
Java Virtual Machine Byte Code Verification: Past, Present and Future. Copyright 2002, Sun Microsystems, Inc.

Java™ Virtual Machine
Byte Code Verification:
Past, Present and Future

Gilad Bracha
Computational Theologist

Sun Microsystems

Java Virtual Machine Byte Code Verification: Past, Present and Future. Copyright 2002, Sun Microsystems, Inc.2Middle

Introduction

Byte code verification:

The process of inferring valid types for

Java virtual machine language

Verification often confused with other,

separate safety checks performed

by the JVM

(e.g., format checking, access control)

Beginning

Java Virtual Machine Byte Code Verification: Past, Present and Future. Copyright 2002, Sun Microsystems, Inc.3Middle

The Basic Idea of BCV

By ensuring the type safety of JVML code

"statically" at link time, we avoid the need for

potentially costly dynamic checks

(e.g., are the operands of an iadd instruction
really integers?)

while preserving both security

and the integrity of the VM

Beginning

Java Virtual Machine Byte Code Verification: Past, Present and Future. Copyright 2002, Sun Microsystems, Inc.4Middle

A Bit of History

• Java was originally targeted at circa 1992
cable TV set top boxes

• Interactive television was the "next big
thing"

• Security was not a big deal: code would be
distributed over a a closed, proprietary
network

• No need for verification

Beginning

Java Virtual Machine Byte Code Verification: Past, Present and Future. Copyright 2002, Sun Microsystems, Inc.5Middle

Verification as Afterthought

• Interactive TV didn't happen as fast as
anticipated

• Someone realized this could be retargeted
for the internet

• Security becomes a real concern

• Enter verification

Beginning

Java Virtual Machine Byte Code Verification: Past, Present and Future. Copyright 2002, Sun Microsystems, Inc.6Middle

The Need for Inference

• Class file format does not carry sufficient
type information

• In particular, no type information for Local
Variables, Operand Stack

• This information can be inferred.

Java Virtual Machine Byte Code Verification: Past, Present and Future. Copyright 2002, Sun Microsystems, Inc.7Middle

Advantages of Type Inference

• Reduced size requirements for class files:
– Saves bandwidth (most precious resource for

applets in mid-90s)

• Minimal changes to format

Java Virtual Machine Byte Code Verification: Past, Present and Future. Copyright 2002, Sun Microsystems, Inc.8Middle

Disadvantages of Type Inference

• Complexity

• Speed

• Memory consumption

Java Virtual Machine Byte Code Verification: Past, Present and Future. Copyright 2002, Sun Microsystems, Inc.9Middle

How Verification Works (1)

• Maintain a work queue of instructions
• Maintain a table associating instructions and

incoming type states
• Initially, instruction 0 associated with initial

type state
– this in L0, arguments in L1 .. Lk, other

locals undefined
– empty operand stack.

• All other instructions have no type state
associated with them initially.

Java Virtual Machine Byte Code Verification: Past, Present and Future. Copyright 2002, Sun Microsystems, Inc.10Middle

How Verification Works (2)

Put instruction 0 on work queue

While queue not empty {

 Simulate instruction based on associated incoming
type state to derive outgoing type state

 For each successor instruction si {

 place next instruction on queue

 If si has an associated type state, merge
 outgoing type state with si's state.

 If result of merge differs from si's
 recorded type state, update type state for
 si, and place si on work queue

}

Java Virtual Machine Byte Code Verification: Past, Present and Future. Copyright 2002, Sun Microsystems, Inc.11Middle

How Verification Works (3)

• If not unconditional branch, successor
instructions include next instruction

• If branch, successor instructions include
target

• Successors also include any applicable
exception handlers (their type state is
special, as operand stack will contain only
exception)

Java Virtual Machine Byte Code Verification: Past, Present and Future. Copyright 2002, Sun Microsystems, Inc.12Middle

A Simple Example (1)

int foo(boolean p) {

 int i;
 float f;

 if (p) {
 i = 6;
 }
 else {
 f = 2.0
 }
 return i; // illegal program - i is not

definitely assigned
}

Java Virtual Machine Byte Code Verification: Past, Present and Future. Copyright 2002, Sun Microsystems, Inc.13Middle

A Simple Example (2)

 iload 1
 ifeq L1
 iconst 6
 istore 2
 goto L2
L1:fconst 2.0
 fstore 3
L2:iload 2 // will not verify - local 2 not
 // guaranteed to have type int
 ireturn

Type inference strategy imposes requirements at language
level; the two must match (they haven't always, so we have
had programs that are legal Java but will not verify)

Java Virtual Machine Byte Code Verification: Past, Present and Future. Copyright 2002, Sun Microsystems, Inc.14Middle

Complications

• Subroutines
• Object initialization

Java Virtual Machine Byte Code Verification: Past, Present and Future. Copyright 2002, Sun Microsystems, Inc.15Middle

Subroutines (1)

Motivation: try-finally

Typical pattern:

try {
 doSomeThingThatMightFail();
}
catch (expectedException e)

{callHandler(e);}
finally { cleanUp();}

Must ensure clean up gets done in both
normal and exceptional cases

Java Virtual Machine Byte Code Verification: Past, Present and Future. Copyright 2002, Sun Microsystems, Inc.16Middle

Subroutines (2)

 aload 0
 invokevirtual doSomethingThatMightFail
 jsr H2
 return
H1:aload 0
 invokevirtual callHandler
 jsr H2
 return
H2:astore 1
 aload 0
 invokevirtual cleanup
 ret 1

Subroutine prevents duplication of cleanup
code

Java Virtual Machine Byte Code Verification: Past, Present and Future. Copyright 2002, Sun Microsystems, Inc.17Middle

Subroutines (3): Polymorphism

 aload 0
 iconst 7
 dup
 istore 2
 jsr H2
 ireturn
 getstatic C.P
 astore 2
H1:aload 0
 invokevirtual callHandler
 jsr H2
 return
H2:astore 1
 aload 0
 invokevirtual cleanup
 ret 1

Java Virtual Machine Byte Code Verification: Past, Present and Future. Copyright 2002, Sun Microsystems, Inc.18Middle

Subroutines (4)

• Local variable L2 has different types on
different control paths

• The subroutine doesn't care about L2, yet
straightforward inference will fail.

So, we try and be smart. Complicates the
algorithm quite a bit.

Java Virtual Machine Byte Code Verification: Past, Present and Future. Copyright 2002, Sun Microsystems, Inc.19Middle

Subroutines (5): Exact GC

• Local variable L2 has different types on
different control paths!

• May be a pointer on one path and an int on
another.

• GC needs to maintain pointer maps, but at
H2 type of L2 is ambiguous.

• GC must split L2 into two distinct variables.
• What was the point of sharing L2 in the first

place?

Java Virtual Machine Byte Code Verification: Past, Present and Future. Copyright 2002, Sun Microsystems, Inc.20Middle

Subroutines (6): Summary

• Locals cannot be shared with accurate GC
anyway

• Studies show code space savings negligible

• Premature Optimization

Java Virtual Machine Byte Code Verification: Past, Present and Future. Copyright 2002, Sun Microsystems, Inc.21Middle

Disadvantages of Complexity

• Hard to prove correctness

• Hard to maintain

• Hard to replicate and adapt (e.g., laziness,
shared code)

Java Virtual Machine Byte Code Verification: Past, Present and Future. Copyright 2002, Sun Microsystems, Inc.22Middle

Performance Disadvantages

• Startup time
– hack: do not verify system code

• Javac bugs detected late
• JIT works harder

• Footprint
– Javacard uses different solution
– J2ME uses yet another solution (more

 on this below)

Java Virtual Machine Byte Code Verification: Past, Present and Future. Copyright 2002, Sun Microsystems, Inc.23Middle

From Type Inference to
Type Checking

• Add type information for local vars and
operand stack

• Classfile space penalty 5-10%
• Footprint radically reduced

– Faster
– Simpler

• Premature optimization is the root of all evil

Java Virtual Machine Byte Code Verification: Past, Present and Future. Copyright 2002, Sun Microsystems, Inc.24Middle

JVML Typechecking

• Now the standard for J2ME CLDC

• We hope to adopt in JDK1.5 (subject to JCP)

Java Virtual Machine Byte Code Verification: Past, Present and Future. Copyright 2002, Sun Microsystems, Inc.25Middle

How Typechecking Works (1)

• Associate declared type state with select
instructions

• Iterate thru instructions, starting at
instruction 0 with initial type state as
incoming type state

Java Virtual Machine Byte Code Verification: Past, Present and Future. Copyright 2002, Sun Microsystems, Inc.26Middle

How Typechecking Works (2)

Is there a declared type state?

 If so, is incoming type state a subtype of
it?

 If not, error

 else use declared type state instead

• Simulate instruction, deriving outgoing type
state

• Use outgoing type state as incoming type
state for next instruction.

Java Virtual Machine Byte Code Verification: Past, Present and Future. Copyright 2002, Sun Microsystems, Inc.27Middle

How Typechecking Works (3)

• If branch, ensure target has declaration

• If conditional branch, ensure that computed
type state is subtype of declaration at targe

Java Virtual Machine Byte Code Verification: Past, Present and Future. Copyright 2002, Sun Microsystems, Inc.28Middle

Current Status

• CLDC uses typechecking rather than
inference

• Executable Prolog Specification of
Typechecking in Progress

• We plan to propose using typechecking in
J2SE/EE in JDK1.5

End

Java Virtual Machine Byte Code Verification: Past, Present and Future. Copyright 2002, Sun Microsystems, Inc.29Middle

Summary

• Type Inference and subroutines were both
premature optimizations

• Happy ending: faster, smaller, more
secure, more portable verifier in Java's
future

End

