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Computational Materials Design

* Develop tools to design new materials rather
than merely understanding existing ones.

* |Incorporate combinatorial-ish rapid scans of
multiple structures, elements, etc.

» Getting close to materials design
— QM and MM methods still have to get better
— Design process is not combinatorial

— Beginning to develop the approaches to use for the
design process

— In 20 years...
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Rapid Prototyping Strategy “T __ﬁﬂ

1. Determine mechanism/behavior of material in
guestion.

2. Determine bottlenecks and critical points in the
behavior above.

3. Formulate new materials and test against
critical points in 2.
Lather, rinse, repeat

4. Validate against experiment, higher level theory,
etc.



QM-RP Application: Methane Activation

* Methane
— Produced in large quantities at oil wells
— Gaseous: Need to convert to liquid to transport
— Most of this methane goes wasted
« Syngas/Fisher-Tropsch
— Convert methane to Syngas (CO/H,) (not efficient)
— Syngas to alkanes via Fischer-Tropsch (not efficient)

e |deal situation

— Convert methane to methanol via low-temperature
catalytic process.



Why CH, — CH;OH is hard

* CH bonds are stronger in CH, than in CH,;OH
— 114 vs 103 kcal/mol

— Thus, any catalyst that converts CH, to CH;OH will
probably continue on to CO,
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Periana Pt Catalyst '“T %
R s
m * Pros
N~ N\ — 72% conversion to mixture of CH;OH +
I pt CH,OSO;H in 2.5 hrs at 220 C
NZ N/ — Relatively low temperature

U e Cons
— Conc. Sulfuric Acid

— SO, oxidizing agent
— Separation/hydrolysis of CH;O0SO4H

 Desire
— Reaction that works in water

Periana, R.A.; Taube, D.J.; Gamble, G.; Taube, H.; Satoh, T.; Fujii, H. Science, 1998, 280, 560
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Water Poisoning
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Rapid Prototyping Test 1
« Compute the energy of the M-CHj, compound;m

should be < 10 kcal/mol.
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Rapid Prototyping Test 2

 For candiates that pass test 1, compute the

reaction with a single water; new candidates
should be stable (AE,5 > 0).
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Rapid Prototyping Test 3

For candidates that pass tests 1-2, compute the

barrier AE*,.; new candidates should be < 33

kcal/mol.
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Rapid Prototyping Test 4 ,n-

* For candidates that pass tests 1-3, compute
energetics for OX|dat|on and functionalization

steps. NI
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Candidates that pass all tests are candidates for
experimental validation.



Catalyst Candidates #1
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CH,
Pt(ll), 16 electron complexes with N,O,N (a) and O,0,0 (b) coordinating atoms. Again

as the AE(A-C) energies are 22.5 and 18.0 kcal/mol, respectively, these systems do

not pass QM-RP test 1, and are not pursued further
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NCN structures with (a) Os(ll) (14 electrons) and (b) Pt(ll) (18 electrons). Structure (a)
has a AE(A-C) of 32.7 kcal/mol, which does not pass QM-RP test 1, but structure (b)

has AE(A-C), which does pass QM-RP test 1.



Catalyst Candidates: Barrier Tests S
+48.9 H?"C‘N\ ﬁf:- . ‘ y:
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Cl
Transition state for C-H bond activation for the structure from the previous slide. The

barrier is 48.9 kcal/mol, and thus does not pass QM-RP test 2.



Best QM-RP Catalyst Candidate
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Catalysis-RP Future Directions

» Continue work on CH,
— Roy looking at a few
structures
* Move on to fuel cell design

— High T DECO Fuel Cells

— Optimize Catalyst to prevent
coking

— Understand behavior of TPB




CMDF Energetic Materials Simulation

* Predictive simulation of HE

— Integrate software tools across multiple
physical scales

— First principles based simulation
— Validate against existing experiments
— Predict behavior of novel materials
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» Classical FF accurately describes QM results
— TS and Pathways
— Automatically fit to QM structures, energies

E = Eval + Ecoul 4+ Evdw

Bonds can break and reform
— Bond-order-dependent valence terms

Charge equilibration for long-range charge
transfer

Generic: every O is the same, regardless of
CH,0 or Al,O,



ReaxFF Reproduces RDX QM Data
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Species Profiles from ReaxFF

 Can use ReaxFF for shock or cook-off

* Every product in the simulation is also observed

experimentally

 ReaxFF can simulate complicated
multlcomponent reactlons at high T,P
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Move from Simulation to Design

« Detailed reaction mechanisms too expensive

— Too many man hours to work for arbitrary new
materials

» Use ReaxFF to simulate reaction chemistry
— Validate against quantum chemistry

 Distill multiple ReaxFF trajectories to reduced
reaction mechanism

* Use reduced mechanism in Cantera flame
simulation
— Also need transport and thermochemistry parameters
— Collaboration with Dave Goodwin, Caltech



CMDF Sample Code for HE

RDX = load_bgf(“rdx_uc.bgf”)
RDX444 = periodic supercell(RDX,(4,4,4))
for T i1n [100,500,1000] :
RDX444 .set_temperature(T)
Traj[T]=RunDynamics(material=RDX444,time=10)
Species = AnalyzeFragments(Traj)

MechlD = SimpleMech(Species,reactant=“rdx”,
product=“n2”)

for frag in Species:
Thermo[frag] = SimThermo(frag)

Transport[frag] = SimTransport(frag)

CanteralDFlame(MechlD, Thermo,Transport,
MoleFrac=(“rdx”,1))



