
make-method-lambda considered harmful

Pascal Costanza, Charlotte Herzeel
Vrije Universiteit Brussel, Belgium

June 11, 2008

Abstract

The CLOS Metaobject Protocol (CLOS MOP) is a specification of
how major building blocks of CLOS are implemented in terms of CLOS
itself. This enables programmers to subclass meta-level classes and define
meta-level state and behavior in an incremental fashion. The benefits of
such a meta-level architecture for object systems in general and CLOS in
particular are well documented. However, some parts of the CLOS MOP
are underspecified or impractical to use. We discuss a particular dark
corner of the CLOS MOP, the meta-level function make-method-lambda,
whose purpose is to influence the expansion, and thus the semantics, of
defmethod forms. We also make concrete suggestions for an alternative
design for achieving the functionality that make-method-lambda provides,
without any of its drawbacks.

1 Introduction: The CLOS MOP

ANSI Common Lisp specifies the Common Lisp Object System (CLOS), an
object-oriented extension of Common Lisp that supports classes with multiple
inheritance, generic functions as containers for methods, multiple dispatch, de-
fault and user-defined method combinations, and support for redefining many
aspects of class definitions, method definitions and instances at runtime [1].
The CLOS Metaobject Protocol (CLOS MOP) is a specification of how ma-
jor building blocks of CLOS are implemented in terms of CLOS itself. This
enables programmers to subclass meta-level classes and define meta-level state
and behavior in an incremental fashion [5].

The benefits of such a meta-level architecture for object systems in general
and CLOS in particular are well documented. Examples include: dynamic slots
[7], persistence frameworks [6], extensions for context-oriented programming
[2], and so on. However, some parts of the CLOS MOP are underspecified or
impractical to use. The reason for this is that the CLOS MOP specification was
work in progress at the time of its publication in 1991: Major parts were already
well understood and used in practice, while the use of other parts remained vague
and unclear. This paper discusses a particular dark corner of the CLOS MOP,
the meta-level function make-method-lambda, whose purpose is to influence the
expansion, and thus the semantics, of defmethod forms.

2 How to make method lambdas

2.1 The role of make-method-lambda

The CLOS MOP is broadly divided into two parts: One part specifies how
the user interface macros defclass, defgeneric and defmethod are expanded
into calls of the underlying functional abstractions of the CLOS MOP, and the
other part specifies the various subprotocols that provide hooks for influencing
the semantics of CLOS. While the expansion for defclass and defgeneric
are relatively straightforward mappings to invocations of ensure-class and
ensure-generic-function, the expansion of defmethod forms is more involved.
Especially, it is specified that method bodies have to be passed to, and prepro-
cessed by, make-method-lambda. The role of make-method-lambda is to ensure
that arguments passed to a generic function are made available to the method
body, and to insert further local definitions into method bodies. For exam-
ple, local definitions for call-next-method and next-method-p are inserted by
default, whose implementations fetch the internal list of next methods.

In order to be able to get access to the different parameters to method
bodies, which are not necessarily only the arguments passed to the corresponding
generic function, a method body lambda expression is therefore converted into a
modified lambda expression that can take additional parameters. For example,
assume that the following method is defined.

(defmethod foo ((x integer) (y integer))
(do-something x y))

The corresponding method body is an unspecialized lambda form.

(lambda (x y)
(do-something x y))

This lambda form (the s-expression, not the closure it would evaluate to!) is
passed to make-method-lambda and converted into roughly something like this.

(lambda (args next-methods)
(let ((x (car args)) (y (cadr args)))
(flet ((call-next-method ()

(funcall (method-function (car next-methods))
args (cdr next-methods)))

(next-method-p () (not (null next-methods))))
(do-something x y))))

Industrial-strength CLOS implementations perform a number of optimizations
and thus yield different lambda forms that vary in a number of details, but the
overall idea remains the same.

The function make-method-lambda is a generic function and is specified
to take the following parameters: A generic function metaobject for which a
method is being defined, a possibly uninitialized method metaobject (as, for
example, returned by class-prototype on some method metaobject class),
a method body lambda expression and an environment object. Methods on
make-method-lambda return a new lambda expression and possibly a number
of initialization arguments for creating a new method object. The full expansion
of the above defmethod corresponds to something like this.1

1The environment parameter is not further explained here.

(let ((gf (ensure-generic-function ’foo)))
(multiple-value-bind

(lambda-expression extra-initargs)
(make-method-lambda
gf (class-prototype (generic-function-method-class gf))
’(lambda (x y) (do-something x y))
lexical-environment-of-defmethod-form)

(add-method gf (apply #’make-instance
(generic-function-method-class gf)
:qualifiers ’()
:lambda-list ’(x y)
:specializers (list (find-class ’integer)

(find-class ’integer))
:function (compile nil lambda-expression)
extra-initargs))

The function make-method-lambda is quite powerful: User-defined methods
on make-method-lambda can insert their own lexical definitions into method
bodies (like call-previous-method or current-method [5]), and can make
method functions accept more parameters. The CLOS MOP specifies a corre-
sponding extension to user-defined method combinations, where call-method
forms can pass additional arguments to method functions. If a user-defined
method combination and a method on make-method-lambda are paired cor-
rectly, they can cooperate to take advantage of such additional arguments
and actually make extensions like call-previous-method and current-method
work. However, there is a major drawback in this approach, which is discussed
in the next subsection.

2.2 Dependency on generic functions

A user can specialize make-method-lambda on its generic function or method
parameter. Specializations on the lambda expression parameter and the en-
vironment are not useful for practical purposes, since the lambda expression
should always be a cons cell that makes up an s-expression, and the environ-
ment parameter is an environment object, whose class is left unspecified in ANSI
Common Lisp. We are not aware of any Common Lisp implementation that sup-
ports subclassing of cons cells or environments, so we are left with specializing
make-method-lambda on the other two parameters.

Next, ANSI Common Lisp does not specify how to associate method classes
with defmethod forms. Only default method classes can be specified for generic
functions as the :method-class option in defgeneric forms (or as the corre-
sponding keyword parameter to ensure-generic-function), which specify the
method class which is used by default for any method defined on such a generic
function. So for most practical purposes, which make-method-lambda method
gets to preprocess method bodies depends only on the generic function to which
a method is supposed to added.2

This implies two problems: The generic function metaobjects have to be
present at macroexpansion time, and the coupling between generic functions
and methods is too tight.

2The lack of a possible :method-class option in defmethod forms is arguably an omission.

2.3 Required presence of generic function metaobjects

As an example, assume the following definitions.

(defgeneric foo (x y)
(:method-class my-method))

(defmethod foo ((x integer) (y integer))
(do-something x y))

Executing these definitions has two different results, depending on whether
the code is evaluated directly, or is preprocessed using a file compiler. With di-
rect evaluation, the first form gets expanded and immediately executed to create
a generic function metaobject with an associated special method class. Then,
the second form gets expanded, where the expansion is potentially modified by
a user-defined method on make-method-lambda specialized on my-method (for
example, for inserting additional lexical definitions into the method body). Af-
ter expansion, the second form gets executed to create a method metaobject
and add it to the generic function metaobject yielded by the first form.

When the code is processed by a file compiler, things will be different: There,
the first form gets expanded but not immediately executed. Instead, execution
of the expanded code is delayed until load time, as is always the case for file-
compiled code in ANSI Common Lisp. This implies that the corresponding
generic function metaobject is not created yet. Thus, when the second form
gets expanded, a user-defined method on make-method-lambda specialized on
my-method will not be executed: Recall from above that the corresponding
generic function metaobject is obtained by ensure-generic-function, which
is specified to either return an existing generic function with the given name,
or to create a new generic function with default settings in case it does not
exist yet. One of the default settings is that the default method class should be
standard-method, and thus a make-method-lambda on my-method will not be
taken into consideration in this case. This situation is further complicated in
that after a load of the thus compiled code, the corresponding generic function
metaobject foo will have a method class option my-method, and after a subse-
quent recompilation, the correct make-method-lambda method will be executed.
Taken together, this means that the processing of such code does not only lead
to surprising, unexpected bugs, but that it is also unnecessarily hard to debug
such code, because on recompilation, bugs triggered by this surprising behavior
will simply disappear.3

A workaround in practice is to embed defgeneric forms in appropriate
eval-when forms that ensure that the generic functions are already created at
compile time. For example, a correct version of the code above looks like this.

(eval-when (:compile-toplevel :load-toplevel :execute)
(defgeneric foo (x y)
(:method-class my-method)))

(defmethod foo ((x integer) (y integer))
(do-something x y))

3We have painful experience with long debugging sessions caused by this problem.

Here, :compile-toplevel indicates that the defgeneric form is already ex-
ecuted at compile time, :load-toplevel indicates that it is also executed at
load time (when we actually want it in the first place), and :execute indicates
that we also want it executed when directly evaluated.

Another workaround is to place the defgeneric and the defmethod forms in
separate files and instruct a system definition utility like asdf or mk-defsystem
to load the compiled file with the defgeneric form before the other one is
compiled. However, this can be unnatural, for example when the corresponding
methods are default methods for the corresponding generic function, or should
be part of the same source file for some other reasons.

2.4 Coupling between generic functions and methods

Conceptually, methods are entities independent of particular generic functions.
For example, it should be possible from a conceptual point of view to remove a
particular method from one generic function and add it to another one. While
this is rare, it can be quite useful, for example to programmatically generate
methods on generic functions at runtime. Consider the following example.

(defun add-reader-filter (gf filter)
(let ((method (defmethod dummy-reader :around (object)

(funcall filter (call-next-method)))))
(remove-method (fdefinition ’dummy-reader) method)
(add-method gf method)))

Here, a method is created on an intermediate generic function, and then
immediately removed from it and added to another one. However, problems can
occur if the generic function to which the filter method should be added requires
a modification of the method body that deviates from the one specified for
dummy-reader. This effectively means that this technique for programmatically
creating methods at runtime is feasible only in very controlled cirumstances,
where the classes of the generic functions involved and their specializations of
make-method-lambda are known in advance.

2.5 State of make-method-lambda

One could object that programmatic method creation should not depend on
defmethod, but should use the corresponding subprotocols of the CLOS MOP,
so a call to make-method-lambda, a compile on its result, a creation of the
method class of the corresponding generic function, and the addition of the
thus created method to that generic function, as already sketched above.

However, due to the problems discussed above, the corresponding subpro-
tocols of the CLOS MOP and especially make-method-lambda are not widely
supported in Common Lisp implementations. Currently, only SBCL supports it
as specified, and LispWorks supports a slight variation of make-method-lambda.
Additionally, Allegro Common Lisp, Clozure Common Lisp / Macintosh Com-
mon Lisp / OpenMCL, and LispWorks do not take processed parameters that
allow passing of additional parameters, like a list of next methods, but only the
original parameters of the corresponding defmethod form. This has some advan-
tages in programmatic method creation, as shown in the following hypothetical
variation of add-reader-filter.

(defun add-reader-filter (gf filter)
(add-method gf (make-instance ’standard-method

:qualifiers ’()
:lambda-list ’(object)
:specializers (list (find-class ’t))
:function (lambda (object)

(funcall filter (call-next-method))))))

Note that the method body is not processed anymore but can actually be a
’real’ closure, whereas in the approach proposed by the CLOS MOP, method
bodies must be s-expressions that are processed by make-method-lambda and
then explicitly compiled into method functions. An implication is that such
method functions cannot close over local lexical environments, which can be
useful, as this example shows. On the other hand, however, the example uses
call-next-method which would need to be inserted by make-method-lambda,
so this way of expressing add-reader-filter is not correct either. So imple-
mentations that do not take processed parameters in method functions have
the advantage of being able to use lexical closures as method functions in a
straightforward way, but cannot take advantage of additional lexical definitions
in method bodies.

Because of these incompatibilities and problems with make-method-lambda
across several Common Lisp implementations, this way of modifying method
bodies is unlikely to be widely used. Instead, new user-defined ’kinds’ of method
bodies can be introduced in a much more straightforward way by defining one’s
own method-defining macros, as in the following example.

(defmacro define-filter-method (name filter)
‘(defmethod ,name :around (.object.)

(funcall ,filter (call-next-method))))

This way of introducing a filter method does not allow for programmatic creation
of filter methods, but avoids any of the problems mentioned above. Especially
the differences between evaluated and file-compiled code are avoided because
by default, macros do not depend on the presence or absence of objects in the
compilation environment. While this seems to work well in practice more often
than not, it misses the ability to pass extra arguments to method bodies, like
lists of next or previous methods as discussed above.

3 An alternative design

Instead of proposing fixes to make-method-lambda, let us first take a look at the
functionalities we expect from it. As we have seen above, make-method-lambda
serves two purposes: One can add new lexical definitions inside method bodies,
and one can ensure that method functions can receive additional parameters.
Introducing one’s own method-defining forms can serve the first purpose, but
they are not expressive enough to serve the second purpose. We propose an
alternative way of achieving the same functionality and expressiveness while
avoiding the problems of make-method-lambda.

Our proposal consists of two elements.

1. We base our approach on the current practice of introducing one’s own
method-defining forms in order to avoid any ambiguities of evaluated ver-
sus file-compiled code.

2. Additionally, we change the signature of method functions such that they
can always receive additional arguments.

Let us focus on the second element: In fact, Common Lisp already provides
a mechanism to receive arbitrary parameters in the form of keyword arguments.
Consider the creation of a method function that expects an additional current
method parameter. Such a method function can look like this.

(make-instance ’standard-method
:qualifiers ’()
:lambda-list ’(object)
:specializers (list (find-class ’t))
:function (lambda (args next-methods

&key current-method
&allow-other-keys) ...))

A corresponding user-defined method combination that provides the current
parameter as an extra argument to the method body can look like this.

(define-method-combination standard/current ()
((around (:around))
(before (:before))
(primary () :required t)
(after (:after)))
(flet ((call-methods (methods)

(loop for method in methods
collect ‘(call-method

,method ()
:current-method ,method))))

(let ((form (if (or before after (rest primary))
‘(multiple-value-prog1

(progn ,@(call-methods before)
(call-method
,(first primary) ,(rest primary)
:current-method ,(first primary)))

,@(call-methods (reverse after)))
‘(call-method ,(first primary) ()

:current-method ,(first primary)))))
(if around

‘(call-method
,(first around) (,@(rest around) (make-method ,form))
:current-method ,(first method))

form))))

Note that this is exactly like the definition for the default method combination,
as given as an example in ANSI Common Lisp, but with every call-method
form extended by an argument for the keyword parameter :current-method.

Our approach provides the following advantages.

• There is no need for providing hooks in the CLOS MOP for modify-
ing the expansion of method bodies anymore. Especially, any ambiguity
with regard to a distinction between evaluated and file-compiled code is
avoided. Since make-method-lambda is the only such hook in the CLOS
MOP specification, the CLOS MOP would avoid any such hooks for mod-
ifying macroexpansions, providing CLOS implementors more freedom in
handling and optimizing them.

• Users can still introduce their own method-defining macros as before,
which is currently the only reliable way to achieve modifications of method
bodies anyway.

• Additionally, users can rely on a unified protocol for passing extended
parameters to method functions. Methods can thus now, in principle, be
added to arbitrary generic functions, because the processing of the method
bodies and the handling of extra parameters does not depend on generic
functions anymore. There are still dependencies on generic functions,
though, in that method bodies may depend on whether specific extra pa-
rameters are passed by the generic function or not in the first place. How-
ever, methods now have better ways to gracefully deal with missing extra
parameters: Keyword arguments can have default values, can be checked
whether they have been explicitly passed or not, and &allow-other-keys
can indicate whether unrecognized keyword arguments are acceptable or
not, as is all usual for keyword argument processing in Common Lisp itself.

• Finally, method functions can be closures, which is not the case with the
current design proposed by the CLOS MOP. With our proposed change,
add-filter-method can be implemented like this.

(defun add-reader-filter (gf filter)
(add-method gf (make-instance ’standard-method

:qualifiers ’()
:lambda-list ’(object)
:specializers (list (find-class ’t))
:function (lambda (args next-methods

&rest more-args)
(funcall filter
(apply (method-function

(first next-methods))
args (rest next-methods)
more-args))))))

Our approach also has some disadvantages:

• There may be a performance overhead when processing keyword param-
eters: As is already the case in Common Lisp, keyword arguments are
passed as lists, which need to be traversed to fetch the correct arguments.
However, user-defined extensions of handling generic functions and meth-
ods already imply an overhead since CLOS implementations cannot ex-
ploit certain assumptions about their semantics anymore. We believe that

the increased expressive power and the removal of semantic ambiguities
and hard-to-find bugs justifies the price to pay. CLOS implementations
should still be able to apply their usual optimizations in non-user extended
code. For example, their method functions may simply reject additional
keyword parameters and thus do not need to incur any overhead for pro-
cessing them.4

• Current CLOS implementations that use the unchanged argument list
from the method definitions instead of the extended ones that can ac-
cept additional parameters are incompatible with our proposed approach.
Adopting our approach would thus render some existing CLOS MOP user
code invalid. However, presumably they use the original paramter lists
because this enables the use of ’real’ closures as method functions. Our
approach combines the expressiveness of all the approaches in use so far,
including support for ’real’ closures, so we are convinced that it should
be worthwhile to adopt it in spite of incompatibilities with old code. (It
should also be possible to provide an API that selectively provides back-
ward compatibility with any of the old approaches.)

4 Discussion

The current CLOS MOP specification is a result of an evolution of several
design alternatives for its various subprotocols. In [8], a previous design for
processing method bodies is described that does not rely on influencing their
(macro)expansion, but rather on influencing their interpretation. So instead
of defining methods on make-method-lambda, one would define methods on
apply-method. For example, one could add extra arguments to method func-
tions like this.

(defmethod apply-method ((gf my-generic-function)
(method my-method)
args next-methods)

(funcall (method-function method)
args next-methods method))

By relying on hooking into the interpretation of method bodies, the ambiguities
between evaluated and file-compiled code are avoided. However, this older de-
sign has the problem that method bodies can, in the general case, not be fully
compiled and executed without meta-level intercession at runtime anymore, but
instead method execution always has to go through apply-method. By switch-
ing to make-method-lambda, a more efficient implementation is achieved that
completely removes any runtime intercession.

Nevertheless, make-method-lambda still has serious drawbacks which are
inherited from the apply-method approach. Essentially, one cannot tell by
looking at a defmethod form what its eventual behavior will be, because a
(potentially) arbitrary method on apply-method / make-method-lambda can
modify or even completely replace the method body in question. The advantage
of one’s own method-defining macros is that it is syntactically always clear

4This may actually lead to a situation where both make-method-lambda and our suggested
approach can coexist. We are currently investigating this option.

from the define-...-method call which other part of the code influences the
expansion of the method body.

In our own work on reconstructing 3-Lisp [4], a reflective language which
heavily influenced the design of the CLOS MOP, we have found similar problems
and similar fixes. This paper is a practical outcome of our findings by proposing
what we think of as a concrete improvement of the CLOS MOP based on that
experience.

We are not the first ones to discuss the drawbacks of make-method-lambda.
For example, Bruno Haible discussed them before using a concrete example in
a Usenet posting [3]. Our contribution are a more detailed discussion and a
concrete suggestion for an alternative design.

Acknowledgments We thank the anonymous reviewers for their fruitful com-
ments which greatly improved this paper.

References

[1] ANSI/INCITS X3.226-1994. American National Standard for Information
Systems - Programming Language - Common Lisp, 1994.

[2] Pascal Costanza, Robert Hirschfeld, Wolfgang De Meuter. Efficient Layer
Activation for Switching Context-dependent Behavior. Joint Modular Lan-
guages Conference 2006, Proceedings, Springer LNCS.

[3] Bruno Haible. make-method-lambda ill-designed. Usenet posting,
d3gmvb$1ri$1@laposte.ilog.fr.

[4] Charlotte Herzeel, Pascal Costanza, Theo D’Hondt. Reflection for the
Masses. Workshop on Self-Sustaining Systems (S3), Potsdam, Germany,
May 15-16, 2008. Springer LNCS (to appear).

[5] Gregor Kiczales, Jim des Rivières, Daniel Bobrow. The Art of the Metaob-
ject Protocol. MIT Press, 1991.

[6] Heiko Kirschke. Persistenz in objekt-orientierten Programmiersprachen.
Logos Verlag, Berlin, 1997.

[7] Andreas Paepcke. User-Level Language Crafting – Introducing the CLOS
Metaobject Protocol. In: Andreas Paepcke (ed.), Object-Oriented Program-
ming: The CLOS Perspective, MIT Press, 1993.

[8] Jim des Rivières. The Secret Tower of CLOS. 1990 OOPSLA/ECOOP
Workshop on Reflection.

