
An editor for lute tablature

Christophe Rhodes and David Lewis

Centre for Cognition, Computation and Culture
Goldsmiths College, University of London
New Cross Gate, London SE14 6NW, UK

c.rhodes@gold.ac.uk, d.lewis@gold.ac.uk

Abstract. We describe a system for the entry and editing of music in
lute tablature. The editor provides instant visual and MIDI feedback,
mouse and keyboard controls, a macro recording facility, and full run-
time extensibility. We conclude by discussing planned future functional-
ity and considering other potential applications for the technology.

1 Introduction

The Electronic Corpus of Lute Music1 seeks to act as a first point of reference for
researchers in lute music and to raise the profile of the repertoire. The Western
European lute is an instrument of great historical importance, and Ness estimates
[1] a still extant repertory of nearly 60,000 pieces scored for the instrument.
Yet, despite its clear significance, the lute and its music play a comparatively
minor part in current musicology: the music is not generally well-known and its
historical role rarely discussed.

This obscurity arises in part because the surviving sources are often miscel-
lanies, making location of works by a single composer or finding sources for a
specific piece difficult. Additionally, the notations for lute music are very differ-
ent from staff notation: anyone curious to explore the repertory must first learn
the notation and, until they become experienced, to transcribe the pieces into a
more familiar format.

ECOLM [2] seeks to make it easier for lute music to be appreciated by non-
experts, without the need to understand either tablature or the technique of the
instrument, whilst still providing scholars with the detailed, specalist information
where it is required (see [3] for an example). The core of the project consists of
musical encodings, forming an online edition, providing ‘diplomatic facsimiles’
(i.e. literal transcriptions), editions, and computer-generated MIDI and staff
transcriptions. We also seek to create an infrastructure for distributed editing,
necessitating an encoding system and a user interface.

1 ECOLM 2 is the second phase of a five-year grant provided by the UK Arts and
Humanities Research Board (now Council)

2 Lute Tablature and TabCode

Lute music is written in a variety of different tablature forms. The notation tells
the lutenist which strings should be played at which frets and when. The most
common approach is to use horizontal lines (similar to staff lines) to represent
strings, and letters or numbers placed on them to represent frets – a practice
that survives to this day in guitar tablature. The music is read left to right, with
rhythm signs placed above to indicate timing. At its most basic, lute tablature is
entirely sequential in nature, with one chord following another without notated
overlap, and it is impossible to indicate multiple simultaneous rhythms.

Clearly, this attribute makes the transfer of the notational information into
ASCII for use in the corpus a much simpler proposition than has been the case
for the majority of classical music scores. Crawford [4] describes a format called
TabCode for encoding lute tablature as a series of ‘tabwords’ separated by white
space. Each word begins with a character indicating the rhythm sign (the initial
of the name of that sign: H for half note, Q for quarter, etc.), if present, followed
by a letter-number pair for each symbol in the chord, with the number signifying
the string and the letter the fret.

Qa1a2b3c4c5a6

Ea2

a6

d6

a2b3

d2f3

d6

|

Fig. 1. An extract from ‘Fantasia Ioannis Dooland Angli Lachrimae’, Jean-Baptiste
Besard, Thesaurus Harmonicus (1603), f.16v, and its TabCode encoding.

In order to create camera-ready artwork, in particular for [5], Tim Crawford
wrote The Tablature Processor, a Macintosh-based application with its own
binary file format, but capable of importing and exporting TabCode. The Tab
Processor has some facility for data entry, but is primarily a type-setting program
for a type of lute tablature.

Fig. 2. The tablature editor and graphical display. Note the third bar of the tablature,
which corresponds to the fragment in figure 1.

3 TabEditor

We have developed a new application to speed the process of entering and editing
TabCode. This application provides a syntax-aware editor in the Emacs tradi-
tion, along with a graphical view of the currently-edited score, which updates in
real-time as the user manipulates the textual TabCode buffer. In addition, this
graphical view is mouse-sensitive (as is the editor buffer) and allows interaction
with the graphical objects, while retaining the primacy of the text represen-
tation: manipulation of the graphical object is implemented as a sequence of
manipulations on the text. We also allow the option for the user to receive im-
mediate audio feedback of the current chord at its completion, as well as region
or full-piece audio rendering.

The major improvement in this application compared with previous editors
is the immediacy of the feedback; however, from the editor’s Emacs heritage
comes extensibility, both through explicit definition of additional functionality
at run-time and through the ability to record keyboard macros for automation
of repetitive tasks.

This application is not at present able to produce an edition-ready rendering
of TabCode, unlike the Tablature Processor; this stems directly from the fact
that the textual TabCode is required to contain all the information in the appli-
cation: the language is rich enough to express the semantics of a lute tablature
manuscript, but not the necessary tweaks that an editor makes for the print copy
of a work.

3.1 Implementation Details

The application is written in Common Lisp, using SBCL, the McCLIM [6] im-
plementation of the CLIM specification for graphical interface management, and
Climacs, a CLIM editor, as our editor substrate. It is beyond the scope of this
paper to give a detailed exposition of CLIM’s capabilities: we refer the interested
reader to other sources such as [7]. For our purposes, CLIM associates graphical
output with application data through presentations, and manages the efficient
redrawing of application state through incremental redisplay.

The CLIM presentation facility provides what is in some sense an object-
oriented renderer: when drawing the graphical view of the tablature denoted by
the TabCode, the graphical elements retain their association with the tabword
objects resulting from parsing the editor buffer. This then allows a trivial im-
plementation of actions such as moving the cursor to the point in the buffer
corresponding to a particular chord in the graphical view, and a relatively sim-
ple implementation of commands for musical manipulation (such as one to move
glyphs up a string to correct a typographical error) operating on the textual
TabCode but trigged by an action in the graphical view.

Although the Climacs editor includes a syntax analysis module [8] based on
a parser implementing Earley’s algorithm [9], the generality of this framework
was not needed for a language as simple as TabCode. Instead, we implemented
a combined lexer and parser, which on a parse error preserves the partial parse,
if any; advances to the nearest lexically following whitespace; and resets the
analyser’s state. This parser generates a sequence of tabwords from the text in
the editor buffer, reusing portions of the previously-generated sequence if it can
prove, based on the extent of the text region ‘damaged’ by user interaction, that
the parse is unchanged.

Incremental redisplay is in some sense merely an optimization, but it is a
sufficiently broad one that it merits discussion: it permits the system to avoid
redrawing output if it can determine that this will not be necessary, on an
object-by-object basis. We use this optimization by preserving the identity of
those elements of the parsed buffer contents which can be proved not to have
changed, as described above. This cache not only informs the display within the
editor buffer – highlighting parse errors, for example – but also the graphical
view: a chord need not be redrawn if it has not changed since the last edit.2

4 Conclusions and Future Directions

The real-time feedback provided by this application has met with approval from
its users, including some with limited technical skills: errors are corrected more
quickly, and the ability to find the area in the TabCode source corresponding
to a place in the graphical output allows more efficient navigation. The CLIM

2 In addition to this, it should also not have changed its position; this is the case even
for many edits in a TabCode document: only those which change an element’s width
will affect the positioning of subsequent elements on that line.

framework assisted us in development of this application by providing the means
to associate high-level application data directly with the graphical output.

TabCode is a simple language when interpreted as a sequence of tabwords
representing notated elements. However, for general semantic analysis and dis-
play purposes, a slightly more sophisticated parsing framework is required: to
accommodate hierarchical groupings such as beaming, connecting lines and so on
tabword groups must be formed. These hierarchical groups can be incrementally
maintained in the same manner as the sequence of tabwords, by computing the
overlap of groups with the ‘damaged’ region in the editor buffer.

A feature planned for the near future is transcription of the current buffer to
score (in Common Music Notation). The initial transcription algorithm should
prove fairly simple, as each chord can simply be directly transcribed; difficulties
remain in the areas of pitch spelling and readable polyphony.

We believe it would be relatively simple to adapt our application to support
other textual representations of music (such as Humdrum’s [10] **kern) or more
generally of two-dimensional data, while maintaining the association between
graphical display and textual input.

Acknowledgments

C.R. and D.L are supported by EPSRC grant GR/S84750/01 and AHRC grant
B/RE/AN9717/APN15559 respectively.

References

1. Ness, A.J., Kolczynski, C.A.: Sources of lute music. In Sadie, S., Tyrrell, J.,
eds.: The New Grove Dictionary of Music and Musicians. Volume 23. Macmillan,
London (2001) 39–63

2. Crawford, T., Gale, M., Lewis, D.: An Electronic Corpus of Lute Music (ECOLM):
technological challenges and musicological possibilities. In Parncutt, R., ed.: Con-
ference on Interdisciplinary Musicology, Graz (2004) 118–119

3. Lewis, D., Gale, M.: “La battaglia”: a computer-assisted approach to an extended
musical family. Presented at the Annual Conference of the Renaissance Society of
America (2005)

4. Crawford, T.: Applications Involving Tablatures: TabCode for Lute Repertories.
Computing in Musicology 7 (1991) 57–59

5. Crawford, T., ed.: Silvius Leopold Weiss: Sämtliche Werke für Laute. Volume 5–7.
Bärenreiter, Kassel (2002–)

6. Strandh, R., Moore, T.: A Free Implementation of CLIM. In: International Lisp
Conference, San Francisco, Franz Inc. (2002)

7. Rao, R., York, W.M., Doughty, D.: A guided tour of the Common Lisp interface
manager. ACM SIGPLAN Lisp Pointers 4 (1990) 17–37

8. Rhodes, C., Strandh, R., Mastenbrook, B.: Syntax Analysis in the Climacs Text
Editor. In: International Lisp Conference, Stanford (2005) (accepted for publica-
tion).

9. Earley, J.: An Efficient Context-Free Parsing Algorithm. Communications of the
ACM 13 (1970) 94–102

10. Huron, D.B.: The Humdrum Toolkit. CCRAH, California. (1994)

