
Custom

Specializers in

Object-

Oriented

Lisp

Jim Newton

and

Christophe

Rhodes

Introduction

Examples

Protocol

Benefits

Future Work

Thanks

Custom Specializers in Object-Oriented Lisp

Jim Newton and Christophe Rhodes

Cadence Design Systems and Goldsmiths, University of London

23rd May 2008



Custom

Specializers in

Object-

Oriented

Lisp

Jim Newton

and

Christophe

Rhodes

Introduction

Examples

Protocol

Benefits

Future Work

Thanks

Lisp
Common Lisp and Skill

Common Lisp:

• Unification of various Lisp dialects;

• Not dead yet.

Skill:

• Internal Lisp dialect from Cadence Design Systems;

• Extension language for Integrated Circuit software;

• Optional C-style syntax;

• Simple object system (Skill++, inspired by CLOS).



Custom

Specializers in

Object-

Oriented

Lisp

Jim Newton

and

Christophe

Rhodes

Introduction

Examples

Protocol

Benefits

Future Work

Thanks

Object-oriented Lisp
CLOS and VCLOS

• CL structures and Skill++ objects:
• single inheritance
• single dispatch

• CL and VCLOS standard-objects and generic functions
• multiple inheritance
• multiple dispatch
• method combination
• [and lots more goodies]

Both CLOS and VCLOS are (almost) implementable as
extensions to the base language

• In Common Lisp, CLOS is specified and fully-integrated;

• In Skill, VCLOS is an extension library.



Custom

Specializers in

Object-

Oriented

Lisp

Jim Newton

and

Christophe

Rhodes

Introduction

Examples

Protocol

Benefits

Future Work

Thanks

Object-oriented Lisp
CLOS and VCLOS

• CL structures and Skill++ objects:
• single inheritance
• single dispatch

• CL and VCLOS standard-objects and generic functions
• multiple inheritance
• multiple dispatch
• method combination
• [and lots more goodies]

Both CLOS and VCLOS are (almost) implementable as
extensions to the base language

• In Common Lisp, CLOS is specified and fully-integrated;

• In Skill, VCLOS is an extension library.



Custom

Specializers in

Object-

Oriented

Lisp

Jim Newton

and

Christophe

Rhodes

Introduction

Examples

Protocol

Benefits

Future Work

Thanks

Object-oriented Lisp
CLOS and VCLOS

• CL structures and Skill++ objects:
• single inheritance
• single dispatch

• CL and VCLOS standard-objects and generic functions
• multiple inheritance
• multiple dispatch
• method combination
• [and lots more goodies]

Both CLOS and VCLOS are (almost) implementable as
extensions to the base language

• In Common Lisp, CLOS is specified and fully-integrated;

• In Skill, VCLOS is an extension library.



Custom

Specializers in

Object-

Oriented

Lisp

Jim Newton

and

Christophe

Rhodes

Introduction

Examples

Protocol

Benefits

Future Work

Thanks

Object-oriented Lisp
Metaobject Protocols

VCLOS is implemented in itself; CLOS is ‘encouraged’ to be

• Metaobject Protocols

• Introspect and intercede...

• ...using the (V)CLOS mechanisms themselves.

Examples:

• customize slot access: integration with ‘foreign’ object
systems;

• customize generic function call: integration with other
languages;

• customize class precendence computation: run old
codebases.



Custom

Specializers in

Object-

Oriented

Lisp

Jim Newton

and

Christophe

Rhodes

Introduction

Examples

Protocol

Benefits

Future Work

Thanks

Example
Subclassing the specializer metaobject class

(defclass class (specializer)

((name :initarg :name :reader class-name)

(direct-slots :initarg :direct-slots :reader class-direct-slots)

...))

(defclass eql-specializer (specializer)

((object :initarg :object :reader eql-specializer-object)))

What if we could do...

(defclass equal-specializer (specializer)

((object :initarg :object :reader equal-specializer-object)))

... and how hard is it to make this work?



Custom

Specializers in

Object-

Oriented

Lisp

Jim Newton

and

Christophe

Rhodes

Introduction

Examples

Protocol

Benefits

Future Work

Thanks

Example
Subclassing the specializer metaobject class

(defclass class (specializer)

((name :initarg :name :reader class-name)

(direct-slots :initarg :direct-slots :reader class-direct-slots)

...))

(defclass eql-specializer (specializer)

((object :initarg :object :reader eql-specializer-object)))

What if we could do...

(defclass equal-specializer (specializer)

((object :initarg :object :reader equal-specializer-object)))

... and how hard is it to make this work?



Custom

Specializers in

Object-

Oriented

Lisp

Jim Newton

and

Christophe

Rhodes

Introduction

Examples

Protocol

Benefits

Future Work

Thanks

Example
Code walker dispatch

(defmethod walk ((expr list) env call-stack)

(let ((call-stack (cons expr call-stack)))

(walk (car expr) env call-stack)

(walk (cdr expr) env call-stack)))

(defmethod walk ((form (cons (eql ’quote))) env call-stack)

nil)

(defmethod walk ((form (cons (eql ’lambda))) env call-stack)

(destructuring-bind (lambda lambda-list &rest body) form

(let ((bs (derive-bindings-from-ll lambda-list)))

(dolist (form body)

(walk form (make-env bs env) (cons form call-stack)))

(dolist (bind bs)

(unless (used bind)

(format t "unused: ~A: ~A~%" var call-stack))))))



Custom

Specializers in

Object-

Oriented

Lisp

Jim Newton

and

Christophe

Rhodes

Introduction

Examples

Protocol

Benefits

Future Work

Thanks

Example
Code walker dispatch

(defmethod walk ((expr list) env call-stack)

(let ((call-stack (cons expr call-stack)))

(walk (car expr) env call-stack)

(walk (cdr expr) env call-stack)))

(defmethod walk ((form (cons (eql ’quote))) env call-stack)

nil)

(defmethod walk ((form (cons (eql ’lambda))) env call-stack)

(destructuring-bind (lambda lambda-list &rest body) form

(let ((bs (derive-bindings-from-ll lambda-list)))

(dolist (form body)

(walk form (make-env bs env) (cons form call-stack)))

(dolist (bind bs)

(unless (used bind)

(format t "unused: ~A: ~A~%" var call-stack))))))



Custom

Specializers in

Object-

Oriented

Lisp

Jim Newton

and

Christophe

Rhodes

Introduction

Examples

Protocol

Benefits

Future Work

Thanks

Example
Symbolic simplification

(defgeneric simplify (x)

(:method (x) x))

;;; in plus.lisp

(defmethod simplify ((x (+ _ 0)))

(simplify (second x)))

(defmethod simplify ((x (+ 0 _)))

(simplify (third x)))

;;; in times.lisp

(defmethod simplify ((x (* _ 0)))

0)

(defmethod simplify ((x (* _ 1)))

(simplify (second x)))

...

(simplify ’(+ 0 (+ 1 0))) ; => 1



Custom

Specializers in

Object-

Oriented

Lisp

Jim Newton

and

Christophe

Rhodes

Introduction

Examples

Protocol

Benefits

Future Work

Thanks

Example
XML whitespace normalization

;;; default method: do nothing

(defmethod process-node ((node t) strip-space-p)

(declare (ignore strip-space-p)))

;;; strip this text node if it contains whitespace only

(defmethod process-node ((node stp:text) (strip-space-p (eql t)))

(when (whitespace-only-p (stp:data node))

(stp:detach node)))

;;; process children recursively for document and element nodes

(defmethod process-node ((node stp:parent-node) strip-space-p)

(mapc (lambda (child)

(process-node child strip-space-p))

(stp:list-children node)))

;;; override the stripping mode when declared explicitly on a element:

(defmethod process-node ((node (xpattern "*[@xml:space = ’preserve’]"))

strip-space-p)

(declare (ignore strip-space-p))

(call-next-method node nil))

(defmethod process-node ((node (xpattern "*[@xml:space = ’strip’]"))

strip-space-p)

(declare (ignore strip-space-p))

(call-next-method node t))



Custom

Specializers in

Object-

Oriented

Lisp

Jim Newton

and

Christophe

Rhodes

Introduction

Examples

Protocol

Benefits

Future Work

Thanks

Protocol Details
Parsing and unparsing

Run-time generic functions:

• parse-specializer-using-class gf name

• unparse-specializer-using-class gf spec

for find-method, debugger, tracer

defmethod-time generic function

• make-method-specializers-form gf method names env

(minimum necessary: more fine-grained protocol needed for
convenience)



Custom

Specializers in

Object-

Oriented

Lisp

Jim Newton

and

Christophe

Rhodes

Introduction

Examples

Protocol

Benefits

Future Work

Thanks

Protocol Details
Parsing and unparsing

Run-time generic functions:

• parse-specializer-using-class gf name

• unparse-specializer-using-class gf spec

for find-method, debugger, tracer

defmethod-time generic function

• make-method-specializers-form gf method names env

(minimum necessary: more fine-grained protocol needed for
convenience)



Custom

Specializers in

Object-

Oriented

Lisp

Jim Newton

and

Christophe

Rhodes

Introduction

Examples

Protocol

Benefits

Future Work

Thanks

Protocol Details
Discriminating functions

Discriminating functions are the ‘function’ part of a generic
function.

(defmethod compute-discriminating-function ((gf generic-function))

(lambda (&rest args)

(let* ((ams (compute-applicable-methods gf args))

(mc (generic-function-method-combination gf))

(em (compute-effective-method gf mc ams))

(emf (generate-effective-method-function em)))

(apply emf args))))

We need to override at least compute-applicable-methods



Custom

Specializers in

Object-

Oriented

Lisp

Jim Newton

and

Christophe

Rhodes

Introduction

Examples

Protocol

Benefits

Future Work

Thanks

Protocol Details
Discriminating functions

Discriminating functions are the ‘function’ part of a generic
function.

(defmethod compute-discriminating-function ((gf generic-function))

(lambda (&rest args)

(let* ((ams (compute-applicable-methods gf args))

(mc (generic-function-method-combination gf))

(em (compute-effective-method gf mc ams))

(emf (generate-effective-method-function em)))

(apply emf args))))

We need to override at least compute-applicable-methods



Custom

Specializers in

Object-

Oriented

Lisp

Jim Newton

and

Christophe

Rhodes

Introduction

Examples

Protocol

Benefits

Future Work

Thanks

Protocol Details
Computing applicable methods

(defmethod compute-applicable-methods ((gf generic-function) args)

(sort

(remove-if-not (applicable-predicate args)

(generic-function-methods gf))

(ordering-function gf args)))

Doing this on every generic function call would be slow.

Regular CLOS MOP has paired operators:

1 compute-applicable-methods

2 compute-applicable-methods-using-classes

and cacheing is done if c-a-m-using-classes can work out
the answer.



Custom

Specializers in

Object-

Oriented

Lisp

Jim Newton

and

Christophe

Rhodes

Introduction

Examples

Protocol

Benefits

Future Work

Thanks

Protocol Details
Computing applicable methods

(defmethod compute-applicable-methods ((gf generic-function) args)

(sort

(remove-if-not (applicable-predicate args)

(generic-function-methods gf))

(ordering-function gf args)))

Doing this on every generic function call would be slow.

Regular CLOS MOP has paired operators:

1 compute-applicable-methods

2 compute-applicable-methods-using-classes

and cacheing is done if c-a-m-using-classes can work out
the answer.



Custom

Specializers in

Object-

Oriented

Lisp

Jim Newton

and

Christophe

Rhodes

Introduction

Examples

Protocol

Benefits

Future Work

Thanks

Protocol Details
Computing and cacheing effective methods

(defmethod compute-discriminating-function ((gf generic-function))

(lambda (&rest args)

(let* ((ams (compute-applicable-methods gf args))

(mc (generic-function-method-combination gf))

(em (compute-effective-method gf mc ams))

(emf (generate-effective-method-function em)))

(apply emf args))))

• CLOS MOP specifies compute-effective-method

• compute-effective-method-function would be more
useful

• ... and also protocol for automatically
• cacheing the effective method;
• clearing the cache;
• pre-filling the cache...



Custom

Specializers in

Object-

Oriented

Lisp

Jim Newton

and

Christophe

Rhodes

Introduction

Examples

Protocol

Benefits

Future Work

Thanks

Benefits

Expressivity:

• clarity;

• modularity;

• dynamicity.

Efficiency:

(defmethod compute-discriminating-function ((gf generic-function))

(let* ((methods (generic-function-methods gf))

(dfun (compile-dispatch-function methods)))

(lambda (&rest args)

(apply dfun args))))



Custom

Specializers in

Object-

Oriented

Lisp

Jim Newton

and

Christophe

Rhodes

Introduction

Examples

Protocol

Benefits

Future Work

Thanks

Benefits

Expressivity:

• clarity;

• modularity;

• dynamicity.

Efficiency:

(defmethod compute-discriminating-function ((gf generic-function))

(let* ((methods (generic-function-methods gf))

(dfun (compile-dispatch-function methods)))

(lambda (&rest args)

(apply dfun args))))



Custom

Specializers in

Object-

Oriented

Lisp

Jim Newton

and

Christophe

Rhodes

Introduction

Examples

Protocol

Benefits

Future Work

Thanks

Conclusions

• Custom specializers are an additional tool in the CLOS
toolchest;

• Skill/VCLOS experience shows that they can be useful;

• The basic machinery has been implemented in a Common
Lisp;

• There are details in the protocol to be sorted out to make
it easy to use.



Custom

Specializers in

Object-

Oriented

Lisp

Jim Newton

and

Christophe

Rhodes

Introduction

Examples

Protocol

Benefits

Future Work

Thanks

Future Work

• Usable protocol for compute-applicable-methods
• specializer-accepts-class-p
• specializer<

• Better cacheing protocol
• specializer-of

• compute-applicable-methods-using-specializers
• invalidation on redefinition of dependents

• Compelling applications
• efficient ML-style pattern matcher with run-time

dynamicity
• dispatch based on emacs-like ‘active modes’
• [your favourite here]



Custom

Specializers in

Object-

Oriented

Lisp

Jim Newton

and

Christophe

Rhodes

Introduction

Examples

Protocol

Benefits

Future Work

Thanks

Acknowledgments

• Please download and try: available in current SBCLs!

• For the Skill version, contact your nearest Cadence Design
Systems representative.

Thanks:

• Cadence Design Systems

• Goldsmiths College

• David Lichteblau

• Paul Khuong

• Pascal Costanza


	Introduction
	Examples
	Protocol
	Benefits
	Future Work
	Thanks

