
Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 1

Recent Developments in SBCL

or

an adventure in Unicode

Christophe Rhodes

(and a cast of many characters)

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 2

Outline

● Introduction: what is SBCL?
● Exposition: the 0.8 series

– Second Subject: new features
● Development: Unicode and external-format
● Recapitulation: the road to 1.0

● Coda: questions and discussion

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 3

Introduction

● Steel Bank Common Lisp

– “Carnegie made his fortune in the steel
industry, controlling the most extensive and
complete system of iron and steel industries
ever managed by an individual.”

– “[Mellon] joined his father's banking firm, T.
Mellon & Sons, two years later and had the
ownership of the bank transferred to him in
1882 at the age of 27.”

-- Wikipædia

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 4

What is SBCL?

● ANSI Common Lisp environment
● Written in portable ANSI Common Lisp

● Liberally licensed

● Trivially buildable (on most Unixoids)

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 5

Exposition

● sbcl-0.9.0 released 2005-04-24 (today!)
● What has changed since 2003-05-25 (0.8.0)?

– new platforms

– new features

– new users and developers

– fewer bugs

– better infrastructure

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 6

0.8: new stuff

● platforms

– Darwin / PowerPC

– Linux / x86-64

– CLISP (as host compiler)

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 7

0.8: new stuff

● features

– linkage tables

– sampling profiler

– package locks

– compiler conditions

– stepper

– contribs (asdf-install,simple-streams,md5,...)

– Unicode characters

– external-format

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 8

0.8: new stuff

● compiler enhancements

– modular (hardware) arithmetic

– dynamic-extent

– contrib for 64-bit arithmetic

– loop analysis

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 9

0.8: new stuff

● people

– committers

– users

– development community

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 10

0.8: cvs activity

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 11

0.8: fewer bugs

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 12

0.8: better infrastructure

● automatic benchmarking

– see: Grouping Common Lisp Benchmarks
● automatic building

– self-tests

– self-build

– ansi-tests

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 13

Development

● Most user-visible features

– Unicode characters

– non-trivial external-format support

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 14

Unicode: characters

● What is a character?

– glyph? grapheme? ligature?

– integer, with interpretation (code point)

– Unicode provides interpretation
● code points between 0 and #x110000
● examples

– #x27: ' (APOSTROPHE)
– #xe9: é (LATIN SMALL LETTER E WITH ACUTE)
– #x3bb: λ (GREEK SMALL LETTER LAMDA)
– #x2206: (INCREMENT)

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 15

Unicode: characters

● code-point range 0-127: ASCII
● code-point-range 128-255: Latin 1

● higher code points: other characters

immediate tag

character tag

0000000000000

00

code point

42

42

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 16

Unicode: strings

● three possibilities

– One string type, one representation
● (array-element-type string) => character
● each element takes 32 bits

– One string type, many representations
● (array-element-type string) => character
● each element takes 8,16 or 32 bits
● extra level of indirection

– object identity in presence of (setf char)
– garbage collection compacting support

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 17

Unicode: strings

● three possibilities (cont'd...)

– many string types, many representations
● (array-element-type string) => base-char
 => character

● each element takes 8 or 32 bits
● confusing? you decide...

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 18

Unicode: strings

H e l l o , W o r l d

H e l l o , W o r l d

H e l l o , W o r l d

H e l l o , W o r l d

€ 1 0 0 0 0

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 19

External-format

● Now we have characters and strings...

– but what can we do with them?
● upcase, downcase, capitalize...
● char-code...
● printing?

● Late 1960s: EBCDIC vs ASCII

● Late 1990s: Latin 1 vs Latin 9 (vs Shift-JIS...)
● Today: UTF-8 vs UCS-2 vs UTF-16

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 20

External-format

● More complex than just an encoding

– character set (replacement / error behaviour)

– line termination convention (#\Newline)

– byte-order mark convention (Windows)
● Applicable elsewhere

– pathnames / namestrings

– FFI (char *, char [] arguments / returns)

– command line arguments

– strings to octet vector conversions

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 21

External-format

● observations

– external-format support required in today's
world for char-code-limit greater than 128.
(unless you're an isolationist American or
Western European)

– current implementation in SBCL far from
complete

● :ascii, :latin-1, :latin-9, :ebcdic, :utf-8
● but no newline, BOM treatment

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 22

Recapitulation

● Wishlist

– Unicode
● character ↔ name translations

– External-format
● more external-format implementations
● code unification with octets / FFI
● filesystem interaction
● bivalent streams

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 23

The Road to 1.0

● Documentation (more and better)
● Debugger API (enough for SLIME)

● Deletion of unmaintainable interfaces

● Stubborn bug squashing

● A few remaining features

– callbacks

– block compilation

– your favourite feature here

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 24

Coda

● Thanks

– CMUCL Hackers (25 years of history)

– Eric Marsden, Teemu Kalvas, Robert
Macomber

– Edi and Arthur
● Any questions or suggestions?

