

Storage Virtualization for KVM - Putting the pieces together

Bharata B Rao – bharata@linux.vnet.ibm.com
Deepak C Shettty – deepakcs@linux.vnet.ibm.com
M Mohan Kumar – mohan@linux.vnet.ibm.com
(IBM Linux Technology Center, Bangalore)

Balamurugan Aramugam - barumuga@redhat.com Shireesh Anjal – sanjal@redhat.com (RedHat, Bangalore)

Aug 2012 LPC2012

Agenda

- Problems around storage in virtualization
- GlusterFS as virt-ready file system
 - QEMU-GlusterFS integration
 - GlusterFS Block device translator
- Virtualization management oVirt and VDSM
 - VDSM-GlusterFS integration
- Storage integration
 - libstoragemgmt

Problems in storage/FS in KVM virtualization

- Multiple choices for file system and virtualization management
- Lack of virtualization aware file systems
- File systems/storage functionality implemented in other layers of virtualization stack
 - Snapshots, block streaming, image formats in QEMU
- No well defined interface points in the virtualization stack for storage integration
- No standard interface/APIs available for services like backup and restore
- Need for a single FS/storage solution that works for local, SAN and NAS storage
 - Mixing different types of storage into a single filesystem namespace

GlusterFS

- User space distributed file system that scales to several petabytes
- Aggregates storage resources from multiple nodes and presents a unified file system namespace

GlusterFS - features

- Replication
- Striping
- Distribution
- Geo-replication/sync
- Online volume extension
- Online addition and removal of nodes
- Stackable user space design

GlusterFS Translator

- Converts requests from users into requests for storage (*)
 - A shared library that implements file system calls
- Multiple translators can be stacked to form a translator tree
 - Every file system call to gluster will pass on via this tree
- Each translator provides a distinct functionality
 - storage/posix.so, performance/io-cache.so
 - protocol/client.so, protocol/server.so
- Modularity
 - Just enough translators to achieve the desired functionality
 - Dynamic addition and removal of translators
 - (*) Borrowed from Jeff Darcy's Gluster workshop slides

Translator tree example

Source: gluster.org

Enabling GlusterFS for Virtualization use

- QEMU-GlusterFS integration
 - Native integration, no FUSE mount
 - Gluster as QEMU block back end
 - QEMU talks to gluster and gluster hides different image formats and storage types underneath
- Block device support in GlusterFS via Block Device translator
 - Logical volumes as VM images

GlusterFS back end in QEMU

QEMU-GlusterFS integration

- New block driver in QEMU to support VM images on gluster volumes
 - Uses libgfapi to do IO on gluster volumes directly w/o FUSE mount
- Usage
 - -drive file=gluster://server[:port]/volname/image[?transport=...]
- FIO Numbers (Seq read, 4 files with direct io, qemu options: if=virtio, cache=none)

	Aggregate BW(kB/s)	Min BW(kB/s)	Max BW(kB/s)
Base	63076	15769	17488
FUSE mount	29392	7348	9266
QEMU-GlusterFS native integration	53609	13402	14909
QEMU-GlusterFS native with custom client side volfile	62968	15742	17962

GlusterFS BD xlator

- BD xlator exports block devices at server side as files to gluster clients
 - Currently supports LVMs only
 - Exploring exporting LUNs as files (Future)
- Advantages
 - Direct block device access, no FS overhead
 - Provides VM thin provisioning and snapshots by leveraging thin provisioning and snapshot features of LVM
 - Ease of use and management with block device backed VM images as files
 - Inherently thin provisioned images using dmthin targets (WIP)
- Fitting GlusterFS in SAN environment

... BD xlator

- Leaf (server side) translator
- Exports LVM volume group as directory and logical volumes within it as files
 - VM image is a file which in turn is an LV
- Posix calls mapping
 - create LV creation
 - link Full clone
 - soft link Linked clone/snapshot
 - truncate LV resize

Using BD xlator

- Creating gluster volume with BD backend
- Creating a VM image on BD backend
- Clone and snapshot
- Commands from gluster mount point
 - # cd /gluster-mount-point/vg-name
 - # touch lv1 /* create an LV */
 - # truncate -s <size> lv1 /* sets the size of LV */
 - # In Iv1 Iv2 /* full clone of Iv1 in Iv2 */
 - # In -s Iv1 Iv2 /* linked clone of Iv1 in Iv2 */

QEMU-GlusterFS advantages

- VM images as files in all scenarios (esp SAN using BD xlator)
 - Ease of management
 - File system utilities for backup from GlusterFS FUSE mount (Future)
- Off-loading QEMU from storage/FS specific work
 - File system driven snapshots, clones (via BD xlator)
- Storage migration that is transparent to QEMU
 - Driven by GlusterFS (Future)
- Translator advantages
 - User space pluggable VFS, modularity
 - Lean storage-stack

libvirt support for GlusterFS

- RFC patches out on libvirt mailing list to support gluster drive specification in QEMU
 - https://www.redhat.com/archives/libvir-list/2012-August/msg01625.html
- Libvirt XML specification

```
<disk type='network' device='disk'>
  <driver name='qemu' type='raw'/>
  <source protocol='gluster' name='volume/image'>
    <host name='example.org' port='6000' transport='socket'/>
    </source>
  </disk>
```


oVirt and VDSM

oVirt

- Virtual data center management platform
- KVM based virtualization environment
- VM life cycle, storage, network management
- Self service portal
- Depends on VDSM

VDSM

- oVirt node agent
- Node virtualization management API
- Uses libvirt/QEMU for VM management
- Responsible for storage, network, host, VM management etc

VDSM storage domains

- Storage domain
 - Standalone storage entity
 - Stores images and associated data aka disk image repository
- Domain types
 - File domain
 - NFS and localFS
 - PosixFS support for posix complaint storage back end
 - Block domain
 - iSCSI and FCP

GlusterFS storage domain in VDSM

- PosixFS approach via GlusterFS FUSE mount is used currently
- Support in VDSM to exploit QEMU-GlusterFS native integration
 - PosixFS + VDSM hooks approach
 - Modifies libvirt XML to support gluster specification in QEMU
 - Non-standard, hooks not shipped with VDSM rpm
 - GlusterFS as network disk type under PosixFS
 - Adds GlusterFS as network disk in libvirt part of VDSM
 - Not ideal fit, not future-proof
 - GLUSTERFS_DOMAIN approach preferred
 - New storage domain type, inherits mostly from NFS domain, Patches under review

GlusterFS support in oVirt/VDSM

- GUI and REST API for managing gluster clusters
 - Create, expand, shrink Gluster clusters
 - Create and manage Gluster volumes
- Leveraging oVirt platform
 - Gluster related verbs in VDSM
 - vdsm-gluster plugin separate rpm
 - Gluster related commands and queries in oVirt engine backend
 - Gluster specific UI changes and REST APIs
 - Configurable Application Mode: virt only / gluster only / virt + gluster

...GlusterFS support in oVirt

Completed

- Enable gluster on a cluster in oVirt
- Create and delete volumes
- Manage volume lifecycle: start/stop,add/remove bricks, set/reset options
- Audit logs
- Advanced Volume search with auto-complete

Future work

- CIFS export
- Option to configure volume to be used as storage domain in oVirt
- Support for Bootstrapping and SSL
- Import existing Gluster cluster into oVirt engine
- Async tasks (rebalance, replace-brick, etc)
- Geo-replication
- Top / Profile
- UFO (Unified File and Object Storage)

Storage Array integration

- Exploiting storage array capabilities from the virtualization stack
- Need for a stable programming interface for managing storage hardware
- Taking advantage of storage array off-load features like
 - Thin provisioning
 - Snapshots
 - Array assisted copy

libstoragemgmt

- Library to programmatically manage storage hardware in a vendor-neutral way
- C APIs for storage management, python bindings
- Manages SAN and NAS
- Exploits storage array off-load capabilities
- Plugins for vendor-specific storage
- Example usage
 - Create LUN
 - Enumerate LUNs
 - List capabilities

VDSM-libstoragemgmt integration

- Goals
 - Ability to plugin external storage array into oVirt/VDSM virtualization stack, in a vendor neutral way
 - Ability to list features/capabilities and other statistical info of the array
 - Ability to utilize the storage array offload capabilities from oVirt/VDSM
 - Array assisted thinp, copy, snapshot
- RFC posted and discussed in the community https://lists.fedorahosted.org/pipermail/vdsm-devel/2012-June/001105.html
 - Needs more investigation on how libstoragemgmt can fit into VDSM repo engine
 - Needs more discussion in the community

Future Work

- T10 SCSI extensions (xcopy, writesame)
 - VFS interfaces, FS support
- Storage integration
 - Storage off-loads
 - libstoragemgmt plugins
- GlusterFS storage domain in VDSM
 - Drive to completion
- Mapping VM's to LUN's
 - Extending GlusterFS BD xlator to support LUN's in the back end
- dm-thin support
 - dm-thin support from GlusterFS BD xlator

References

- Latest QEMU-GlusterFS patches (v6)
 - http://lists.gnu.org/archive/html/qemu-devel/2012-08/msg01536.html
- Mohan's Block device xlator patches
 - http://review.gluster.org/3551
- Harsh's RFC patches for libvirt support
 - https://www.redhat.com/archives/libvir-list/2012-August/msg01625.html
- Deepak's Patches that add VDSM support
 - http://gerrit.ovirt.org/6856
- Video demo of using QEMU with GlusterFS
 - http://www.youtube.com/watch?v=JG3kF_djclg
- QEMU git tree git://git.qemu.org/qemu.git
- GlusterFS git tree git://git.gluster.com/glusterfs.git
- QEMU-GlusterFS Benchmark details
 - http://lists.nongnu.org/archive/html/qemu-devel/2012-07/msg02718.html
 - http://lists.gnu.org/archive/html/gluster-devel/2012-08/msg00063.html

References

- oVirt and VDSM
 - http://www.ovirt.org
- libstoragemgmt
 - http://sourceforge.net/projects/libstoragemgmt/

Legal Statement

- This work represents the view of the authors and does not necessarily represent the view of IBM.
- IBM, IBM(logo) are trademarks or registered trademarks of International Business Machines Corporation in the United States and/or other countries.
- Linux is a registered trademark of Linus Torvalds.
- Other company, product, and service names may be trademark or service marks of others.
- There is no guarantee that the technical solutions provided in this presentation will work as-is in every situation.