
The GNU Hurd: Towards Extensibility

Neal H. Walfield

neal@gnu.org

FOSDEM, 2005



Hurd Design Goals1

I Increased Flexibility
I Translators
I Modifiable VFS
I Replacement of system components

I Increased Security
I Fault isolation
I User-space servers
I Authorization tokens, not DNA

I Fine grained control
I Limit lateral access (unintended sharing)

1Michael Bushnell, Towards a New Strategy of OS Design



Have We Succeeded?

I Yes!



Well, Mach has Important Limitations

I Inadequate Memory Object API
I All users of a memory object get the same access rights: if

one user has write access, all users get write access
I Resource Accounting

I Servers allocate resources on behalf of clients
I No resource limits
I No quality of service

I Performance and State of GNU Mach
I Optimized for early 1990s hardware
I Page out daemon evicts pages one at a time
I Driver code is outdated and not well integrated



Can We Fix These Issues?

I Inadequate Memory Object API
I Non-invasive API improvements
I Additional level of indirection

I Resource Accounting
I API assumes that servers allocate resources on behalf of

clients
I Deep, impractical API changes required

I Performance and State of GNU Mach
I Can tune algorithms and clean up code



Are These Changes Enough?

I Inadequate Memory Object API
I Fixed

I Resource Accounting
I Many systems make due without: just add, e.g. an out of

memory killer
I Performance and State of the Code

I Resource scheduling algorithms are designed for a
monolithic system and perform poorly in a multi-server
environment

I Dramatic improvement requires a shift in the framework



Global Resource Scheduling

I In 1968, Denning states that the OS cannot consult
applications for scheduling advice if it is to be fair; the OS
must rely only on observed behavior 2

I All Popular Operating Systems still following this
philosophy

I Approach is not straightforward: Linux is constantly being
tuned for the typical work load
I Lots of VM tuning patches
I Lots of CPU schedulers (Kolivas’ Staircase, Williams’

Zaphod Priority)

2The Working Set Model for Program Behavior



Problems with Global Resource Scheduling

I Global view is insufficient
I Good resource scheduling requires application specific

knowledge
I Ever hear an audio playback “skip” when a program started

doing a lot of disk I/O?
I Problem: lack of quality of service
I Stonebraker notes that applications can know page usage

while the kernel can only ever guess based on a
predetermined set of access patterns which it can
recognize3

I Bad for
I Databases
I Garbage Collectors
I Scientific Applications
I Multimedia Applications (best effort)

3Operating System Support for Database Management



But Linux Performs Well

I Linux has local knowledge of how many resource intense
applications work
I Drivers
I File Systems
I Network Stacks

I We can only do worse on a multiserver architecture. As
Linus Torvalds recently said:
“I really do believe that user-space filesystems have
problems. There’s a reason we tend to do them in kernel
space . . . Guys, there is a reason why microkernels suck.
This is an example of how things are not ‘independent’.
The filesystems depend on the VM, and the VM depends
on the filesystem. You can’t just split them up as if they
were two separate things (or rather: you can split them up,
but they still very much need to know about each other in
very intimate ways)4”

418 Nov 2004 email to LKML



Listening to Linus

I Two Ways to keep VM and FS intimate
I Move file systems back into the kernel
I Move VM into user space

I Former prevents flexibility
I Latter supports Hurd philosophy



Extending Mach

I Premo Pagers5

I Extension to Memory Objects
I Memory Object’s paging policy in server
I Inflexible: when Mach a server to evict a page it must be

from a particular memory object
I Step closer to application but in the application

I High Performance External Virtual Memory Caching
Mechanism (HIPEC)6

I Extension to Memory Object
I Upload trusted code to Mach
I Code unable to access application state

5McNamee, Extending The Mach External Pager Interface To
Accommodate User-Level Page Replacement

6Lee, In-Kernel Policy Interpretation for Application-Specific Memory
Caching Management



Other Systems

I V++7

I Application Kernels
I Market Model for allocating sparse resources

I Aegis (Exokernel)8

I Exports everything to user-space, even page tables
I Library OS
I No quality of service guarantees

I Nemesis9

I Self-paging tasks
I Guaranteed pages on medium term contracts
I Specifically address quality of service

7Harty, Application-Controlled Physical Memory using External
Page-Cache Management

8Engler: AVM-Level Virtual Memory
9Hand, Self-Paging in the Nemesis Operating System



Hurd on L4 Approach

I Self-paging tasks with no fall-back (default) pager
I Late Virtualization

I Applications are allocated physical resources; their
responsibility to multiplex them (if needed)

I Extensible libraries implement widely used policies



Resource Allocation Revisited

I Applications allocate resources
I Applications pass resources to servers
I Servers do minimal allocation on clients’ behalves (only

metadata, e.g. connection state)



Degree of Extensibility

I Other important scarce resources: CPU and I/O
I Applications can scale their use according to availability

and provide different service
I Denning noted that memory scheduling is tightly coupled to

CPU scheduling: if a task has memory but no CPU time, it
can’t make progress and the memory is wasted10

I Can we apply the same technique to these?

10The Working Set Model for Program Behavior



Separating Control and Data Paths

I Filesystems perform two tasks: structure bits and fetch
data

I If clients can fetch data directly from backing store then the
filesystem manages metadata and clients can talk directly
to back store and negotiate quality of service parameters

I Algorithm
I Client wants to read file
I Filesystem determines block list
I Tells backing store to allow client to access block list
I Filesystem returns block list and server to client
I Client contacts the device driver and asks it to read the

block list



Sounds Great, But. . .

I How do we allow efficient, secure access to the disk?
I If we find a way to do this efficiently and our physical

resource scheduler is efficient and fair, applications will
optimize for their best interests (or hurt themselves) then
the system will perform more efficiently



Where Are We Now?

I Physmem framework is in place
I Proof of concept
I Need to develop the global allocation policy
I Need to implement the default paging policy library
I Good feeling. . .



Big Questions

I What policy should we use to allocate physical resources?
A market based model like V++? Needs more research.

I Can (and how do) we implement a user space disk
efficiently?



Copyright 2005 Neal H. Walfield
This work is licensed under: Creative Commons
Attribution-ShareAlike 2.0 license. You are free:
I to copy, distribute, display, and perform the work
I to make derivative works
I to make commercial use of the work

Under the following conditions:
I Attribution: You must give the original author credit.
I Share Alike: If you alter, transform, or build upon this work,

you may distribute the resulting work only under a license
identical to this one.

For any reuse or distribution, you must make clear to others the
license terms of this work. Any of these conditions can be
waived if you get permission from the copyright holder.
Your fair use and other rights are in no way affected by the
above.
Full text at
http://creativecommons.org/licenses/by-sa/2.0/legalcode .


	Introduction
	Mach's Limitations
	Resource Scheduling
	An Extensible Framework
	Conclusion
	Copyright

