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Abstract

Bayesian classifiers as Naive Bayes or Tree Augmented Naive Bayes
(TAN) have shown excellent performance given their simplicity and
heavy underlying independence assumptions. In this paper we show
that the expression resulting from the Bayesian Model Averaging of
TAN classifiers can be integrated into closed form if we assume as
prior probability distribution a decomposable distribution. This result
allows for the construction of a classifier with a smaller learning time
and a larger classification time than TAN. Empirical results show that,
as expected, the classifier is more accurate than TAN.



1 Introduction

Bayesian classifiers as Naive Bayes [16] or Tree Augmented Naive Bayes
(TAN) [7] have shown excellent performance given their simplicity and heavy
underlying independence assumptions.

Furthermore, it has been shown [4, 14] that Naive Bayes predictions and
probability estimations can benefit from incorporating uncertainty in model
selection. In [14] Kontkanen et al. introduce an approach named Bayesian
Instance-Based Learning that can be seen as a version of Bayesian Model
Averaging [9] and demonstrate that it improves predictions and probability
estimates. A slightly improved development of the same idea by the use of a
prior given by the principle of indifference is presented in [4].

In the case of TAN, a development inspired in the same idea is presented
in [2], where to overcome the difficulty of exactly calculating the averaged
classifier the idea of Local Bayesian Model Averaging is introduced to calcu-
late an approximation. In this case predictions are also improved.

In this paper we show that the Bayesian Model Averaging of TAN can
be integrated in closed form and that it leads to improved classification per-
formance. The paper is organized as follows. In section 2 we introduce
Tree Augmented Naive Bayes and the notation that we will use in the rest
of the paper. After that, in section 3 we develop the closed expression for
TAN. We start by introducing Bayesian Model Averaging, then we explain
decomposable distributions over tree structures and parameters built upon
the idea of decomposable priors as proposed by Meila and Jaakola [17] to end
up showing that given a decomposable distribution is is possible to calculate
the probability of an unseen observation and that given a prior decompos-
able distribution, our posterior distribution after observing a set of data is
also a decomposable distribution. This results allow us to provide a closed
expression for the Bayesian Model Averaging of TAN which we will name
TBMATAN. In section 4 we notice that TBMATAN has a major drawback
that makes its usage difficult for large datasets due to the fact that it im-
plies the calculation of an ill-conditioned determinant that requires that the
floating point precision increases with the dataset size and hence the com-
puting time required for the algorithm. To solve this drawback we introduce
SSTBMATAN as a way of approximating TBMATAN. In section 5 we study
the empirical characteristics of TBMATAN and show that it leads to im-
proving classification accuracy and to a better approximation of the class
probabilities with respect to TAN. We also show that the empirical results
for SSTBMATAN do not differ significantly from the ones obtained by TB-
MATAN. We end up with some conclusions and future work in section 6.



2 Tree Augmented Naive Bayes

Tree Augmented Naive Bayes (TAN) appears as a natural extension to the
Naive Bayes classifier. Naive Bayes [14, 16, 6] is a very simple classifier
that performs very well on small and not-so-small datasets. The assumption
made by Naive Bayes is that all the attributes in the dataset are conditionally
independent given the value of the class. This is a very strong assumption
that is very likely not to be fulfilled, but the classifier works well in practice
even when strong dependencies hold in the dataset. Furthermore, it has been
shown to be optimal under zero-one loss in a larger subspace [6]. Given these
facts, the general idea is that if we somehow relax the assumptions that are
made and keep the “way of reasoning”, we can get a more accurate classifier.
This has been tried in different ways [7, 11, 12, 13, 15, 19]. From our point of
view TAN are the more coherent and best performing enhancement to Naive
Bayes up to now. TAN are a restricted family of bayesian networks in which
the class variable has no parents and each attribute has as parents the class
variable and at most one other attribute. An example of TAN can be seen
in Figure 1(c).

In this section we start introducing the notation to be used in the rest of
the paper. After that we discuss the TAN induction algorithm presented in
[7]. Finally we present the improvements introduced to TAN in [2, 3].

2.1 Formalization and notation

The notation followed in the paper is an effort to put together the different
notations used in [2, 8, 7, 17] and some conventions in the machine learning
literature.

2.1.1 The discrete classification problem

A discrete attribute is a finite set, for example we can define attribute
Pressure as Pressure = {Low, Medium, High}. A discrete domain is a
finite set of discrete attributes. We will note 2 = {X1,...,X,,} for a dis-
crete domain, where X7, ..., X,, are the attributes in the domain. A classified
discrete domain is a discrete domain where one of the attributes is distin-
guished as “class”. We will use Q¢ = {44, ..., A,, C} for a classified discrete
domain. In the rest of the paper we will refer to an attribute either as X
(when it is considered part of a discrete domain), A; (when it is considered
part of a classified discrete domain and it is not the class) and C' (when it is
the class of a classified discrete domain). We will note as V' = {Ay,..., A,}
the set of attributes in a classified discrete domain that are not the class.



Given an attribute A, we will note #A as the number of different values
of A. We define #Q = [[ #X; and #Q¢c = #C [] #A:.

i=1 =1
An observation x in a classified discrete domain )¢ is an ordered tuple
x = (T1,...,%n,2c) € A1 X ... X Ay, x C. An unclassified observation S in

Q¢ is an ordered tuple S = (s1,...,8,) € A1 X ... X A,. A dataset D in Q¢
is a multiset of classified observations in €2c.

We will note N for the number of observations in the dataset. We will
also note N;(z;) for the number of observations in D where the value for A;
is z;, N;;(z;, ;) the number of observations in D where the value for A; is
z; and the value for A; is z; and similarly for N; ; x(x;, z;, xx) and so on. We
note similarly f;(x;), fi j(z:,2;), ... the frequencies in D. It is worth noticing
that f defines a probability distribution over A; x ... x A, x C.

A classifier in a classified discrete domain )¢ is a procedure that given a

dataset D in ()¢ and an unclassified observation S in ()¢ assigns a class to
S.

2.1.2 Bayesian networks for discrete classification

Bayesian networks offer a solution for the discrete classification problem. The
approach is to define a random variable for each attribute in Q (the class is
included but not distinguished at this time). We will note U = {X3,..., X, }
where each AX; is a random variable over its corresponding attribute X;. A
bayesian network over U is a pair B = (G, ©). The first component, G, is
a directed acyclic graph whose vertices correspond to the random variables
X1, ..., Xy, and whose edges represent direct dependencies between the vari-
ables. The graph G encodes independence assumptions: each variable A& is
independent of its nondescendants given its parents in G. The second compo-
nent of the pair, namely O, represents the set of parameters that quantifies
the network. It contains a parameter 6;, (2, I1;,) = Pp(w;|Il,,;) for each
z; € X; and II;, € Ilx,, where Iy, denotes the cartesian product of every
X, such that & is a parent of X in G. II; is the list of parents of X; in G.
We will note I; = U — {X;} —II;. A bayesian network defines a unique joint
probability distribution over U given by

PB(‘xla s ’xm) = HPB(‘IZ“_[C%) = H01|H’L($Z‘Hw’b) (1)
=1 =1

The application of bayesian networks for classification can be very simple.
For example suppose we have an algorithm that given a classified discrete
domain {2 and a dataset D over ()¢ returns a bayesian network B over
U={A,,..., A,,C} where A; (resp. C) is a random variable over A; (resp.
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(). Then if we are given a new unclassified observation S we can easily

classify S into class argmax(Pg(s1, - - -, Sn,¢)). This simple mechanism allows
ceC
us to see any bayesian network learning algorithm as a classifier.

2.1.3 Dirichlet distributions

The Dirichlet probability distribution is frequently used in bayesian networks
because it is closed under multinomial sampling [8]. It is defined as:

(X, N) &
D(Hl,...,ek;Nl,...,Nk) = %Hei]\]i_l (2)
HZZIP(NZ) =1

:

(a) E b) E ©) E
Figure 1: Notation for learning with trees

2.1.4 Learning with Trees

Given a classified domain )¢ we will note £ the set of undirected graphs
E over {A;,..., A,} such that F is a tree (has no cycles). We will note
as E a directed tree for E. We will use u,v € E instead of (A,,A,) €
E for compactness. Every E uniquely determines the structure of a Tree
Augmented Naive Bayes classifier, because from E we can construct E =
EuU{(C,A)]1 <i<n} ascan be seen in an example in Figure 1. We note
the root of a directed tree E as pz (i.e. in Figure 1(b) we have that pz = 4;).
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We will note as ©+ the set of parameters that quantify the bayesian
network M = (E",©%+). More concretely:

(_)E* = (oCa opf\Ca {ov|u,C|ua (S F})
0c = {0c(c)|c € C} where Oc(c) = p(Sec = ¢|M)

0P§|C = {epﬁ\c(i, c)li € Ap(F’ c € C'} where
HPE\C(i’ c) = p(SPE =1|Sc =¢, M)

For each u,v € E: O,,,c = {buju,c (4,4, ¢)|j € Ay, i € Ay, c € C} where
HU\u,C(jaiac) = p(Sv = J‘Su = 7;7 SC’ =¢ M)

2.2 Learning maximum likelihood TAN

One of the measures used to learn bayesian networks is the log likelihood:

LL(B|D) =) _log(Ps(x)) (3)
€D
An interesting property of the TAN family is that we have an efficient
procedure [7] for identifying the structure of the network which maximizes
likelihood. The procedure and the theorem are given below.

Theorem 1 (Friedman, Geiger & Goldszmidt, 1997) Let D be a
dataset over 2c. The procedure Construct-TAN(f) builds a TAN Br that
mazimizes LL(Br|D) and has time complexity O(N - n?).

To learn the maximum likelihood TAN we should use Theorem 1 to de-
termine the structure and the following equation to compute the parameters.

Ni,Hi (mi) H.’,Cl)

It has been shown [7] that equation 4 leads to “overfitting” the model. Also
in [7] Friedman et al. propose to use the parameters as given by

0
O, (0 T1,) = i e N Nim)
| T \ Ly g NHZ(H$@)+N3H2 an(H%)—{_Nz?Hl N

and suggest setting Nz'(fn,- = )5 based on empirical results. Using equation 5
to fix the parameters improves the accuracy of the classifier. In our opinion,
no well founded justification is given for the improvement. In the following
section we revisit the results in [3] and show that we can get an alterna-
tive parameter fixing equation with a well founded theoretical support and
equivalent classification accuracy.



procedure Construct-TAN (ProbabilityDistribution P)
var
WeightMatrix Ip;
UndirectedGraph UG;
UndirectedTree UT;
DirectedTree T';
DirectedGraph T AN;
foreach A;,A;

Compute Ip(4is 4;|C) = Y Ple,y, 2)log (wrisibim)
TEA;

yEAj
zeC

end

G = ConstructUndirectedGraph(/p);
UT = MaximumWeightedSpanningTree(G) ;
T = MakeDirected(UT);

TAN = AddClass(T);

return TAN;

Algorithm 1: TAN construction procedure

2.3 Learning multinomial sampling TAN

In [3] we introduced an alternative approach to learning bayesian networks
which we named “multinomial sampling approach”. This alternative ap-
proach is based on changing the usual statement that describes what is learn-
ing a bayesian network from statement 1 to statement 2 (notation has been
changed on both statements to agree with the one used in this paper).

Statement 1 (Friedman, Geiger & Goldszmidt, 1997) Given a
dataset D of instances of U find the network B that best matches D.

Statement 2 Given a dataset D, interpret D as a sample of a probability
distribution P* and find the network B that best matches P*.

The main difference between both statements is that statement 2 gives a
well founded solution for the problem of “overfitting”. In [2, 3] this multi-
nomial approach has been applied to TAN with the result that we should
approximate probabilities by:

Nl,...,m(xla LRI xm) + 2

* Q




where )\ is a hyperparameter.

Instead of maximizing likelihood, under the multinomial sampling ap-
proach we should minimize the Kullback-Leibler divergence between P* and
the probability distribution represented by our network. In order to do that
we should estimate the parameters using:

Ni,Hi (xia H:m,) + )‘%

NHi (sz) + )‘#

(7)

where #I[; = [] #X, and we remind that II; stands for the set of variables
X;€TT;
which are not I;arents of X; in the network excluding A;.

In [2, 3] the usage of A = 10 was suggested as a good value after empirical
tests and the multinomial sampling approach was compared to the maximum
likelihood (equation 4) and softened maximum likelihood (equation 5) pa-
rameter estimations. The results were that multinomial sampling is clearly
better than maximum likelihood. When compared to softened maximum
likelihood, it was observed that multinomial sampling provides an equivalent
classification accuracy but improves the quality of the probabilities assigned
to the class.

3 Development of the Averaged Tree Aug-
mented Naive Bayes

3.1 BMA classification

We are faced with the problem of defining a good classifier for a classified
dataset. If we accept that there is a probabilistic model behind our dataset,
we have two alternatives:

1. We know the model M (both structure and parameters) that is gener-
ating the data in advance. In this case it is a matter of probabilistic
computation. We should be able to calculate p(S¢c = ¢;|S, M) and to
choose the class with the highest probability. No learning is performed,
because we knew the model in advance.

2. We are given a set of possible models M. This the situation, for in-
stance, when learning decision trees, neural networks or bayesian clas-
sifiers. The usual approach followed is to let an algorithm choose the
model M that fits the data best. This can give good results, if the
model selected accounts for a good share of the posterior probability
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distribution function over the set of models or if its predictions coincide
with the ones given by the majority of the models. In spite of that,
probability theory tell us we should take a weighted average where each
model prediction is weighted by the probability of the model given the
data. Formally:

p(S, 5¢|D, €) = / p(S, Se|M)p(M|D, €) (8)
MeM

Applying this equation is commonly known as Bayesian Model Aver-
aging [9]. In practice, the problem is that for most models it is very
hard to find a closed form for the integral. This has led to the appear-
ance of methods such as Local Bayesian Model Averaging [2, 3], that
approximate the integral over a subset of highly probable models.

In the following we prove that if we fix our set of models M to TAN models
and assume a decomposable distribution as prior probability distribution
over the set of models, the integral for p(S, Sc|D,€) in equation 8 can be
integrated in closed form. In section 3.2 we present decomposable priors
over structures and parameters. In sections 3.3 and 3.4 we give results that
allow us to calculate the probability of an unclassified observation under a
decomposable distribution and to refine a prior decomposable distribution
into a posterior decomposable distribution given a dataset. Both results are
developed into detail in Appendix B. After presenting the results we conclude
the development by putting them together to construct a classifier in section
3.5.

3.2 Decomposable distributions over TANSs

In order to apply Bayesian Model Averaging, it is necessary to have a prior
probability distribution over the set of models M. Decomposable priors were
introduced by Meila and Jaakola in [17] where it was demonstrated for tree
belief networks that if we assume a decomposable prior, the posterior prob-
ability is also decomposable and can be completely determined analytically
in polynomial time.

In this section we introduce decomposable distributions over TANs, which
are probability distributions in the space M of TAN models and an adapta-
tion of decomposable priors, as they appear in [17], to the task of learning
TAN. As can be seen in [17] decomposable priors are based on four assump-
tions: likelihood equivalence, parameter independence, parameter modular-
ity and connectivity. These four assumptions are also on the basis of the de-
velopment of decomposable distributions over TANs. Specially significant in
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order to understand the developments in this paper is likelihood equivalence.
This assumption states that in all possible parameterizations consistent with
a given undirected tree E the distribution will assign the same probability
mass to any measurable subset in parameter space. This provides us with
a very valuable tool when integrating over parameters, because it allows us
to integrate over the parameters of any directed tree E obtained from E
because for all of them the result of the integration should be the same.

Decomposable distributions are constructed in two steps. In the first step,
a distribution over the set of different undirected tree structures is defined.
Every directed tree structure is defined to have the same probability as its
undirected equivalent. In the second step, a distribution over the set of
parameters is defined so that it is also independent on the structure. In the
rest of the paper we will assume ¢ implies a decomposable distribution over
M with hyperparameters 3, N’ (these hyperparameters will be explained
along the development). Under this assumption, the probability for a model
M = (E",04) (a TAN with fixed tree structure E and fixed parameters
©%+) is determined by:

§)=P(E PO |E ¢ (9)

In the following sections we specify the value of the two components
of a TAN model, namely its structure and its parameters. That is, P(E |€)
(decomposable distribution over structures) and P(0%+|E ", £) (decomposable
distribution over parameters).

P(M|§) = P(E", O

3.2.1 Decomposable distribution over TAN structures

One of the hyperparameters of a decomposable distribution is an n xn matrix
B = (Bup) such that Vu,v: 1 <wu,v <n : By = Lpu>0; Pyy =0. We can

interpret f,, as a measure of how possible is under ¢ that the edge (A, A,)
is contained in the TAN model underlying the data.
Given &, the probability of a TAN structure E~ is defined as:

quE

where Zj3 is a normalization constant with value:

Zﬂ = Z H ﬁu,v (11)

Ecf uweE

It is worth noting that p(E"|€) depends only on the underlying undirected
tree structure E.

10



3.2.2 Decomposable distribution over TAN parameters

Applying equation 1 to the case of TAN we have that

P(QE* _*7

u,vEE

A decomposable distribution has a hyperparameter N’ =
{(Npwcliol <u#v<n;jeAd;iecd;ceC} We
define N, (7,¢),N¢(c) and N’ as:

NLCZC ZNlJuC]aZC (13)
JEA,

=Y N, olisc) (14)
1€EA,

= Ni(o) (15)
ceC

Given &, a decomposable probability distribution over parameters with
hyperparameter N’ is defined by equation 12 and the following set of Dirichlet
distributions:

P(0c|E,¢) = D(0c(.); Ne(.)) (16)
P(8,5ic|E.€) = [ DOpgic ()i N, (.5 0)) (17)
p(o =11 H D(Buju,c (-, 0); Ny o (4 €)) (18)

If the conditions in equations 9, 10, 11, 12, 13, 14, 15, 16, 17 and 18 hold,
we will say that P(M|¢) follows a decomposable distribution with hyperpa-
rameters G, N'.

3.3 Calculating probabilities with decomposable dis-
tributions
Assume that our data is generated by a TAN model and that P(M|¢) follows

a decomposable distribution with hyperparameters 8, N’. We can calculate

the probability of an observation S, S¢ given £ by averaging over the set of
TAN models

P(S, Solé) = / P(S, S| M)P(MIE) (19)

MeM
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Let @ : R™™ — R* "1 For any real n x n matrix 7 we define Q(7) as
the first n — 1 lines and columns of the matrix Q(7) where

—Tuw 1<u<v<n
— n
U’U(T) Z Ty v 1 S u =7 S n (20)

v'=1

Quo(T) =

Ql

The integral for P(S, Sc|€) can be calculated in closed form by applying the
matrix tree theorem (see Appendix A.1 and [17]) and expressed in terms of
the previously introduced @) as:

P(S, Sclé) = hy>?|Q(B h%5¢)| (21)
where
S,Sc _ !
hy5¢ = Zﬂ ~ AEIVN"C Sy, S¢) (22)

NzI;uC’(SwSuaSC)
u, C(Su’ SC) v, C(S’U’ SC)
The proof for this result appears in in appendix B.1.

S,8¢ — (155c S,8c _—
h>%¢ = (h;0¢) where hy ¢ =

3.4 Learning with decomposable distributions

Assume that our data is generated by a TAN model and that P(M|¢) follows
a decomposable distribution with hyperparameters 3,N’. Then, P(M|D,¢),
the posterior probability distribution after observing a dataset D is a decom-
posable distribution with parameters 8* N'* given by:

ﬂ;,v - Bu,qu,v (24)

Niw,c(4:1,6) = Ny 06,4 €) + Nuw,c (3,1, 0) (25)

where

uC(Z C))
H H N:Lc i,¢) + Ny c(i,c))

c€C i€ A,
[T T gy et ”
cEC jEA, v,C (J, ¢) + Noc(4,¢))
Nyuc (4,1, €) + Now,c(3, 3, €))
;l;!‘ zgu ygv L(Ny 4,005, ¢))

The proof appears in in appendix B.2.
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3.5 Putting it all together

Putting together the results from sections 3.3 and 3.4 we can easily design
a classifier based on decomposable distributions over TANs. The classifier
works as follows: when given a dataset D, it assumes that the data is gen-
erated from a TAN model and assumes a decomposable distribution as prior
over the set of models. Applying the result from section 3.4, the posterior
distribution over the set of models is also a decomposable distribution and
applying the result of section 3.3 this decomposable posterior distribution can
be used to calculate the probability of any observation S, Sc. When given an
unclassified observation S, it can just calculate the probability p(S, S¢|D, §)
for each possible class S¢ € C and classify S in the class with highest prob-
ability.

We have mentioned that the classifier assumes a decomposable distribu-
tion as prior. Ideally, this prior will be fixed by an expert that knows the
classification domain. Otherwise, we have to provide the classifier with a way
for fixing the prior distribution hyperparameters without knowledge about
the domain. In this case the prior should be as “non-informative” as possible
in order for the information coming from D to dominate the posterior by
the effects of equations 24 and 25. We have translated this requisite into
equations 27 and 28:

Vu,v; 1<u#v <nj; fuy,=1 (27)
Vu,v;l SU#U Sn,VJ EA”;\V%EAu;VCEC;Nzl),u,C’(j,iaC) - m
(28)

Defining 8 as in equation 27 means that we have the same amount of belief for
any edge being in the TAN structure underlying the data. Fixed u, v, equa-
tion 28 assigns the same probability to any (j,,c) such that j € A,,i € A,
and ¢ € C' and the value assigned is coherent with the multinomial sampling
approach. ) is an “equivalent sample size” for our prior in the sense of Heck-
erman et al. in [8]. In our experiments we have fixed A = 10. In the following
TBMATAN will refer to the classifier described in this section.

4 Approximating TBMATAN

TBMATAN can theoretically be implemented by an algorithm with O(N -n?)
learning time and O(#C -n?) time for classifying a new observation. In spite
of that, a straightforward implementation of TBMATAN, even when accom-
plishing these complexity bounds, will not yield accurate results, specially
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for large datasets. This is due to the fact that the calculations that need
to be done in order to classify a new observation include the computation
of a determinant (in equation 21) that happens to be ill-conditioned. Even
worse, the determinant gets more and more ill-conditioned as the number of
observations in the dataset increases. This forces the floating point accuracy
that we have to use to calculate these determinants to depend on the dataset
size. We would like to note that this problem is due to the straightforward
implementation of the formulas. If it were possible to compute quotients of
determinants of similar matrixes accurately, the problem would be solved.
To the best of our knowledge, such accurate computation does not exist.
Therefore, we have used a brute force solution to accurately implement TB-
MATAN. More concretely, we have calculated the determinants by means
of NTL [21], a library that allows us to calculate determinants with the de-
sired precision arithmetic. This solution makes the time for classifying a
new observation grow faster than O(#C -n?), and hence makes the practical
application of the algorithms difficult in situations where it is required to
classify a large set of unclassified data.

Faced with this problem, we analyzed what makes the determinant be-
ing ill-conditioned and concluded that it is due to the W, , factors given by
equation 26. The factor W, could be interpreted as “how much the dataset
D has changed our belief in that there is a link between u and v in the TAN
model generating the data”. The problems relies in the fact that W,, are
easily in the order of 1072% for a dataset with 1500 observations. Further-

more, the factors # for such a dataset can be around 10~2°, providing

the ill-condition of the determinant. Tn order to overcome this problem, we
propose to postprocess the factors W, , computed by equation 26 by means
of a transformation that limits them to lie in the interval [10~ % 1] where K
is a constant that has to be fixed depending on the floating point accuracy
of the machine. In our implementation we have used a K = 5. The transfor-

mation works as depicted in figure 2 and described in detail by the following
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Figure 2: Transformation of weights for SSTBMATAN
equations:

Imaz = log,, max W, ,
u€eV

veV
uFv

Imin = log;, min W, ,
u€V
veEV
u#v

{L Imax — lmin > K
a =

Imaxz—Imin
1 otherwise

b=—K —ax*lmin

Wu — 10‘110810(Wu,v)+b

Using Wu,v instead of W, , to calculate the posterior hyperparameters 3; ,

has the following properties:

1. It is harder to get get ill-conditioned determinants, because for all u, v

W, is bound to the interval [107% 1].

2. Tt preserves the relative ordering of the W, ,. That is, if W, , > Wy

then Wu,v > Wufﬂ,l.

3. It does not exaggerate relative differences in belief. That is, for all

u,v,u’,v" we have that

Wuw Way,v Wu,v
OIfw—HzlthenW, 2 .

u' v u’,




o IfVVVVu—“;::,gnhen%g%.

The posterior hyperparameters (3, , can be interpreted as a representation
of our a posteriori belief in the existence of an edge (u,v) in the TAN struc-
ture. Using W, ,, given the properties stated, means being more conservative
in the structure learning process, because our beliefs will be confined to the
interval [107% 1] which impedes the representation of extreme probability
differences between edges. We can interpret the transformation as applying
some stubbornness to the structure learning process. Applying this trans-
formation allow us to implement an approximation of TBMATAN that does
not require the use of special floating point accuracy computations. We will
refer to this approximation of TBMATAN as SSTBMATAN (from Structure
Stubborn TBMATAN).

It is worth noting that the problem described in this section does only
affect the classification time. The learning process for TBMATAN does
not need high precision arithmetics. The learning time complexity for TB-
MATAN, O(N - n?), is the same as the one for TAN. In spite of that, in
practice, TAN learning time would be somewhat larger because the learning
stage for TBMATAN (calculating every N, , c(j,%,c¢)) is only the first step
of the TAN learning process.

5 Empirical results

We tested four algorithms over 16 datasets from the Irvine repository [1].
The dataset characteristics are described in Table 1. To discretize continuous
attributes we used equal frequency discretization with 5 intervals. For each
dataset and algorithm we tested both accuracy and LogScore. LogScore is
calculated by adding the minus logarithm of the probability assigned by the
classifier to the correct class and gives an idea of how well the classifier is
estimating probabilities (the smaller the score the better the result). If we
name our test set D’ we have

LogScore(M,D") = Z —log(P(Sc|S, M)) (34)

(S,S¢)€ED!

The focus of most research in machine learning algorithms is on improving
accuracy. There are many cases in the real life application of these algo-
rithms, where not only accuracy is interesting, but also the quality of the
probability estimations for each class is very important. Two common ex-
amples are the selection of people likely to respond to mailing campaigns
and when the results of the learning process should lead to decisions being
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taken by a human who has to have an estimate of the decision risk. That is
why we included LogScore in our testing. For the evaluation of both error
rate and LogScore we used 10 fold cross validation. We tested the algorithm
with the 10%, 50% and 100% of the learning data for each fold, in order to
get an idea of the influence of the amount of data in the behaviours of both
error rate and LogScore for the algorithm.

The error rates appear in Tables 2,4,6 with the best method for each
dataset boldfaced. LogScore’s appear in Tables 3,5,7. The columns of the
tables are the induction methods and the rows are the datasets. The meaning
of the column headers are:

e IndifferentNB is the Naive Bayes algorithm (implemented as in [4]).
e SSTBMATAN is the method described in section 4.

e TAN+MS is the maximum likelihood TAN induction using the multi-
nomial sampling approach [3].

e TBMATAN, is the method described in section 3.5.

TBMATAN classification times are very large for datasets with a large num-
ber of instances. For datasets over 5000 instances we have skipped the ex-
ecution of TBMATAN. This is represented as a - sign in the corresponding
table entries. We have skipped those datasets also when drawing comparison
graphs for TBMATAN.

[ Dataset | Attributes | Instances | Classes | Missing |
ADULT 14 48842 2 some
BREAST 10 699 2 16
CAR 6 1728 4 no
CHESS 36 3196 2 no
CLEVE 13 303 2 some
CRX 15 690 2 few
FLARE 10 323 4 no
GLASS 10 214 2 none
HEP 19 155 2 some
IRIS 4 150 3 none
LETTER 16 20000 26 none
MUSHROOM 22 8124 2 some
NURSERY 8 12960 5 no
PIMA 8 768 2 no
SOYBEAN 35 316 19 some
VOTES 16 435 2 few

Table 1: Datasets information
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Table 2: Averages and standard deviations of error rate using 10% of the

| Dataset | IndifferentNB | SSTBMATAN | TAN+MS | TBMATAN |

ADULT 19.08 + 0.82 16.69 + 0.72 17.63 + 0.82 -

BREAST 4.67 + 1.31 12.84 £+ 1.69 20.88 + 2.05 15.67 + 1.78
CAR 19.75 £+ 1.84 18.87 £+ 1.51 19.03 £+ 2.08 19.85 £+ 1.54
CHESS 14.92 + 1.55 10.61 £ 1.51 8.81 + 1.43 8.50 + 1.05
CLEVE 22.59 + 2.26 28.37 £ 2.32 31.64 + 2.69 28.37 + 2.32
CRX 16.33 + 1.83 18.26 £ 1.77 33.28 £ 1.99 19.20 + 2.26
FLARE 28.14 + 2.12 23.46 + 1.94 24.17 + 1.77 23.84 + 1.89
GLASS 40.12 £ 3.37 38.27 + 3.56 55.13 + 3.99 39.60 + 3.67
HEP 34.31 £ 3.94 32.63 £+ 3.91 49.13 £ 3.69 32.63 + 3.91
IRIS 16.31 + 2.78 24.80 + 3.24 27.95 + 3.67 26.13 + 3.60
LETTER 33.75 £ 0.89 23.81 + 1.04 40.89 + 1.69 -

MUSHROOM 7.14 £ 1.14 0.30 £+ 0.34 0.30 + 0.37 -

NURSERY 10.05 £ 0.90 7.88 £ 1.09 8.82 + 1.08 -

PIMA 29.00 + 2.29 31.88 + 1.99 33.85 £ 1.85 33.26 + 1.61
SOYBEAN 35.32 + 2.27 25.39 + 2.48 29.83 + 2.36 25.45 + 2.27
VOTES 12.38 + 1.73 10.17 + 2.12 10.51 £+ 2.01 10.17 + 1.96

learning data

| Dataset | IndifferentNB | SSTBMATAN | TAN+MS | TBMATAN
ADULT 682.41 + 5.16 523.85 + 4.38 626.09 + 5.47 -
BREAST 4.54 + 1.75 9.91 £+ 1.64 24.31 £+ 2.62 15.17 £+ 1.92
CAR 39.14 £+ 2.29 34.82 + 2.34 39.42 £ 2.76 37.10 £ 2.49
CHESS 46.53 £+ 2.50 35.57 £ 2.09 30.88 + 1.96 29.43 + 1.58
CLEVE 7.99 + 1.67 9.94 + 1.91 14.25 + 1.85 10.06 + 1.95
CRX 13.94 + 2.17 13.98 + 1.96 42.37 £ 3.00 16.46 £+ 2.31
FLARE 46.21 + 2.91 45.12 + 3.18 53.95 + 3.44 46.79 + 3.33
GLASS 10.71 + 1.95 12.44 + 2.71 27.25 + 3.83 14.76 + 2.88
HEP 2.45 £ 1.31 1.82 £+ 1.05 4.15 £ 1.46 1.82 + 1.05
IRIS 2.35 + 0.89 3.45 £+ 0.95 4.00 £ 1.11 3.45 £ 0.95
LETTER 1284.49 + 5.90 1361.88 + 7.94 5076.85 + 26.18 -
MUSHROOM 100.85 + 4.67 2.68 + 1.17 1.71 + 1.25 -
NURSERY 167.10 + 3.07 112.84 + 2.85 117.21 £ 3.02 -
PIMA 21.40 + 1.68 26.86 + 2.21 33.88 + 2.66 29.90 £ 2.47
SOYBEAN 80.80 + 4.72 65.67 + 5.31 81.62 + 4.65 65.02 + 5.36
VOTES 11.44 + 2.19 4.66 + 1.52 5.77 £ 1.81 4.66 + 1.51

Table 3: Averages and standard deviations of LogScore using 10% of the

learning data
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[ Dataset | IndifferentNB | SSTBMATAN | TAN+MS [ TBMATAN |
ADULT 18.67 £ 0.85 16.33 £+ 0.67 16.78 + 0.75 -
BREAST 4.07 + 1.29 5.73 £ 1.50 8.94 + 1.66 7.64 £ 1.93
CAR 15.64 + 1.74 8.04 + 1.53 9.04 £+ 1.47 8.32 + 1.58
CHESS 12.48 + 1.04 9.15 £ 1.10 8.13 + 1.21 7.81 + 1.21
CLEVE 20.19 + 2.21 22.35 + 2.25 25.41 + 2.08 24.80 + 2.36
CRX 15.22 + 2.05 14.93 + 2.24 20.52 £+ 2.27 15.52 + 2.22
FLARE 26.22 + 1.98 20.67 + 1.51 20.79 £ 1.76 20.73 £ 1.92
GLASS 25.97 + 3.13 25.21 + 3.14 36.79 £ 3.40 25.86 £ 3.25
HEP 23.53 + 3.15 21.51 + 2.79 29.71 + 3.14 22.34 £+ 2.77
IRIS 14.97 + 2.28 15.92 + 3.34 14.94 + 3.08 15.92 + 3.34
LETTER 27.40 £ 0.75 12.18 £ 0.76 15.16 + 0.91 -
MUSHROOM 5.43 + 1.03 0.22 £+ 0.27 0.15 + 0.22 -
NURSERY 9.96 + 0.80 6.92 + 0.83 7.25 + 0.87 -

PIMA 26.42 + 1.71 24.94 + 1.82 26.47 £ 1.51 26.58 + 1.69
SOYBEAN 13.34 + 1.61 7.26 + 1.44 11.74 + 1.98 7.84 £ 1.66
VOTES 11.83 + 1.64 8.22 £+ 1.84 9.07 + 2.00 7.93 + 1.90

Table 4: Averages and standard deviations of error

learning data

rate using 50% of the

| Dataset | IndifferentNB | SSTBMATAN | TAN+MS | TBMATAN |

ADULT 667.22 £+ 4.35 497.55 + 3.54 536.37 + 3.84 -
BREAST 7.47 £ 2.51 5.85 + 2.04 10.46 + 1.99 10.18 + 2.48
CAR 26.13 + 2.10 16.27 + 1.95 16.88 + 2.03 16.10 + 1.96
CHESS 40.45 £ 1.85 31.33 £+ 1.88 26.17 £+ 1.81 26.12 + 1.85
CLEVE 6.51 + 1.47 6.28 + 1.58 9.14 £+ 2.03 6.94 + 1.70
CRX 13.20 + 2.19 10.98 + 2.32 24.41 + 3.13 12.30 + 2.45
FLARE 42.45 + 2.86 37.65 + 3.21 41.34 £+ 3.36 39.23 + 3.27
GLASS 6.16 = 1.44 5.62 + 1.38 15.10 + 2.36 9.47 + 1.96
HEP 1.50 +£ 1.14 1.13 £ 0.82 2.34 £ 1.16 1.29 + 0.86
IRIS 1.54 + 0.88 1.56 + 0.97 1.60 + 1.07 1.66 + 1.04
LETTER 1046.72 + 5.38 425.20 + 5.34 1082.94 + 7.63 -
MUSHROOM 59.90 + 3.87 1.34 + 0.98 0.21 + 0.69 -
NURSERY 150.01 + 2.88 99.09 + 2.46 92.48 + 2.58 -

PIMA 18.59 + 1.24 18.72 + 1.74 20.55 £ 1.99 20.38 £+ 1.93
SOYBEAN 25.63 + 3.11 6.22 + 1.63 14.58 + 2.72 5.07 + 1.32
VOTES 11.57 + 2.32 3.48 + 1.76 3.95 + 1.80 3.69 + 1.81

Table 5: Averages
learning data

and standard deviations of LogScore using 50% of the
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[ Dataset | IndifferentNB | SSTBMATAN [ TAN+MS [ TBMATAN |
ADULT 18.55 + 0.82 16.34 £ 0.64 16.50 £+ 0.83 -
BREAST 3.93 + 1.34 5.05 + 1.25 6.15 + 1.48 5.48 £+ 1.36
CAR 14.29 + 1.53 6.66 £ 1.43 6.03 £ 1.26 6.02 + 1.37
CHESS 12.79 + 1.30 9.81 £+ 0.79 7.53 + 1.12 8.08 + 1.12
CLEVE 19.19 + 2.14 20.82 + 2.24 26.30 + 2.05 21.66 + 2.31
CRX 15.14 + 2.01 14.54 + 2.03 19.06 + 2.13 13.52 + 1.89
FLARE 25.17 + 2.08 20.23 + 1.60 20.77 £ 1.66 20.38 + 1.64
GLASS 22.01 + 3.31 17.37 + 2.59 28.46 + 2.65 21.21 + 2.46
HEP 22.62 + 3.01 18.65 + 2.75 22.08 + 3.06 18.65 + 2.75
IRIS 15.04 + 2.18 11.19 + 2.17 13.51 + 2.71 12.30 + 2.40
LETTER 26.40 + 0.78 9.74 + 0.76 12.16 £+ 0.79 -
MUSHROOM 4.66 + 0.90 0.21 £ 0.28 0.12 + 0.05 -
NURSERY 9.71 + 0.76 7.02 £ 0.71 6.72 + 0.78 -

PIMA 26.26 + 2.09 23.38 + 1.36 23.43 £+ 1.47 24.22 £+ 1.46
SOYBEAN 11.20 + 1.42 6.36 + 1.38 7.80 + 1.58 6.44 + 1.48
VOTES 11.76 £+ 1.51 8.10 £+ 1.96 7.85 £ 2.01 7.58 £ 1.99

Table 6: Averages and standard deviations of error rate using

learning data

100% of the

[ Dataset [ IndifferentNB [ SSTBMATAN | TAN+MS [ TBMATAN |
ADULT 666.75 + 4.16 493.66 + 3.41 513.33 £+ 4.30 -
BREAST 8.04 + 2.66 5.46 + 1.93 6.54 + 2.14 7.98 £ 2.42
CAR 24.68 + 1.93 14.38 + 1.49 13.92 + 1.40 14.08 + 1.46
CHESS 40.64 £ 1.74 31.15 £+ 1.64 25.26 + 1.56 26.11 £+ 1.49
CLEVE 6.44 + 1.49 5.68 + 1.41 8.25 + 1.42 6.36 + 1.59
CRX 12.59 + 2.12 10.57 + 2.13 20.36 + 2.92 11.33 + 2.13
FLARE 41.23 £ 2.78 33.71 + 2.91 36.55 £ 2.93 35.09 + 2.94
GLASS 4.41 + 1.11 3.99 + 1.42 10.22 £+ 2.11 7.86 £ 1.96
HEP 1.84 + 1.28 1.13 + 0.97 1.85 £ 1.45 1.06 + 0.95
IRIS 1.44 + 0.95 1.08 + 0.83 1.29 £+ 1.00 1.14 + 0.85
LETTER 999.94 + 5.59 299.40 + 4.91 640.74 £ 6.35 -
MUSHROOM 48.17 + 3.57 1.03 + 0.92 0.00 + 0.02 -
NURSERY 148.09 + 2.84 97.56 + 2.37 88.98 + 2.34 -

PIMA 18.00 + 1.21 17.17 + 1.50 17.25 + 1.49 18.02 + 1.50
SOYBEAN 24.06 £+ 3.41 4.76 + 1.62 7.56 £ 2.18 3.39 + 1.38
VOTES 11.79 + 2.37 3.25 + 1.80 3.39 £ 1.79 3.43 + 1.87

Table 7: Averages and standard deviations of LogScore using 100% of the

learning data

5.1

Interpretation of the results

We can see in figures 3(a) and 3(b) that in most cases TBMATAN improves
both accuracy and LogScore with respect to TAN+MS. The average im-
provement is around 10% for error rate and slightly higher for LogScore.
The percentage of improvement is higher as we reduce the amount of learn-
ing data. This is understandable, because it is reasonable to think that if we
have enough data, the posterior is likely to be concentrated around the tree
learned by TAN+MS.

Comparing SSTBMATAN and TBMATAN by looking at figure 4(a) and
4(b) we see that SSTBMATAN is even slightly better than TBMATAN for
many datasets, so we can accept that the approximation introduced in section
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Figure 3: Comparison of TBMATAN and TAN+MS

4 is good for datasets of this size. Finally, if we compare SSTBMATAN and
TAN+MS by means of figures 5(a) and 5(b), we can see that its relative
behaviour is very similar to the one of TBMATAN with TAN+MS. The only
exception is the MUSHROOM dataset, where there is a huge relative difference.
This can easily be understood by looking at the tables. TAN+4MS is able
to learn the dataset almost exactly. Even when SSTBMATAN only has an
error rate of 0.21%, the relative difference turns out to be very high.

6 Conclusions and future work

We have introduced TBMATAN a classifier based on TAN, decomposable
distributions and bayesian model averaging. We have seen that its imple-
mentation leads to the calculation of ill-conditioned determinants and have
proposed to use an approximated implementation: SSTBMATAN.
SSTBMATAN is, to the best of our knowledge, the most accurate classi-
fier reported with a learning time linear on the number of observations of the
dataset. The accuracy increase comes at the price of increasing the classifi-
cation time, making it cubic on the number of attributes. The algorithm is
anytime and incremental: as long as the dataset observations are processed
randomly, we can stop the learning stage anytime we need, perform some
classifications and then continue learning at the only (obvious) cost of the

21



Improvement in LogP of SSTBMATAN over TBMATAN (in percent)
Improvernent in error rate of SSTBMATAN over TBMATAN (in percent)

17.9358 |

% % % s
Datasets ~ ? Datasets

(a) Error rate (b) Log score

Figure 4: Comparison of SSTBMATAN and TBMATAN

lower accuracy of the classifications performed in the middle of the learn-
ing process. These characteristics make the algorithm very suitable for huge
databases.

If we were able to determine beforehand the impact of working with a
sample in the accuracy of the predictions, in the line of Chernoff-Hoeffding
bounds, we could speed up considerably the algorithm by accepting a small
deviation in accuracy. In this sense, finding a result in the line of [10] remains
as future work.

Being able to calculate some measure of the concentration of the poste-
rior distribution around the TAN learned by TAN+MS (that is, some sort
of “variance”) will probably allow us to determine beforehand whether TB-
MATAN will provide significant improvement over TAN+MS in a dataset.

Finally, we think that all of the classifiers reviewed in [7] that are based
on the Chow and Liu algorithm [5] can benefit from an improvement similar
to the one seen here by the use of decomposable distributions and bayesian
model averaging. Formalizing the development for these classifiers and per-
forming the empirical tests remains as future work.
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Figure 5: Comparison of SSTBMATAN and TAN+MS

A Preliminaries

In this appendix we introduce three results that will be needed in the further
development and then in appendix B we prove the results in sections 3.3 and
3.4.

A.1 The matrix tree theorem

Let G = (V, E) be a multigraph and denote by a,, = a,, the number of
undirected edges between vertices u and v. Then the number of all spanning
trees of G is given by the value of the determinant obtained from the following
matrix by removing row » and column v.

deg U1 —a1,2 —a13 ... a1,n
A= —Q21 deg Vg —G23 ... a2.n (35)
_an’l RN an’2 . _an’?’ ....... deg Un
Proof: See [22, 20].
U
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A.2 The matrix tree theorem for decomposable distri-
butions
Let P(E) be a distribution over spanning tree structures defined by equations

10 and 11. Then the normalization constant Zz is equal to |Q(8)| with Q(B)
being the first (n-1) lines and columns of the matrix Q(83) given by:

_ _ _ﬁu,v 1 Su<v<n
2B =Bl B) = S 5 <y (36)
v'=1
Proof: See [17].
Il

A.3 A useful result about Dirichlet distributions

Let D(fy,...,0,;n},...,n!) be a Dirichlet distribution defined as in equation
2. We have that:

Dby, ..., 0n0,...,m) [[ 6" =
(X ) I D Z_l) (37)
F T_ln‘ 7,1_11'* n +nz
T S O1,...,0:; ’ e ! ,
[Tie, T'(n)) D5, mi + i) D(bs,...,0;m +m, ..y +1y)

and since the Dirichlet distribution is normalized you have that

ni _ LOZimy ma) [y D(ni + 1)
/ /Del"' ity ”)Ho [Ty T(m3) T (i i+ 1)

(38)
Proof: By expanding the Dirichlet distribution by means of its definition in
equation 2, grouping again into a Dirichlet and considering that the Dirichlet
distribution is normalized distribution and hence integrates to one, we have

01,...,0
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/---/D(Ol,...,Gr;nll,...,n;)HQim (39)

01,...0, =1
T3y ) T powtims—1

- [ s 1 (0

01,e0r - =1
F(Zr—l ;) HT—1 ['(n} + n,) ' '

— e = 2 L 9 . e 07'; JICICIIE) T
/ /H;-;l () T, 4 mg) 0o T e o)
01; yWr

(41)
L nd) [T T(nl + n) / / ,
= = D(6y,...,0.;n] +n1,...,0. 4+ 1)
7“_ P n/ P Z +nz ) ) ) ? T
Hzfl ( z) z 1 01,0
(42)
H::1 (n}) F(Z:—l g+ n;)
O

B Detailed development

B.1 Calculating probabilities with decomposable dis-
tributions

We need to calculate
P(S,5c16) = [ PIS,SclM POME) (44)
MeM
that is:

(S, Scl€) = Z/ / (S,Sc|E", 05 )P(E", O

Eec&

£)dOg (45)

We have to develop P(S,S¢|E",04) and P(E", 04
integrate over Oz~ to get the desired result.

¢) multiply them and
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B.1.1 Calculating P(S,S¢|E", 05)

It is determined by the expansion of equation 1 taking into account the TAN
structure.

P(S,Sc|E", 05) = 00(Sc) 0o (Spy Sc) [ Ovfuc (S, Sus Sc) (46)

uvEE

B.1.2 Calculating P(E", 04

£)

The prior P(F*,GE* ) can be expanded from equations 9, 10, 12, 16, 17

and 18 into
P(F*, = = H ﬁuv
X D(HC() ())
x [] D6y o 0): Ny, o) (47)

XH H HD oju,c (-5 %, €); NMC( i,c))

c€C y ek =1

B.1.3 Integrating over O

We want to calculate

/ / P(S, Se|F", 04 ) P(E", 00 1€)dO (48)

G)E*

We define:
1 c¢c= SC
555 (c) = 49
¢ (e) {0 otherwise (49)
1 k=S;ANec=5¢
625¢(k, c) = : 50
“C (k. c) {0 otherwise (50)
1 k=5ANl=85 ANc=5¢c

625k 1. ¢) = ' J 51
ig.0 (ks L) {0 otherwise (51)

It is easy to see that:
Zéff%(],z c) = 5550(7, c) (52)

JEv
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Z G (i 0) = 65°(c) (53)
D 6z () =1 (54)

ceC
We can use  this notation to expand the product
P(S, SC\E*,GE*)P(E*,GE* €) by substituting equations 46 and 47
giving:

P(S,S¢|E",04)P(E",04

_H/Buv

quE
550
< D0 Neto) [ 0
ceC
#PE SSC( )
P
< 1T [POogicl- Hf)ﬁcw 5

ceC

#Huv
XH H H[ U‘UC z,c);Nqu 7/0 H0v|uC _]’7, C)qu(]7Z7C)

c€C y,weE 1=1 Jj=1

(55)

By analyzing equation 55 we can see that the integral in equation 48 can be
calculated by applying the result in equation 38 three times. This gives:

/.../P(S,SC\E*,GE*) (E",0,01€)d0, = Z IT Buc
Sl

u, veE

L3 Ne(e) TT D(NG(e) + 667 (<))

) IT T(Nz(0) r(zc NL(0) + 055 (o))
#rE

o | T Ve clici) ﬁ’ DV, o0y 0) + 6555,(1,) |

e ez

CupeB =1 | TTT(N .0 (5,1, €) T Ny e (G4 ) + 8, (7,4, €)
j=1 i=1

(56)
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This expression can be simplified by applying equations 13,14,15,52,53 and
54 and reorganizing:

/ / (S,8¢|E",05)P(E", 04

T(N')
TV D

d®*_ Hﬁuv

u,wEE

S,S¢

uc(l c)) (N s ©) + S (7,4, €)
" u];_E[EgH [ ( ) 55 Sc( )) H F(N;J,u,C(]’ 7’7 C))

(57)

1 S,S¢
Since the quotient T=()+0- “C) s N (%) if the condition expressed by the
(N () *

0 is satisfied and 1 otherwise we have that:

IB / (5.5c|F" 05 ) P(E" OO0 = - [ s
@—*

u,WEE

N ' (58)
X N’_ (Sﬁ, Sc)

qu]uc S’U’SU’SC)
<1l [ N;c(5u 50) ]

u vEE

B.1.4 Adding over tree structures
We have to calculate

p(S|D,§) = Z/ / (S,Sc|E", 04 )P(E", 05

Bee’ o,

£)dOg- (59)

Defining h{?’s ¢ and hi:fc as in equations 22 and 23 it is easy to see that
multiplying and dividing in equation 58 by the factor:

II M8, S0) (60)

veV—{pz}

28



and rearranging we get:

/m/m&w?ﬁmmfﬁﬁ
@E*

And then calculating the summation over structures using the matrix tree
theorem for decomposable distributions gives the desired result.

P(S, Scl€) = hg*°1Q(B h%5¢)] (62)

§)d0g = hy™ [ (Buwhis®) (61)

u,veE

B.2 Learning with decomposable distributions

We want to calculate P(E", ©5+|D, €). Using Bayes rule we get:

P(E",05(¢)P(D|E", 04,€)
Zp
The prior P(E*, O |€) comes given by equation 47. P(D\F*, O7, ) is the

probability that the model generates the data in D. Since D contains inde-
pendent identically distributed observations, we have that

P(D|E", 04,8 = [ bc(c)¥"®
ceC
#rg
X H H Oppic (i, o)z (64)
ceC i=1
#Hu F#v

% H H H H 91}'“,0(‘7" 7;, C)Nv,u,C(j:i:C)

c€C yweE =1 j=1

P(E", 04

D,§) = (63)

Substituting equations 47 and 64 into 63 we get

P(E",6 7 11 b
uveE
) Hﬂc c)
ceC
#PE
. \N,_ c(ic
X H p ‘C N;E’C(.,C)) HHPE|C(z)C) PE,C’( )
ceC el
#v
. .. Nvu ',i,c
X H H H 'U\uC Z’ C);Nzl),u,C("ZaC))H0v|u,C(],Z,C) ,C (7:4:6)
cecquEl 1 =1

(65)
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Applying the result in equation 37 for all the Dirichlets we have that
P(E",05|D,£) = H Buw
I'(>- Ne(e) H F(N'c(C) + Ne(o))

- TITNE() T(X, Ne(e) + Ne()

D(Y Ny clir0) HF( (i) + N, ol )
XH #o5 #pE
| T TNy ol ) DX Ny ol €) + + N )

#u (Z Nou.c(d,1:€)) H LNy 0 (657 €) + Now,o(d,4,¢))

JIR101E ez

c€C ywek =1 H F(qu;,u,C(j7 i, C)) F(Z N;;,u,C(j’ 'i, C) + Nv,u,C(ja i, C))
j=1 i=1

x D(0c(.); No(.) + Ne(.)
X H D(epﬁc(-, C); N ( ) + NPE, ( ))

ceC

#Hu
< [T TI TI1P@ouc(i ) Ny olise) + Nowel(-is0)

c€C yoyeE 1=1

(66)
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This expression can be simplified by applying equations 13,14 and 15 (and
similar ones for N) and reorganizing:

11
Zs Zp T N’+N 11 e

u ’UEE

P(E",05|D,€) =

HE DN, oli,6) + Npp i, )

<1111 LN, o(i,0))

ceC =1

N o(ine)) BTN, (i €) + Nowo(sisc)
XHHH w+N(»H TN, 00,4, 0))

uweE ceC =1 =1

x D(0c(.); N, ()+NC( )
X HD epﬁc .,C ; pE,C('7C) + N, E’C("C))

ceC

#u
< [T TI T1P@uuc( i ); Ny o(is€) + Nowol- i 0)

ceC ’U,,UEE =1

(67)

Defining W, , as appears in equation 26, it is easy to see that multiplying
and dividing in equation 67 by the factor:

N{;c i,¢) + Ny (i, c))

[ Il o) (68)

veV—{pgz} ceC i=1

and rearranging we get:

1 1 TIT(N)

Zﬁ Zp ['(N'+ N)
N{,C i,¢) + Nyc(i,c))

I )

ceCveV i=1

< ] WanBuo
uwEE (69)
x D(0c(.); Ne(.) + Nel(.))

X HD HPE\C "C ) pE,C('aC) +NP§,C("C))

ceC

XH H HD oju,0 (5 15 €); Ny oy (53, €) + Nywo (- 4, €))

c€C y ek 1=1

P(E",05|D,€) =
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In order to have P(E", ©4-|D, £) completely determined we need to calculate
Zp. Since we know that

[ rorma-g - fre:

MeM Eec&

&) =1 (70)

We need to integrate over the parameters, then sum over the tree structures
and finally solve for Zp. The first step is easy, because Dirichlet distributions
are normalized and integrate to 1 giving:

/@_*/ (E",05D,&) = ZﬂZD (N(,]\JZ)N)

N{,C i,¢) + Nyc(i, )
<111 H T 60) ()

ceCveV i=1

X H Wu,vlﬁu,v

uEE

The addition over structures can be calculated by means of the matrix tree
theorem for decomposable priors, giving

Z//E@

Eec&

€)= |6203VV)| 1 T
ZpT(N'+ N)

(72)
N{,C i,¢) + Ny (i, c))

XHHH 7 o0 0) =1

ceCveV i=1

Solving for Zp, recalling that Zs = |Q(8)| we have that

|Q(BW)| T(N N{,C i,¢) + Nyc(i,c))
%= ) T HCQH Lo(io0) 7

Finally, substituting the result for Zp in equation 69 we can see that the
posterior is a decomposable distribution with the parameters updated as
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given by equations 24, 25 and 26:

= 1
P(E 05 D) = (g LL Wb

x D(0c(.); No(.) + Ne(.))
X H D(0p,c(- )i Ny o(6) + Nyl 0)) (74)

ceC

F#u
% H H HD(Hv‘u,C(.,i,c);Nq’],u,c(.,i,c)+Nv,u,c(.,i,c))

c€Cy ek =1

uvEE
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