
Global Value Numbers and Redundant Computations

Barry K. Rosen

Mark N. Wegman
IBM Thomas J. Watson Research Center

Yorktown Weights, NY 10598

F. Kenneth Zadeck
Department of Computer Science

Brown University

Providence, RI 02912

1 Introduction

Most previous redundancy elilmination algorithms have
been of two kinds. The lexical algorithms deal with the en-
tire program, but they can only detect redundancy among
computations of lexicatlly identical expressions, where ex-
pressions are lexically identical if they apply exactly the
same operator to exactly the same operands. The value
numbering algorithms,, on the other hand, can recognize
redundancy among ex:pressions that are lexically different
but that are certain to compute the same value. This is
accomplished by assigning special symbolic names called
value numbers to expr,essions. If the value numbers of the
operands of two expressions are identical, and if the op-
erators applied by the expressions are identical, then the
expressions receive the: same value number and are certain
to have the same values. Sameness of value numbers per-
mits more extensive optimization than lexical identity, but
value numbering algor:ithms have usually been restricted in
the past to basic blocks (sequences of computations with
no branching) or extended basic blocks (sequences of com-
putations with no joins).

We propose a redundancy elimination algorithm that
is global (in that it deals with the entire program), yet able
to recognize redundancy among expressions that are lexi-
tally different. The al,gorithm also takes advantage of sec-
ond order effects: transformations based on the discovery
that two computations compute the same value may cre-
ate opportunities to discover that other computations are
equivalent.

The algorithm applies to programs expressed as re-
ducible [l] [9] control flow gratphs. As the examples in
section 7 illustrate, our algorithm optimizes reducible pro-
grams much more extensively than previous algorithms. In
the special case of a program without loops, the code gener-
ated by our algorithm is provably “optimal” in the technical
sense explained in section 8. Thiis degree of optimization is

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

0 1988 ACM-O-89791-252-7/88/0001/0012 $1.50

achieved while improving the worst-case time bound, when
compared with previous algorithms that perform extensive
optimization.

READ(A,B,C;D,L,M,S,T> /
A

L+C*B DtC
McL+4 L+D*B

AtC
ScA*B
TtS+i

I X+-'A*B
Y+X+I

Figure 1: Original Program

READ(A,B,C.D,L,H,S,T>
LtC*B

I

/ \
ntL+4 D+-C

YcL+I StA*B

AtC T+S+I

X+L x-s
Y+T

Figure 2: Improved Program

Figures 1 and 2 illustrate the optimization achieved by
our algorithm. It removes a redundancy between computa-
tions of A*B, identifies a common use of C*B and removes
it from the loop, and finally removes a partial redundancy
[13] between computations of X+1.

Suppose the program has already been translated into

Proceedings of the Fifteenth Annual ACM

SIGACT-SIGPLAN Symposium on Princi-

a standard intermediate form that uses temporary names
for the values of the subexpressions of complex expressions.
In an intermediate text expression, the operands are al-
ways variable or constants. The worst-case time bound of
our algorithm can be stated, somewhat pessimistically, as
C(C * Iv * E), where C is the number of computations in
the program’s intermediate text, N is the number of nodes
in the control flow graph, and E is the number of edges
in this graph. The worst pessimism comes from N. This
factor does not represent anything done for every node in
the graph; rather, it represents the possible increase in the
number of computations present at intermediate stages in
our algorithm. In the worst case that can be constructed,
the expansion factor is N. Practical expansion factors will
be much smaller. There is also some pessimism in the fac-
tor E because the algorithm includes searches that might
explore most of the graph but are likely in practice to ex-
plore small fractions of it. Section 7 includes a comparison
of bounds.

2 Example

This section sketches our algorithm by working through
figure 1 in detail. This example illustrates several of the
new techniques used by the algorithm, but necessarily does
not discuss how to handle all cases. Sections 3-6 contain a
complete description of the algorithm, and section 7 relates
it to previous work.

Our algorithm will first change this program into a
si:mpler representation. There is only one assignment for
each variable in the new program. This transformation in-
troduces many new names for each separate variable in the
original program, at least one name for every assignment
statement. In this particular example, the new names in-
troduced for the variable V are of the form Vi for some
integer i. In general, this subtask may be accomplished in
various ways, as discussed in section 4.3. The phrase sin-
gle assignment is already in use for programs that assign
to each variable only once when running. Dynamically, a
program with loops may assign to the same variable many
times, even if only one assignment appears in the program
text. Our transformation puts the program into static sin-
gle assignment form, which we will abbreviate to SSA form.

To attain SSA form, we introduce a new type of sssign-
mtent statement at some of the join nodes of the program,
where a join node is any node that has two or more inedges.
We consider the case of two inedges and call them “left” and
“right” for ease of visualization. Then the new assignment
will have the form Vi + d(Vj , Vk). If control reaches the
join node along the left branch, then Vi is assigned the
value Of V j ; if control reaches along the right, then Vi is
assigned the value of Vk. This transformation is illustrated
in figure 3. This representation allows our algorithm to
effectively manipulate value numbers when it manipulates
lexical names. Some of our transformations preserve SSA
form, and those that do not are immediately followed by
restoration of SSA form.

Eliminating redundancies can have second order ef-
fects. Eliminating one computation can provide an oppor-
tunity to eliminate others. This motivates the notion of

Figure 3: Program in SSA Form, with Ranks Assigned

runt. Ranks are like heights of expression trees. Most of
the computations that produce operands for an expression
are assigned a rank lower than the rank of the expression.
(The exceptions involve program loops.) We can therefore
process the program in order of increasing ranks and be
sure of getting most of the second order effects. The ranks
are shown in parentheses to the left of each computation
in figure 3. The subalgorithm to compute the ranks is in
section 4.4.

In a program in SSA form, trivial assignments (i.e., one
variable gets the value of another) can be,removed simply
by changing all uses of the target of the assignment to uses
of the variable on the right-hand side of the assignment. In
figure 4, the assignments to A3 and Dg have been removed.
The #I functions that used these variables as operands have
been changed along with the other expressions.

Phase 2 of our algorithm eliminates redundant compu-
tations by looping over ranks. For each rank, the nodes in
the program graph are processed in an order established by
the graph analysis explained in section 4.1. In the present
example, the only edge drawn with an arrowhead in the
figures is also the only backedge in a loop. With backedges
ignored, the graph becomes a DAG and may be topolog-
ically sorted (i.e., the nodes may be listed in such a way
that the source of each edge comes before the destination
of that edge). This is topsort order, and we will process
nodes in the reverse of topsort order. In the figures, we
work up from the bottom.

The first computation we consider is the assignment to
Xl in figure 4; this is the lowest ranked computation within
the last node in topsort order. Intuitively, we move this

13

L3 + / 1*B1
L4tCl*Bl

H3 + L3; + 4
S3tA2*Bi

\
T3 -S3+1

/

Yl -x1 + 1

Figur,e 4: A3, Dg Removed

Figure 5: Splitting of Xi * A4 * B1

computation Q to nodes earlier in topsort order (upward in
the figures). We move Q as far as possible without changing
the semantics of the program. Because Q is at a node with
two inedges, we split it, into copies Ql and Q2 as it moves up-
ward. Each copy will have its own chance to move upward
later, and one or both may eventually be found to be re-
dundant. The original computation Q will be redundant as
soon as both copies have been placed in predecessor nodes.
Because we will eliminate global redundancies of the cur-
rent rank after moving computations of the current rank, it
will do no harm to leave Q at its original node after placing
the copies. Figure 5 shows Ql and Q2 at the inedges of the
join node. Each copy Qi assigns to a new temporary vari-
able Zi. Ordinarily, a computation cannot move past an
assignment to one of its operands, and A4 is assigned to at
the join node. However, the assignment to A4 is from a 4
function. We can move a computation past this particular
type of assignment by renaming the operands to reflect the
values from which each operand was formed. The general
technique is described in sectio:n 5.1.2.

We can recognize that there are two computations
in the same node with identical. operands and operators.
Thanks to SSA form, this identity implies that they must
compute the same value, and one can be eliminated simply
by replacing it with a trivial assignment from the output
of the other. The replacement by the trivial assignments is
shown in figure 6.

We remove the new trivial assignments as soon as they
are introduced. In figure 7, those trivial assignments have
been removed. Also shown in that figure is the result of
copying the calculation of Ci * Bl into the branch node.

A
L3 +Cl*Bl

LqtCl*Bl

M3 - L3 + 4
S3 c- A2 * Bi

Zl CL3
T3 +Sg+i z tS3

V
Yi + Xl + 1 I

Figure 6: Local Redundancies Removed

14

Z3+-Cl*Bl
I

READ(Ai,B~~C~DC:,*LB;II,SirTi)

I

Figure 7: Cl * Bl Copied to Branch Node

Figure 8: Cl * Bl Copied Above Loop

Copying can occur here because the same value is calculated
in both successors of the branch node. The copy assigns to
i% new temporary Z3.

Any computation of the current rank that reaches
a loop header (i.e., a node that is the destination of a
backedge) may be copied to the node immediately preced-
ing the loop, provided that the computation is redundant
along each path through the loop body and back to the
header. In this case, the computation of Cl * Bl is copied
out of the loop, as shown in figure 8. The general subalge
rithm is in section 5.2.2.

Now that rank 1 computations have been copied to
their earliest possible locations, it is time eliminate every
computation Q of rank 1 that is redvndanZ because there
are equivalent computations El, En such that every path
from the start of the program to Q performs one of the Ei
before reaching Q. The redundant computation is replaced
by a use of a new temporary. At the location of each Ei,
an assignment to the new temporary from the output of Ei
is added. (If n = 1, then the redundant computation may
be simply replaced by a use of the output of El, without
a new temporary.) The computations of the current rank
are checked in any convenient order, and each redundant
computation is eliminated before proceeding. The details
of this subalgorithm are presented in section 5.4.

Identifying computations by the variables they assign
to, we might find the redundant computations in figure 8
i.n the order Xi, L3, ~4,Z3. The results of finding them in
this order are essentially as in figure 9, where there are now
two assignments to the variable ~5. We restore SSA form

A
L3 +Z3 L4 +-Z3

Mg CL3 +4
S3 +A2*Bl

Z5+-L3
T3 -Sg+i

2

V
cS3

Figure 9: Rank 1 Redundancies Removed

15

READ@0 B B ,CI,DI,L J~,SI,TI)
4'Ci" I

4 I\’ \
M3+ 4+4 S3 +Az*Bi

Y2 + z4+1 T3 +S3+1

\ Y3 -T3

/

Figure 10: Movement of Y1 c Xi + I

and remove trivial assignments ‘before proceeding.
Removal of trivial. assignments has a second order ef-

fect on the q5 function that computes Lg in figure 9. The
removal process renames both operands of that function
to ~4, so this 4 fuction can be replaced by a new trivial
assignment Ls + Z4 (which will then be removed). This is
one example of the many ways that subalgorithms of our
algorithm provide opportunities for each other.

It is now time to process the program for the next rank.
The computation of interest is the assignment to Yi. (The
operand Xi is of lower rank and has already been moved
out of the block.) In figure 10, we split the computation
and move it up each side. Since i.t matches the computation
of ~3 + I on the right branch, it is replaced with a trivial
assignment on the right branch.

The trivial assign.ment to Y3 must now be removed
(not shown). Phase 3 then eliminates 4’s and returns the
program to conventional form, with no limit on the number
of assignments to any variable. The output is as was shown
in figure 2.

3 Overview of the Algorithm

Figure 11 displays the algorithm in pseudocode. The sec-
tion numbers in parentheses on some lines indicate where to
find detailed explanati.ons. For the moment, the previous
section’s intuitive explanations should suffice for concepts
like backedges, topsort order, and loop header nodes. The
pseudocode also mentilons landing pads of loops. These are
nodes added to the program control flow graph to provide
convenient places to put code that is moved out of loops.

(4)

(4.1)

(4.2)
(4.3)
(4.4)
(4.5)

(5)

/* Phase I */

Perform depth-first search, noting
backedges and topsort order.

Insert some nodes into
control flow graph.

Translate to SSA form.
Assign ranks.
Remove trivial assignments.

/* Phase 2 */

for each rank R = O,i,... do
for each node n

(in reverse topsort order) do
select on the node type of n

case normal: (5.1)
Move any movable computations of
rank R from successors into n.
Identify any computations of
rank R that may be movable
from n into predecessors.

case loop header: (5.2)
Proceed much as in normal case,
but move certain computations of
rank R out of the loop.

case landing pad: (5.3)
Proceed much as in normal case,
but move certain computations of
rank R from loop exits to n.

end
end
Eliminate globally redundant

computations of rank R.
end

(6.4)

/* Phase 3 */

Translate from SSA form.
Eliminate empty nodes.

(6)

Figure 11: Overview of the Algorithm

4 Phase 1:
Preprocess the Program

First we do some preliminary analysis. Then we insert
some empty nodes into the graph at various convenient
places. These nodes will become places to which code can
be moved. Finally, we perform special transformations and
analyses that will make the program easy to manipulate in
Phase 2.

It is customary to describe optimizing transformations
under various simplifying assumptions about the program
text. For example, it is assumed that assigning to one vari-
able does not affect the value of any other variable. It is
also assumed that program statements are either simple
assignments

(variable)+(expression)

16

or simple tests that branch on Boolean variables. Complica-
tions like procedure calls or the READ statement in figure 1
pose some subtle problems [16] that have given rise to a
substantial literature on the analysis of aliasing, side effects,
and so on. Applying our algorithm to programs with realis-
tic complications is no more difficult than applying previous
algorithms, so we make the customary assumptions freely.
In section 2, READ was treated as a set of assignments from
arbitrary distinct constants. This was correct in context.
In general, READ is like a procedure call that both uses and
modifies a file parameter while modifying the parameters
representing variables read in.

4:.1 Analyze the Graph

As is usual, we assume that the program text has been
grouped into basic blocks and that the control flow graph
has been built with a node for each basic block and an edge
for each transfer of control. We assume that all nodes are
reachable from the node representing program entry, and
that each node has at most two outedges. These last as-
sumptions are not crucial, but they are convenient in several
places.

A backedge of the program control flow graph is any
edge whose destination is an ancestor of its source in the
tree defined by a depth-first search [18] rooted at the pro-
gram entry node. (In a reducible graph, the set of backedges
does not depend on the arbitrary choices made during the
depth-first search [9] .)

With backedges ignored, the graph becomes a DAG
and may be topologically sorted (i.e., the nodes may be
listed in such a way that the source of each edge comes be-
fore the destination of that edge). The sorting can be done
during the depth-first search by noting the order in which
subsearches terminate. Hecht and Ullman [IO] show that
this order (sometimes called “endorder” or “postorder”) is
the reverse of a topological order. (Though stated only for
reducible graphs, Lemma 4 of [lo] actually applies to all
graphs.) Throughout this paper, topsort order will be the
reverse of the order in which subsearches terminate.

A loop header is any node that is a destination of a
backedge. Given a loop header h reached by backedges from
nodes sl, sk, the corresponding loop body consists of all
nodes u such that there is a path of the form h A u 5 si
that traverses no backedges. An edge from a node in a loop
body to a node not in the loop body is an exit edge of the
loop. The destination of an exit edge is an exit node.

At each loop header, we wish to keep a list of loop en-
trance and exit edges. There are several ways to compute
the loop body and loop exit edges for each loop without
tracing paths. A simple way that depends upon the pro-
gram being reducible is as follows. (In a reducible graph,
the edges that enter a loop are just the inedges of the header
thlat are not backedges.)

We first determine the nodes within the loop with
header h by searching the graph, starting at the sources
of the backedges to h. The search follows edges backwards
(from destination to source), and ignores backedges. Each
branch of the search that reaches h (or a previously visited
node) terminates. Each node visited is marked as being
in the loop body for h. Exit edges can be determined by

examining nodes in the loop body for any outedges that do
not go to other nodes in the loop body.

The worst-case time for this technique is within the
overall time of our algorithm. More efficient, but more
complicated, ways to compute loop bodies and loop exit
edges can be obtained by adaptations of known analytic
techniques [19]. This is done by traversing the loops in-
nermost to outermost (by visiting the headers in reverse
topsort order) and by merging the set of nodes in an in-
ner loop into the next outer loop (by means of an efficent
union-find algorithm).

4.2 Modify the Graph

The modifications made in this section can be performed
in linear time, and they add a linearly bounded number
of nodes and edges to the graph. The modifications are
so slight that the results of previous analysis can easily be
updated to allow for them. We do the analysis first because
we need to identify loops.

We give each loop a landing pad representing entry
to the loop from outside, as distinct from looping back.
Landing pad insertion is illustrated in figures 12 and 13 for
a while loop (i.e., a loop whose header has an outedge that
is an exit from the loop), which is the only case that is not
completely straightforward. Following [8], we duplicate the
old header (forming two TEST nodes) and make the loop
look like an until loop guarded by a TEST. Then the start
of the loop body becomes the header and receives a landing
pad. (Making while look like until permits more extensive
optimizations.) Formally, each loop header is given a new
predecessor that will be its only predecessor outside the
loop. The old edges entering the loop at the header become
the inedges of this new predecessor. Because landing pads
are new nodes added for every loop header, no node will be
both a landing pad and a loop header.

I
TEST

I I

BODY
I

NEXT

Figure 12: While Loop Without Landing Pad

Any edge that goes directly from a node with more
than one outedge (a brunch node) to a node with more
than one inedge (u join node) is split into a pair of edges,
one from the branch node to a new node and another from
the new node to the join node.

Splitting edges will allow the algorithm to move a com-
putation from a join node to each of its predecessors with-
out running the risk of exposing that computation to con-
trol paths that go through the predecessor and not the
original node. In figure 14, the insertion of a node be-
tween (c) and (b) will allow the computation at (b) to
be moved without inserting it into the (c) to (d) control

17

I
r TESlq

55 LANDING PAD

Figure 13: Addition of a Landling Pad to a While Loop

path. The computation is redundant along the (a) to (b)
control path. If it is m.oved to a node along the (c) to (b)
control path then it will be available at (b) regardless of
which path enters (b)l. That movement will improve the
(a) to (b) control path.

. . . +A+B . . . +-A+B

(b) Cd) (b) (d)
. . . +A+B

Figure 14: Insertion of a Node to Split an Edge

A virt~ol edge is added to the landing pad for each
exit from the loop that that landing pad is associated with.
The virtual edge goes from the landing pad to the exit node.
(The list of exit edges was calculated in section 4.1 and is
associated with the header node of the loop.) Virtual edges
provide a mechanism -for moving code past a loop without
moving it into the loop, but most of the work we do will be
along the realedges that were in the graph initially.

4.3 Translate to SSA Form

We rename variables throughout the program to put it
into static single assignment (SSA) form: each variable is
assigned to exactly once in the program text. A new type
of assignment statement is added at join nodes, to indicate
that a variable is assigned the value of one variable (if con-
trol enters along one hedge) or another variable (if control
enters along another i:nedge).

Each mention of a variable V will be replaced by a
mention of one of the new names for V. The various new
names will be denoted Vi where i is an integer. After
renaming, every point in the program will be reached (in
the sense explained below) by exactly one of the names
for V. Intuitively, the name that reaches a point represents
whatever value V has when control reaches that point. New
names are to be generated and assigned so as to satisfy

the following SSA rules, which are stated for join nodes
that have just two inedges (called “left” and “right”) to
minimize notation:

1.

2

3

4.

5.

6.

Each variable V at the start of the program is assigned
the name Vg there. This name reaches the start of the
program and any other point p such that every path
from the start to p is free of assignments to names of
V.

Each assignment to V is replaced with an assignment
to Vi for some unique positive i. The name Vi is
the one that reaches the point p immediately after the
assignment, and any other point q such that every path
from p to q is free of assignments to names of V.

The name of V that reaches an edge in the graph is the
one that reaches the end of the code associated with
the source of the edge.

At any node in the graph where the same name for V
reaches all inedges of the node, that name is the one
that reaches the entry point p of the node, and any
other point q such that every path from p to q is free
of assignments to names of V. (In particular, the entry
point of any node with one predecessor is reached by
the name that reaches the end of the predecessor.)

At any join node in the graph where two different
names for V reach the inedges of the node, a new assign-
ment is inserted. The new assignment has the form
vk + +(vi,vj), where Vi and V. are the two names 3
of V that reach the left and right inedges of the node
and Vk is a unique new name. The name Vk is the one
that reaches the entry point p of the node, and any
other point q such that every path from p to q is free
of assignments to names of V.

The meaning of Vk + +(Vi, VJ) at a node u is that if
control reaches u by the left inedge, then Vk +- Vi. If
control reaches by the right inedge, then Vk t Vj.

If Vi is the new name of V that reaches a point in the
transformed program, then the value of Vi is always
the same as the value of V at the same point in the
original program.

The results of renaming are illustrated in figure 15.

A+B Al'Bl

DcB+C D2 +-Bg+Ci

Figure 15: Example of Renaming

The foregoing specifications for SSA form can be im-
plemented in several ways. The next subsection explains a
simple way to use the rules to achieve SSA form, followed
by a subsection explaining more complex ways that lead to
more extensive optimization.

18

4.3.1 Simple SSA Form

The following algorithm is essentially from [8], where
the formulation looks different because explicit 4 functions
are not used.

Visit the nodes in topsort order, performing the fol-
lowing steps for each node:

1.

2.

3.

4.

If the node is a loop header, then insert a 4 function
for each variable V. The target of the assignment is a
new name for V. The first operand of the 4 function is
the name of V that reaches the node from the landing
pad. There is another operand for each backedge and
these will be filled in later.

If the node is a join node that is not a loop header,
then apply rule 5 of the SSA rules.

For each assignment in the node, apply rule 2 of the
SSA rules.

If the node is the source of a backedge, then the names
that reach the bottom of the node are used to fill
in operands of 4 functions at the destination of the
backedge.

These rules define a renaming to SSA form in which
clistinct variables have distinct .names. This simple SSA
form may be used, but the time bounds of our overall al-
gorithm leave room for more sophisticated renaming ex-
plained in the next subsection.

43.2 Reduced SSA Form

The algorithm for simple SSA form sometimes assigns
more names than are needed, and this can cause opportu-
nities for optimization to be missed when programs have
1,oops. Consider figure 16. The simple algorithm will give
separate sets of names to P and Q, and the redundancy in
this program will not be eliminated. A more ambitious al-
gorithm might notice that P and Q always have the same
value and can therefore share storage.

F’ c I
Cl +- 1
alile(. . .) do

P+P+l
Q-Q+1

end

Figure 16: Example of More Names than Necessary

Section 7.2 will briefly discuss some previous work on
recognizing equivalences among program variables. Find-
ing all equivalences is an undecidable problem, but various
decidable subproblems are known. In effect, these algo-
rithms translate a program to simple SSA form and then
compute a set of pairs of variables, such that the value
assigned to one variable in a pair is always the same as the
v.alue assigned to the other. If variables A and B are paired,
and if the computation assigning to B dominates the com-
putation assigning to A (by coming before it on all paths
through the program), then it is safe to replace the original
computation for A by the statement A t B. For any given
means of recognizing equivalences, a program is in reduced

SSA form if it is in SSA form and if all such replacements
have been done. The optimization in section 4.5 will then
be applicable.

In figure 16, any equivalence algorithm that recognizes
the equivalences between the various SSA names of P and Q

will lead to a reduced SSA form in which each name Qi of
Q is defined by assigning from the corresponding name Pi
of P. The optimization in section 4.5 will effectively merge
these names.

4.4 Assign a Rank to Each Computation
Moving forward over the program, without traversing any
backedges of loops, we will assign a rank to any variable or
expression appearing at any point in the program. When
computing the rank of an expression in a loop header, we
may need to use a rank value for an operand variable that
reaches the loop header along a backedge. The rank of such
a variable will not have been computed yet, but we can
recognize this situation and can use the value 0 instead of
the rank. In the following rules, the available rank is either
the rank (if already computed) or 0 (otherwise). Because
the program is in SSA form, the rank of any variable or
expression is unambiguously defined as:

0, if the variable is an entry point name VO.

the rank of the expression assigned to-the variable, if
it is assigned to within the program.

0, if the expression is a constant.

the maximum of the available ranks of the operands,
if the expression is a variable or a 4 function.

1 + the maximum of the available ranks of the
operands, if the expression is not a constant, a vari-
able, or a 4 function.

The rank of a computation is the rank of the variable i’
assigns to. The steps in phase 2 will be performed once for
each rank assigned in the program (starting with rank 0).
This ensures that before any computation is processed, all
of the computations that produce operands for that com-
putation have already been processed.

The assignment of ranks has an interesting property
that enhances the performance of our algorithm. There is
no need to maintain the order of computations within a
basic block. All that is required is to remember the rank of
each computation. Code can be generated later by sorting
the computations by rank, earliest first. Code for computa-
tions of the same rank can be generated in any order. This
is useful because we will frequently add, delete, or look for
computations in a block. All of these operations are eas-
ily implemented with a hash table. The local computation
table (LCT) is maintained for each node in the program flow
graph. The LCT contains the set of computations that oc-
cur at that node. It is primarily accessed in three ways, as
follows:

l We can loop over all the computations.

l We can loop over all the computations of a given rank

l Given an expression, we can loop over all the compute
tions with right-hand sides identical to the expressicn.

In all cases, the time required to find n computations i.

Wn)*

19

4.5 Remove Trivial Assignments

Assignment statements that have trivial right-hand sides
(only a single variable) have a spcecial meaning for programs
in SSA form. These statements ‘can be thought of as asser-
tions that the two variable names (the one mentioned on the
left side and the one mentioned on the right side) represent
the same value. The initial list of trivial assignments to be
removed includes any that were originally in the program
as well as any that werce added by recognizing equivalences.
This worklist may be maintained in any convenient way,
and removal of the next item on the list may cause other
items to be added.

Given a trivial assignment A t B, we replace each men-
tion of one variable (including those in 4 functions) by a
mention of the other. To facilitate this replacement, we
will maintain a list of uses of each variable in the program.
Whichever of A and B has the shorter list of uses will be
replaced by the other. Every time a variable is replaced
it must be replaced by a varia,ble which will be used at
least twice as often. Thus, the number of times that a vari-
able can be the survivor in removal of trivial assignments
is bounded by the logarithm of the total number of uses.

Renaming of oper,ands of a computation may make the
right-hand side become identical with the right-hand side of
another computation in the same node. There may also be
several computations in a node that happen to have iden-
tical right-hand sides initially. However they arise, such
matchings are local reo!undancie.s. Thanks to SSA form, the
matching computations really are equivalent. We maintain
a worklist that begins with the initial local redundancies
in the SSA form of the program. This worklist may gain
entries during removal of trivial assignments. Eliminating
a local redundancy, on the otlher hand, creates a trivial
assignment. Removal of trivial assignments and elimina-
tion of local redundarrcies feed each other’s worklists until
both processes quiesce with empty worklists. When both
worklists are nonempty, it does not matter which list is
serviced first.

Later steps in our algorithm will sometimes create triv-
ial assignments or local redundancies. The later steps will
always reactivate this .step and then wait until this step has
emptied its worklists.

The details of eliminating, local redundancies are as
follows. If the LCT of a node has II computations of the
form Vi + E where E is a common expression and i runs
from 1 ton, then the process of merging those computations
is as follows:

1. Retain one of the computations, say Vn + E. The re-
tained computation is chosen to be one with maximum
rank, among those being merged.

2. Replace each of the remaining computations (i < n>
by a trivial assignment of lthe form Vi t Vn.

3. Put each trivial assignment, on the worklist for removal.

In short, merging n computations of the form Vi t E
results in one computation of the form Vn +- E and n - 1
trivial assignments that will be removed.

Renaming of operands of ‘6 functions may have other
second order effects, beyond cr,eating local redundancies:

l Vi t +(Vj, Vj) is replaced by Vi t V-j.

l Vi + $(Vi, Vj) is replaced by Vi +- Vj.

In each case, the new assignment is added to the worklist
of trivial assignments.

5 Phase 2:
Eliminate Redundancies

As was explained in section 3, we loop over the ranks in
increasing order. Within this loop, we first loop over the
nodes in reverse topsort order, moving code and eliminating
any local redundancies created by this motion. We then
eliminate the global redundancies of the current rank.

The basic processing step for each node is to move any
available computations from any of the successors into the
current node, followed by making computations available
in the current node to any of the predessors. Code motion
is actually broken into two steps: copying a computation C

into the LCT of the node into which C is being moved and
then deleting C from the LCT of the node from which C is
being moved. When we “move” a computation during the
pass over the nodes in reverse topsort order, we only do the
copying. The original computation is temporarily left in
the original LCT, where it is now redundant. Along with
other redundancies, this original computation will be elim-
inated by the global redundancy subphase. Several techni-
cal simplifications in record keeping are made possible by
postponing deletion when code is moved.

The movable computation table (MCT) is maintained
for each edge in the program flow graph that is not a
backedge. The MCT contains all computations that are
currently available for movement from the node that is the
destination of the edge. Each entry in the MCT at an
edge contains a computation C and a pointer to the corre-
sponding computation B in the LCT of the destination of
the edge. Some general points about this table should be
borne in mind:

The MCT holds candidates for movement that may or
not move. While in the MCT, these computations can
be accessed in the same way as LCT computations.
They also count as uses of their operands in removal
of trivial assignments.

The MCT persists, like the LCT associated with each
node. It may gain or lose individual computations, but
it is never reset during the course of phase 2.

Visiting the nodes in reverse topsort order assures that
the MCTs of all outedges of a node are filled in with
movable computations of the proper ranks by the time
that node is to be processed.

The actual processing for each node depends on the
type of the node. There are three cases:

l Loop headers.

l Landing pads.

l All other nodes (normal nodes).

Recall from section 4.2 that no node can be both a loop
header and a landing pad. We will consider the case of the

20

.normal nodes first and then consider the algorithms for the
other types as special cases.

5.1 Processing of Normal Nodes
The work performed while visiting a normal node has two
parts, corresponding to the following two subsections. The
first part examines the movable computation tables for all
the outedges of the node currently being visited and deter-
mines which computations may be moved into the node.
The second part determines which computations may be
made available for movement to a predecessor.

5.1.1 Move Computations from Successors

If the current node has only one outedge, then every-
thing in the MCT of the outedge will be moved into the
current node. If the current node has more than one out-
edge, then it has exactly two outedges. Let Ml and M2
be the MCTs. Consider each computation Cl of the cur-
rent rank in ~1. If the right-hand side of Cl matches the
right-hand side of a computation C2 in M2 (regardless of
rank), then both computations will be moved into the cur-
rent node. Similarly, the computations of the current rank
in ~2 are checked against the computations in RI (regard-
less of rank).l The computations in one MCT that do not
:share right-hand sides with computations in the other MCT
remain where they are for the present.

Moving computations into the current node may create
local redundancies. An incoming computation may have
.the same right-hand side as one that is already there. If the
current node has two outedges, then each incoming compu-
tation from one edge has the same right-hand side as an
incoming computation from the other edge. However they
arise, the new local redundancies are put on the worklist for
removal. In figure 17, for example, the two computations of
Ai + Bi have been moved into the node. The computation
for ~2 has been changed to a trivial assignment from Xi by
l;he local redundancy removal algorithm in section 4.5.

Xl -A~~*I+BI

ensure that it will be eliminated during the global redun-
dancy subphase. Once any required action has been taken,
the MCT entry is deleted.

5.1.2 Identify Movable Computations

Computations in the LCT of the current node are iden-
tified as movable if they satisfy all of the following condi-
tions:

l The computation has the current rank.

l The computation is not itself a 4 function.

l No operand of the expression appears as the output of
some other non-4 computation in the current node.

Any computation identified as movable is added to
all of the MCTs of the inedges. This process may re-
quire that the computation C be modified in order to be
moved. This modification is performed according the fol-
lowing technique, where E is the right-hand side of C:

1. If the current node has just one real inedge, then we
generate a unique new variable U for each real or virtual
inedge and put the new computation U +- E into the
MCT of that inedge.

2. If the current node is a join node, then all inedges are
real and are treated essentially as above, but E may
need to be modified in each new MCT entry. Any
operand of E that is the output of a 4 function in
the current node must be replaced by the appropriate
operand of that 4 function for each inedge. We call
this process 4 renaming. In figure 18, for example, A3
is defined by a 4 function in a node and is used in the
computation A3 + Cl. Therefore A3 is replaced by Ai
in the expression used in the left-edge MCT entry and
replaced by A2 in the expression used in the right-edge
MCT entry.

Ai + . . . A2 + . . . Ai + . . . A2 t . . .

A3 - 4CAlr A2) A3 + 4(AI?A2)
Xl + A3 + Cl Xi +Ag+Ci

Figure 17: Moving Computations to a Node

Figure 18: Moving a Computation Up Each Edge
The MCT entry for each moved computation is in-

spected to determine what action (if any) is required for the
original LCT computation B that the MCT entry points to.
If B has the current rank R, then no action is required. If
R has a lower rank, then it is promoted to rank R so as to

lThere is a subtle reason for looping over all computations of
the current rank in Ml and then over all computations of the

c:urrent rank in M2. We need to find all pairs of computations

(Cl in Ml, CB m H2) with matching right-hand sides, such that

one computation Ci is of the current rank. (The other will be of at
most the current rank.) Considering only pairs with both computa-
tions of the current rank would miss opportunities. To meet our time
bound, on the other hand, these pairs must be found in time linear in
the number of pairs found and in the number of computations of the
current rank in either table.

5.2 Processing for Loop Headers
The processing of a loop header is similar to that of a nor-
mal node. Computations are moved into a loop header
exactly as described in section 5.1.1, but a different tech-
nique is used to identify computations that can move out
of a loop header.

In the case of the normal node, computations are
moved out of a node based only on local conditions. In
the case of a loop header, we wish to move computations
out of the loop (and into the landing pad). In order to
accomplish this safely, we must verify that there exist com-
putations in the loop that will make the result available

21

whenever control enters the header from around the loop.
To do this, we use a technique called question propagation
to determine if there is some computation within the loop
that will compute the same value as the computation we
wish to remove.

5.2.1 Question Propagation

Question propagation searches as much of the graph
as necessary, to deterrnine whether a given computation
Q is redundant. The search is like the movement of com-
putations in section 5.1, but the rules for propagating a
question about a computation are somewhat different from
the rules for moving the comput,ation itself. Virtual edges
are ignored, and other differences will be explained shortly.
A question about Q is a renaming of the variables in the
right-hand side of 9. The renaming uses the variable names
appropriate to wherever the question is at the moment; it
is just the 4 renaming of the expression explained in sec-
tion 5.1.2.

The given computation 9 is tentatively marked as re-
dundant before question propagaltion begins. In the course
of propagation, it may be marked as not redundant. Once
Q has been marked as not redundant it can never be made
redundant, so the search may terminate at that point. If Q
is still marked as redun.dant when propagation terminates,
then Q is indeed redundant and may be eliminated.

If any operand of C) is defined by a non-4 computation
in the LCT of the node n containing Cl, then the search
is terminated and Q is marked n.ot redundant. Otherwise,
questions are propagated to predecessors of n. A question
not answered within a node will be propagated to predeces-
sors (with 4 renaming as appropriate), unless it is stopped
by one of the rules stated below.

The stopping rules for question propagation are stated
below for two cases. During the current section’s process-
ing of a loop header, the local search is confined to the
relevant loop body, and all questions originate at the loop
header. During the subsequent elimination of redundan-
cies, the global search will examine as much of the entire
control flow graph as necessary,, and all computations of
the current rank are sources of questions. The rules for ter-
minating the search are slightly different in these two cases.
Another difference is the fact that the global search main-
tains a list (initially e:mpty) of computations that might
make Q redundant.

1. In local search, if at question is about to be propagated
to predecessors of the loop header, then the search is
terminated and Q is marked not redundant.

2. In global search, if a question is about to be propagated
to predecessors of the program entry node, then the
search is terminated and Cl is marked not redundant.

3. In both searches, if questions are propagated to a
branch node along more than one of its outedges and
the questions are not the same on both outedges, then
the search is terminated and Cl is marked not redun-
dant.

4. In both searches, if questions are propagated to a
branch node along more th,an one of its outedges and

the questions are the same on both outedges, then only
the first question to arrive is propagated further.

5. In both searches, if a question is propagated to a node
that contains a computation C with a right-hand side
matching the question, then the question is not propa-
gated further in this direction. (The marking of Q does
not change.) In global search in this case, if C is not
Q, then the list of pointers to computations that might
make Q redundant is augmented by a pointer to C.

6. In both searches, if a question is propagated to a node
and a non-4 computation in the LCT of that node
defines one of the operands of the question, then the
search is terminated and 9 is marked not redundant.

This case is only tested if no match is found in the pre-
vious case. This test and the previous test are made
regardless of rank. These tests are simplified by hav-
ing the program in SSA form. If an expression and an
assignment that creates an operand for that expression
occur in the same node, the expression that uses the
operand will necessarily have to be after the computa-
tion that creates the operand.

5.2.2 Move Computations out of a Loop

Any computation in the loop header that is identified
as redundant by the local search in the previous step can be
moved out of the loop. We do this in two steps. Intuitively,
we copy the computation to the landing pad (which makes
the old copy in the header redundant) and then eliminate
the old copy when various other redundancies are elimi-
nated. Leaving the old copy in the header temporarily is
a technical convenience. Let vh c E be the computation C
to be moved out, and let Vp be a newly generated name.
Let EP be the result of 4 renaming the operands of E (as
in section 5.1.2) for the inedge from the landing pad. Add
Vp + Ep to the MCT for the edge from the landing pad
to the loop header. This MCT entry points back to C.
As usual, “moving” is just copying for the moment. The
computation C persists in the loop header, but it is now
redundant and will be eliminated by the global redundancy
subphase.

5.3 Processing of Landing Pads

Processing of a landing pad is similar to processing of a
normal node. We begin by moving computations into the
landing pad from its successor (the loop header) exactly
as in section 5.1.1. Then we try to move computations
from the loop exits directly to the landing pad, without
ever putting them inside the loop. Computations can be
moved into the landing pad from the exits of the loop if the
following conditions are satisfied:

1. The computation to be moved is in the MCTs of all the
virtual outedges of the landing pad of the loop. If there
is more than one virtual outedge, then we consider
each in turn. For each virtual outedge, we loop over
MCT entries of the current rank and try to match them
with MCT entries (regardless of rank) for the other
outedges. This is like the processing of normal nodes
with more than one real outedge in section 5.1.1.

:!. Each of the operands of the expressions must be avail-
able in the landing pad. Because the program is in SSA
form, this condition is equivalent to having no assign-
ments to the operands inside of the loop. An easy way
to test this condition is to check the topsort number of
the node that contains the definition of the operand. If
it is earlier than or equal to the number of the landing
pad node, the condition is satisfied.

Once the computations that can move into the landing
pad have been identified, the process of moving them is
exactly the same as in section 5.1.1.

The process of identifying computations that can be
moved out from the landing pad is exactly the same as in
section 5.1.2.

5.4 Eliminate Global Redundancies

This subphase is performed after the pass over nodes in
reverse topsort order for the current rank. We loop over
the computations of the current rank in any convenient
order. (For example, we could visit the nodes in topsort
order and loop over the computations of the current rank
in each node’s LCT.)

For each computation 9, we first test whether q has
ever been promoted in rank. If so, then it may now have
higher rank than some computations that use the result of
9. The overall structure of our algorithm is such that this
can only matter if the using computations are in the same
node as 9, so we loop over the local uses of the result of
9. Each local use is promoted, if necessary, so has to have
rank R+I or greater. By the time Phase 2 is complete, the
proper relation between ranks of computations and ranks
of i;heir operands will have been restored within each node.

The next step in processing the computation q is to
check for redundancy by applying the subalgorithm in sec-
tio:n 5.2.1 with the global rules. If Q is found to be redun-
dant, then it is eliminated by the following technique:

1.

2.

3.

Create a new variable V to remember the value that Q
will (redundantly) compute.

For each of the computations C that was put on the
list of computations that might make 9 redundant, an
assignment of the form V c (output of C) is inserted.

The expression part of Q is replaced with a use of V.

If more than one computation C was in step 2 above,
then the program will no longer be in SSA form. It can be
restored to SSA form by applying the rules of section 4.3
to the new variable V. The simple rules of section 4.3.1
seelm best here, although there are some contrived situa-
tions where new equivalences could be recognized. Once
SSA form has been restored, the trivial assignments can be
removed by putting them on the worklist for the algorithm
of section 4.5.

6 Phase 3: Normalization

To put the program into a more normal form, we order the
code in each nonempty node, eliminate the purely formal 4
functions, and delete empty nodes.

In SSA form we keep all computations in a node as
a set, without order. Ordering is implied by ranks: some-
thing of rank 2 depends on a value of rank 1, and hence the
rank 1 expression must be computed first. The sequenc-
ing information implicit in a variable’s rank must be made
explicit by putting all assignments of low rank before high
rank assignments in each node. This clears the way for
reversion to multiple assignments to the same variable.

Every computation of the form A + qS(B, C) is replaced
by an assignment A c B on one of the entering branches,
and by A c C on the other. Each assignment is placed at
the end of the code.

Any node with no code will have at most one successor.
If it does have a successor, then it can be deleted after its
inedges have been changed to be inedges of the successor.

The program is now much as it was originally, but there
are more variables and fewer redundancies. Many of the
variables can be merged together by graph coloring regis-
ter allocation techniques [5] [6]. The live range of a variable
consists of those nodes that lie on paths from an assignment
to the variable to a use of the assigned value. If two vari-
ables have disjoint live ranges, then those variables can be
merged into one variable. When we move a computation
upwards we may shorten the live ranges of its operands,
but we may lengthen the live range of its result. We have
no statistical information on whether these changes in live
ranges are generally helpful or harmful. A topic for future
research is to find an algorithm which moves computations
in order to aid register allocation by decreasing the live
ranges.

7 Related Work

7.1 Redundancy Elimination

A computation C is redundant along a control flow path if
it is preceded by an equivalent computation B, and so could
be replaced by a use of the value computed at B. A compu-
tation is fully redundant if it is redundant along every path
that reaches it (starting from the program entry point). A
computation is partially redundant if it is redundant along
some path that reaches it (starting from the program entry
point). Elimination of many of the full redundancies has
long been a major goal of optimizing compilers [2] [X2]. Par-
tial redundancies have received less attention. The major
relevant work is that of Morel and Renvoise [13] (abbrevi-
ated MR hereafter) and the extensions to MR implemented
in the PL.8 compiler [4].

Our algorithm is like MR in one respect: we eliminate
partial redundancies by moving computations to places
where some of the moved copies become fully redundant.
Our integration of analysis and optimization is unlike the
more traditional organization of MR, which puts analysis
first and optimization second. Morel and Renvoise use an
iterative data flow analysis, with a bit vector position for

23

each lexically distinct expression. The system of simulta-
neous equations computes several bit vectors at each flow
graph node. The vectors at each node depend on vectors
at both predecessors and successors. The worst-case time
required is O((E + N) * N * C), where E is the number of
edges in the graph, N is the number of nodes in the graph,
and C is the number of computations.

The PL.8 compiler chooses temporary names system-
atically. If an expression like (A*B)+c appears twice in a
program, then the same temporary variable is used for A*B
in both places. This systematic naming allows the compiler
to detect second order effects by applying MR repeatedly,
until nothing changes. This may require as many itera-
tions as there are ranks, plus one more iteration to detect
stabilization.

The overall worst-case time of the PL.8 compiler’s al-
gorithm is O((E + IV) * N * (C * R), where E, N, C are
as above (for a single pass of MR) and R is the number
of ranks. Both Morel and Renvoise and the PL.8 compiler
group report that an application of MR typically requires
only 3 to 5 iterations, rather than the worst-case number
N + 1 of iterations.

The example in figure 1 illistrates the differences
among MR, the PL.8 compiler., and the algorithm presented
here. At the join node, what is now the value of A*B was
computed under the name C+B along one path and so is
unavailable to MR, the PL.8 compiler, or any other lexical
method. If we remove the trivial assignment and replace
all uses of C by uses of A in thle original program, we get a
program that is easier to optimize. A single pass of MR will
eliminate the redundlant computation of A * B for X. It will
fail to do anything with the partially redundant computa-
tion of X + 1. This partial redundancy is a second order
effect, and it will be eliminated by the PL.8 compiler’s sec-
ond pass of MR.

For programs with reducible control flow graphs, our
algorithm gets everything that the PL.8 compiler gets. We
identify many redundancies that the PL.8 compiler misses
because of our use of global value numbering. The worst-
case time bound for our algorithm is O(C * N * E). If all
the parameters in both bounds are replaced by a nominal
parameter n, then .the O(n3) of our algorithm improves
upon the O(n4) of tlne PL.8 compiler’s algorithm.

7.2 Value Numbering
Value numbering as original.ly conceived by Cocke and
Schwartz [7] was the symbolic execution of a basic block,
giving all variables entering that block distinct symbolic
values. Common subexpression elimination on basic blocks
is straightforward. If a symbolic value is computed twice,
eliminate it the second time. Thus, in the code

C + A; D+A*B; EtC*B;

both D and E have the symbolic value

(A @ entry) ;I: (B @ entry)

and the second computation can be eliminated. Hashing
of symbolic values allows the value numbering to proceed

without having to manipulate large values. Several com-
pilers (including the PL.8 compiler) have generalized this
original val.ue numbering from basic blocks to extended ba-
sic blocks.

Reif and Lewis [14] introduce a global approach to
value numbering. Their approach implicitly includes one
of many possible ways to recognize that two variables will
always have the same value. There are other constructions
[3] [15] that are similar in spirit to the work of Reif and
Lewis, with various tradeoffs among the amount of infor-
mation, the worst-case complexity, and the difficulty of im-
plementation. Any of these constructions could be used to
start our algorithm by putting the program into reduced
SSA form.

Starting the process of redundancy elimination is only
part of the task, as the code in figure 19 illustrates. The
computation for T is redundant with the computation for R
along one path and with the computation for S along the
other path. The difference between E and A prevents any
purely lexical approach from removing these redundancies.
Value numbering is unaffected by this difference, but it still
can answer only questions posed by the program it sees.
The three variables R, S, T need to have three distinct
value numbers. With the traditional organization that puts
analysis first and optimization second, no optimization will
be performed. Our algorithm will move the computation
for T backwards along the inedges of the join node. One
copy will be redundant with R while the other copy will
be redundant with S. Our algorithm will eliminate both
redundancies. It is only after the computation for T has
been split into two copies that the relevant questions about
equality of value numbers can be posed.

if P
then do

read(A)
R+B*A

end
else S + B * A

E+A
TtB*E

Figure 19: Redundancy Eliminated by Our Algorithm’s
Integration of Analysis and Optimization

7.3 Other Issues
The p-graph construction [17] is a precursor of static single
assignment form that has sometimes been used in optimiza-
tion [ll]. The explicit 4 functions used in SSA form make
it easier to work with.

Allen 123 assigns ranks locally (within basic blocks)
and uses them to organize the elimination of redundan-
cies within blocks and the movement of invariant code out
of loops. Our global ranks are used similarly, to organize
more extensive elimination and movement.

The name “landing pads” is recent [8), but similar
ideas have been around for a long time [2] [12]. Morel and
Renvoise suggest using landing pads to aid in the analysis,-

24

splitting a few edges if necessary. We split more edges and
thereby perform some additional redundancy elimination,
as figure 14 in section 4.2 illustrates. Morel and Renvoise
recognize their loss here [13, p. 1021, but they choose to
allow no splitting beyond adding landing pads.

8 Optimality Criterion
In this section we will discuss what limits the best that
can be done to eliminate redundant computations. We will
describe what limits we have chosen to place on the algo-
rithm. We will show that our algorithm is optimal (within
these limits) on DAGs. Then we will examine some cases
missed on programs with loops.

8.X Programs that are DAGs
For reasons explained below, it is not possible to remove all
redundancies from DAGs. We will enumerate three kinds of
redundancy that it seems unreasonable to try to eliminate.
An optimal algorithm would then be one that eliminates
all oZher redundancies.

1. Even on DAGs it is undecidable whether two expres-
sions will compute the same value. We will say that
two values are transparently equivalent if they are con-
structed by the same sequence of operations on the
same original operands. Thus in

A+B
C+E+(A*3)
D+E+(B*3)

we will recognize that C = D, while in

A+-B+3
C+A+2
EtB+2
D+E+3

we will not recognize that C = D. For purposes of this
subsection, transparent equivalence is the only kind we
consider in defining reduced SSA form.
We will not eliminate redundancies caused by com-
putations that are equivalent but not transparently
equivalent.

2. Eliminating all computations which transparently pro-
duce the same value may require either combinatorial
explosions or unsafe transformations.
Consider a DAG having a path along which a value
is computed at a node u. Suppose the path proceeds
through a node v, and later the same value is computed
at a node u. Moreover, suppose that in the DAG there
is a path which goes through v but does not compute
the value. An example where this occurs is figure 20.
Nodes u and w are the two computations of A*B. Node
v is any node in between the two if statements.

Redundancy could be eliminated by putting a copy of
the code in v and then a copy of the Q conditional
under each branch of the P conditional. This would
allow statement w to be removed from the copy under
the true branch of P. Such a transformation leads to
an exponential blowup in the size of the program.

if P
then (... X + A * B . ..)
else (...I

(> . . .
if Q

then (... Y +-- A * B . ..>
else (...I

(u)

(VI

(WI

Figure 20: Redundancy with Crossed Paths

A second way to eliminate the redundancy is to move a
copy of the computation of A*B to before the test on P.
This would then allow us to change statements (u) and
(v> into trivial assignments. Such a transformation is
unsafe because it introduces a calculation of A*B along
the path executed if P and Q are both false. This path
had no such calculation before.
More formally, we will not eliminate redundancies of
the following form: (A) there is a path from a node u
at which a computation is performed, through a node
v, to a node w at which an equivalent computation
is performed; (B) there is another path from the root
through v to w along which the computation at w is the
first computation of the value; and (C) there is a path
from v to an exit of the DAG that does not contain a
computation equivalent, to the redundant one at w.

3. There are programs in which two inequivalent com-
putations are performed and (depending on the later
control flow) either one or the other will make a later
computation redundant. The redundant computation
cannot be eliminated unless additional trivial assign-
ments are inserted into the program to ensure that the
correct value is stored into the location that the value
will be picked up from. There are programs that re-
quire an arbitrary number of such assignments, and
the cost of the loads and stores can exceed the cost of
the computation.
For example, consider figure 21, If P is true, then the
computation of A*B at the end of the program frag-
ment will be redundant with the computation of C*B.
If P is false, then it will be redundant with the earlier
computation of A*B.

X+A*B
. . .
Y+C*B
if P

then A t C
Z+A*B

Figure 2 1: Redundancy with Inequivalent Computations

Formally, if there are two paths through nodes u, v,
w, and on one path a computation at u is redundant
with a computation C at w and on the other path a
computation at v is redundant with C, and on neither
path are the values computed at u and v transparently
equivalent, then we will not eliminate the redundancy.

25

We have enumerated three kinds of redundancy that it
seems unreasonable to try to eliminate, and our algorithm
does not try to elimin.ate them.. It does try to eliminate all
the others. On a DAG, it succeeds.

Theorem: After our algorithm has terminated on a DAG,
any remaining redund.ancy is off one of the three kinds that
the algorithm does not try to eliminate.

Sketch of proofi
We will consider the program at the end of Phase 2,

when it is still in reduced SSA form and has no trivial
assignments. By induction on ranks and path lengths, it
can be shown that expressions are transparently equivalent
along a path iff they are lexically identical aside from 4
renaming at join nodes along the path. More precisely,
suppose control flows, from a node u to a node v along a
path (which might be the null path from u to itself) and
that expressions E and F appear in nodes u and v. We say
that these expressions are lexically identical aside from 4
renaming if the result of moving F backwards to u along
the path is lexically identical to E. At each inedge of a join
node along the path, moving a:n expression backwards may
involve 4 renaming, as in section 5.1.2.

Define a failure to be any remaining redundancy that
is not covered by the enumeration and so should have been
removed. To show that there are no failures, we will assume
there are failures and derive a contradiction. Thanks to
the local redundancy elimination in section 4.5, any failure
involves a computation B at a node u and a computation C
at a node u, such that the nocles are different and there is
a path from u to us. (The specific path is considered part of
the failure.) Both B and C compute the same expression E,
apart from the renaming at join nodes along the path, and
E cannot be a 4 function.

We can associate two numbers with any failure: the
rank of E and the length of lthe path from u to w along
which the failure occurs. If there are any failures, then
we can choose one with maximum path length from among
those with minimum rank. We will derive a contradiction
by showing that this chosen failure must be of kind 2 or 3.

Because the operands of E are available (apart from
applications of 4 functions) for B in u, none of them are
computed in w. Section 5.1.2 placed an entry for C in the
MCT of the last edge e on the failure’s path from u to w.
Let v be the source of this ed,ge. The MCT entry did not
move in section 5.1.1, so v has another outedge f such that
no computation equivalent to C was placed in the MCT of
f. By maximality of the path length in the chosen failure,
any path from v that starts along f is free of computations
equivalent to C.

The nodes u, v. w have been shown to satisfy condi-
tions (A) and (C) in the definition of the second kind of
redundancy we do not claim to eliminate. For the chosen
failure to be a failure, condition (B) must be false. Along
every path from the root through v to w, a computation
equivalent to C comes before C. Thanks to edge splitting,
the branch node v is the only predecessor of w. Therefore, C
is fully redundant. Global question propagation, however,
did not eliminate C *as redundlant in section 5.4. This im-
plies that propagation was stopped by rule 3 in the details

26

8.2 Programs with Loops
In this subsection, we consider two cases that are missed by
the global algorithm when applied to programs with loops.
There are other cases, but these two seem most important
among the known cases.

1.

2.

Code that is not moved to a loop header may still
be code that is on every path from the header to an
exit of the loop. Local question propagation does not
consider lifting such code to the landing pad. Some
simple cases of this failing are easily recognized, and
our algorithm could easily be extended to handle them.
The general csse is difficult, however. A loop may have
many exits reached by many paths. There may be
several equivalent computations that collectively act
like a single computation that appears on all relevant
paths. Ideally, the algorithm would be extended to
recognize such collections as they arise.

The algorithm does not consider the possibility of mov-
ing a computation along a backedge. The program
fragment in figure 22 could be improved by treating
the loop header like an ordinary join node. If we move
a copy of the first calculation of A+B along the backedge
around the loop while moving another copy to the land-
ing pad, then we can move the copy inside the loop just
as if it had originally been placed after the conditional
statement. Copies of the copy would appear in the
then and the else branches, and the then branch copy
would be merged with the assignment to Y. This would
lower the number of calculations of A+B to exactly one
per iteration (apart from the initial calculation in the
landing pad).

of question propagation (section 5.2.1). The redundancy is
therefore of kind 3, and the contradiction is obtained.

while (...I do
XtA+B
if P

then do
A t . . .
Y+A+B

end
else

end

Figure 22: Missed Optimization

Though attractive in this example, movement along
backedges poses some difficult organizational ques-
tions. By the time a computation reaches the loop
header, movement of computations within the loop
body for the current rank has already been completed.
Moving along a backedge will not help unless the rank
used for the copy that stays in the loop is forced to be
larger than the current rank. This leads to the possi-
bility of an infinite regress: a computation reaches the
loop header with rank R, is moved along a backedge
with rank R + 6, reaches the loop header again but now
with rank R + 6, is moved along the backedge with rank

R + S + 6, and so on. When loops are nested, it is dif-
ficult to see how to keep enough records to avoid infi-
nite regress without also missing opportunities. One
might be tempted to try iteration of our entire al-
gorithm, with the understanding that a computation
moved along a backedge will not move further until the
next iteration. This too can lead to an infinite regress,
as figure 23 illustrates.

while (...> do
C+A+B
A+C+B

end

Figure 23: Danger of Infinite Regress

9 Conclusions
We have shown how to obtain unusually extensive opti-
mization of reducible programs at moderate cost, thanks
largely to synergism among three innovations: global rank-
ing of expressions, static single assignment (SSA) interme-
diate form, and 4 renaming of expressions.

Global ranks let us exploit second order effects rapidly,
without reanalysis. Ranks also help characterize the num-
ber of iterations needed when other algorithms are called
repeatedly to exploit second order effects.

The SSA form of a program enables us to remove triv-
ial assignments easily. It also allows us to recognize and
exploit equivalences among expressions that would not be
lexically identical in the usual form. If a program is in
SSA form, then lexically identical expressions always have
the same value, no matter where they occur. If a program
is in reduced SSA form, furthermore, expressions with the
sa:me value number will be lexically identical aside from 4
reuaming along paths.

With the help of a linearly bounded amount of edge
splitting, 4 renaming enables us to preserve SSA form while
moving a computation from a join node to its predecessors.
Preserving SSA form throughout the intermediate steps is
important because it allows the code associated with each
node to be represented by a table that can be accessed and
updated efficiently.

We have also specified a reasonable optimality crite-
rion. In the special case of a program without loops, the
code generated by our algorithm is provably optimal in the
technical sense explained in section 8.

Axknowledgments
We thank Fran Allen, Trina Avery, and Ron Cytron for
their comments on drafts of this paper.

R,eferences
[I] F. E. Allen. Control flow analysis. Sigplan Notices,

July 1970.
[:!I F. E. Allen. Program optimization. Ann. Rev. Auto-

matic Programming, 51239-307, 1969.

[31

Bl

[51

PI

PI

PI

PI

PO1

Pll

Cl21

[I31

P4

WI

P61

P71

WI

WI

B. Alpern, M. N. Wegman, and F. K. Zadeck. De-
tecting equality of values in programs. Conf Rec.
Fifteenth ACM Symp. on Principles of Programming
Languages, January 1988.

M. Auslander and M. Hopkins. An overview of the
PL.8 compiler. Proc. SIGPLAN’82 Symp. on Com-
piler Construction, 17(6):22-31, June 1982.

G. J. Chaitin. Register allocation and spilling via
graph coloring. Proc. SIGPLAN’88 Symp. on Com-
piler Construction, 98-105, June 1982.

F. Chow and J. Hennessy. Register allocation by
priority-based coloring. Proc. SIGPLA N’84 Symp. on
Compiler Construction, 19(6):222-232, June 1984.

J. Cocke and J. T. Schwartz. Programming Languages
and Their Compilers; Preliminary Notes. Courant In-
stitute of Mathematical Sciences, New York Univer-
sity, April 1970.

R. Cytron, A. Lowry, and K. Zadeck. Code motion of
control structures in high-level languages. Conf. Rec.
Thirteenth ACM Symp. on Principles of Programming
Languages, 70-85, January 1986.

M. S. Hecht and J. D. Ullman. Characterizations of
reducible flow graphs. J. ACM, 21(3):367-375, July
1974.
M. S. Hecht and J. D. Ullman. A simple algorithm for
global data flow analysis problems. SIAM J. Comput-
ing, 4(4):519-532, December 1975.

D. B. Loveman and R. A. Faneuf. Program optimiza-
tion - theory and practice. Proc. Conf. on Program-
ming Languages and Compilers for Parallel and Vector
Machines, 10(3):97-102, March 1975.

E. S. Lowry and C. W. Medlock. Object code opti-
mization. Comm. ACM, 12(1):13-22, 1969.

E. Morel and C. Renvoise. Global optimization by
supression of partial redundancies. Comm. ACM,
22(2):96-103, February 1979.

J. II. Reif and H. R. Lewis. Symbolic evaluation and
the global value graph. Conf Rec. Fourth ACM Symp.
on Principles of Programming Languages, 104-118,
January 1977.

J. H. Reif and R. E. Tarjan. Symbolic program
analysis in almost linear time. SIAM J. Computing,
11(1):81-93, February 1982.
B. K. Rosen. Data flow analysis for procedural lan-
guages. J. AC-U, 26(2):322-344, April 1979.

R. M. Shapiro and H. Saint. The Representation of
Algorithms. Technical Report CA-7002-1432, Mas-
sachusetts Computer Associates, February 1970.

R. E. Tarjan. Depth first search and linear graph al-
gorithms. SIAM J. Computing, 1(2):146-160, 1972.

R. E. Tarjan. Testing flow graph reducibility. J. Com-
puter and System Sciences, 9:355-365, December 1974.

27

