressures
motivate the addition of new features in each release.
As a practical matter, quality is not a question of cor-
rectness, but rather of how many bugs are fixed and
how few are introduced in the ongoing development
process. If the bug count is increasing, the software is
deteriorating.

Quality
Testing is a major contributor to quality—it is the last
chance for the development organization to reduce
the number of bugs delivered to customers. Typically,
developers build a suite of tests that the software must
pass to advance to a new release. Three major sources
of such tests are the development engineers, who
know where to probe the weak points; commercial test
suites, which are the arbiters of conformance; and cus-
tomer complaints, which developers must address to
win customer loyalty. All three types of test cases are
relevant to customer satisfaction and therefore have
value to the developers. The resultant test suite for the
software under test becomes intellectual property,
encapsulates the accumulated experience of problem
fixes, and can contain more lines of code than the soft-
ware itself.

Testing is always incomplete. The simplest measure
of completeness is statement coverage. Instrumentation
can be added to the software before it is tested. When
a test is run, the instrumentation generates a report
detailing which statements are actually executed.
Obviously, code that is not executed was not tested.
Random testing is a way to make testing more com-
plete. One value of random testing is introducing the
unexpected test—1,000 monkeys on the keyboard can
produce some surprising and even amusing input! The
traditional approach to acquiring such input is to let
university students use the software.

Testing software is an active field of endeavor.
Interesting starting points for gathering background

Differential Testing
for Software

William M. McKeeman

Differential testing, a form of random testing,
is a component of a mature testing technology
for large software systems. It complements
regression testing based on commercial test
suites and tests locally developed during prod-
uct development and deployment. Differential
testing requires that two or more comparable
systems be available to the tester. These sys-
tems are presented with an exhaustive series
of mechanically generated test cases. If (we
might say when) the results differ or one of
the systems loops indefinitely or crashes, the
tester has a candidate for a bug-exposing test.
Implementing differential testing is an interest-
ing technical problem. Getting it into use is an
even more interesting social challenge. This
paper is derived from experience in differential
testing of compilers and run-time systems at
DIGITAL over the last few years and recently
at Compaq. A working prototype for testing
C compilers is available on the web.

Digital Technical Journal Vol. 10 No. 1 1998 101

information and references are the web site main-
tained by Software Research, Inc.1 and the book
Software Testing and Quality Assurance.2

Developer Distaste
A development team with a substantial bug backlog
does not find it helpful to have an automatic bug
finder continually increasing the backlog. The team
priority is to address customer complaints before deal-
ing with bugs detected by a robot. Engineers argue
that the randomly produced tests do not uncover
errors that are likely to bother customers. “Nobody
would do that,” “That error is not important,” and
“Don’t waste our time; we have plenty of real errors
to fix” are typical developer retorts.

The complaints have a substantial basis. During a visit
to our development group, Professor C. A. R. Hoare of
Oxford University succinctly summarized one class of
complaints: “You cannot fix an infinite number of bugs
one at a time.” Some software needs a stronger remedy
than a stream of bug reports. Moreover, a stream of bug
reports may consume the energy that could be applied
in more general and productive ways.

The developer pushback just described indicates that
a differential testing effort must be based on a per-
ceived need for better testing from within the product
development team. Performing the testing is pointless
if the developers cannot or will not use the results.

Differential testing is most easily applicable to soft-
ware whose quality is already under control, that is,
software for which there are few known outstanding
errors. Running a very large number of tests and
expending team effort only when an error is found
becomes an attractive alternative. Team members’
morale increases when the software passes millions of
hard tests and test coverage of their code expands.

The technology should be important for applica-
tions for which there is a high premium on correct-
ness. In particular, product differentiation can be
achieved for software that has few failures in compari-
son to the competition. Differential testing is designed
to provide such comparisons.

The technology should also be important for appli-
cations for which there is a high premium on indepen-
dently duplicating the behavior of some existing
application. Identical behavior is important when old
software is being retired in favor of a new implementa-
tion, or when the new software is challenging a domi-
nant competitor.

Seeking an Oracle
The ugliest problem in testing is evaluating the result
of a test. A regression harness can automatically check
that a result has not changed, but this information
serves no purpose unless the result is known to be cor-

rect. The very complexity of modern software that
drives us to construct tests makes it impractical to pro-
vide a priori knowledge of the expected results. The
problem is worse for randomly generated tests. There
is not likely to be a higher level of reasoning that can
be applied, which forces the tester to instead follow
the tedious steps that the computer will carry out dur-
ing the test run. An oracle is needed.

One class of results is easy to evaluate: program
crashes. A crash is never the right answer. In the triage
that drives a maintenance effort, crashes are assigned to
the top priority category. Although this paper does not
contain an in-depth discussion of crashes, all crashes
caused by differential testing are reported and consti-
tute a substantial portion of the discovered bugs.

Differential testing, which is covered in the following
section, provides part of the solution to the problem of
needing an oracle. The remainder of the solution is dis-
cussed in the section entitled Test Reduction.

Differential Testing

Differential testing addresses a specific problem—the
cost of evaluating test results. Every test yields some
result. If a single test is fed to several comparable pro-
grams (for example, several C compilers), and one pro-
gram gives a different result, a bug may have been
exposed. For usable software, very few generated tests
will result in differences. Because it is feasible to gener-
ate millions of tests, even a few differences can result in
a substantial stream of detected bugs. The trade-off is
to use many computer cycles instead of human effort to
design and evaluate tests. Particle physicists use the
same paradigm: they examine millions of mostly boring
events to find a few high-interest particle interactions.

Several issues must be addressed to make differen-
tial testing effective. The first issue concerns the qual-
ity of the test. Any random string fed to a C compiler
yields some result—most likely a diagnostic. Feeding
random strings to the compiler soon becomes unpro-
ductive, however, because these tests provide only
shallow coverage of the compiler logic. Developers
must devise tests that drive deep into the tested com-
piler. The second issue relates to false positives. The
results of two tested programs may differ and yet
still be correct, depending on the requirements. For
example, a C compiler may freely choose among alter-
natives for unspecified, undefined, or implementation-
defined constructs as detailed in the C Standard.3

Similarly, even for required diagnostics, the form of
the diagnostic is unspecified and therefore difficult to
compare across systems. The third issue deals with the
amount of noise in the generated test case. Given a
successful random test, there is likely to be a much
shorter test that exposes the same bug. The developer

102 Digital Technical Journal Vol. 10 No. 1 1998

who is seeking to fix the bug strongly prefers to use the
shorter test. The fourth issue concerns comparing pro-
grams that must run on different platforms. Differential
testing is easily adapted to distributed testing.

Test Case Quality

Writing good tests requires a deep knowledge of the
system under test. Writing a good test generator
requires embedding that same knowledge in the gen-
erator. This section presents the testing of C compilers
as an example.

Testing C Compilers
For a C compiler, we constructed sample C source files
at several levels of increasing quality.

1. Sequence of ASCII characters
2. Sequence of words, separators, and white space
3. Syntactically correct C program
4. Type-correct C program
5. Statically conforming C program
6. Dynamically conforming C program
7. Model-conforming C program

Given a test case selected from any level, we con-
structed additional nearby test cases by randomly
adding or deleting some character or word from the
given test case. An altered test case is more likely to
cause the compilers to issue a diagnostic or to crash.
Both the selected and the altered test cases are valuable.

One of the more entertaining testing papers reports
the results of feeding random noise to the C run-time
library.4 A typical library function crashed or hung on 30
percent of the test cases. C compilers should do better,
but this hypothesis is worth checking. Only rarely
would a tested compiler faced with level 1 input execute
any code deeper than the lexer and its diagnostics. One
test at this level caused the compiler to crash because an
input line was too long for the compiler’s buffer.

At level 2, given lexically correct text, parser error
detection and diagnostics are tested, and at the same
time the lexer is more thoroughly covered. The C
Standard describes the form of C tokens and C “white-
space” (blanks and comments). It is relatively easy to
write a lexeme generator that will eventually produce
every correct token and white-space. What surprised us
was the kind of bugs that the testing revealed at this

level. One compiler could not handle 0x000001 if
there were too many leading zeros in the hexadecimal
number. Another compiler crashed when faced with
the floating-point constant 1E1000. Many compilers
failed to properly process digraphs and trigraphs.

Stochastic Grammar
A vocabulary is a set of two kinds of symbols: terminal
and nonterminal. The terminal symbols are what one
can write down. The nonterminal symbols are names
for higher level language structures. For example, the
symbol “+” is a terminal symbol, and the symbol
“additive-expression” is a nonterminal symbol of the
C programming language. A grammar is a set of rules
for describing a language. A rule has a left side and a
right side. The left side is always a nonterminal sym-
bol. The right side is a sequence of symbols. The rule
gives one definition for the structure named by the left
side. For example, the rule shown in Figure 1 defines
the use of “+” for addition in C. This rule is recursive,
defining additive-expression in terms of itself.

There is one special nonterminal symbol called the
start symbol. At any time, a nonterminal symbol can be
replaced by the right side of a rule for which it is the left
side. Beginning with the start symbol, nonterminals
can be replaced until there are no more nonterminal
symbols. The result of many replacements is a sequence
of terminal symbols. If the grammar describes C, the
sequence of terminal symbols will form a syntactically
correct C program. Randomly generated white-space
can be inserted during or after generation.

A stochastic grammar associates a probability with
each grammar rule.

For level 2, we wrote a stochastic grammar for lex-
emes and a Tcl script to interpret the grammar,5,6 per-
forming the replacements just described. Whenever a
nonterminal is to be expanded, a new random number
is compared with the fixed rule probabilities to direct
the choice of right side.

In either case, at this level and at levels 3 through 7,
setting the many fixed choice probabilities permits
some control of the distribution of output values.
Not all assignments of probabilities make sense. The
probabilities for the right sides that define a specific
nonterminal must add up to 1.0. The probability of
expanding recursive rules must be weighted toward a
nonrecursive alternative to avoid a recursion loop in
the generator. A system of linear equations can be
solved for the expected lengths of strings generated by

Figure 1
Rule That Defines the Use of “+” for Addition in C

additive-expression additive-expression + multiplicative-expression

Digital Technical Journal Vol. 10 No. 1 1998 103

each nonterminal. If, for some set of probabilities, all
the expected lengths are finite and nonnegative, this
set of probabilities ensures that the generator does not
often run away.

Increasing Test Quality
At level 3, given syntactically correct text, one would
expect to see declaration diagnostics while more thor-
oughly covering the code in the parser. At this level,
the generator is unlikely to produce a test program
that will compile. Nevertheless, compiler errors were
detected. For example, one parser refused the expres-
sion 1==1==1 .

The syntax of C is given in the C Standard. Using
the concept of stochastic grammar, it is easy to write a
generator that will eventually produce every syntacti-
cally correct C translation-unit. In fact, we extended
our Tcl lexer grammar to all of C.

At level 4, given a syntactically correct generated
program in which every identifier is declared and all
expressions are type correct, the lexer, the parser, and a
good deal of the semantic logic of the compiler are
covered. Some generated test programs compile and
execute, giving the first interesting differential testing
results. Achieving level 4 is not easy but is relatively
straightforward for an experienced compiler writer. A
symbol table must be built and the identifier use lim-
ited to those identifiers that are already declared. The
requirements for combining arithmetic types in C
(int, short, char, float, double with long
and/or unsigned) were expressed grammatically.
Grammar rules defining, for example, int-additive-
expression replaced the rules defining additive-expres-
sion. The replacements were done systematically for all
combinations of arithmetic types and operators. To
avoid introducing typographical errors in the defining
grammar, much of the grammar itself was generated
by auxiliary Tcl programs. The Tcl grammar inter-
preter did not need to be changed to accommodate
this more accurate and voluminous grammatical data.
We extended the generator to implement declare-

before-use and to provide the derived types of C
(struct, union, pointer). These necessary
improvements led to thousands of lines of tricky
implementation detail in Tcl. At this point, Tcl, a
nearly structureless language, was reaching its limits
as an implementation language.

At level 5, where the static semantics of the C
Standard have been factored into the generator, most
generated programs compile and run.

Figure 2 contains a fragment of a generated C test
program from level 5.

A large percentage of level 5 programs terminate
abnormally, typically on a divide-by-zero operation. A
peculiarity of C is that many operators produce a
Boolean value of 0 or 1. Consequently, a lot of expres-
sion results are 0, so it is likely for a division operation
to have a zero denominator. Such tests are wasted. The
number of wasted tests can be reduced somewhat by
setting low probabilities for using divide, for creating
Boolean values, or for using Boolean values as divisors.

Regarding level 6, dynamic standards violations can-
not be avoided at generation time without a priori
choosing not to generate some valid C, so instead we
implement post-run analysis. For every discovered dif-
ference (potential bug), we regenerate the same test case,
replacing each arithmetic operator with a function call,
inside which there is a check for standards violations.

The following is a function that checks for “integer
shift out of range.” (If we were testing C++, we could
have used overloading to avoid having to include the
type signature in the name of the checking function.)
int
int_shl_int_int(int val, int amt) {

assert(amt >= 0 && amt < sizeof(int)*8);
return val << amt;

}

For example, the generated text
a << b

is replaced upon regeneration by the text
int_shl_int_int(a, b)

Figure 2
Generated C Expression

++ ul15 + -- ui8 * ++ ul16 - (ui17 + ++ ui20 * (sl21 & (argc <<=
c14) ? (us23) < ++ argc <= ++ sl22 : -- ((* & * & sl24)) ==
0160030347u < ++ (t5u7) . sit5m6 & 1731044438u * ++ ui25 * (
unsigned int) ++ (ld26)) & (((076l) * 2137167721L * sl27 ?
ul28 & d12 * ++ d9 * DBL_EPSILON * 7e+4 * ++ d11 + ++ d10 * d12 * (
++ ld31 * .4L * 9.l - ld32 * ++ f33 - - .7392E-6L * ++ ld34 + 22.82L
+ 1.9l * -- ld35 >= ++ ld37) == 9.F + (++ f38) + ++ f39 *f40 > (
float) ++ f41 * f42 >= c14 ++ : sc43 & ss44) ^ uc13 & .9309L - (
ui18 * 007101U * ui19 ? sc46 -- ? -- ld47 + ld48 : ++ ld49 - ld48 *
++ ld50 : ++ ld51) >= 239.61l) ^ - ++ argc == (int signed) argc -
++ ui54)- ++ ul57 >= ++ ul58 * argc - 9ul * ++ * & ul59 * ++ ul60 ;

104 Digital Technical Journal Vol. 10 No. 1 1998

If, on being rerun, the regenerated test case asserts a
standards violation (for example, a shift of more than
the word length), the test is discarded and testing con-
tinues with the next case.

Two problems with the generator remain: (1) obtain-
ing enough output from the generated programs so
that differences are visible and (2) ensuring that the
generated programs resemble real-world programs so
that the developers are interested in the test results.
Solving these two problems brings the quality of test
input to level 7. The trick here is to begin generating the
program not from the C grammar nonterminal symbol
translation-unit but rather from a model program
described by a more elaborate string in which some of
the program is already fully generated. As a simple
example, suppose you want to generate a number of
print statements at the end of the test program. The
starting string of the generating grammar might be
define P(v) printf(#v “=%x\\n”, v)

int main() {
declaration-list
statement-list
print-list
exit(0);

}

where the grammatical definition of print-list is
given by
print-list P (identifier) ;
print-list print-list P (identifier) ;

In the starting string above there are three nonter-
minals for the three lists instead of just one for the
standard C start symbol translation-unit. Programs
generated from this starting string will cause output
just before exit. Because differences caused by round-
ing error were uninteresting to us, we modified this
print macro for types float and double to print only
a few significant digits. With a little more effort, the
expansion of print-list can be forced to print each
variable exactly once.

Alternatively, suppose a test designer receives a bug
report from the field, analyzes the report, and fixes the
bug. Instead of simply putting the bug-causing case in
the regression suite, the test designer can generalize it
in the manner just presented so that many similar test
cases can be used to explore for other nearby bugs.

The effect of level 7 is to augment the probabilities
in the stochastic grammar with more precise and direct
means of control.

Forgotten Inputs
The elaborate command-line flags, config files, and
environment variables that condition the behavior of
programs are also input. Such input can also be gener-
ated using the same toolset that is used to generate the
test programs. The very first test on the very first run

with generated compiler directive flags revealed a bug
in a compiler under test—it could not even compile its
own header files.

Results
Table 1 indicates the kinds of bugs we discovered dur-
ing the testing. Only those results that are exhibited by
very short text are shown. Some of the results derive
from hand generalization of a problem that originally
surfaced through random testing.

There was a reason for each result. For example, the
server crash occurred when the tested compiler got a
stack overflow on a heavily loaded machine with a very
large memory. The operating system attempted to
dump a gigabyte of compiler stack, which caused all
the other active users to thrash, and many of them also
dumped for lack of memory. The many disk drives on
the server began a dance of the lights that sopped up
the remaining free resources, causing the operators to
boot the server to recover. Excellent testing can make
you unpopular with almost everyone.

Test Distribution

Each tested or comparison program must be executed
where it is supported. This may mean different hard-
ware, operating system, and even physical location.

There are numerous ways to utilize a network
to distribute tests and then gather the results. One par-
ticularly simple way is to use continuously running
watcher programs. Each watcher program periodically
examines a common file system for the existence of
some particular files upon which the program can act.
If no files exist, the watcher program sleeps for a while
and tries again. On most operating systems, watcher
programs can be implemented as command scripts.

There is a test master and a number of test beds.
The test master generates the test cases, assigns them
to the test beds, and later analyzes the results. Each
test bed runs its assigned tests. The test master and test
beds share a file space, perhaps via a network. For each
test bed there is a test input directory and a test output
directory.

A watcher program called the test driver waits until
all the (possibly remote) test input directories are
empty. The test driver then writes its latest generated
test case into each of the test input directories and
returns to its watch-sleep cycle. For each test bed there
is a test watcher program that waits until there is a file
in its test input directory. When a test watcher finds a
file to test, the test watcher runs the new test, puts the
results in its test output directory, and returns to the
watch-sleep cycle. Another watcher program called
the test analyzer waits until all the test output directo-
ries contain results. Then the results, both input and

Digital Technical Journal Vol. 10 No. 1 1998 105

endless loop, the test analyzer writes the test data to
the loop directory. If one of the comparison compilers
crashes or enters an endless loop, the test analyzer dis-
cards the test, since reporting the bugs of a compari-
son compiler is not a testing objective. If some, but
not all, of the test case executions terminate abnor-
mally, the test case is written to the abend directory. If
all the test cases run to completion but the output dif-
fers, the case is written to the test diff directory.
Otherwise, the test case is discarded.

Test Reduction
A tester must examine each filed test case to determine
if it exposes a fault in the compiler under test. The first
step is to reduce the test to the shortest version that
qualifies for examination.

A watcher called the crash analyzer examines the
crash directory for files and moves found files to a
working directory. The crash analyzer then applies a
shortening transformation to the source of the test
case and reruns the test. If the compiler under test still
crashes, the original test case is replaced by the short-
ened test case. Otherwise, the change is backed out

output, are collected for analysis, and all the files are
deleted from every test input and output directory,
thus enabling another cycle to begin.

Using the file system for synchronization is adequate
for computations on the scale of a compile-and-execute
sequence. Because of the many sleep periods, this distri-
bution system runs efficiently but not fast. If through-
put becomes a problem, the test system designer can
provide more sophisticated remote execution. The dis-
tribution solution as described is neither robust against
crashes and loops nor easy to start. It is possible to elab-
orate the watcher programs to respond to a reasonable
number of additional requirements.

Test Analysis

The test analyzer can compare the output in various
ways. The goal is to discover likely bugs in the com-
piler under test. The initial step is to distinguish the
test results by failure category, using corresponding
directories to hold the results. If the compiler under
test crashes, the test analyzer writes the test data to the
crash directory. If the compiler under test enters an

Table 1
Results of Testing C Compilers

Source Code Resulting Problem

if (1.1) Constant float expression evaluated false
1 ? 1 : 1/0 Several compiler crashes
0.0F/0.0F Compiler crash
x != 0 ? x/x : 1 Incorrect answer
1 == 1 == 1 Spurious syntax error
-!0 Spurious type error
0x000000000000000 Spurious constant out of range message
0x80000000 Incorrect constant conversion
1E1000 Compiler crash
1 >> INT_MAX Twenty-minute compile time
‘ab’ Inconsistent byte order
int i=sizeof(i=1); Compiler crash
LDBL_MAX Incorrect value
(++n,0) ? -- n: 1 Operator ++ ignored
if (sizeof(char)+d) f(d) Illegal instruction in code generator
i=(unsigned)-1.0F; Random value
int f(register()); Compiler crash or spurious diagnostic
int (…(x)…); Enough nested parentheses to kill the compiler

Spurious diagnostic (10 parentheses)
Compiler crash (100 parentheses)
Server crash (10,000 parentheses)

digraphs (<: <% etc.) Spurious error messages
a/b The famous Pentium divide bug (we did not catch it

but we could have)

106 Digital Technical Journal Vol. 10 No. 1 1998

and a new transformation is tried. We used 23 heuris-
tic transformations, including

■ Remove a statement
■ Remove a declaration
■ Change a constant to 1
■ Change an identifier to 1
■ Delete a pair of matching braces
■ Delete an if clause

When all the transformations have been systematically
tried once, the process is started over again. The
process is repeated until a whole cycle leaves the
source of the test unchanged. A similar process is used
for the loop, abend, and diff directories.

The typical result of the test reduction process is to
reduce generated C test programs of 500 to 600 lines
to equally useful C programs of only a few lines. It is
not unusual to use 10,000 or more compile opera-
tions during test reduction. The trade-off is using
many computer cycles instead of human effort to ana-
lyze the ugly generated test case.

Test Presentation
After the shortest form of the test case is ready, the test
analyzer wraps it in a command script that

1. Reports environmental information (compiler ver-
sion, compiler flags, name of the test platform, time
of test, etc.)

2. Reports the test output or crash information
3. Reruns the test (the test input is embedded in the

script)

The test analyzer writes the command scripts to a
results directory.

Test Evaluation and Report
The person who is managing the differential testing
setup periodically runs scripts that have accumulated in
the results directory to determine which ones expose a
problem of interest to the development team. One
problem peculiar to random testing is that once a bug
is found, it will be found again and again until it is
fixed. This argues the case for giving high priority to
the bugs exposed by differential testing. Uninteresting
and duplicate tests are manually discarded, and the rest
are entered into the development team bug queue.

Summary and Directions

Differential testing, suitably tuned to the tested
program, complements traditional software testing
processes. It finds faults that would otherwise remain
undetected. It is cost-effective. It is applicable to a
wide range of large software. It has proven unpopular
with the developers of the tested software.

This technology exposed new bugs in C compilers
each day during its use at DIGITAL. Most of the bugs
were in the comparison compilers, but a significant
number of bugs in DIGITAL code were found and
corrected.

Numerous special-purpose differential testing har-
nesses were put into use at DIGITAL, each testing
some small part of a large program. For example, the
C preprocessor, multidimensional Fortran arrays,
optimizer constant folding, and a new printf func-
tion each were tested by ad hoc differential testers.

The Java API (run-time library) is a large body of
relatively new code that runs on a wide variety of plat-
forms. Since “Write once, run anywhere” is the Java
motto, the standard for conformance is high; however,
experience has shown that the standard is difficult to
achieve. Differential testing should help. What needs
to be done is to generate a sequence of calls into the
API on various Java platforms, comparing the results
and reporting differences. Technically, this procedure
is much simpler than testing C compilers. Chris Rohrs,
an MIT intern at DIGITAL, wrote a system entirely in
Java, gathering method signature information directly
out of the binary class files. This API tester may be
used when the quality of the Java API reaches the
point where the implementors are not buried in bug
reports and when there are more independent imple-
mentations of the Java run time.

Differential testing can be used to increase test cov-
erage. Using the coverage data taken from running
the standard regression suite as a baseline, the devel-
opers can run random tests to see if coverage can
be increased. Developers can freely add coverage-
increasing tests to the test suite using the test output as
an initial oracle. No harm is done because even if the
recorded result is wrong, the compiler is no worse off
for it. If at a later time a regression is observed on the
generated test, either the new or the old version was
wrong. The developers are alerted and can react. John
Parks and John Hale applied this technology to
DIGITAL’s C compilers.

The problem of retiring an old compiler in favor of a
new one requires the new one to duplicate old behavior
so as not to upset the installed base. Differential testing
can compare the old and the new, flagging all new
results (correct or not) that disagree with the old results.

Differential testing can be used to measure quality.
Supposing that the majority rules, a million tests can
be run on a set of competing compilers. The metric is
failed tests per million runs. The authors of the failed
compilers can either fix the bugs or prove the majority
wrong. In any case, quality improves.

At Compaq, differential testing opportunities arise
regularly and are often satisfied by testing systems that
are less elaborate than the original C testing system,
which has been retired.

Digital Technical Journal Vol. 10 No. 1 1998 107

Acknowledgments

This work was begun in the Digital Cambridge
Research Laboratory by Andy Payne based on his ear-
lier experience in testing DIGITAL Alpha hardware.
The author and August Reinig continued the develop-
ment as an advanced development project in the com-
piler product group in Nashua, New Hampshire.
Steve Rogers and Christine Gregowske contributed to
the work, and Steve eventually placed a free working
prototype on the web.7 Bruce Foster managed and
encouraged the project, giving the implementors ideas
faster than they could be used.

References and Notes

1. Information on testing is available at http://www.testworks.
com/Institute/HotList/.

2. B. Beizer, Software Testing and Quality Assurance (New
York: Van Nostrand Reinhold, 1984).

3. ISO/IEC 9899: 1990, Programming Languages — C, 1st
ed. (Geneva, Switzerland: International Organization
for Standardization, 1990).

4. B. Miller, “An Empirical Study of Reliability,” CACM,
vol. 33, no. 12 (December 1990): 32–44.

5. Information on Tcl/Tk is available at
http://sunscript.sun.com/.

6. J. Ousterhout, Tcl and the Tk Toolkit (Reading, Mass.:
Addison-Wesley, 1994).

7. Information on DDT distribution is available at
http://steve-rogers.com/projects/ddt/.

General Reference

W. McKeeman, A. Reinig, and A. Payne, “Method
and Apparatus for Software Testing Using a
Differential Testing Technique to Test Compilers,”
U.S. Patent 5,754,860 (May 1998).

Biography

William M. McKeeman
William McKeeman develops system software for Compaq
Computer Corporation. He is a senior consulting engineer
in the Core Technology Group. His work encompasses
fast-turnaround compilers, unit testing, differential testing,
physics simulation, and the Java compiler. Bill came to
DIGITAL in 1988 after more than 20 years in academia
and research. Most recently, he was a research professor at
the Aiken Computation Laboratory of Harvard University,
visiting from the Wang Institute Masters in Software
Engineering program, where he served as Professor and
Chair of the Faculty. He has served on the faculties of the
University of California at Santa Cruz and Stanford
University and on various state and university computer
advisory committees. In addition, he has been an ACM and
IEEE National Lecturer and chairman of the 4th Annual
Workshop in Microprogramming and is a member of the
IFIP Working Group 2.3 on Programming Methodology.
Bill founded the Summer Institute in Computer Science
programs at Santa Cruz and Stanford and was technical
advisor to Boston University for the Wang Institute 1988
Summer Institute. He received a Ph.D. in computer sci-
ence from Stanford University, an M.A. in mathematics
from The George Washington University, a B.A. in mathe-
matics from University of California at Berkeley, and pilot
wings from the U.S. Navy. Bill has coauthored 16 patents,
3 books, and numerous published papers in the areas of
compilers, programming language design, and program-
ming methodology.

