
Maintaining Portable Lisp Programs
It’s a bug, not a feature

Christophe Rhodes∗

February 5, 2004

Abstract

We examine the use of read-time feature conditionals, with particular emphasis on writing
portable Common Lisp code which aspires to both forwards- and backwards-compatibility.
We examine cases from real libraries which demonstrate the various pitfalls, and propose
a scheme for robust treatment of implementation-specific functionality by performing pro-
grammatic tests at the appropriate time. We discuss the additional difficulties in dealing
with differences in the operating environment, and suggest that agreements between Lisp
distributors would alleviate these difficulties.

1 Introduction

Common Lisp is enjoying a growth in interest, driven by many factors: the steady improvement of
free and low-cost implementations (see e.g. [1–3]); high-quality libraries for common programming
tasks are more likely to be available; and the suitability of Common Lisp environments for solving
complex problems [4–6] to name but three. With this growth in interest comes a fresh perspective
on the language and its idioms, and it is in this light that we examine one problem that historically
has had multiple solutions, some more successful than others.

Common Lisp is by design a specified, multiply-implemented language. The first specification
[7] was a design by consensus of a new dialect of Lisp attempting to unify the various development
communities of MacLisp, Zetalisp, Spice Lisp, NIL and S-1 Lisp, among others. As such, it was
deemed necessary from the start to provide a means for querying the implementation for its
characteristics, to allow the programmer to take advantage of system-specific features when they
are available, yet preserve the portability of the program.

The mechanism for achieving this is the use of read-time conditionals, which causes the pro-
gram text seen by the Lisp compiler to be dependent on the contents of the variable *features*;
if a given feature keyword :feature is present in the *features* list, then

(#+feature a #-feature b)

is read in as the singleton list (a); if it is not present, the reader returns (b).
The Common Lisp standard underwent a decade-long revision process under the auspices

of ANSI, being finalised in 1994 as the ANSI standard for Common Lisp [8]. As part of this
process, several keyword features were given standard meanings; among them were :cltl2,
:ansi-common-lisp and :ieee-floating-point. Thus, Common Lisp programs can com-
pletely portably query the implementation for whether it purports to conform to the ANSI
Common Lisp standard, or to IEEE 754 standard for floating point.

∗C.S.Rhodes@damtp.cam.ac.uk

1



The #+ construction must be used judiciously if unreadable code is not to result. The
user should make a careful choice between read-time conditionalisation and run-time
conditionalisation.

— Common Lisp the Language, section 22.1.4

This admonishment in the defining document of the language has been sadly, if not ignored, at
least treated as less important than it should. The scope of the standardised features is limited,
and with the advent of distributed development on publically-accessible Lisp programs, well-
written read-time conditionals take on more importance to prevent a combinatorial explosion of
maintenance headaches. We could expect that maintainablilty would be assisted by the ability
to use the whole of the Common Lisp environment at read-time and at compile-time; however,
as of today, some Lisp libraries cause unnecessary headaches for their maintainers and users.
The aim of this article is to characterise the problems caused by injudicious use of #+, and to
propose a recipe for robust read-time conditional treatment.

We shall begin in section 2 by looking at some historical attempts at rationalising the use of
read-time conditionals by implementors and by users. In section 3, we examine some past and
present uses of read-time conditionals in libraries, and discuss the problems found; we propose a
method for robust use of read-time conditionals in section 4, and draw conclusions in section 5.

2 Historical Perspective

It is generally considered wise for an implementation to include one or more features
identifying the specific implementation, so that conditional expressions can be written
which distinguish idiosyncrasies of one implementation from those of another.

— Common Lisp the Language, section 22.1.4

There has been at several points in the past a strong perception that knowing about imp-
lementation-defined features would be a good thing; one such example is the existence on the
community-driven CLiki [6] site of a page detailing the features present in a number of different
implementations; before this, the Association of Lisp Users has attempted to maintain a central
registry of implementation-defined features.

As we shall see, this perception of a need for centrally-defined features is largely misguided.
We shall observe exceptions, but in general, the library writer or end-user of a Lisp implementa-
tion need not, and indeed should not, interact with the implementation-defined features present
in *features* on the startup of the environment.

Recently, on the CMUCL development mailing list, a proposal was made [9] to standardise
the treatment of version-indicating features, along the lines of the Genera software product; a
scheme with a similar effect is present in Franz Inc.’s Allegro Common Lisp, using the :version>=
extension to read-time conditionals. This proposal, providing for consistent treatment of major
and minor software release numbers, is perhaps best illustrated by an example: consider version
3.2 of a product Foolisp; then the following keywords would be present on *features*:

:foolisp-3.2, :foolisp-3.1, :foolisp-3.0,
:foolisp-3, :foolisp-2, :foolisp-1

This allows for read-time conditionals which trigger on precise criteria (see table 1). However,
there are problems with this. Firstly, this mapping disavows the existence of interim, unreleased
versions of a software product.

2



Criterion Conditional expression
Exactly version 3.2 (and foolisp-3.2 (not foolisp-3.3))
Version 3.2 or later (or foolisp-3.2 foolisp-4)
Version 3, 3.2 or later foolisp-3.2

Table 1: Conditional expressions for version discrimination in a hypothetical Foolisp implemen-
tation.

A system as complex as a Common Lisp compiler will typically undergo substantial revision
between releases, whether these releases are time-boxed or scheduled when some set of criteria
have been met. However, at least the core developers of a compiler, explicit beta-testers, and
possibly many more people if development is happening in a distributed manner associated with
Free Software, will attempt to test or even deploy with a system that is not a released version
of the software. In such cases, the above, supposedly ‘precise’ criteria break down, because the
assumption of discrete instances is not valid.

Secondly, these numerous revisions prove problematic in another respect: they strongly in-
dicate that product evolution is likely to be non-monotonic. An underlying assumption behind
the above scheme for managing *features* is that minor revisions of a product do not break
interface compatibility, and to an extent this assumption is borne out in the real world. How-
ever, it is not too hard to envisage exceptions to this rule; they are typically found in the region
where a bug fix blurs into an interface change. For instance, a common extension to the Com-
mon Lisp standard is the Gray interface for user stream redefinition [10], which did not specify
read-sequence and write-sequence extensions; as a consequence, incompatible extensions co-
existed for a while, before the interface being agreed across implementations, which necessitated
breaking of backward compatibility in some cases.

The most problematic objection to software authors using this feature scheme, however,
revolve around the implicit assumption that the software author has future knowledge that is,
in fact, impossible to have. A request for conditional compilation for ‘exactly version 3.2’, for
instance, assumes knowledge of the state of version 3.3: knowledge that the developer cannot
have until close to the release of version 3.3. In other words, while this class of keyword feature
provision by implementors is useful to the developer by providing the ability to express such
a request during the course of maintenance of a piece of software, it is of no help in building
software that requires less maintenance.

3 Uses of Read-Time Conditionals

In effect, using #+ or #- in a conforming program means that the variable *features*
becomes just one more piece of input data to that program. Like any other data
coming into a program, the programmer is responsible for assuring that the program
does not make unwarranted assumptions on the basis of input data.

— Common Lisp the Language, section 22.1.4

Let us examine some of the attempts that have been made in the past to write portable
code, in order to evaluate what techniques are likely to cause problems and how we can avoid
maintenance headaches.

3



Listing 1 From defsystem.lisp, revision 1.61 in CLOCC CVS.
(eval-when (compile load eval)
#+(or (and allegro-version>= (version>= 4 0)) :mcl :sbcl)
(pushnew :cltl2 *features*))

Listing 2 From defsystem.lisp, revision 1.61 in CLOCC CVS.
#+(and :cltl2 (not (or :cmu :clisp :sbcl

(and :excl (or :allegro-v4.0 :allegro-v4.1))
:mcl)))

(eval-when (compile load eval)
(unless (find-package "MAKE")
(make-package "MAKE" :nicknames ’("MK") :use ’("COMMON-LISP"))))

3.1 MK:DEFSYSTEM

We start our examination of previous treatments of read-time conditionals with excerpts from the
MK:DEFSYSTEM utility for dealing with software compilation, originally by Mark Kantrowitz
but now maintained by volunteers in the CLOCC project. This is a project with a venerable
history; the revision logs go back to 1990 – well before the ANSI standard was finalised. Given
this, it is perhaps not too surprising that the program has accreted some features undesirable to
maintainers.

The intent in Listing 1 is to indicate compatibility with the second edition of Common Lisp
the Language [11] “or above”, but there are two problems with this. Firstly, the language as
standardised by ANSI is not ‘backward-compatible’ with the standardisation snapshot of the
second edition of Common Lisp the Language; therefore, depending on the rest of the code
in the MK:DEFSYSTEM utility, this implicit assumption that sufficiently-conforming (with
ANSI) implementations are good for programming to the CLtL2 ‘standard’ is not safe. Sec-
ondly, the :cltl2 feature is reserved to indicate exactly CLtL2 compatibility – the features
:cltl2 and :ansi-common-lisp are, for a conforming Common Lisp implementation, mutually
exclusive, and other libraries should be able to depend on this. A better means of achieving
the effect of the above would be to replace read-time conditional tests for :cltl2 with tests for
(or :cltl2 :ansi-common-lisp) in the remainder of the utility.

In listing 2 we see another headache for maintainers: arising from the fact that earlier Lisps
did not support defpackage. This fragment attempts to emulate the package creation effect
of defpackage in those lisps which do not have it. However, this is a perfect example for the
non-maintainability of this style of porting; each time the MK:DEFSYSTEM library is ported
to a new, fully standards-conforming Common Lisp, an entry for the implementation must be
made in the above feature conditional. A better method for achieving the same end is shown in
Listing 3.

The code in listing 4 is compensating for a CMUCL deficiency in versions earlier than ver-
sion 17. However, it will fail to work in CMUCL 19a, when the :cmu18 feature (which has
been present throughout the released versions of the CMUCL 18 series) is removed. Although
this is no longer an issue, as this workaround for a long-gone CMUCL deficiency was removed
from MK:DEFSYSTEM in revision 1.61, preserving the support of ancient Lisp versions while
behaving gracefully in the future could be achieved by an idiom of the form in listing 5.

The code in listing 6 deals with Franz Inc.’s Allegro Lisp’s “modern” mode. However, be-

4



Listing 3 An improved version of listing 2.
(eval-when (compile eval)
(unless (find-symbol "DEFPACKAGE" "COMMON-LISP")
(pushnew :no-defpackage *features*)))

#+no-defpackage
(eval-when (compile load eval)
(unless (find-package "MAKE")
(make-package "MAKE" :nicknames ’("MK") :use ’("COMMON-LISP"))))

Listing 4 From defsystem.lisp, revisions before 1.61 in CLOCC CVS.
:directory
#-(and :cmu (not (or :cmu17 :cmu18)))
directory
#+(and :cmu (not (or :cmu17 :cmu18)))
(coerce directory ’simple-vector)

Listing 5 An improved version of listing 4.
(eval-when (:compile-toplevel :load-toplevel :execute)
(when (typep (pathname-directory #p"") ’simple-vector)
(pushnew ’directory-is-simple-vector *features*)))

[...]

:directory
#-mk::directory-is-simple-vector directory
#+mk::directory-is-simple-vector (coerce directory ’simple-vector)

Listing 6 From defsystem.lisp, revision 1.61 in CLOCC CVS.
#+allegro
(eval-when (:compile-toplevel :load-toplevel :execute)
(unless (or (find :case-sensitive common-lisp:*features*)

(find :case-insensitive common-lisp:*features*))
(if (or (eq excl:*current-case-mode* :case-sensitive-lower)

(eq excl:*current-case-mode* :case-sensitive-upper))
(push :case-sensitive common-lisp:*features*)

(push :case-insensitive common-lisp:*features*))))

5



Listing 7 From cl-ilisp.lisp, revision 1.21 in ILISP CVS.
#+:clisp
(setq system::*command-index* (max 0 (- system::*command-index* 2)))
;; [do the same gross hack for ACL. -- rgr, 27-Sep-02.]
#+allegro (setq tpl::*this-command-number*

(max 0 (- tpl::*this-command-number* 2)))

Listing 8 From cl-ilisp.lisp, revision 1.21 in ILISP CVS.
#-(or sbcl :cormanlisp)
(eval-when (load eval)
(when
#+(and :CMU (or :CMU17 :CMU18))
(eval:interpreted-function-p #’ilisp-matching-symbols)
#-(and :CMU (or :CMU17 :CMU18))
(not (compiled-function-p #’ilisp-matching-symbols))
(ilisp-message *standard-output*

"File is not compiled, use M-x ilisp-compile-inits")))

cause it is pushing keywords onto *features* at run-time, not only at build time, it runs the
risk of collision with other pieces of software which may not have the same understanding of
:case-sensitive and :case-insensitive (for instance, another piece of software may use
those keywords for choices of its own user interface). Also, there is a certain amount of scope for
confusion in the use of these read-time conditionals, as #+case-insensitive presumably means
the same as #-case-sensitive and vice versa.

3.2 ILISP

ILISP is an add-on package for GNU Emacs and XEmacs to facilitate interaction with so-called
“inferior” lisps – Common Lisp (or Scheme) processes running as children of the Emacs editor
session; it provides a means for requesting evaluation of specific forms, compilation of files or
entire systems, querying the running Lisp for argument list or cross-referencing information, and
other such functionality. Also, it provides a buffer for direct interaction with the underlying Lisp;
see [12] for a discussion of its features and a comparison with other Emacs packages.

Since manipulating user interface internals (as in listing 7, for instance) is a common issue
in the interaction between ILISP and a Lisp which displays a history number in its prompt, it
should be factored into a function of its own. Otherwise, adding the implementation for SBCL’s
(optional) sb-aclrepl, or other customised read-eval-print loops, will cause this to degenerate over
time into a mess of read-time conditionals.

Whether the implementation of this function is in one place, or once per interface, is largely
(though see [13] for a stronger view) a matter of taste; we suggest the latter as this localises the
effort of porting the relevant protocol for a new implementation, and the logic for finding the
relevant interface definitions is trivially automatable using a system definition tool.

Listing 8 shows a more problematic case. It will fail to do what is intended in a number of
cases: not only if CMUCL releases version 19 (with a similar failure cause as in listing 4), but
also if cmucl changes the internal implementation of its minimally-compiled but not compiled-
to-machine-code functions, or if SBCL or Corman Lisp add an interpreter to their environments

6



Listing 9 From Lisp-Dep/fix-sbcl.lisp, revision 1.7 in McCLIM CVS.
(eval-when (:compile-toplevel :execute)
(when (find-package "SB-MOP")
(pushnew :sb-mop *features*)))

(defpackage #:clim-mop
(:use #+sb-mop #:sb-mop #-sb-mop #:sb-pcl)
#-sb-mop
(:shadowing-import-from #:sb-pcl #:eql-specializer-object))

(defmacro clim-lisp-patch:defconstant (symbol value &optional docu)
‘(defvar ,symbol ,value ,@(and docu (list docu))))

(these implementations are, at the time of writing, essentially compiler-only).
This form of introspection is difficult to arrange in a robust manner, however; there is no re-

quirement for an implementation to advertise its evaluation model. Given this, it is probably best
to punt on the possibility of a radical change in an implementation’s evaluator, and to treat the
inner feature conditionals as being a test for the existence of the eval:interpreted-function-p,
better expressed in a manner similar to listing 3 above.

3.3 McCLIM

McCLIM [14] is an implementation from scratch of the Common Lisp Interface Manager (version
2.0) standard: a library for writing powerful user interfaces. By necessity, it uses functionality
that is not completely standardised (such as in interfacing to graphical backends: at present X,
OpenGL and PostScript implementations are extant), and for convenience it also makes strong
use of the Metaobject Protocol [15]. Since these features do not have standard or even usual
locations in Lisp implementations, the library must conditionalise to find and use them.

McCLIM has one file per supported implementation to execute the necessary conditionalisa-
tion to bring the implementation up to a common base of functionality. Listing 9 contains an
excerpt from the file for the SBCL implementation, with some noteworthy features. Firstly, the
test for finding the location of the MOP functionality is programmatic, not depending on a spe-
cific meaning of a given implementation-provided keyword; this is therefore a low-maintenance
strategy for the library implementors. The use of the :sb-mop keyword is suboptimal, as it is,
in some sense, part of the Lisp implementation’s namespace (SBCL uses keywords starting with
:sb- to customise its own build); the effect on this code of the SBCL implementors deciding
to define a meaning for the :sb-mop keyword themselves is not necessarily disastrous, but it
could certainly cause problems; it would probably have been better to use a symbol such as
clim-lisp-patch::sb-mop for later discrimination instead (see also listing 5 for another exam-
ple of this technique). It is perhaps also worth noting the use of a patch package to transparently
and conformingly alter the behaviour of the Lisp implementation.

4 Recommendations

By now, it should be clear how to design robust, maintainable feature conditional expressions.
The recipe has several elements, in decreasing order of importance:

7



• test programmatically for the existence of the functionality or interface required;

• avoid exporting features that are in a public package (keyword, cl-user), using instead a
package that is under the library’s control. If you must, choose a name that is unlikely to
clash with any other use;

• where possible, define a protocol for implementation-dependent support, rather than using
ad-hoc feature tests within the library or application logic;

• avoid using two features where one (and its absence) will do;

• try to avoid pushing features on at load-time.

4.1 Developing under IDEs

This last ingredient merits more discussion. The principle behind it is largely aesthetic: namely,
that a large *features* list obscures programmer comprehension. However, it does raise an
issue with the above recipe: not adding features to the *features* list at load-time has an
unfortunate interaction with rapid, interactive development.

Typically, in Lisp development sessions, one makes changes to individual functions and asks
the running lisp to recompile them ‘on the fly’. It then behoves the programmer to ensure that he
has a consistent state from which to make the modifications; if an application has been deployed
with the modifications to *features* not being evaluated at :load-toplevel time, and if
changes need to be made to those portions of the code base that are implementation-specific,
the relevant feature-examining clauses must be evaluated prior to incremental modification. This
provides a further argument for localising feature-conditional code inside implementation-specific
files providing an (internal) functional protocol; this localisation allows the desired incremental
modifications to take effect automatically by simply compiling and loading the file in question.

It should also be mentioned that a possible effect of different *features*-manipulation policy
at compile- and load-times is a degradation in the quality of bug reports; if a user finds the need
to report a problem, *features* can no longer be taken as an authoritative description of the
user’s Lisp environment.

4.2 Environmental discrimination

There is another, a priori valid, use of *features* that would in principle benefit from a central
registry of cross-implementation defined keyword meanings; namely, querying the Lisp about the
environment in which it is running. Certain libraries may require interaction with the operating
system, and as such may wish to compile conditionally implementations of functionality specific
to a given OS, but portable across Lisp implementations.

Rigorously defining and enforcing keyword features with given meanings would allow this.
However, an ultimately more useful set of definitions would be a standard set of responses to
the built-in functions software-type and software-version; in particular, the ability to query
these functions reliably both at compile-time and at run-time would allow for robust diagnostics
within a library, with a finer granularity in detecting the version of the operating system than
could be provided by any scheme based on *features*.

5 Conclusions

There are now many implementations of Common Lisp, some programmed by re-
search groups in universities and some by companies that sell them commercially,

8



and a number of useful programming environments have indeed grown up around
these implementations. What is more, all the goals stated above have been achieved,
most notably that of portability. Moving large bodies of Lisp code from one computer
to another is now routine.

— Common Lisp the Language, 2nd edition, section 1.1

We have examined the historical use of *features* in the quest for developing low-mainte-
nance, portable library code, examining problems that have surfaced over the course of decade-
long maintenance. While the essential portability referred to in the above quotation is certainly
possible, we have seen that there are idioms common in existing code that lead to suboptimal
maintainability. We have presented a list of instructions aiming to guide the development of
maintainable conditional compilation, and identified the area of interaction with the outside
environment where support from an agency external to the implementation itself is necessary.

Acknowledgements

Thanks to Brian Mastenbrook, Rudi Schlatte and Robert Strandh for reading early drafts of this
paper and providing useful feedback.

References

[1] Robert A. Maclachlan. CMU Common Lisp User’s Manual. Technical report, School of
Computer Science, Carnegie-Mellon University, 1992.

[2] Christophe S. Rhodes et al. Steel Bank Common Lisp User Manual. in preparation.

[3] Roger Corman. Corman Lisp User Guide. Technical report, Corman Technologies, 2003.

[4] Marco Antoniotti. Two Bioinformatics Applications of Common Lisp. In International Lisp
Conference Proceedings, 2002.

[5] Marc Battyani. Automatic Web Application Generation. In International Lisp Conference
Proceedings, 2002.

[6] Daniel Barlow. CLiki: Collaborative Content Management for Community Web Sites. In
International Lisp Conference Proceedings, 2002. http://www.cliki.net/.

[7] Guy L. Steele, Jr. Common Lisp: The Language. Digital Press, 1984.

[8] Kent Pitman and Kathy Chapman, editors. Information Technology – Programming Lan-
guage – Common Lisp. Number 226–1994 in INCITS. ANSI, 1994.

[9] Robert G. Rogers, Jr. Re: adding version>=. CMUCL Implementors mailing list, Septem-
ber 2003. Message-ID: <16244.60579.258491.103143@rgrjr.dyndns.org>.

[10] David N. Gray. Issue STREAM-DEFINITION-BY-USER. Technical report, ANSI, 1989.
http://www.nhplace.com/kent/CL/Issues/stream-definition-by-user.html.

[11] Guy L. Steele, Jr. Common Lisp: The Language. Digital Press, second edition, 1990.

[12] Bill Clementson. Using Emacs as a Lisp IDE. In International Lisp Conference Proceedings,
2003.

9



[13] Henry Spencer and Geoff Collyer. #ifdef Considered Harmful, or Portability Experience
with C News. In Proceedings of the Summer USENIX Conference, 1992.

[14] Robert Strandh and Timothy Moore. A Free Implementation of CLIM. In International
Lisp Conference Proceedings, 2002. http://www.cliki.net/.

[15] Gregor Kizkales, Jim des Rivières, and Daniel G. Bobrow. The Art of the Metaobject
Protocol. MIT Press, 1991.

10


