
Common Lisp Sockets APIs

An analysis and proposal

Dave Roberts
dave-at-findinglisp-com
www.findinglisp.com

Version 0.2.5, 27-Dec-2005

1 Introduction

In recent years, network programming has increased steadily in importance. As
the Internet has penetrated even the fabric of daily life, it has also penetrated
the fabric of computer programming. It is rare these days that non-networking-
oriented programs such as word processors and document viewers do not have
at least some networked component for retrieving a remote document or at
least automatically updating the program itself to patch security holes or add
functionality. Clearly, being able to write network-based programs is important
in the 22nd century.

In spite of this fact, Common Lisp has no standardized networking API.
While Lisp has a long history of adapting to a variety of programming styles
and environmental conditions, Common Lisp was standardized before the pop-
ularization of the Internet. Thus, while the Common Lisp ANSI committee saw
the need to standardize file I/O and even a very general, OS-agnostic mechanism
for the encoding of file pathnames, the language does not have any standard
library routines for working with network connections and network objects.

To fill this hole, most Common Lisp implementations have developed a net-
work API of their own. Unfortunately, these APIs suffer from two main prob-
lems.

First, each implementation developed its own API without the benefit of a
standard and thus each is different from the others. The undesired variety found
in the various APIs retards the development of higher-layer library routines for
various application protocols. Indeed, what library routines do exist today have
complex, implementation-specific code woven throughout in order to get them
to run. Most library code works only on a couple of implementations to which
the author had access during development. At best, this situation leads to
numerous “compatibility layers” that try to smooth over the variations and
provide a slightly higher standardized interface. These compatibility layers can
lead to tremendous inefficiencies, however. For instance, it is common in such

1

compatibility layers to copy data between buffers in various formats, slowing
down processing and creating more work for the garbage collector in the process.

Second, most of the current APIs are deficient in one way or another. Most
of the APIs provide access to only a subset of standard TCP/IP functionality
as exposed through other operating system API interfaces such as BSD sock-
ets. While the functionality provided is sufficient to implement many standard
protocols, many other well-known protocols rely on missing functionality and
cannot be implemented without resorting to FFI interfaces. Compounding this
first problem, the missing functionality differs between implementations. Thus,
even for more standard protocols, it is difficult to know what will have to be
done to make them work on any given implementation. As a simple example,
many implementations do not have support for UDP datagram sockets. Appli-
cation protocols such as DNS, TFTP, and RADIUS cannot be implemented in
these CL implementations without great effort.

This paper collects information about various Common Lisp sockets APIs
and describes the advantages and disadvantages we find in them. Finally, the pa-
per proposes a new Common Lisp networking API that attempt to enable high-
performance TCP/IP networking for Common Lisp programs, whether clients
or servers.

2 Existing Sockets APIs

Before describing the problems and limitations of the existing APIs, it will be
useful to summarize the various high-level network API features supported by
multiple current Common Lisp implementations. Table 1 compares the socket
APIs for the following Common Lisp implementations:

• CMUCL

• SBCL and SB-BSD-SOCKETS

• CLISP

• Allegro

• Lispworks

• OpenMCL

Note that this analysis was performed using the current documentation for
each product. I have only used SBCL and CLISP for network programming.
Even in those cases, my experience level is limited. In some cases, I could
not determine the exact functionality solely from the documentation and did
not have a full implementation with which to experiment. Please send me
corrections so I can update the information.

[Note that some of this information is actually more than a year old; it
is undoubtedly out of date as some of the implementations have released new
major versions in the mean time and may have added functionality. As stated
above, please send me corrections.]

2

CMUCL SBCL CLISP Allegro Lispworks OpenMCL

Sockets
Implemen-
tation

CMUCL SB-BSD-
SOCKETS

SOCKET ACL-
SOCKET

COMM OPENMCL-
SOCKETS

Servers Yes Yes Yes Yes Yes Yes

Stream
Sockets

Yes1 Yes Yes Yes Yes Yes

Datagram
Sockets

No Partial2 No Yes No Yes

Multicast No ? No ? No ?

UNIX
Domain
Sockets

Yes Yes No Yes No Yes

Lisp
Streams

Yes** Yes Yes Yes Yes Yes

Binary
Streams

Yes Yes Yes Yes Yes Yes

Bivalent
Streams

No? No No Yes ? Yes

Buffered
Streams

Yes Yes? Optional ? Always5 ?

Shutdown No No Yes Yes No Yes

OOB Yes Partial3 No No No No

Socket Op-
tions

Yes Yes Yes Yes No Partial7

Nonblocking
sockets

No No? Yes Accept
only4

Yes6 ?

Multiplexing
model

Serve
Event

Threads,
Serve
Event

Select-like Blocking
Threads

Blocking
Threads

Blocking
Threads

Address
Representa-
tion

Integer? Vector of
octets

String Integer Integer Integer

IPv6 Sup-
port

No? No? No? No? No? No?

Table 1: Summary of existing APIs

3

Table 1 Notes:
1 CMUCL’s sockets return a file descriptor which can then be used to con-

struct a stream.
2 In SB-BSD-SOCKETS, each write to a stream associated with a datagram

socket is converted to an individual UDP datagram. Note that this may be
out of date with very recent SBCL changes.

3 SBCL supports OOB data in the receive direction only. There is no ability
to send OOB data.

4 In Allegro, it seems as if only the accept function is non-blocking, with all
other sockets operating in blocking mode.

5 There doesn’t seem to be a way to use non-buffered sockets with Lispworks.
6 Lispworks has non-blocking sockets, but the semantics of the API are the

same as when EOF is reached, making this seem a bit suspect. Or perhaps
I’m not understanding the API.

7 OpenMCL supports some socket options, but only a partial list. Socket
options must be set during the call to MAKE-SOCKET and cannot be
changed thereafter.

3 Analysis of Existing APIs

Given the basic data in Table 1, let’s now examine the API features in more
detail. It’s interesting to note that no implementation gets everything right,
including the commercial implementations. There are some broad classes of
feedback about the APIs.

1. Problems that affect protocol development

2. Inconsistencies that hurt portability

3. Positive features that should be retained

3.1 Problems that affect protocol development

Broadly speaking, there are some issues that make it difficult, or nearly im-
possible to create a fully-conforming implementation of a standard application
protocol. Sometimes, it’s impossible to create even a non-conforming imple-
mentation because required API features are simply missing. The four main
problems are:

1. Lack of UDP sockets — While TCP is used for the vast majority of Internet
protocols, there are several key, important protocols that are implemented
using UDP. Without UDP socket support, these protocols simply cannot
be implemented. Such protocols include DNS, RADIUS, and TFTP.

2. Lack of bivalent streams — Most of the current CL sockets APIs access
TCP sockets through the standard Common Lisp streams interface. The
streams interface allows you to set the type of stream when it is created,

4

but does not allow it to be changed thereafter. In many Internet protocols,
this is not a problem, but several important protocols require a program
to switch back and forth between textual data and binary data on the
same transmission channel. Using a standard CL stream to send and
receive such data can be more difficult than it needs to be. Example
protocols include: HTTP where headers are in text and the body can
be a binary object, SMTP where the protocol exchange is in text and
the system can either negotiate cryptography in mid-session or transfer
a binary object. A couple of the Common Lisp implementations support
the concept of “bivalent streams” which greatly help the implementation
of such protocols by providing a stream interface that can be switched
between textual data in different character formats or binary data.

3. Lack of independent directional shutdown — In some TCP protocols, ei-
ther endpoint can signal the other that it has completed its portion of
the protocol exchange by closing its end of the connection. Note that
this is not the same as closing the socket itself, but rather a TCP-level
protocol device called a “half close.” At the operating system layer, this
is commonly referred to as “shutdown” to distinguish it from a full close
of both directions of the socket. Common Lisp implementations that lack
shutdown capability make it difficult to implement some protocols in a
conforming manner.

4. Lack of IP multicast — IP multicast usage is increasing and is critically
important in some commercial vertical environments (financial services,
for example). Since IP multicast often relies on UDP to provide the
application-layer protocol, any implementation that doesn’t support UDP
cannot easily support IP multicast. It was not clear whether implementa-
tions that support UDP might also support IP multicast and it was rarely
mentioned explicitly in the documentation of various implementations.

5. Lack of out-of-band data — TCP has a facility called urgent mode that
allows a sender to signal a receiver that it has sent “urgent data” of some
sort. This facility allows the TCP stack to send data to the receiver in
spite of various TCP flow-control protocols that would otherwise prevent
it (the receiver is advertising a receive window of zero, for instance). In
the BSD sockets API, the urgent facility is named out-of-band data. This
is a misnomer, however; all urgent data is sent in-band on the same TCP
connection as regular data. The TCP urgent facility is used by protocols
such as Telnet, rlogin, and FTP to send things like interrupt signals that
have to get to the other side in a timely manner. Without access to
this facility through the CL sockets API, it is impossible to write a fully
compliant implementation of one of these protocols (in practice, you can
still do a lot without this, however).

6. Lack of IPv6 support — While IPv4 is currently the dominant Internet
protocol, portions of the user base are slowly starting to adopt IPv6 and

5

support for this protocol is only increasing. Most (all?) of the CL APIs
that I examined did not provide support for IPv6.

3.2 Inconsistencies that hurt portability

In many cases, the biggest problem with all the various CL sockets APIs is sim-
ply that they are so different from each other that it is difficult to write a single
program with networking functionality that runs on each without including large
amounts of implementation-specific code. The following inconsistencies cause
problems.

1. Inconsistent multiplexing model — In client programs, it is common to
only have open a single network socket at one time. Servers, however, will
routinely have tens, hundreds, or even thousands of sockets open simul-
taneously. Data on the sockets arrives asynchronously and each socket
can be in a totally different state at any given time. The server program
must multiplex processing across all those sockets and ensure that each
receives service in a timely fashion. Two techniques are commonly used
in various operating systems and language APIs: select-based notification
(including the use of /dev/poll and other more efficient mechanisms) and
blocking threads. In select-based notification, the server has one thread
(or a very small number greater than one) responsible for interfacing with
a group of sockets. On UNIX, the thread calls the select(2) system call
(or uses /dev/poll or other similar mechanisms) and the operating system
returns with information about which sockets have data that needs to be
read, which are ready for writing, etc. Other operating systems use a
similar mechanism, even if it is renamed something other than select. In
thread-based multiplexing, a socket is assigned to a single thread which
makes blocking calls on the socket to read and write data. The operating
system takes care of unblocking threads at appropriate times which data is
available or has been written. While both very useful, these multiplexing
methods require different styles of program architecture and are not often
used in the same program. Writing code to convert from one method to
another is difficult and results in inefficient code for one case or the other.

2. Inconsistent socket option support — In some cases, programs need to
be able to control various TCP socket options with great specificity. Ter-
minal programs, for instance, will want to disable the Nagle algorithm
to enhance interactive response. Unfortunately, many CL implementa-
tions are inconsistent in which socket options are allowed and when those
options are able to be set. Some implementations allow a program to
specify options only when a socket is created, while others provide a BSD
sockets-like call that allows the program to (re-)set options at any time.
Still others have no ability to set socket options at all.

3. Inconsistent address representation — Different implementations repre-
sent addresses in various formats. Functionally, this is not a huge problem,

6

but requires various conversion routines to be created if values are going
to be displayed as text.

4. Incomplete database functions — The BSD sockets API has a rich set of
lookup functions for retrieving host IP addresses, aliases, host names, and
socket numbers. In some cases, the various CL APIs specify only a subset
of the functionality available in a standard BSD socket interface. One
limitation that is particularly problematic is returning just a single host
address from the equivalent of BSD’s gethostbyname function. When
building reliable applications, it is necessary to be able to access hosts on
alternate IP addresses if the first fails for some reason.

3.3 Positive features that should be retained

While the various CL sockets APIs are riddled with inconsistencies and dif-
fering limitations, some good solutions to common problems have also become
apparent. These should be retained where possible.

1. Representing addresses as vectors of octet values — Many of the CL APIs
represent an IPv4 address as an unsigned integer. While this is efficient
for the internal code, it is less than optimal for a human reader. SB-BSD-
SOCKETS represents its IP addresses as a vector of octet values. Thus,
the IP address “1.2.3.4” can be represented in code, or more importantly
in the REPL, as #(1 2 3 4). This is far more helpful for a programmer
trying to debug a problem.

Note, however, that this format may be punitive for IPv6 which uses 128-
bit addresses and typically represents those addresses in hexadecimal for-
mat, not the typical default of the Lisp printer, possibly with compression
of long addresses. The only solutions may be to use strings where stan-
dard IPv6 address formats and compression shortcuts can be employed or
to use a printing function on a CLOS object.

4 Proposal Goals

This proposal has the following goals:

1. Provide a standard API that can be implemented across a number of
Common Lisp systems running on a variety of well-known (and perhaps
not-so-well-known) operating systems.

2. Provide a complete API that exposes the full set of IP-related functionality
as present in today’s C-level sockets APIs. In short, the API should not
preclude the development of any Internet protocol that may otherwise be
written in C.

3. Provide an efficient API. There are two types of efficiency that we are
worried about. The first, and most obvious, is how efficiently the API

7

maps to standard Lisp data structures, data types, and function calling
protocols. The second is how efficiently the API interacts with under-
lying OS mechanisms. For instance, the original Java networking API
relied on threads to handle blocking issues. This was sufficient for basic
client-side implementations that only used a few sockets, but it did not
scale well for servers that might be managing tens of thousands of open
sockets. The Java API had to be extended later to support a select-like,
event-driven model (NIO). We’d like to learn from this mistake and avoid
repeating it. Specifically, we’ll rely on lessons documented at sites such as
http://www.kegel.com/c10k.html [1] to help guide us. As an explicit
subgoal, it should be possible to write server-side applications in Common
Lisp that scale to support tens of thousands of simultaneously-connected
clients. There may be other limitations in the system (memory, for exam-
ple), but the Common Lisp networking API should not be the bottleneck.

4. Provide an extensible API that can evolve over time. While the API should
remain fairly static for interoperability reasons, new networking protocols
are implemented all the time and may require extensions to support them.
The API should provide a framework that is able to incorporate extensions
without breaking existing code.

5. Provide a “Lispy” interface that takes advantage of Lisp’s unique strengths
with respect to dynamic typing, garbage collection, and other features not
present in languages such as C, upon which many networking APIs are
based. Thus, while we’ll look to APIs such as the BSD sockets API for
inspiration, we want to reflect the best strengths of these APIs into a Lisp
environment rather than slavishly copying them and in the process forcing
the Lisp programmer to deal with underlying C limitations.

5 Proposal Strategies

In order to achieve the various goals described in the section above, we’ll employ
a couple of strategies:

1. First, we’ll use the fairly standard BSD sockets API as a general guide.
Even on operating systems that are not UNIX-based, the BSD API has
served as a model for the implementation of user-space networking APIs.
For instance, while Microsoft Windows has developed its own networking
API, it still supports the basic BSD API and even its proprietary API
retains the same basic concepts.

2. The API should be structured into multiple layers. The lowest layer should
expose the full range of functionality and all the atomic operations pro-
vided in the BSD sockets API. Higher layers will combine the basic atomic
functions into standard protocol sequences to make it easier to interface
to the API when common usage patterns are all that is required. For

8

instance, the high-level API will provide a single function that allows an
application program to create a socket, perform a host name lookup, and
connect the socket to the resulting address.

3. The API should support mutable operations on data buffers. In the same
way that nconc exists to provide a mutable version of append, there needs
to be a capability to recycle buffers, if desired, in the networking API. Sim-
ply, transferring a gigabyte of data through the API should not necessarily
create a gigabyte of garbage for the garbage collector. I say “not necessar-
ily” because in the same way that append exits, it may be more convenient
for simple programs to let the API and GC manage the creation and de-
struction of buffers when efficiency is less of a concern.

6 Related Issues

Note that a networking API, particularly a high-level networking API designed
to interface with a high-level language such as Lisp, does not exist in isolation.
In particular, such things as the implementation’s multi-threading model and
support for international character sets have an impact on the API.

6.1 Threading Models

Networking is inherently asynchronous and event-driven. Because of this, there
is an interplay between the networking API and the threading models available
in the system. There are two methods for dealing with the asynchronous, event-
driven nature of network programming:

1. Using non-blocking operations and polling to allow single-threaded appli-
cations to avoid blocking while waiting for data to arrive. This is com-
monly known as the select or polling model. Prior to multi-threading
becoming popular as an operating system feature, this was the most com-
mon model and the original BSD sockets API reflects this. In operating
systems that support only a single thread per process, the select mech-
anism must be integrated with all other event-delivery mechanisms (for
GUI events, for instance). This is why UNIX’s select handles general file
descriptors, allowing it to work with UNIX domain sockets and files of
various sorts, in addition to networking sockets.

2. Using multiple threads to wait on blocking operations. Commonly, a single
thread is dedicated to each connection or session and blocks on a socket
waiting for a particular event. This is known as the thread model. This
model has become more popular in recent years because multi-threading is
more available in popular operating systems and it is sometimes perceived
as being easier to write linear code for each thread rather than using event-
based dispatching. (Actually, you’re trading one set of complications for
another, but that’s another issue.)

9

It’s important to realize that both models have their place and have been
used to write successful, bug-free software. Both models can have problems
with scalability for large numbers of network connections, depending on how the
underlying operating system is implemented. The case of servers handling large
numbers of connections is becoming increasingly common in today’s always-
networked computing environment.

To handle large numbers of connections, the select model requires that the
select(2) system call or /dev/poll mechanism be highly efficient. There are
known problems with the standard UNIX select(2) API 1, which have led to
alternative mechanisms such as /dev/poll, epoll, etc.

The threading model is also not immune to scalability problems, but puts
pressure instead on the operating system’s scheduler. If each connection is
managed by a single thread and the server is handling 10,000 clients, the oper-
ating system will have to efficiently manage and schedule 10,000 threads. When
data arrives on a socket, the appropriate thread must be quickly unblocked and
placed on the run queue. Some operating systems consume too many resources
per thread and are thus limited in the number of threads that can be created.
What may seem like a large number of threads and processes may not seem
like a large number of clients. Before Linux’s NPTL support was added to the
kernel, Linux was very limited in the number of threads that could be created.
These limits ended up affecting other systems that ran on top of Linux, such
as Java, that used a thread-based networking model. Java’s event-driven, select
model called NIO was designed to allow Java programs to manage many more
sockets with fewer numbers of threads.

In this paper, we attempt to learn from the Java NIO experience and as-
sume that both models have advantages and will be utilized by programmers at
various times. Thus, the API provides both blocking and non-blocking sockets,
along with a polling mechanism that allows single-threaded programs to retrieve
events.

6.2 International Character Set Support

It is becoming increasingly common for operating systems and languages to
include support for international character sets beyond ASCII or ISO 8859-1
(Latin 1). Indeed, operating systems such as Windows NT were designed with
Unicode support from the start. Newer programming languages such as Java
use Unicode as the base character type. Indeed, some Common Lisp implemen-
tations such as CLISP and SBCL have integrated Unicode support.

International character set support interacts with the network API at the
point where strings are read/written to the network socket (often through the
stream interface in Common Lisp). At that point, abstract characters need to
be converted to or from a specific byte encoding format.

It’s important to realize that this is actually more of a general issue for
streams than it is a networking-specific issue. The stream interface needs to

1For example, see [1] for more information. It’s a good starting point for all sorts of
information regarding building efficient networking servers.

10

be enhanced to deal with the issues of character transfer coding formats and
communication channels rather than simply assuming that characters are byte-
sized and can be written directly in their raw binary format. If character sets are
handled correctly at the the streams level, then the networking interface simply
has to present a byte-oriented transmission channel to the streams interface and
the right things will happen automatically. Java actually did a reasonable job
of this fairly early on in its development and the benefits have been substantial.

In this paper, we assume that the streams interface handles things correctly
and that the networking layer can be blissfully unaware of any character set
issues.

7 Proposed API

To be written...

8 References

References

[1] The C10K Problem, http://www.kegel.com/c10k.html.

11

