
KVM/ARM

Marc Zyngier
<marc.zyngier@arm.com>

LPC’12



ARM Architecture Virtualization Extensions 1/2

The Virtualization Extensions, introduced with the latest revision
of the ARMv7 architecture, is based around a new Hypervisor
execution mode (aka HYP, aka PL2).

B1 The System Level Programmers’ Model 
B1.3 ARM processor modes and ARM core registers

ARM DDI 0406C Copyright © 1996-1998, 2000, 2004-2011 ARM. All rights reserved. B1-1139
ID112311 Non-Confidential

Secure and Non-secure modes 

In a processor that implements the Security Extensions, most mode names can be qualified as 
Secure or Non-secure, to indicate whether the processor is also in Secure state or Non-secure state. 
For example:
• if a processor is in Supervisor mode and Secure state, it is in Secure Supervisor mode
• if a processor is in User mode and Non-secure state, it is in Non-secure User mode.

Note
 As indicated in the appropriate Mode descriptions:

• Monitor mode is a Secure mode, meaning it is always in the Secure state

• Hyp mode is a Non-secure mode, meaning it is accessible only in Non-secure state.

Figure B1-1 shows the modes, privilege levels, and security states, for an implementation that includes the Security 
Extensions and the Virtualization Extensions.

Figure B1-1 Modes, privilege levels, and security states

Hyp mode

Hyp mode is a Non-secure mode, implemented only as part of the Virtualization Extensions. It provides the usual 
method of controlling almost all of the functionality of the Virtualization Extensions.

Note
 The alternative method of controlling this functionality is by accessing the Hyp mode controls from Secure Monitor 
mode, with the SCR.NS bit set to 1.

This section summarizes how Hyp mode differs from the other modes, and references where the features of Hyp 
mode are described in more detail:

• Software executing in Hyp mode executes at PL2, see Mode, state, and privilege level on page B1-1133.

• Hyp mode is accessible only in Non-secure state. When the processor is in Secure state, setting CPSR.M to 
0b11010, the encoding for Hyp mode, has no meaning. Therefore, in Secure state, the effect of attempting to 
set CPSR.M to 0b11010 is UNPREDICTABLE. For more information see The Current Program Status Register 
(CPSR) on page B1-1145.

Secure PL0
User mode

Non-secure PL0
User mode

Secure PL1
System mode

Supervisor mode
FIQ mode
IRQ mode

Undef mode
Abort mode

Non-secure PL1
System mode

Supervisor mode
FIQ mode
IRQ mode

Undef mode
Abort mode

Non-secure PL2
Hyp mode

Secure PL1
Monitor mode

Secure stateNon-secure state

SCR.NS set to 0,
Secure

SCR.NS set to 1, 
Non-secure

SCR.NS
can be 0 or 1

Figure : ARM execution privilege levels



ARM Architecture Virtualization Extensions 2/2

I Non-secure world, higher privilege than SVC
I Second stage translation

Add an extra level of indirection between guests and physical
memory
TLBs are tagged by VMID

I Ability to trap access to most system registers
The hypervisor decides what it wants to trap

I Can handle IRQs, FIQs and asynchronous aborts
The guest doesn’t see physical interrupts firing, for example

I Guests and host can call into HYP mode (HVC instruction)
I Standard peripherals HYP aware

GIC and timers have specific virt-ext features



HYP mode: Not SVC++

Despite HYP mode having a higher privilege level than SVC, it is
not a superset of PL1, as its features are quite different.

I Own translation regime:
Separate stage 1 translation, no stage 2 translation
Broadly follow the LPAE format (no “classic” page tables)
Only one Translation Table base Register (HTTBR)

I It would be very difficult to run Linux in HYP mode
Requires too many changes to be practical

I Instead, the HYP mode can be used as a “world switch”
between guests (bare metal) or host and guests (hosted)



KVM/ARM: General architecture

KVM/ARM uses the HYP mode to context switch from host to
guest, and back. It performs the following tasks:

I Save and restore host and guest contexts
Stage-2 Translation Table, trap configuration, GP registers,
system control registers, VFP...

I Preempts the guest on:
I Physical interrupt delivery,
I Stage-2 translation fault,
I HVC or SMC,
I WFI (idle),
I A few privileged system registers,
I Some rare cache maintenance operations

I On guest exit, the control is restored to the host
Handles the exit reason (interrupt, page fault...)

I Hypervisor has no influence at all while running the host
I No nesting. Yet. ;-)



KVM/ARM: Memory management



KVM/ARM: Memory management

I Host in charge of all memory management
It has no stage-2 translation itself (saves on TLB entries)

I HYP only has access to a few key host structures (kvm, vcpu)
I Guests are in total control of their own page tables

The host controls their stage-2 translation tables
No shadow page tables

I Easy to map a real device into the guest “physical” space
This is how it can access the VGIC CPU interface

I Emulated devices do not have a stage-2 translation
Access trapped and emulated in kernel or user space

I All cache and TLB accesses are tagged by VMID
I 4k pages only

Using huge pages, or at least the same granularity as the
guest would be a lot better. Requires some QEMU changes.



KVM/ARM: Instruction emulation

I MMIO access triggers a stage-2 translation fault
I Most instructions are described in the HSR

No need to read back the instruction, everything is already
there!

I A handful of instructions must be handled separately
I Mostly load/store with register writeback
I This can be racy when combined with TLB invalidations from

other cores
I Pending patch to eliminate these instructions from MMIO

accessors in the Linux kernel
I Added complexity due to having to handle multiple ISAs

(ARM and Thumb)
I Test suite being written to verify it in a systematic way



KVM/ARM: Host interrupt handling

While running a guest, all physical interrupts are taken in HYP:

I This causes the guest to exit

I We leave the interrupt pending and return to the host

I The pending interrupt will kick in when the host unmasks the
interrupts

When the host is running, interrupts are directly handled in SVC.
This scheme makes it very simple to handle interrupts, and
requires no modification of the kernel.



KVM/ARM: Guest interrupt injection

There are two ways of injecting an interrupt in a guest:

I An architected way, by indirectly manipulating the I, F and A
bits in the guest (the whole interrupt controller has to be
modelled).

I Using the virtual GIC extensions, which offer a GIC CPU
interface that can be mapped into the guest, and controlled
by the host.

In both cases, we only inject “virtual” interrupts.
It should be possible to tie a physical interrupt to a guest, but we
still lack some of the infrastructure.



KVM/ARM: Booting protocol

Until recently, KVM/ARM used an ad-hoc boot protocol, relying
on a secure monitor to be installed by the boot-loader.
During Linaro Connect Q1.12, it was decided that a HYP aware
kernel should be entered in HYP mode, and not rely on external
services.

I Uses a hypervisor API, not specific to KVM
I Relies on the kernel being entered directly in HYP mode
I The kernel installs a HYP stub and drops back to SVC

I KVM uses this stub to install itself, and restores the stub
when exiting

The API is simple and universal enough for other hypervisors to
use the same! It also matches the Xen requirements.



KVM/ARM: Current status / Upstreaming plans

v11 (aka Spinal Tap) in development, with a lot of new features
being merged:

I HYP mode boot
I Virtual GIC
I Thumb2 MMIO emulation

Missing features:
I in-kernel timers (code is ready for merging)
I Stable userspace ABI (MSR, IRQ injection)

Upstreaming plans:
I HYP mode boot has to go in first

Set of patches sent as RFC to LAKML
I A handful of infrastructure patches in a second round

mm setup, generic timers, PMU
I The bulk of the KVM code will be able to go in then

We still need people to review the code!



KVM/ARM: Signed-off-by:

I Christoffer Dall (U. of Columbia, Virtual Open Systems)
Main contributor, glorious leader

I Peter Maydell (Linaro)
QEMU, walking ARM ARM

I Antonios Motakis (Virtual Open Systems)
VMID allocator, VFP switching

I Rusty Russell (Linaro)
CP15 interface, VFP switching, QEMU, awesome hacking

I Marc Zyngier (ARM)
mm, SMP, VGIC, timers, HYP mode boot, bug chasing,
permanent moaning


