

Live Migration of QEMU/KVM
Virtual Machines

Copyright 2015, Amit Shah
Licensed under the Creative Commons Attribution-ShareAlike License, CC-BY-SA.

devconf.cz/2015

Amit Shah | Red Hat | amit.shah@redhat.com

mailto:amit.shah@redhat.com

Virtualization

QEMU

● Creates the machine
● Device emulation code

– some mimic real devices

– some are special: paravirtualized

● Uses several services from host kernel
– KVM for guest control

– networking

– disk IO

– etc.

KVM

● Do one thing, do it right
● Linux kernel module
● Exposes hardware features for virtualization to

userspace
● Enables several features needed by QEMU

– like keeping track of pages guest changes

Live Migration

● Pick guest state from one QEMU process and
transfer it to another
– while the guest is running

● The guest shouldn't realize the world is changing
beneath its feet
– in other words, the guest isn't involved in the process

– might notice degraded performance, though

● Useful for load balancing, hardware / software
maintenance, power saving, checkpointing, ...

QEMU Layout

Getting Configuration Right

● Shared storage
– NFS settings

● Host time sync
– Can't stress enough how important this is!

● Network configuration
● Host CPU types
● Guest machine types

– esp. if migrating across QEMU versions

– ROM sizes

Stages in Live Migration

● Live migration happens in 3 stages
● Stage 1: Mark all RAM dirty
● Stage 2: Keep sending dirty RAM pages since

last iteration
– stop when some low watermark or condition reached

● Stage 3: Stop guest, transfer remaining dirty
RAM, device state

● Continue execution on destination qemu

Stages

● Live migration happens in 3 stages
● Stage 1: Mark all RAM dirty <ram_save_setup()>
● Stage 2: Keep sending dirty RAM pages since last

iteration <ram_save_iterate>
– stop when some low watermark or condition reached

● Stage 3: Stop guest, transfer remaining dirty RAM,
device state <migration_thread()>

● Continue execution on destination qemu

Ending Stage 2 (or Transitioning
from Live to Offline State)

● Earlier
– 50 or fewer dirty pages left to migrate

– no progress for 2 iterations

– 30 iterations elapsed

● Now
– admin-configurable downtime (for guests)

● involves knowing # of pages left and bandwidth available

– host policies: like host has to go down in 5 mins,
migrate all VMs away within that time

Other Migration Code in
QEMU

● General code that transmits data
– tcp, unix, fd, exec, rdma

● Code that serializes data
– section start / stop

● Device state

VMState

● Descriptive device state
● Each device does not need boilerplate code
● Each device does not need identical save and

load code
– Which is easy to get wrong

VMState Example

● e1000 device
● e482dc3ea e1000: port to vmstate

● 1 file changed,

 81 insertions(+),

 163 deletions()

VMState Example (before)

● static void

● nic_save(QEMUFile *f, void *opaque)

● {

● E1000State *s = opaque;

● int i;

●

● pci_device_save(&s>dev, f);

● qemu_put_be32(f, 0);

● qemu_put_be32s(f, &s>rxbuf_size);

● qemu_put_be32s(f, &s>rxbuf_min_shift);

VMState Example (after)

● +static const VMStateDescription vmstate_e1000 = {
● + .name = "e1000",
● + .version_id = 2,
● + .minimum_version_id = 1,
● + .minimum_version_id_old = 1,
● + .fields = (VMStateField []) {
● + VMSTATE_PCI_DEVICE(dev, E1000State),
● + VMSTATE_UNUSED_TEST(is_version_1, 4), /* was instance id */
● + VMSTATE_UNUSED(4), /* Was mmio_base. */
● + VMSTATE_UINT32(rxbuf_size, E1000State),
● + VMSTATE_UINT32(rxbuf_min_shift, E1000State),

Updating Devices

● Sometimes devices get migration-breaking
changes

● One idea is to bump up version number
– Adds dependencies from higher versions to lower

ones

– Difficult to cherry-pick fixes to stable / downstreams

● Another is to introduce new subsection

Subsection Example

● commit c2c0014 pic_common: migrate missing fields

● VMSTATE_INT64(timer_expiry,

● APICCommonState), /* opencoded timer state */

● VMSTATE_END_OF_LIST()

● + },

● + .subsections = (VMStateSubsection[]) {

● + {

● + .vmsd = &vmstate_apic_common_sipi,

● + .needed = apic_common_sipi_needed,

● + },

● + VMSTATE_END_OF_LIST()

● }

● };

Things Changed Recently

● Guests have grown bigger
– More RAM

● Means a lot of time spent transferring pages

– More vCPUs
● Means active guests keep dirtying pages

New Features

● autoconverge
● xbzrle
● migration thread
● migration bitmap
● rdma
● block migration

Stuff that's lined up

● postcopy
● debuggability

Future work

● Finish vmstate conversion
● self-describing wire format

Thank You!

Amit Shah | http://log.amitshah.net | amit.shah@redhat.com

Copyright 2015, Amit Shah
Licensed under the Creative Commons Attribution-ShareAlike License, CC-BY-SA.

http://log.amitshah.net/

Extras

● Feedback: http://devconf.cz/f/62
● FUDCon APAC in Pune, India: Jun 26-28

– http://fudcon.in

http://devconf.cz/f/62
http://fudcon.in/

