
David Sweet, et al.

201 West 103rd St., Indianapolis, Indiana, 46290 USA

KDE 2.0 Development

00 8911 FM 10/16/00 2:09 PM Page i

KDE 2.0 Development
Copyright © 2001 by Sams Publishing
This material may be distributed only subject to the terms and conditions set
forth in the Open Publication License, v1.0 or later (the latest version is
presently available at http://www.opencontent.org/openpub/).

Distribution of the work or derivative of the work in any standard (paper) book
form is prohibited unless prior permission is obtained from the copyright holder.

No patent liability is assumed with respect to the use of the information con-
tained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omis-
sions. Neither is any liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0-672-31891-1

Library of Congress Catalog Card Number: 99-067972

Printed in the United States of America

First Printing: October 2000

03 02 01 00 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to
the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The authors and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book.

ASSOCIATE PUBLISHER

Michael Stephens

ACQUISITIONS EDITOR

Shelley Johnston

DEVELOPMENT EDITOR

Heather Goodell

MANAGING EDITOR

Matt Purcell

PROJECT EDITOR

Christina Smith

COPY EDITOR

Barbara Hacha

Kim Cofer

INDEXER

Erika Millen

PROOFREADER

Candice Hightower

TECHNICAL EDITOR

Kurt Granroth
Matthias Ettrich
Kurt Wall

TEAM COORDINATOR

Pamalee Nelson

MEDIA DEVELOPER

Dan Scherf

INTERIOR DESIGNER

Anne Jones

COVER DESIGNER

Aren Howell

PRODUCTION

Steve Geiselman

00 8911 FM 10/16/00 2:09 PM Page ii

Overview
Introduction

PART I Fundamentals of KDE Application Programming

1 The K Desktop Environment Background

2 A Simple KDE Application

3 The Qt Toolkit

4 Creating Custom KDE Widgets

5 KDE User Interface Compliance

6 KDE Style Reference

PART II Advanced KDE Widgets and UI Design Techniques

7 Further KDE Compliance

8 Using Dialog Boxes

9 Constructing a Responsive User Interface

10 Complex-Function KDE Widgets

11 Alternative Application Types

PART III Application Interaction and Integration

12 Creating and Using Components (KParts)

13 DCOP—Desktop Communication Protocol

14 Multimedia

PART IV Developer Tools and Support

15 Creating Documentation

16 Packaging and Distributing Code

17 Managing Source Code with CVS

18 The KDevelop IDE: The Integrated Development Environment for KDE

19 Licensing Issues

00 8911 FM 10/16/00 2:09 PM Page iii

PART V: Appendixes

A KDE-Related Licenses

B KDE Class Reference

C Answers

Index

00 8911 FM 10/16/00 2:09 PM Page iv

Contents
Introduction 1

PART I Fundamentals of KDE Application Programming 3

1 The K Desktop Environment Background 5
Motivation for a Free Desktop ..6
Why Develop with KDE? ..7
KDE Organization and Resources ..9
System Requirements ..9
Obtaining and Installing KDE ..9

Installing Binary Packages ..10
Installing Source Packages ..11

Licenses and Legalities ..11
Let’s Code, Already! ..12

2 A Simple KDE Application 13
The Linux/UNIX Programmer’s Desktop ..14

Necessities for Editing Code ..14
Debuggers Available for Linux ..15

Compiling a KDE Program ..15
Using make ..17

KDE Application Structure ..19
KApplication ..19
KTMainWindow ..20
A Typical main() Function ..22

GUI Elements ..23
The Menubar ..25
The Toolbar ..28
The Status Line ..28

Programming Conventions ..28
Naming Conventions ..29
Class Documentation ..29

Summary ..29
Exercises ..30

3 The Qt Toolkit 31
What It Is For (Look and Feel) ..32
Inside the Qt Toolkit ..32

QObject ..33
QWidget ..33
QPainter ..36
QPushButton ..38

00 8911 FM 10/16/00 2:09 PM Page v

KDE 2.0 DEVELOPMENT

Signals and Slots ..40
Creating a Slot ..41
Emitting a Signal ..42
Connecting a Slot to a Signal ..42
Signals and Slots with Parameters ..44
Slots in Temporary Classes ..45

Meta Object Compiler (moc) ..45
Using the moc Tool ..46
Sample Use of the moc ..46

The Utility Classes ..48
Templates ..48
Standard Template Library (STL) ..49
QList—A Qt Template Class ..49

Special Features (ImageIO, OpenGL, Mesa)51
ImageIO ..51
OpenGL, Mesa ..53

Summary ..56
Exercises ..56

4 Creating Custom KDE Widgets 57
Widget Basics ..58

Understanding the QWidget Base Class ..58
Widget Attributes ..61
Signals and Slots ..61
Sample Widget Class Declaration ..62
Documentation ..63

Painting Widgets ..63
When Painting Occurs ..64
Repainting Efficiently ..64
Painting Your Widget with QPainter ..65
Recording Drawing Commands with QPicture65
A Simple Widget ..65

Using Child Widgets ..71
Geometry Management ..73
Playing the Game ..78

Handling User Input ..78
Mouse Presses ..82
Keystrokes ..82

Summary ..83
Exercises ..84

5 KDE User Interface Compliance 85
The KDE Document-Centric Interface ..86

The Menubar and the Toolbar ..87

vi

00 8911 FM 10/16/00 2:09 PM Page vi

CONTENTS

Creating and Manipulating Actions ..88
The Statusbar ..105
Content Area ..109

Helping the User Use Your Application ..112
ToolTips, What’s This?, and More ..112

Standard Dialog Boxes ..118
Summary ..123
Exercises ..123

6 KDE Style Reference 125
Accessing the Standard Actions ..126
Session Management ..129
The Standard KDE Icons ..133
Internationalization ..135
Playing Sounds ..136
User Notifications ..136
Executing Other Programs ..138
Network Transparency ..140
User Friendliness ..144
Summary ..145
Exercises ..145

PART II Advanced KDE Widgets and UI Design Techniques 147

7 Further KDE Compliance 149
Drag and Drop ..150

Responding to Drop Events ..150
Starting a Drag ..153

Application Configuration Information ..157
Accessing Configuration Files ..158

Session Management ..161
Application Resources ..166

Standard Resource Locations ..166
Application Resources ..167
Creating .desktop Files ..172

Network Transparency ..172
Programming Example ..172

Summary ..177
Exercises ..177

8 Using Dialog Boxes 179
Getting Started with the Dialog Widgets ..180
Dialog Layout the Simple Way ..183
Dialog Modality—Modal or Modeless Dialogs191

Removal of Modeless Dialogs ..194

vii

00 8911 FM 10/16/00 2:09 PM Page vii

KDE 2.0 DEVELOPMENT

KDE User-Interface Library (kdeui) ..196
Ready-to-Use Dialogs ..196
Building Blocks (Manager Widgets) ..197

Dialog Style and KDialogBase ..199
A Larger Example: The Option Dialog in KEdit201
User Interface Design Rules for Dialogs ..210
Summary ..211
Exercises ..211

9 Constructing A Responsive User Interface 213
The Importance of Responsiveness ..214
Speeding Up Window Updates ..215

Experimenting with KQuickDraw ..219
Flicker-free Updates ..220

Performing Long Jobs ..220
Using QTimer to Perform Long Jobs ..220
Enabling/Disabling Application Functions225
Speed Issues ..226
An Alternative to QTimer ..227

Summary ..229
Exercises ..230

10 Complex-Function KDE Widgets 231
Rendering HTML Files ..232

A Simple Web Browser ..232
Manipulating Images ..235

Comparison of QImage and QPixmap ..236
An Image Viewer/Converter ..237

Checking Spelling ..241
Using KSpell in an Application ..241
Modal Spell Checking ..244
Configuring KSpell ..244

Accessing the Address Book ..246
Selecting a Contact ..246

Summary ..249
Exercises ..250

11 Alternative Application Types 251
Dialog-Based Applications ..252

Creating the Dialog-Based Application ..252
Single-Instance Applications ..255
Panel Applets ..257
Summary ..260
Exercises ..260

viii

00 8911 FM 10/16/00 2:09 PM Page viii

CONTENTS

PART III Application Interaction and Integration 261

12 Creating and Using Components (KParts) 263
The Difference Between Components and Widgets264
The KDE Component Framework ..265
Describing User Interface in XML ..266
Read-Only and Read/Write Parts ..268

Read-Only Parts ..268
Read-Write Parts ..268

Creating a Part ..269
Making a Part Available Using Shared Libraries273
Creating a KParts Application ..277
Embedding More Than One Part in the Same Window280
Creating a KParts Plug-in ..282
Summary ..284

13 DCOP—Desktop Communication Protocol 285
Motivation ..286
History ..288
Underlying Technologies ..290

ICE—The Inter-Client Exchange Mechanism290
Data Streaming ..291

Architecture ..292
Description of DCOP’s Programming Interface293

Starting it All ..294
Using send(), call(), process(), and Friends294
Automated Elegance—dcopIDL ..304
Makefile Magic ..308

Developer Concerns and Tools in DCOP ..310
Stay Informed ..310
Referencing DCOP Objects ..311
Signals and Slots Through the DCOP Server313
DCOP with an Embedded KPart ..314
Performance and Overhead ..315

DCOP Use in KDE 2.0—A Few Examples316
KUniqueApplication ..316
KNotify ..319
Little Jewels: dcop and kdcop ..320
Neighbors in Visit—dcopc, XMLRPC, and Bindings321

Summary ..322

14 Multimedia 323
Introducing aRts/MCOP ..324

Overview of This Chapter ..328

ix

00 8911 FM 10/16/00 2:09 PM Page ix

KDE 2.0 DEVELOPMENT

A First Glance at Writing Modules ..328
Step 1—Write an Interface Definition in the IDL Language329
Step 2—Pass That Definition Through mcopidl330
Step 3—Write an Implementation for the Interfaces You’ve

Declared ..331
Step 4—Register That Implementation with REGISTER_
IMPLEMENTATION ..332

Step 5—Maybe Write a .mcopclass File332
How to Use the New Module ..332

MCOP ..334
The IDL Language ..335
Invoking the IDL Compiler ..338
Reference Counting ..338
Initial Object References ..339
Accessing Streams ..340
Module Initialization ..341
Synchronous Versus Asynchronous Streams342
Connecting Objects ..344

Standard Interfaces ..345
The SimpleSoundServer Interface ..345
The KMedia2 Interfaces ..347
Stereo Effects/Effectstacks ..349

Implementing a StereoEffect ..350
IDL Again ..350
The Code ..350
Using the Effect ..352

KDE Multimedia Besides MCOP ..354
KNotify API and KAudioPlayer ..354
LibKMid ..355
aKtion ..355

The Future of MCOP ..356
Composition/RAD ..356
GUIs ..356
Scripting ..356
More Media Types ..357

Summary ..357
Exercises ..358

PART IV Developer Tools and Support 359

15 Creating Documentation 361
Documenting Source Code ..362

Obtaining and Installing KDOC ..362

x

00 8911 FM 10/16/00 2:09 PM Page x

CONTENTS

Using KDOC ..363
Library Documentation ..366
Class Documentation ..366
Method Documentation ..366
Class and Method Documentation ..367

Documenting Applications ..367
Obtaining and Installing KDE DocBook Tools369
Processing DocBook Documentation ..369
Writing DocBook Documentation for KDE370

Summary ..377

16 Packaging and Distributing Code 379
The Structure of a Package ..380
Administrative Files ..381

Configuring the Top-Level Directory ..382
Configuring the Subdirectories ..383
Updating Administration Files ..385
Creating Shared Libraries ..386
Using Test Results ..386
Make Targets ..387

Distributing Your Application ..388
Informative Text Files ..388
Cleaning Up ..389
Uploading and Announcing Software ..389

Summary ..390

17 Managing Source Code with CVS 391
What Is CVS? ..392

The Role of CVS in the KDE Project ..392
CVS Organization ..393

Module Names ..393
Branches ..394

Accessing Source Code in CVS ..394
Snapshots ..394
The WWW Interface to CVS ..395
CVSup ..395
CVS Accounts ..396

Installing and Using CVSup ..396
Installing and Using cvs ..397

Frequently Used Commands ..398
Summary ..400

xi

00 8911 FM 10/16/00 2:09 PM Page xi

KDE 2.0 DEVELOPMENT

18 The KDevelop IDE: The Integrated Development Environment
for KDE 401

General Issues ..402
Be User Friendly—Be Developer Friendly404

Creating KDE 2.0 Applications ..409
Available Templates for KDE 2.0 Projects411
Editing Your Project ..413

Getting Started with the KDE 2.0 API ..413
How to Search for Information ..415

The Classbrowser and Your Project ..416
The File Viewers—The Windows to Your Project Files419

The Logical File Viewer (LFV) ..419
The Real File Viewer (RFV) ..420

The KDevelop Debugger ..421
Setting the Debugger Options ..422
How to Enable Debugging Information ..423
Running a Debugging Session ..423

KDevelop 2.0—A Preview ..425
Summary ..426

19 Licensing Issues 427
What Are the “Issues?” ..428

What Licenses Are Involved? ..428
How Do the Licenses Affect Me? ..429

License Usage by KDE ..430
Library GNU Public License (LGPL) ..430
The GNU Public License (GPL) ..431
The GPL Versus Qt “War” ..431

The License Usage by Qt ..433
The FreeQt License ..433
The Q Public License (QPL) ..433

The KDE/Qt License History ..434
The Genesis of the QPL ..435
The Evolution of the QPL ..435

Summary ..436

PART V Appendixes 437

A KDE-Related Licenses 439
GNU Library General Public License (LGPL)440
GNU General Public License ..449

xii

00 8911 FM 10/16/00 2:09 PM Page xii

CONTENTS

B KDE Class Reference 457

C Answers 459

Index 509

xiii

00 8911 FM 10/16/00 2:09 PM Page xiii

Foreword
With KDE, a UNIX dream came true—a friendly, graphical environment for the user and a
sophisticated application development framework for the developer. Well, to be perfectly pre-
cise, it didn’t just come true. There is not much point in the free software world just waiting
for something. Ultimately, somebody has to sit down and write the code. And many people did
exactly this, in hundreds of thousands of uncounted hours during their spare time. This makes
KDE even more interesting. It’s a user environment created by users of this environment and a
development framework written by developers, who wished they had found such a framework
when they discovered UNIX themselves.

People tend to think of KDE as the flashy icons, the fancy window decorations, or the startup
panel, but that’s not the whole truth. The bigger and more important part of KDE is the frame-
work—a framework that is powerful enough to create a customizable meta application such as
Konqueror, with all its plug-ins for various mime types.

If you think KDE 1.x was the definite proof that it was possible to create such a framework
based on the idea of shared code and voluntary work (nobody argues this today, but very few
people—especially in the free software community—believed it back when KDE was started),
then KDE 2.0 is supposed to become the masterpiece. Backed up by a stable, maintained, and
highly appreciated KDE 1.x, the KDE team undertook the major effort to redesign big parts of
the framework to reflect all the things learned from the first approach. Although software
architects may criticize this “second system syndrome,” it was indeed a time of big experi-
ments—and the release date was more and more delayed. The most obvious example was the
pervasive use of CORBA (Common Object Request Broker Architecture). After basing all
interclient communication on CORBA for almost a year, we had to learn the hard way that it
simply did not work out for our purposes. Although the architectural change from CORBA to
KParts/DCOP might have delayed the release again, we believe it was worth the wait.

We can safely assume that many of the older and partially retired KDE developers will look
back and dream of all the exciting applications they could have written during their active free-
software hacking phases if they had had this new framework back then. Please enjoy the privi-
lege of being able to write applications on UNIX without having to reinvent the wheel first.

Whenever you discover something you think could be done better or something that simply is
missing, please consider joining the KDE team to fix the issue. Your help will be highly wel-
comed and appreciated.

Oslo, 5 June 2000

Matthias Ettrich

00 8911 FM 10/16/00 2:09 PM Page xiv

Lead Author
David Sweet (http://www.andamooka.org/~dsweet) has just earned his Ph.D. in Physics
from the University of Maryland for pioneering work with Christmas tree ornaments (see the
cover of Nature, May 27, 1999). Concurrently, he has been writing bits of free software, an
article about KDE programming in Linux Journal, several chapters of Special Edition Using
KDE, and this book.

Contributing Authors
David Faure is a French KDE Developer (now living in the U.K.) working for MandrakeSoft.
He maintains the file manager (Konqueror) and works on the KDE libraries (component tech-
nology and network transparency) and the KOffice framework. David wrote a series of articles
on KDE programming for Linux Magazine France.

Kurt Granroth is a KDE Core member, developer, and evangelist and has been addicted to
KDE since being introduced to it two years ago. He started out with the “gateway” apps, such
as KBiff and KAppTemplate, but soon moved into the “hard” stuff—the base KDE libraries
and applications. He dives daily into a veritable soup of acronyms such as “XML-UI GUI
infrastructure” and “XML-RPC to DCOP gateway.” Now, the SuSE Labs pay Kurt to feed his
habit of working on KDE nearly every waking hour by employing him as a full-time Open
Source developer. Those hours that aren’t spent on KDE are covered by his wife and daughter
in their Phoenix, Arizona home. He can always be reached at granroth@kde.org and
http://www.granroth.org.

Daniel Marjamäki mainly contributes to the KDE project by writing documents for KDE pro-
grammers, and his current project is a dynamic KDE programming tutorial. Daniel lives in
Sweden, in a small town called Skävde. Daniel loves programming with all his heart and is a
student at the University of Skävde, where he studies computers and electronics.

Ralf Nolden was born on January 30, 1973 in Mayen, Germany. In 1996 he began his studies
to become an electrotechnical engineer at the Technical University of Aachen, Germany, and
there began work with UNIX Systems as well as KDE. Ralf has been involved with the
KDevelop project since its inception in 1998. Since then, he’s coded on the KDevelop IDE
itself, written the handbooks, and helped in customer support online. He also gives presenta-
tions of KDevelop at IT conventions. He’s involved in porting KDE to SCO’s UnixWare7
Operating System and wants to move to the United States after he has finished his diploma at
the university.

00 8911 FM 10/16/00 2:09 PM Page xv

KDE 2.0 DEVELOPMENT

Charles Samuels has been known to code too much and has accepted that it is difficult to get
him to stop. His actual existence has been questioned, but he claims to be a student living in
San Jose, CA. Charles is an active KDE user and developer—working on KNotify and
konv and intends to turn his hobby into a career.

Espen Sand received a MSc. degree in electrical engineering (micro electronics design) at the
Norwegian Institute of Technology (NTH) in 1995 and is employed as a research scientist at
Norsk Elektro Optikk A/S, a Norwegian R/D firm. Espen’s involvement with the KDE project
began in late 1998. He has designed and developed the next generation KDE hex editor and
participated in improving user-interface library (kdeui) elements such as the KDialogBase and
KJanusWidget classes. He made the standard “About KDE” dialog and enjoys improving soft-
ware whenever needed.

Cristian Tibirna’s main contributions to KDE include developing a smart window placement
algorithm and magnetic borders algorithm in a window manager, collaborating on the graphi-
cal effects engines, maintaining the international keyboard applet, and making tiny code adjust-
ments in many parts of the KDE source code base. He’s a contributor to news and how-to-help
pages on the KDE main Web site, a member of the Core Team, and an official representative
for Canada. Cristian is a chemical engineering Ph.D. student in his last months of studies. He’s
specializing in high-level numerical simulation techniques. Cristian has a strong interest in
object-oriented programming and finds that his hobby, KDE, is a particularly interesting field
of application for it. Cristian has also a great “real-world” passion: his son and his wife. They
are both happy KDE testers and they finally learned to accept Cristian’s endless hours on his
computers.

Stefan Westerfeld is the main developer of the KDE 2.0 multimedia technology. He started
loving UNIX-like operating systems at the age of 16, when he used one to write his own BBS
system in C++; he then ran a BBS for a few years on it. After that, he worked on a commercial
medical imaging application with some real-time requirements. But the preferred program he
wrote is aRts, a free modular real-time synthesizer, which is also the base for the KDE multime-
dia work he is doing. Besides programming, he is studying computer science and philosophy.

xvi

00 8911 FM 10/16/00 2:09 PM Page xvi

CONTENTS

Acknowledgments
I would like to thank all the contributing authors who have shared with the readers expertise
and insight that has come from having worked with the subject matter for countless hours and
in many cases, having invented it! And I’d like to thank Kurt Granroth for technical editing this
book. His comments and expertise were invaluable.

In Chapter 3, Daniel Marjamäki introduces us to Qt, the GUI toolkit on which KDE is built.

Charles Bar-Joseph explains, in Chapter 6, the KDE user-interface conventions.

Espen Sand teaches us, in Chapter 8, how to create KDE dialog boxes using the convenient
KDialogBase.

Cristian Tibirna guides us through a new KDE feature: DCOP, the Desktop Communications
protocol.

David Faure, in Chapter 12, explains KParts, an exciting and important technology new to
KDE 2.0.

Stefan Westerfeld teaches us how to develop for his Analog Realtime Synthesizer (aRts),
which is also the KDE 2.0 sound system, in Chapter 14.

Ralf Nolden shares his penchant for writing documentation in his introduction to KDevelop, a
KDE Integrated Development Environment.

Kurt Granroth clarifies the oft-discussed KDE/Qt licensing issues in Chapter 19.

I would also like to thank Heather Goodell and many others at Sams Publishing for their hard
work, patience, and continuing positive attitude. In particular, Shelley Johnston has put in
much extra effort to do The Right Thing by having this book published under an Open Source
license, the Open Publication License.

David Sweet

xvii

00 8911 FM 10/16/00 2:09 PM Page xvii

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

As an Associate Publisher for Sams Publishing, I welcome your comments. You can fax, email,
or write me directly to let me know what you did or didn’t like about this book—as well as
what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book,
and that because of the high volume of mail I receive, I might not be able to reply to every
message.

When you write, please be sure to include this book’s title and authors as well as your name
and phone or fax number. I will carefully review your comments and share them with the
author and editors who worked on the book.

Fax: 317-581-4770

Email: linux-programming@macmillanusa.com

Mail: Michael Stephens
Associate Publisher
Sams Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

00 8911 FM 10/16/00 2:09 PM Page xviii

Introduction
The K Desktop Environment (KDE) project is a worldwide collaboration of hundreds of soft-
ware engineers and hobbyists who are working to create a free, modern desktop interface with
a consistent graphical user interface (GUI) style across applications. The desktop is network
transparent, meaning that remote and local files can all be viewed, edited, and managed in the
same way; it has online hypertext help and features an integrated, full-featured Web browser.
The purpose of this book is to teach you how to take advantage of all that the KDE libraries
have to offer when you write your own applications.

Prerequisites
The authors of this book assume that you already know C++ at the beginner level or better.
Some familiarity with event-driven GUI programming would be beneficial, although it is not nec-
essary. If you are new to UNIX-style operating systems (such as Linux), you should probably
have a book about them on hand. You will need to know enough about UNIX to understand how
to compile and install software using the make utility (although some instructions are provided).

About the Open Publication License
Sams Publishing is releasing this book under the Open Publication License (see
http://www.opencontent.org for details) so that the text provided herein will be freely avail-
able to KDE developers and potential developers. If you are familiar with the GPL, you can
think of the OPL as a “GPL for books.”

The text will be posted on the World Wide Web at http://www.samspublishing.com and on
the KDE Developer's Corner at http://developer.kde.org.

Because the Open Publication License allows licensed work to be modified and redistributed
electronically, we can also provide the full text of this book online at http://kde20
development.andamooka.org. In addition, you will be able to participate in a community
annotation of the book and discuss issues related to KDE and KDE development with other
readers. This collected, organized wisdom and experience of the entire reader community will
be continuously available to every reader. We hope that, as the underlying technology changes,
this system will keep KDE 2.0 Development a correct, current, and complete source of KDE
development information.

Organization of This Book
This book is divided into five parts:

Part I: Fundamentals of KDE Application Programming

Part II: Advanced KDE Widgets and UI Design Techniques

01 8911 Intro 10/16/00 1:47 PM Page 1

KDE 2.0 DEVELOPMENT

Part III: Application Interaction and Integration

Part IV: Developer Tools and Support

Part V: Appendixes

Each part contains several related chapters. After reading the first part, you should feel com-
fortable reading the other four parts in any order. This type of organization should allow you
to create a working KDE application quickly and refine it or add more advanced KDE features
to it at your own pace. For example, the techniques presented in Chapter 9, “Constructing a
Responsive User Interface,” are not needed to create a working application, but they are often
needed to create a good, working application. Similarly, Chapter 15, “Multimedia,” explains
how to play sound and video with KDE. To most applications, sound is not essential, but it
may be incorporated to give the user more feedback after the main application functions are
implemented.

Part IV, “Developer Tools and Support,” discusses tasks that you may wish to perform that are
not directly required for application development, such as creating documentation, packaging
your application for distribution, and using an Integrated Development Environment.

Conventions Used in This Book
All text that relates to code or class names that you'll use in code are shown in a monospaced
computer font.

Placeholders appear in an italic computer typeface. Replace the placeholder with the actual
filename, parameter, or whatever element it represents.

Time to Develop!
In an article in Linux Journal (February, 2000), Eric S. Raymond says that the next market to
be entered (perhaps conquered?) by Linux is the desktop users market. In this author’s opinion,
KDE is the clear choice for taking Linux to this market. KDE 2.0 delivers a mature, robust,
feature-rich set of desktop applications and utilities, including an office suite, KOffice. This
suite fills a long-lasting void in the Linux free software world that has been crucial to keeping
Linux off of many desktops.

I suspect you'll find that programming with KDE will give you a much larger audience for
your applications, will result in decreased development time, and will provide hours of
enjoyment. I hope that this book will add to the enjoyment.

Good luck with KDE. You are doing The Right Thing ;).

2

01 8911 Intro 10/16/00 1:47 PM Page 2

IN THIS PART
1 The K Desktop Environment Background 5

2 A Simple KDE Application 13

3 The Qt Toolkit 31

4 Creating Custom KDE Widgets 57

5 KDE User Interface Compliance 85

6 KDE Style Reference 125

Fundamentals of KDE
Application Programming

PART

I

02 8911 Part01 10/16/00 1:44 PM Page 3

02 8911 Part01 10/16/00 1:44 PM Page 4

CHAPTER

1
The K Desktop Environment
Background

IN THIS CHAPTER
• Motivation for a Free Desktop 6

• Why Develop with KDE? 7

• KDE Organization and Resources 9

• System Requirements 9

• Obtaining and Installing KDE 9

• Licenses and Legalities 11

• Let’s Code, Already! 12

by David Sweet

03 8911 CH01 10/16/00 1:48 PM Page 5

Before I begin discussing programming, you should get to know a little bit about KDE: its
motivation, goals, and the reasons for its appeal. You’ll also need to install the programming
libraries and documentation.

Motivation for a Free Desktop
If you are a UNIX (or Linux, FreeBSD, and so on) user, you most likely are familiar with the
look and feel of a typical (non-KDE) X desktop. The window decorations (window borders,
minimize, maximize, close buttons, and so on) and the various programs that live in those win-
dows are typically drawn in different styles and operate differently. For example, the image
display and manipulation program display, part of the ImageMagik distribution, uses pull-
down menus and buttons that look and operate very differently from those used by the popular
PostScript preview program gv.

The pull-down menus in display are organized into a vertical list of headings in a separate win-
dow from the image being viewed, whereas the menus in gv are shown horizontally above and
in the same window as the PostScript document, and there are other differences. These types of
inconsistencies abound and make it more difficult to learn new X-based programs. If each
application used the same widgets (the basic elements of the GUI, such as buttons, scrollbars,
and menubars), window layout (that is, menubar at the top), and so on, the user would need
only learn application-specific functions when starting to work with a new application. That is,
the user would learn the interface once and could transfer that knowledge to all new applica-
tions.

When the K Desktop Environment (KDE) project began in October 1996, a standard existed—
the Common Desktop Environment (CDE), which was based on the Motif widget set—that
aimed to solve this problem. The main problem with this was that the Motif widget set was
expensive, and thus not appropriate for free software developers (indeed, many of the popular
UNIX programs are freely developed). The KDE founder, Matthias Ettrich, saw that a free
desktop could be developed by combining Qt, a well-constructed widget set developed by
TrollTech of Norway, with the General Public License (GPL) source code of many free soft-
ware applications. If the applications were all ported to the Qt widget set according to some set
of UI guidelines, users of KDE would have a desktop that contained the usual, expected func-
tionality but also had the comfortable feel of a uniform user interface. This plan was taken a
step further by adding a desktop file manager/Web browser and a panel (inspired by the CDE,
Windows 95, and OS/2 panels) for launching applications.

Fundamentals of KDE Application Programming

PART I
6

03 8911 CH01 10/16/00 1:48 PM Page 6

Why Develop with KDE?
I’ll give you three good reasons:

• It’s free (for free software development).

• It works very well.

• Your application can build on a collection of powerful, developer-friendly widgets that
range in function from a simple text label to a full-fledged Java- and JavaScript-enabled
HTML 4.0-compliant Web browser, component (or embedding) routines, and Internet
access classes that make your application network transparent.

Because KDE is a popular free software project, you’ll find it distributed with most Linux dis-
tributions, including Red Hat, SuSE, and Corel. You can always download the latest stable
alpha and beta versions for free and download the up-to-the-minute (roughly) development
code so that you can keep your application up-to-date and take advantage of new features as
they become available.

KDE works so well because the open development model encourages submission of bug
reports and patches and attracts skilled developers. KDE 1.1 was declared Innovation of the
Year at CeBIT ‘99, the world’s largest computer show and, in the same year, won LinuxWorld’s
Editor’s Choice award in the Desktop Environment category.

The KDE libraries offer services that help developers maintain the level of sophistication
expected of modern desktop applications. Classes offer network access via HTTP, FTP, and
other protocols, drag-and-drop between applications, interprocess communication, and interna-
tionalization and localization functions.

The large collection of widgets in the KDE and Qt libraries, implemented in C++ classes, are
well designed and functional. Because they are implemented in C++ classes, they can be sub-
classed to modify or extend their behavior. The widgets provide most of the KDE look and feel
so that you can spend more time working on the functions that make your application unique.
The Qt signal/slot mechanism (described in Chapter 3, “The Qt Toolkit”), which is a conve-
nient alternative to C-style callback functions, allows you to quickly “wire together” widgets to
create a GUI. The libraries also include utility classes to handle strings, linked lists, and other
data structures, sockets programming, interprocess communication, as well as complex-
function widgets, such as a desktopwide address book and a Web browser.

The KDE libraries also include a framework for application embedding (called KParts) that
allows you to easily add the functionality of an entire application to your program. (This is
similar in concept to Netscape Navigator plugins.) The KDE office suite, KOffice, uses the

The K Desktop Environment Background

CHAPTER 1
7

1

T
H

E
K

D
ESK

TO
P

E
N

V
IR

O
N

M
EN

T
B

A
C

K
G

R
O

U
N

D

03 8911 CH01 10/16/00 1:48 PM Page 7

concept of application embedding to create documents that can contain text, graphics, spread-
sheets, and other elements that all display on the same page and can be edited in place.

Finally, KDE provides the means for creating applications that are “network transparent.” This
means that users can open and save files from and to remote and local locations using the
familiar techniques (i.e., selecting Open or Save from the File menu).

The network transparency theme runs through all of KDE, in fact. The “file manager” (this
term doesn’t do the application justice!), Konqueror, is the perfect example: In its window you
can browse and manipulate local files, FTP sites, and HTTP directory listings using the same,
familiar, file/folder metaphor. Using the KDE libraries for you application will allow you to
easily implement the following scenario for example: A user drags a file from a Konqueror
view of a remote, personal directory being accessed via FTP to your application. He/she edits
the file and then presses Ctrl+S (the save command) and the file is automatically transferred
back to its original location via FTP.

The KDE classes are well documented and this documentation, along with many tutorials and
HOWTOs, is available on the developers’ Web site: http://developer.kde.org. You’ll find
information on new KDE technologies, GUI design instructions, and programming tutorials.
Figure 1.1 shows the home page of this Web site.

Fundamentals of KDE Application Programming

PART I
8

FIGURE 1.1
The KDE Developer’s Corner Web site is a great resource for developers.

03 8911 CH01 10/16/00 1:48 PM Page 8

KDE Organization and Resources
The KDE project is made up of hundreds of developers who have made contributions ranging
from small patches to multiple applications. The leadership consists of about 20 core develop-
ers who have distinguished themselves within the KDE community by contributing lots of
well-written code. They serve to steer the project and plan its release schedule. Also, formal
contact with the KDE project can be made with representatives from the core group. The Web
page http://ettrich.priv.no/kde_official/representatives.html has more information.

Current KDE information can always be found at http://www.kde.org. From here you can
access users and developers’ news, find out about new releases, and access the mailing lists and
source code repository.

Several mailing lists are devoted to discussing different aspects of KDE. The KDE developers’
list (kde-devel) should be of particular interest to you. You’ll learn a lot about KDE develop-
ment by monitoring this list, and you’ll have the opportunity to ask your questions to the
development community. In my personal experience, the response times have been short and
the information has been very helpful. There are also lists for discussing KOffice, the KDE
office suite, KDE artwork (icons, logos, and so on), internationalization, KDevelop, the KDE
integrated development environment, look and feel, licensing issues, and other topics. A com-
plete list of available mailing lists can be found at the mailing list archives at http://
lists.kde.org/. Subscription information is available at http://www.kde.org/
contact.html.

System Requirements
To run KDE, you need a Pentium-class computer running at least 100MHz with at least 32MB
of memory. To develop KDE software, however, you should have at least 64MB of memory
and at least a 200MHz processor. You will find that a 300MHz processor and 128MB of mem-
ory is much more comfortable when compiling the software.

If you plan to run KDE on a lower-end machine, I recommend installing binary files that were
compiled elsewhere.

Obtaining and Installing KDE
You can always find the latest KDE source code and binaries at ftp://ftp.kde.org or one of
the more than 100 mirrors (see http://www.kde.org/mirrors.html for a list of mirrors; you
are encouraged to use a mirror site located near you.) Additionally, the support Web site for
this book, http://www.samspublishing.com, contains links to source code and binaries.

The K Desktop Environment Background

CHAPTER 1
9

1

T
H

E
K

D
ESK

TO
P

E
N

V
IR

O
N

M
EN

T
B

A
C

K
G

R
O

U
N

D

03 8911 CH01 10/16/00 1:48 PM Page 9

To install KDE 2.0 for development, you will need, at minimum, the following packages:

qt-2.1.0—The Qt toolkit library

kdesupport—Libraries not developed by the KDE project, but needed to run KDE appli-
cations

kdelibs—The KDE libraries

Be sure to install these packages first and in the order given. The other packages are optional.

For a working desktop, you will also need

kdebase—The window manager (KWin), file manager (Konqueror), panel (Kicker), and
other programs needed to create a working desktop

More KDE applications can be found in

kdeutils—KDE utility programs such as kedit—a text editor, and kcalc—a calculator

kdegraphics—Utility programs for viewing image, Postscript, and PDF file and for sim-
ple manipulating of bitmapped graphics

kdenetwork—KDE networking utilities, such as kppp, an Internet dial-up tool

kdegames—Some games for KDE, such as solitaire and mah-jongg

kdemultimedia—Players for audio and video files

kdeadmin—KDE administration tools, such as a user information editor (kuser) and
tools for installing and removing Red Hat and Debian packages (.rpm and .deb)

kdei18n—Internationalization information for non-English installations

Installing Binary Packages
On systems that use the Red Hat package manager, you should install each package using the
command

rpm -Uvh packagename.rpm

Some RPM-based distributions are Red Hat, SuSE, and Caldera.

Users of the Debian distribution (or a Debian-based distribution, such as Corel Linux) can
install packages with

dkpg -install packagename.deb

Some binary TAR archive binary packages are also available. They should be installed accord-
ing to the accompanying documentation.

Fundamentals of KDE Application Programming

PART I
10

03 8911 CH01 10/16/00 1:48 PM Page 10

Installing Source Packages
You may also compile Qt/KDE packages from their source code and install them on your sys-
tem. All the packages work the following way: first, you need to unpack the package with

gzip -d packagename.tar.gz
tar -xvf packagename.tar.gz

This creates a new subdirectory in your current directory called packagename.

Next, to compile the source code for installation in the default locations, type

cd packagename
./configure
make

The default locations generally require root (superuser) access to the machine on which the
code is being installed. You may choose to install in an alternative location by passing the
option —prefix=newlocation to the configure script. For example, I install my Qt and KDE
packages in $HOME/KDE/HEAD, so I use

cd packagename
./configure —prefix=$HOME/KDE/HEAD/qt
make

when building the Qt library, and

cd packagename
./configure —prefix=$HOME/KDE/HEAD/kde —with-qt-dir=$HOME/KDE/HEAD/qt
make

when building the KDE library.

To install the compiled code, type

make install

You will need to have write permission for the directories in which you have chosen to install
Qt/KDE when entering this command. For example, you will (typically) need to log in as root
before typing make install to install in the default locations.

Licenses and Legalities
The KDE libraries are released under the GNU LGPL, the Library General Public License, and
for information on Qt licensing, refer to Chapter 19, “Licensing Issues.”

The K Desktop Environment Background

CHAPTER 1
11

1

T
H

E
K

D
ESK

TO
P

E
N

V
IR

O
N

M
EN

T
B

A
C

K
G

R
O

U
N

D

03 8911 CH01 10/16/00 1:48 PM Page 11

Let’s Code, Already!
KDE should be properly installed on your system before moving on. Most every chapter (and
certainly the next one) requires this.

You should now have some understanding of what makes KDE such an exciting project and
enticing application development platform. If you’re not convinced, read on. Once you see for
yourself how powerful and well-organized the libraries are you won’t want to develop any-
where else. If you’re already convinced, well, read on—we’re going to write our first KDE
application in the next chapter!

Fundamentals of KDE Application Programming

PART I
12

03 8911 CH01 10/16/00 1:48 PM Page 12

CHAPTER

2
A Simple KDE Application
by David Sweet

IN THIS CHAPTER
• The Linux/UNIX Programmer’s

Desktop 14

• Compiling a KDE Program 15

• KDE Application Structure 19

• GUI Elements 23

• Programming Conventions 28

04 8911 CH02 10/16/00 1:47 PM Page 13

The goal of the KDE project is to create a set of desktop applications that share a common user
interface. To this end, the KDE developers have created a set of C++ classes that help you get
the KDE look and feel with minimal effort. You create a KDE-style application by deriving the
KDE class KTMainWindow and using the event loop (discussed in Chapter 3, “The Qt Toolkit”)
in the class KApplication. These classes will handle look-and-feel issues that are common to
most KDE applications, leaving you free to focus on programming the tasks unique to your
application.

The Linux/UNIX Programmer’s Desktop
Now is a good time to collect the tools you will need for developing KDE software. At the
very least, you need an editor to edit your source code and a way to access the C++ compiler.
Optionally, you may also want to use a debugger to make the debugging of your code more
efficient.

Necessities for Editing Code
Several editors are available for Linux/UNIX systems. Two popular ones are vi and emacs. If
you are familiar with UNIX, you will be familiar with these programs. For those of you who
are new to UNIX: vi is a simple text editor with a unique, sometimes difficult, interface. It
would not be familiar if you are used to a Macintosh- or Windows-based source-code editor.
emacs is somewhat more familiar and has a very powerful LISP-based macro language.

If you want a more modern-feeling editor, you could try kfte or kwrite. kfte is a full-fledged
source-code editor. kwrite is a simpler, general text editor, but it does provide a key-mapping
more familiar to Macintosh/Windows users and syntax highlighting for C++ (as well as for
other file types).

The KDE taskbar is very helpful in a bare-bones programming environment such as I am
describing here. If you are editing several source-code files at once (and in separate windows)
the title of each window is listed in the taskbar. Clicking that taskbar button opens and/or raises
that window and gives it the focus.

To make the taskbar a little more useful, you should set the title of your window to be the
name of the file you are editing. If you are using emacs, for example, you can type emacs
filename -T title to set the title of the emacs window (see Figure 2.1). kwrite and kfte set
their window titles automatically.

Fundamentals of KDE Application Programming

PART I
14

04 8911 CH02 10/16/00 1:47 PM Page 14

FIGURE 2.1
It is helpful to have an editor display the filename first in the caption.

Debuggers Available for Linux
The debugger that is probably already installed on your system is called gdb, the GNU debug-
ger. It is a command-line based utility that allows you to set breakpoints, step through pro-
grams, and view the contents of program variables.

GUI debuggers are also available. kdbg is a KDE front end to gdb. It gives a friendly, intuitive
interface to gdb, which makes learning the tool much easier. It is available from http://
members.telecom.at/johsixt/kdbg.html. Another GUI debugger, although not KDE-based,
is DDD. It is known for its capability to display program data in graphical format, including
trees and plots of array data. It is available from http://www.cs.tu-bs.de/softech/ddd/.

Compiling a KDE Program
I am discussing compiling early on so that you may begin programming immediately. I hope
that you will key in the source code that is presented, compile it, and play with it as you read.
(You can also download the source code from the web site, but typing it in yourself will help
familiarize you with class names and conventions that you may miss even in a careful reading.)
The concepts that are presented will be clearer to you if you are programming them while you
read.

The source code presented in Listing 2.1 is an example of a C++ program that depends on the
KDE and Qt libraries. khello is a simple application that says “Hello!”

A Simple KDE Application

CHAPTER 2
15

2

A
 S

IM
PLE

K
D

E
A

PPLIC
A

TIO
N

04 8911 CH02 10/16/00 1:47 PM Page 15

LISTING 2.1 khello is a Simple KDE Application that Says “Hello!”

1: #include <qstring.h>
2: #include <kapp.h>
3: #include <klined.h>
4:
5: int main (int argc, char *argv[])
6: {
7: KApplication khello (argc, argv, “khello”);
8: KLineEdit *helloeditor = new KLineEdit (0);
9: QString hellostring (“Hello!”);
10: helloeditor->setText (hellostring);
11: helloeditor->show();
12:
13: khello.setMainWidget (helloeditor);
14: return khello.exec();

To compile this code, you first need to set the environment variables KDEDIR and QTDIR.
KDEDIR should be set to the path where KDE was installed. This is usually /opt/kde, but it is
/usr on a Red Hat 6.x system. QTDIR may be /usr/local/lib, /usr/lib, or some other directory. The
command to set environment variables differs from shell to shell. If you are using bash, for
example, type

QTDIR=/usr/local/lib
KDEDIR=/opt/kde

If you are using tcsh, type

setenv QTDIR /usr/local/lib
setenv KDEDIR /opt/kde

On typical systems, the command to compile the source code given in Listing 2.1 is

g++ khello.cpp -I$KDEDIR/include -I$QTDIR/include
• L$KDEDIR/lib -L$QTDIR/lib -lkdeui -lkdecore -ldl -lqt

On a Red Hat 6.x system, the Qt header files are in /usr/include/qt, and the libraries are in
/usr/lib, which is checked by g++ by default. You should compile the program using the fol-
lowing command on a Red Hat 6.x system:

g++ khello.cpp -I$KDEDIR/include
• I/usr/include/qt -L$KDEDIR/lib -lkdeui -lkdecore -ldl -lqt

The compiler is the GNU C++ compiler, g++. khello.cpp is the name of the source-code file.
Listing 2.1 shows that khello.cpp includes header files from the Qt (qlabel.h) and KDE (kapp.h
and klined.h) library distributions.

The -I option tells g++ in what directory to look for header files. The -L option tells where, in
addition to standard directories, to look for libraries.

Fundamentals of KDE Application Programming

PART I
16

04 8911 CH02 10/16/00 1:47 PM Page 16

g++ khello.cpp -I$KDEDIR/include -I$QTDIR/include
• L$KDEDIR/lib -L$QTDIR/lib -lkdecore –lkdeui

khello uses classes from the Qt library and from the KDE libraries libkdecore and libkdeui.
The -l option specifies which libraries (in addition to default libraries, such as libc) to link to
khello.

khello is shown in Figure 2.2. Its window contains only a line editor with the text “Hello!” in
it. You can edit the text and click the close button (the X in the upper-right corner of the win-
dow) when you are through.

A Simple KDE Application

CHAPTER 2
17

2

A
 S

IM
PLE

K
D

E
A

PPLIC
A

TIO
N

FIGURE 2.2
khello is a simple KDE application that says “Hello!”

Using make
The development process usually consists of the following steps:

1. Edit the source code.

2. Compile it.

3. Test the program.

To minimize the overhead involved in compilation—especially on large projects—you can use
the make utility. make will

• Execute compilation commands, which can often be much longer than the one presented
previously.

• Compile only the files that need recompiling. This can save a lot of time when a project
consists of more than one file.

04 8911 CH02 10/16/00 1:47 PM Page 17

By examining source files, make determines which files need recompiling; it checks whether
the source files are newer than the object files that they get compiled to and whether the file
depends on other files (such as header files) that have been updated. The drawback to using
make is that it takes time to describe how the files in your project depend on each other. To see
why this is necessary, consider a project that has a source file called mysource.cpp, which
#includes a header called myheader.h. If you change mysource.cpp, you want it to be recom-
piled the next time you execute make. You also want it recompiled if you make any changes to
myheader.h, because ultimately, myheader.h becomes part of mysource.cpp. You will see in
Chapter 16, “Packaging and Distributing Code,” how the standard KDE packaging automates
the process of creating a Makefile.

Listing 2.2 gives the Makefile used for compiling Listings 2.3–2.5. This listings are the source
code KSimpleApp, a simple KDE application. You should place all four of these files in the
same directory and type make to compile the code and create an executable named ksimpleapp.
When keying in the Makefile, you need to set the variables QTINC, KDEINC, QTLIB, and KDELIB
to their correct values. Sample assignments of these variables are given in Listing 2.2, lines
1–4.Variable assignment in makefiles works the same as you might have guessed from looking
at Listing 2.2:

VARIABLE = value

For more information about make, see the man page (i.e., type man make).

From this point in the book, I won’t present any more Makefiles. You can adapt this
Makefile to compile later source code, or find prepared Makefiles with the source code on the
World Wide Web support site.

LISTING 2.2 The Makefile Used as Input to the make Utility to Compile Listings 2.3–2.5

1: QTINC = -I$(QTDIR)/include
2: KDEINC = -I$(KDEDIR)/include
3: QTLIB = -L$(QTDIR)/lib
4: KDELIB = -L$(KDEDIR)/lib
5: QTBIN = $(QTDIR)/bin
6:
7: ksimpleapp : ksimpleapp.o main.o
8: g++ $(QTLIB) $(KDELIB) -lkdeui -lkdecore -lqt -ldl \

main.o ksimpleapp.o -o ksimpleapp
9:
10: main.o : main.cpp
11: g++ -c $(QTINC) $(KDEINC) main.cpp
12:
13: ksimpleapp.moc : ksimpleapp.h

Fundamentals of KDE Application Programming

PART I
18

04 8911 CH02 10/16/00 1:47 PM Page 18

14: $(QTBIN)/moc ksimpleapp.h > ksimpleapp.moc
15:
16: ksimpleapp.o : ksimpleapp.cpp ksimpleapp.moc
17: g++ -c $(QTINC) $(KDEINC) ksimpleapp.cpp

KDE Application Structure
The structure of a typical KDE application is shown in Figure 2.3. KApplication is a class that
provides low-level KDE application services, and KTMainWindow serves as a programmer-
friendly base class for your main application window, KMyMainWindow. The classes KMenuBar,
KToolBar, and KStatusBar are created, positioned, and resized by KTMainWindow, but you cus-
tomize them from within KMyMainWindow. Many possibilities exist for the form of KMyContent.
This widget is positioned and resized by KTMainWindow and otherwise maintained by
KMyMainWindow. All these widgets ultimately interact with the user through the class
KApplication. KApplication dispatches event messages that signal, for example, keypresses
or mouse clicks to all the widgets used by an application.

A Simple KDE Application

CHAPTER 2
19

2

A
 S

IM
PLE

K
D

E
A

PPLIC
A

TIO
N

FIGURE 2.3
You derive your application from KTMainWindow, shown here as KMyMainWindow, and add a menubar, a toolbar, a sta-
tus line, and a widget of your choice (or creation) for the content area.

KApplication
KApplication receives messages from X, the underlying windowing system, and distributes
them to the widgets in your application. It gives access to fonts, desktop style options, and
processes some KDE-standard command line options. It also provides access to the session-
management features of KWin, although you generally do not need to use these because

LISTING 2.2 Continued

04 8911 CH02 10/16/00 1:47 PM Page 19

KTMainWindow offers a higher-level session management API.

KTMainWindow
Listings 2.3–2.5 present a simple KDE application: KSimpleApp.

LISTING 2.3 ksimpleapp.h: The Class Declaration File for KSimpleApp, the Main Widget of
the Application ksimpleapp

1: #include <ktmainwindow.h>
2:
3: class QLabel;
4:
5: /**
6: * This is a simple KDE application.
7: *
8: * @author David Sweet <dsweet@kde.org>
9: **/
10: class KSimpleApp : public KTMainWindow
11: {
12: Q_OBJECT
13:
14: public:
15: /**
16: * Create the widget.
17: **/
18: KSimpleApp (const char *name=0);
19:
20: public slots:
21: /**
22: * Reposition the text in the context area. The user will
23: * cycle through: left, center, and right.
24: **/
25: void slotRepositionText();
26:
27: private:
28: QLabel *text;
29: int alignment [3], indexalignment;
30: };

The file ksimpleapp.h contains the class declaration for the class KSimpleApp. This class is the
equivalent of KMyMainWindow in Figure 2.3 and thus is derived from KTMainWindow.

The KSimpleApp widget shows how to use KTMainWindow to create a document-centric applica-
tion. A document-centric application contains a menubar, a toolbar, a statusbar, and a content

Fundamentals of KDE Application Programming

PART I
20

04 8911 CH02 10/16/00 1:47 PM Page 20

FIGURE 2.4
KWrite offers a prototype KDE-style, document-centric application.

The content area in this case contains the document being edited. In general, the content area
contains a view of the document being worked on, but the concept of “document” is extended
to include images, Web pages, scientific plots, file-manager views, or whatever data the appli-
cation deals with.

The menubar, toolbar, and statusbar widgets are created, positioned, and deleted by
KTMainWindow. The menubar contains the familiar File, Edit, and other pull-down menu head-
ings. The toolbar shows icon buttons that provide quick access to frequently used menu entries.
The statusbar displays short messages and state indicators that let the user know what tasks the
application is performing and that give extended information about UI objects or document
elements.

KTMainWindow also implements basic session management. The session manager, as imple-
mented by KWin saves the state of the desktop when the user logs out, and it re-creates it at
the next login. This means that each application that was running at logout should be restarted
in a window that has the same position and size and that contains the document that was being
edited. KTMainWindow takes care of positioning and sizing your application’s window when kwm
restores it. You will see in Chapter 7, “Further KDE Compliance,” how to save additional infor-
mation such as the contents of the document that was being edited when the user logged out.

A Simple KDE Application

CHAPTER 2
21

2

A
 S

IM
PLE

K
D

E
A

PPLIC
A

TIO
N

area. These elements can be seen in Figure 2.4, which shows a screen shot of KWrite, a text-
editing utility included with KDE. KWrite is an example of a document-centric application.

04 8911 CH02 10/16/00 1:47 PM Page 21

A Typical main() Function
Listing 2.4 contains a main() function that is typical for a KDE application. It is short because
the real work is done in the class you derive from KTMainWindow (KSimpleApp in this case). It
creates an instance of KApplication, an instance of KSimpleApp, and it passes control to the
instance KApplication.

LISTING 2.4 main.cpp: The main() Function for KSimpleApp

1: #include <kapp.h>
2:
3: #include “ksimpleapp.h”
4:
5: int
6: main (int argc, char *argv[])
7: {
8: KApplication kapplication (argc, argv, “ksimpleapp”);
9:
10: if (kapplication.isRestored())
11: RESTORE(KSimpleApp)
12: else
13: {
14: KSimpleApp *ksimpleapp = new KSimpleApp;
15: ksimpleapp->show();
16: }
17:
18: return kapplication.exec();
19: }

The KApplication constructor needs argc and argv so that it can process command-line
options. Table 2.1 is a list of options that are processed by all KDE applications and removed
from argc/argv after the constructor is called:

TABLE 2.1 Options Processed by All KDE Applications

Option Action

caption caption_name Tells KApplication to use caption_name as the titlebar text.

icon icon_name Specifies which file to use as the application icon.

miniicon miniicon_name Specifies which file to use as the application miniicon. This icon
is placed in the upper-left corner of the application window.

restore Indicates that the application has been started by the session man-
ager.

Fundamentals of KDE Application Programming

PART I
22

04 8911 CH02 10/16/00 1:47 PM Page 22

You may process the remaining command-line options however you want.

The last option to the KApplication constructor is the name of the application. This name
serves as the default caption as well as the name of the icon and of the miniicon. In this case,
as is generally the case, no icon or miniicon name was specified in the command line. This
causes KApplication to look for the default icon file for this application, ksimpleapp.png,
(.png is used to denote files Portable Network Graphics (PNG) format) in the standard icon and
miniicon directories. Of course, in this example you have not created an icon file for the
KSimpleApp, so the file will not be found and a generic icon will be used instead. (The stan-
dard locations of icons and other resources are discussed in Chapter 16.)

If your application has been started by the session manager, KApplication::isRestored(), as
used on line 9 of Listing 2.4, will return true. In this case, use the RESTORE macro, defined in
ktmainwindow.h, to create KSimpleApp. Creating KSimpleApp in this way will place the win-
dow, the menubar and the toolbars where the user left them at logout. (Note that the menubar
and toolbars can be positioned by the user. Try right-clicking the textured vertical bar to the
left of the menubar. You are offered the following options for positioning the menubar: Left,
Top, Right, Bottom, Float, and Flat.)

If your application was started normally—that is, by the user and not by the session manager—
you create a new instance of KSimpleApp and make it visible with

KSimpleApp *ksimpleapp = new KSimpleApp;
ksimpleapp->show();

The show() method does not actually show the window. The window will be shown after you
enter the event loop with

kapplication->exec();

In this method, all the events received from X, such as window move, resize, paint events,
mouse-move events, button-press events, and keypress events will be dispatched to the appro-
priate KDE/Qt widget classes. This loop exits when the last window is closed. At this time,
your program should not expect to have a user interface and should terminate.

GUI Elements
KSimpleApp minimally uses each of the four widgets that are managed by KTMainWindow. They
are all created and configured in the KSimpleApp constructor, shown in Listing 2.5.

A Simple KDE Application

CHAPTER 2
23

2

A
 S

IM
PLE

K
D

E
A

PPLIC
A

TIO
N

04 8911 CH02 10/16/00 1:47 PM Page 23

LISTING 2.5 ksimpleapp.cpp: The Class Definition File for KSimpleApp

1: #include <qlabel.h>
2:
3: #include <kstdaccel.h>
4: #include <kiconloader.h>
5: #include <kmenubar.h>
6: #include <kapp.h>
7: #include <kaction.h>
8:
9: #include “ksimpleapp.moc”
10:
11: KSimpleApp::KSimpleApp (const char *name) :
12: KTMainWindow (name)
13: {
14: KAction *reposition =
15: new KAction (“&Reposition Text”, QIconSet(BarIcon (“idea”)),
16: CTRL+Key_R, this, SLOT (slotRepositionText()),
17: this);
18: KAction *quit =
19: new KAction (“&Quit”, KStdAccel::quit(), kapp,
20: SLOT (closeAllWindows()), this);
21:
22: QPopupMenu *filemenu = new QPopupMenu;
23: reposition->plug (filemenu);
24: filemenu->insertSeparator();
25: quit->plug (filemenu);
26:
27: menuBar()->insertItem (“&File”, filemenu);
28:
29: reposition->plug(toolBar());
30:
31: statusBar()->message (“Ready!”);
32:
33: text = new QLabel (“Hello!”, this);
34: text->setBackgroundColor (Qt::white);
35: alignment [0] = QLabel::AlignLeft | QLabel::AlignVCenter;
36: alignment [1] = QLabel::AlignHCenter | QLabel::AlignVCenter;
37: alignment [2] = QLabel::AlignRight | QLabel::AlignVCenter;
38: indexalignment = 0;
39:
40: text->setAlignment (alignment [indexalignment]);
41: setView (text);
42:
43: }
44:
45: void
46: KSimpleApp::slotRepositionText ()

Fundamentals of KDE Application Programming

PART I
24

04 8911 CH02 10/16/00 1:47 PM Page 24

FIGURE 2.5
KSimpleApp demonstrates basic usage of important KDE widgets: KMenuBar, KToolBar, and KStatusBar.

The Menubar
Before constructing the menubar, you need to create a QPopupMenu for each of the pull-down
menus. In KSimpleApp you create one QPopupMenu for the File menu.

Line 23 adds the entry “Reposition Text” to the File menu.

The object reposition, used on line 23 and created on lines 14–17 is an action (an instance of
KAction). It holds all of the information needed to create a menu entry or toolbar entry (see the
next section, “The Toolbar”). Actions are a convenient way of packaging application functions

A Simple KDE Application

CHAPTER 2
25

2

A
 S

IM
PLE

K
D

E
A

PPLIC
A

TIO
N

47: {
48: indexalignment = (indexalignment+1)%3;
49: text->setAlignment (alignment[indexalignment]);
50:
51: statusBar()->message (“Repositioned text in content area”, 1000);
52: }

A QLabel, a widget that displays some static text—”Hello!” in this case—is created on line 33
and forms the content area. That is, QLabel plays the role of KMyContent in Figure 2.3. The
menubar contains a File menu with two entries:

• Reposition Text—Cycles through three positions of the text: left, center, and right.

• Quit—Exits the application.

The toolbar contains one button that performs the same function as Reposition Text. The sta-
tusbar says “Ready!” when the program first starts and then displays a message whenever the
user repositions the text. Thus, KSimpleApp demonstrates how to set up each of the four wid-
gets you’ll need to create a user interface for a KDE application: KToolbar, KStatusBar,
KMenuBar, and the content area widget. Figure 2.5 is a screen shot of KSimpleApp.

LISTING 2.5 Continued

04 8911 CH02 10/16/00 1:47 PM Page 25

with the user interaction needed to describe and activate them. (KActions are discussed further
in Chapter 5, “KDE User Interface Compliance.”) Lines 14–17, for example,

KAction *reposition =
new KAction (“&Reposition Text”, QIconSet(BarIcon (“idea”)),

: CTRL+Key_R, this, SLOT (slotRepositionText()),
this);

The ampersand before the letter R makes it so that when the menu is visible, the user can press
R to activate this menu entry. This feature is made known to the user by the widget by under-
lining the R.

The constants CTRL and Key_R are defined in qnamespace.h. Here they indicate that the Ctrl+R
key combination will activate this menu entry whenever it is pressed by the user. These key
combinations, called accelerators, allow the user to bypass the menubar/toolbar interface and
access commonly used functions with simple keystrokes.

The icon, specified by QIconSet(BarIcon (“idea”)) (a light bulb), will be placed to the left
of the menu entry. (see Figure 2.6). When a function appears on the toolbar (as this one does,
see the next section, “The Toolbar”), it should also appear as an entry in the menubar with the
same toolbar icon next to the entry. This makes the correspondence between the two functions
clearer to the user. The class QIconSet takes the icon specified by BarIcon(“idea”) and cre-
ates different icons that might be needed by the GUI: a large icon, a small icon, and grayed-out
“disabled”-look icons. This is all taken care of by the libraries with no further necessary inter-
action.

The other two parameters to the KAction constructor: this and SLOT (slotRepositionText())

indicate that the method slotRepositionText(), which is a member of this instance of
KSimpleApp, should be called whenever this action is activated. The details of just how such
a feat can be accomplished—that feat being to call a method in a specific instance of a class
seemingly arbitrarily—is discussed in Chapter 3. For now, note that this is accomplished with
the Qt signal/slot mechanism.

Fundamentals of KDE Application Programming

PART I
26

FIGURE 2.6
You should place the same icon (a light bulb in this example) in the menubar as is used in the toolbar so that the user
knows these are two ways of performing the same function.

04 8911 CH02 10/16/00 1:47 PM Page 26

The next line

filemenu->insertSeparator();

appends a horizontal line to the pop-up menu. This is not an active GUI element; it simply
serves to separate groups of functions. The KDE GUI design guidelines require this to be
placed before the next entry in the menu, which is Quit. (These guidelines are discussed in
Chapter 7.)

A Simple KDE Application

CHAPTER 2
27

2

A
 S

IM
PLE

K
D

E
A

PPLIC
A

TIO
N

NOTE

Create your widgets with new. They will be deleted by their parents, so you won’t
need to delete them.

TIP

Finally place the pop-up menu you created on the menubar with

menuBar()->insertItem (“&File”, filemenu);

menuBar()creates a KMenuBar widget the first time it is called. KTMainWindow is also responsi-
ble for deleting the KMenuBar when it is no longer needed.

Use standard names for standard menu entries (Chapter 7 has details). Important:
Quit is the last entry on the File menu, not Exit!

The second argument passed to the KAction constructor when creating the Quit entry on lines
18-20 is KStdKeys::quit(), which is a static method of KStdAccel that returns the default
accelerator key combination for the Quit action. All applications should have a Quit entry in
the File menu, and Quit should always be associated with the accelerator key returned by
KStdAccel::quit(). Using the same names and accelerators in all applications provides con-
sistency, enabling the user to “Learn once and use everywhere” common application functions.

Notice that I use the new operator to create a QPopupMenu. This allows the object to survive
even after you leave the current scope (that is, the KSimpleApp constructor) so that it can con-
tinue to be accessed by the menubar. An object created in the following way:

QPopupMenu filemenu;

would be deleted after the constructor finished. It is deleted automatically, so you can forget
about it unless you want to make changes to it later on.

04 8911 CH02 10/16/00 1:47 PM Page 27

This is the simplest method of handling a menubar. It is also possible to create a KMenuBar
yourself and tell KTMainWindow to use it by calling

void setMenu (KMenuBar *menuBar)

This can be useful if you need to switch to a new menubar.

The Toolbar
To place a button on the toolbar, use a plug() method just as you did with the menubar. The
first call to toolBar() creates an instance of KToolBar. This class is deleted by KTMainWindow
when it is no longer needed.

On line 29 you call reposition->plug(toolBar()) to put the light bulb icon on a button on
the toolbar.

A short help text string, called a tooltip is associated with each toolbar button. It appears when
the mouse cursor is placed over a button and left still for about a second. The string
“Reposition Text”, specified in the action definition (lines 14–17), is the tooltip string for this
button.

You can put any widget you like on the toolbar—not just buttons. Two commonly used wid-
gets, a line editor and a combo box (such as the URL-entry box with pull-down history used in
a Web browser), are supported directly by KToolBar via insertLined() and insertCombo(),
but you can use insertWidget() to add any widget you like.

The Status Line
The status line, or statusbar, is created and deleted by KTMainWindow in the same manner as the
menubar and toolbar. Your first call to statusBar():

statusBar()->message (“Ready!”);

creates an instance of KStatusBar and puts the message “Ready!” at the bottom of the window
on the status line.

Like KToolBar, you can place any widget on the status line by using the method
KStatusBar::insertWidget(). This might be used for displaying a progress bar or an LED-
style status indicator, for example.

Programming Conventions
KDE developers follow certain conventions when they write KDE source code. The conven-
tions dictate naming and documentation styles. Following them will help other developers to
work with your code more easily. It will even help you. For example, you won’t have to look
up names of methods as often because the conventions make the names easier to remember.

Fundamentals of KDE Application Programming

PART I
28

04 8911 CH02 10/16/00 1:47 PM Page 28

Naming Conventions
KDE class names begin with a capital K. The first letter of each word making up the class
name is also capitalized. For example, you used KSimpleApp as your class name in the code in
Listings 2.3–2.5. Note that Qt class names follow a similar convention, but they all start with a
capital Q.

The names of methods begin with a lowercase letter, but the first letter of each successive word
is capitalized. For example, the method setBackgroundColor(), used in the constructor for
KSimpleApp, is named with this convention. It is a Qt method (a member of QWidget) and fol-
lows the convention, as do all Qt methods.

Class and method names usually consist of one or more whole words or common abbreviations
(such as “App” for application in the name KSimpleApp). Whole word names are easier to
remember and make for more readable code.

Conventions are also used for filenames. Header files containing class definitions are given the
name of the class, except that all letters are kept lowercase. The extension .h is used. Source
files containing class definitions also use an all-lowercase version of the class name and carry
the extension .cpp.

Prototypical examples of the naming conventions are collected in Table 2.2.

TABLE 2.2 KDE Naming Conventions

Type Prototype

Class KMyGreatClass

Method myUsefulMethod

Class declaration file kmygreatclass.h

Class description file kmygreatclass.cpp

Class Documentation
It is important to document the public interfaces to your classes so that others may make use of
them in their programs when hacking at your code. You should also document the protected
interface so that derivation is easier. Listing 2.3 gives examples of the class documentation
style. If the documentation is given in the comments in this form, it can be interpreted by a
script called kdoc, which can create attractive, standalone documentation. kdoc-style
documentation is covered in depth in Chapter 15, “Creating Documentation.”

Summary
In this chapter you learned how to compile a KDE program; you created a simple application;
and you were introduced to some KDE programming conventions.

A Simple KDE Application

CHAPTER 2
29

2

A
 S

IM
PLE

K
D

E
A

PPLIC
A

TIO
N

04 8911 CH02 10/16/00 1:47 PM Page 29

The compilation process can be greatly simplified by using the make utility. It allows you to
start the compiler by just typing make at the command line instead of long strings of compiler
options. It also saves time because only modified source code—and the code that depends on
it—is recompiled.

Although the application you created was a simple one, it demonstrates most of the classes and
methods that you need to know about to get the look and feel of a KDE-compliant application.
Some UI design standards were discussed and will be expanded upon later.

It is important to follow the KDE naming conventions and to document your code. It will help
both you and other developers to understand and modify your code.

Exercises
Answers to the exercises can be found in Appendix C, “Answers.”

1. Referring to the KDE class documentation for KToolBar, modify KSimpleApp to include
a line editor on the toolbar.

2. Modify KSimpleApp to put a QMultiLineEdit widget in the content area instead of a
QLabel. Replace all the references to the Reposition Text function with a function that
clears the widget. You will need to refer to the Qt class documentation for
QMultiLineEdit.

Fundamentals of KDE Application Programming

PART I
30

04 8911 CH02 10/16/00 1:47 PM Page 30

CHAPTER

3
The Qt Toolkit
by Daniel Marjamäki

IN THIS CHAPTER
• What It Is For (Look and Feel) 32

• Inside the QT Toolkit 32

• Signals and Slots 40

• Meta Object Compiler (moc) 45

• The Utility CLasses 48

• Special Features (ImageIO, OpenGL,
Mesa) 51

05 8911 CH03 10/16/00 1:43 PM Page 31

Another good feature of Qt is that you can recompile your code for different desk-
tops (X Window, MS Windows).

NOTE

Fundamentals of KDE Application Programming

PART I
32

KDE is built on Qt, so the KDE programmer must know Qt. Even if you use only KDE wid-
gets in your programs, you should know something about Qt.

The Qt toolkit is a collection of classes that simplify the creation of programs. The classes are
both visible (buttons, windows) and invisible (timer).

This chapter won’t cover all features of the Qt toolkit. The most important topics are here, but
you may need more information eventually. You can find more information on the Trolltech
Web site (http://www.trolltech.com/).

What It Is For (Look and Feel)
X Windows programming, the traditional way, is both time consuming and hard. The Qt toolkit
makes it easier and faster to create X Window programs.

A good program must have an easy-to-understand and easy-to-use user interface. Qt provides
several widgets, which can give your programs such an interface. Widgets are controls such as
buttons, windows, text boxes, list boxes, and so on.

Inside the Qt Toolkit
The Qt toolkit contains everything you need to write your own Qt programs. Lots of classes
are available. Some of them are visible and are meant to be used as user-interface classes.
Some of them are invisible, and they are there to make your programming simpler.

Keep in mind that it is better to use KDE classes than QT classes, when available. That
ensures that your KDE programs will look and feel like all other KDE programs. KDE
may also use the KDE features better. However, you must know some Qt. The Qt fea-
tures I present to you in this chapter are vital for many KDE programs.

TIP

05 8911 CH03 10/16/00 1:43 PM Page 32

A utility program called the Meta Object Compiler, or moc, is also included with Qt. It
processes header files to enable easy event handling, an important topic in modern GUI
programming. I’ll write more about it later in this chapter.

QObject
QObject is the base class in Qt. All classes that have signals or slots must inherit from this
class, directly or indirectly. QPushButton is an example of a class that inherits from QObject
indirectly. QPushButton inherits from QWidget, which inherits from QObject. Therefore,
QPushButton inherits indirectly from QObject.

The Qt Toolkit

CHAPTER 3

3

T
H

E
Q

T T
O

O
LK

IT
33

Signals and slots enable easy event handling in Qt. They are explained in detail in
“Signals and Slots” later in this chapter.

NOTE

QWidget
QWidget is the base class for all visible classes in Qt. The QWidget simply represents an empty
area (see Figure 3.1).

FIGURE 3.1
A QWidget inside a window.

You use the QWidget class whenever you need an empty area. It is often used to create
windows in your programs.

Important Member Functions
The constructor for QWidget is

QWidget(QWidget *parent=0, const char *name=0, WFlags f=0)

05 8911 CH03 10/16/00 1:43 PM Page 33

The most important parameter is parent.

If you want to create a new window and put the widget inside it, you set parent to 0. The
window manager will draw the window for you.

When you put your widget inside a window, parent must contain a pointer to the parent
object. The parent object is the object that you want to put your widget on.

The other parameters are rarely used. The parameter name gives your widget a name. The para-
meter f is a flags parameter. If a window is created for the widget, you can control the behavior
of the window with this parameter.

To move and resize the widget, use the following function:

void setGeometry(int left, int top, int width, int height)

The left and top parameters specify the upper-left corner of the widget. The width and
height parameters specify the dimensions of the widget.

To show the widget, use the following function:

void show()

Widgets are created invisible by default and must be shown to be seen.

The function that handles mouse press events is

void mousePressEvent(QMouseEvent *event)

You can implement it if you need to create a mouse button handler. The parameter event
gives you important information about the mouse press event (such as cursor position and
button status).

The function that handles mouse move events is

void mouseMoveEvent(QMouseEvent *event)

Implement this function if you need to handle mouse cursor move events. The mouse cursor
position and button state are given by the parameter event.

The following function is called when the graphics are updated:

void paintEvent(QPaintEvent *event)

You should implement this function if you have drawn graphics on the widget. Use the
QPainter class to draw graphics (see the section “QPainter” later in this chapter). The graphics
will disappear if you don’t redraw them. The parameter event contains information about
where the graphics needs to be updated.

Fundamentals of KDE Application Programming

PART I
34

05 8911 CH03 10/16/00 1:43 PM Page 34

The function you use to set the caption is

void setCaption(const QString &caption)

If your widget has its own window (parent=0), the window title is set by this function. This is
a slot (see the section “Signals And Slots” later in this chapter).

Sample Use of QWidget
Listing 3.1 shows how you use the QWidget class. The program creates an empty window.
When a mouse button is pressed, the program prints Mouse Press on the console (shown in
Figure 3.2):

LISTING 3.1 widget.cpp: A Window with Mouse Handling

1: #include <kapp.h>
2: #include <qwidget.h>
3: #include <iostream.h>
4:
5:
6: // A Window class definition
7: class MyWindow : public QWidget
8: {
9: public:
10: // Constructor, Parent is always 0 for windows
11: MyWindow() : QWidget() { }
12: protected:
13: // This function will be called when the user presses a mouse button
14: void mousePressEvent(QMouseEvent *);
15: };
16:
17:
18: void MyWindow::mousePressEvent(QMouseEvent *)
19: {
20: // Print “Mouse Press” on the console
21: cout << “Mouse Press” << endl;
22: }
23:
24:
25: int main(int argc, char **argv){
26: KApplication app(argc, argv);
27:
28: // Create a MyWindow object
29: MyWindow window;
30:
31: // Move and resize the MyWindow object

The Qt Toolkit

CHAPTER 3

3

T
H

E
Q

T T
O

O
LK

IT
35

05 8911 CH03 10/16/00 1:43 PM Page 35

32: // left=200, top=200, width=400, height=300
33: window.setGeometry(200,200,400,300);
34:
35: // Main window = MyWindow object
36: app.setMainWidget(&window);
37:
38: window.setCaption(“QWidget example”);
39:
40: // Show the window
41: window.show();
42:
43: // Go to the main loop
44: return app.exec();
45: }

Fundamentals of KDE Application Programming

PART I
36

FIGURE 3.2
Mouse-handling window

QPainter
QWidget and its children cannot draw graphics, and that’s why QPainter is needed. QPainter
draws graphics on widgets.

Important Member Functions
The constructor for QPainter is

QPainter()

LISTING 3.1 Continued

05 8911 CH03 10/16/00 1:43 PM Page 36

Before you can draw any graphics on a widget, you must call the following function:

bool begin(const QPaintDevice *pd)

In the parameter pd (Paint Device), you tell QPainter on what object you want to draw
graphics.

To draw a line, for example, use the following function:

void drawLine(int x1, int y1, int x2, int y2)

The parameters are simple; they define the start and end points. A line will be drawn between
these two points. The coordinates are relative to the object that you draw on. This is not the
only graphics operation you can perform, but it is the only one presented here. Functions are
available that draw circles, bars, rectangles, and almost anything you can imagine. The Qt ref-
erence contains all the information you need. As I have written before, I recommend that you
download the Qt documentation from the trolltech Web site (http://www.trolltech.com).

To flush graphics, use the following function:

void flush();

QPainter uses a buffered system. Graphics operations are stored in memory only—they do not
affect what you see on the screen. This function flushes the graphics in memory to the screen.
The destructor for QPainter flushes automatically, you don’t have to flush if your QPainter
object is destroyed when all the graphics have been drawn.

When you don’t want to draw more graphics on the current object, you can use the following
function:

bool end()

Use this function when you have been drawing on one widget, and you want to switch to
another widget.

Sample Use of QPainter
Listing 3.2 shows you how the QPainter is used. The QPainter is used in the paintEvent
function and is shown in Figure 3.3.

LISTING 3.2 Drawing a Line in a Window

1: #include <kapp.h>
2: #include <qwidget.h>
3: #include <qpainter.h>
4:
5: class MyWindow : public QWidget

The Qt Toolkit

CHAPTER 3

3

T
H

E
Q

T T
O

O
LK

IT
37

05 8911 CH03 10/16/00 1:43 PM Page 37

6: {
7: public:
8: MyWindow() : QWidget() { }
9: protected:
10: void paintEvent(QPaintEvent *);
11: };
12:
13: void MyWindow::paintEvent(QPaintEvent *)
14: {
15: // Draw graphics on this object
16: QPainter paint(this);
17: // Draw a line (the destructor will make the line visible)
18: paint.drawLine(10,10,190,140);
19: }
20:
21:
22: int main(int argc, char **argv)
23: {
24: KApplication app(argc, argv);
25: MyWindow window;
26: window.setGeometry(50,50,200,150);
27: app.setMainWidget(&window);
28: window.setCaption(“QPainter”);
29: window.show();
30: return app.exec();
31: }

Fundamentals of KDE Application Programming

PART I
38

LISTING 3.2 Continued

FIGURE 3.3
QPainter example.

QPushButton
You use QPushButton when you need a button in your program. QPushButton is derived from
the QWidget class.

05 8911 CH03 10/16/00 1:43 PM Page 38

Important Members
The constructor for QPushButton is

QPushButton(const QString &text, QWidget *parent,
const char *name=0)

The parameter text specifies the button caption. The parameter parent is a pointer to the
object that you wish to put the button on. The third parameter, name, is not important.

The following signal is emitted when the button is clicked:

void clicked()

Buttons can be clicked by the mouse or by the keyboard.

Sample Use of QPushButton
The QPushButton class is mainly used to put buttons inside windows. Listing 3.3 demonstrates
this and is shown in Figure 3.4:

LISTING 3.3 A Window with a Button in It

1: #include <kapp.h>
2: #include <qpushbutton.h>
3: #include <qwidget.h>
4:
5:
6: // The window class
7: class MyWindow : public QWidget
8: {
9: public:
10: MyWindow();
11: private:
12: QPushButton *button;
13: };
14:
15:
16: MyWindow::MyWindow() : QWidget()
17: {
18: // Create a new button; caption=”Button”, parent=this
19: button = new QPushButton(“Button”, this);
20:
21: // Move and resize the button
22: button->setGeometry(50, 10, 100, 30);
23:
24: // Show the button

The Qt Toolkit

CHAPTER 3

3

T
H

E
Q

T T
O

O
LK

IT
39

05 8911 CH03 10/16/00 1:43 PM Page 39

25: button->show();
26: }
27:
28:
29: int main(int argc, char **argv)
30: {
31: KApplication app(argc, argv);
32: MyWindow window;
33: window.setGeometry(200,200,400,300);
34: window.setCaption(“QPushButton Example”);
35: app.setMainWidget(&window);
36: window.show();
37: return app.exec();
38: }

Fundamentals of KDE Application Programming

PART I
40

FIGURE 3.4
QPushButton.

Signals and Slots
The most important features of Qt are signals and slots.

Signals tell you that something has just happened. Signals are emitted (sent) when the user
works with the computer. For example, when the user clicks the mouse or presses keys on a
keyboard a signal is emitted. Signals can also be emitted when something happens inside the
computer—when the clock ticks, for example.

Slots are the functions that respond to certain signals. It is important that your program
responds to signals. Otherwise, it might look as if your program hangs. KDE programs don’t—
or shouldn’t—hang!

Signals and slots are very object independent. Slots that handle a signal can be put in any
object in your program. The object that sends the signal doesn’t have to know anything about
the slot or the object where the slot can be found. For example, you may have one window that
contains a button and one window that contains a text box. You can let the text box respond to
button clicks.

LISTING 3.3 Continued

05 8911 CH03 10/16/00 1:43 PM Page 40

Creating a Slot
Creating a slot is easy. Any class that inherits from QObject can have slots.

First you must enable signals and slots. In the class definition, add the word Q_OBJECT. This is
a keyword, which the moc understands.

The slot is just a member function in your class, but you must declare it in a slots section.
Slots can be public, private, or protected.

The following example shows a class with a slot:

class MyWindow : public QWidget
{
Q_OBJECT // Enable signals and slots

public:
MyWindow();

public slots: // This slots section is public
void mySlot(); // A public slot

};

The slot in the preceding class definition is called mySlot. The keyword before slots defines
the access mode. The slot mySlot above is public.

You write the implementation for the slot as if it was a common member function. The follow-
ing example shows you what a slot implementation may look like:

void MyWindow::mySlot()
{
cout << “slotPublic” << endl;

}

The Qt Toolkit

CHAPTER 3

3

T
H

E
Q

T T
O

O
LK

IT
41

Event handling is solved by callbacks in many other toolkits. A callback is a pointer to
a function. The widgets contain callbacks, pointers to functions, for each event. When
an event occurs, the appropriate function is called. It is simple in theory, but it is hard
in practice. The callbacks are not type safe, which means that it is easy to make mis-
takes. Callbacks also can’t take any number of parameters of any type like signals and
slots do.

NOTE

Signals and slots are primarily used for events handling, but you can use it for easy communi-
cation between objects too. When two windows need to communicate with each other, you can
use signals and slots. Communication this way is much easier than doing it with pointers.

05 8911 CH03 10/16/00 1:43 PM Page 41

Emitting a Signal
When you want to tell Qt that an event has occurred, you emit a signal. When that happens, Qt
executes all slots that are connected to the signal.

Before a signal can be emitted, it must be defined. The class that emits a signal must contain
the signal definition. Signals are defined in a signals section in your class. The following
class definition defines a signal:

class MyWindow : public QWidget
{
Q_OBJECT // Enable signals and slots

public:
MyWindow();

signals:
void created();

};

Signals are emitted with the command emit. The signal may be emitted like so:

// Constructor for MyWindow
MyWindow::MyWindow() : QWidget()
{
// Emit the signal created()
emit created();

}

The example above is only a simple demonstration that shows you how it works.

Connecting a Slot to a Signal
To make a slot respond to a certain signal, you must connect them to each other. You can
connect several slots to one signal.

It is very simple to connect a slot to a signal. The command connect does this. The syntax is
simple:

connect(startobject, SIGNAL(signal()), targetobject, SLOT(slot()))

The parameter startobject contains a pointer to the object that the signal comes from.

The parameter signal specifies what signal to handle. The signal must be emitted by the
startobject.

The object which responds to a signal is specified in the parameter targetobject.

The slot which responds to the signal is specified in the parameter slot. The slot must be in
the object specified by targetobject.

Fundamentals of KDE Application Programming

PART I
42

05 8911 CH03 10/16/00 1:43 PM Page 42

The following class demonstrates that several slots can be connected to the same signal, and
one slot can be connected to several signals:

LISTING 3.4 buttons.h: Class Definition for the Class MyWindow

1:class MyWindow : public QWidget
2:{
3: Q_OBJECT // Enable slots and signals
4:public:
5: MyWindow();
6:private slots:
7: void slotButton1();
8: void slotButton2();
9: void slotButtons();
10:private:
11: QPushButton *button1;
12: QPushButton *button2;
13: };

The listing below contains the class implementation:

LISTING 3.5 buttons.cc: Class Implementation for the Class MyWindow Declared in Listing 3.4

1: MyWindow::MyWindow() : QWidget()
2: {
3: // Create button1 and connect button1->clicked() to this->slotButton1()
4: button1 = new QPushButton(“Button1”, this);
5: button1->setGeometry(10,10,100,40);
6: button1->show();
7: connect(button1, SIGNAL(clicked()), this, SLOT(slotButton1()));
8:
9: // Create button2 and connect button2->clicked() to this->slotButton2()
10: button2 = new QPushButton(“Button2”, this);
11: button2->setGeometry(110,10,100,40);
12: button2->show();
13: connect(button2, SIGNAL(clicked()), this, SLOT(slotButton2()));
14:
15: // When any button is clicked, call this->slotButtons()
16: connect(button1, SIGNAL(clicked()), this, SLOT(slotButtons()));
17: connect(button2, SIGNAL(clicked()), this, SLOT(slotButtons()));
18: }
19:
20:
21: // This slot is called when button1 is clicked.
22: void MyWindow::slotButton1()

The Qt Toolkit

CHAPTER 3

3

T
H

E
Q

T T
O

O
LK

IT
43

05 8911 CH03 10/16/00 1:43 PM Page 43

23: {
24: cout << “Button1 was clicked” << endl;
25: }
26:
27:
28: // This slot is called when button2 is clicked
29: void MyWindow::slotButton2()
30: {
31: cout << “Button2 was clicked” << endl;
32: }
33:
34:
35: // This slot is called when any of the buttons were clicked
36: void MyWindow::slotButtons()
37: {
38: cout << “A button was clicked” << endl;
39: }

Signals and Slots with Parameters
During communication, it is sometimes useful to say more than “Hey!” That is all that the pre-
ceding signals say.

If you need to say more, the simplest way is to use parameters in your signals and slots.

For example, you may have two windows both containing a button and a text box. When the
user types in text and clicks the button in one window, the caption for the other window will
change to whatever was typed in.

The solution is to use slots and signals with parameters. Give both the signal and slot a para-
meter that contains the new window caption. When you emit the signal you set this parameter.

The following example code shows how parameters work. The signal and slot are both in the
same class, but of course that is not necessary:

class MyWindow : public QWidget
{
Q_OBJECT // Enable signals and slots

public:
MyWindow();

private slots:
void slotChanged(int i);

signals:
void changed(int i);

};

Fundamentals of KDE Application Programming

PART I
44

LISTING 3.5 Continued

05 8911 CH03 10/16/00 1:43 PM Page 44

The class constructor may connect the slot to the signal, like this:

MyWindow::MyWindow() : QWidget()
{
connect(this, SIGNAL(changed(int)), this, SLOT(slotChanged(int)));

}

The slot and the signal must have compatible parameters. In the preceding example, they each
have one integer as a parameter.

It is easy to emit a signal with a parameter. The following function emits the signal
changed(int i):

void MyWindow::emitter(int i)
{
emit changed(i);

}

Slots in Temporary Classes
When a signal is emitted, the slots connected to it are activated.

Take a look at the following class constructor:

MyWindow::MyWindow() : QWidget()
{
MyClass *temp = new MyClass();

button = new QPushButton(this, “Button”);
button->setGeometry(0,0,100,30);
button->show();
connect(button, SIGNAL(clicked()), temp, SLOT(slotTemp()));

delete temp;
}

A button is created. The clicked() signal is connected to temp->slotTemp(). When you
delete temp, the slot slotTemp() is also deleted. If the user clicks the button, an error will
occur. Always consider this when you delete Qt objects.

Meta Object Compiler (moc)
The Meta Object Compiler (moc) is a useful addition to Qt. It is a tool that saves a lot of work,
and it is very simple to use.

It converts Qt class definitions into C++ code.

The Qt Toolkit

CHAPTER 3

3

T
H

E
Q

T T
O

O
LK

IT
45

05 8911 CH03 10/16/00 1:43 PM Page 45

Using the moc Tool
You probably already know that a compiler converts code into ones and zeros. The code may
sometimes be understandable, but the ones and zeros are not.

The moc is not a compiler, although the name may suggest that. The moc looks in your code
and searches for certain keywords. When a keyword is found, it is replaced by other code. This
saves you a lot of programming because the resulting code is much more complex than the
original.

The moc Keywords
The moc keywords are Q_OBJECT, public slots:, protected slots:, private slots:, and
signals:.

The Q_OBJECT keyword tells moc that the class is a Qt class.

All slots must be defined below a slots keyword. Slots can be public, protected, or private.
You must specify the access mode before the slots keyword (all public slots are defined below
public slots for example).

All signals must be defined below the signals: keyword. Signals are always public.

Sample Use of the moc
You will now see how to use moc with a small sample program. The main window in the pro-
gram contains a button. When you click the button, the slot slotButton() is executed. Listing
3.6 contains the code:

LISTING 3.6 mywindow.h: Class Declaration with moc Keywords

1: #include <qwidget.h>
2: #include <qpushbutton.h>
3:
4: class MyWindow : public QWidget
5: {
6: Q_OBJECT
7: public:
8: MyWindow();
9: public slots:
10: void slotButton();
11: private:
12: QPushButton *button;
13: };

Fundamentals of KDE Application Programming

PART I
46

05 8911 CH03 10/16/00 1:43 PM Page 46

Listing 3.7 shows the class implementation. You must put the class definition and class imple-
mentation in different files, because the class implementation needs the code that moc gener-
ates.

LISTING 3.7 mywindow.cpp: Class Implementation for MyWindow

1: #include “mywindow.moc”
2: #include <iostream.h>
3:
4: MyWindow::MyWindow() : QWidget()
5: {
6: button = new QPushButton(“Click me”, this);
7: button->setGeometry(10,10,100,40);
8: button->show();
9:
10: connect(button, SIGNAL(clicked()), this, SLOT(slotButton()));
11: }
12:
13: void slotButton()
14: {
15: cout << “You clicked me” << endl;
16: }

Listing 3.8 shows what the main program file looks like. It uses the MyWindow class which you
have just created.

LISTING 3.8 main.cpp: The Main Program File

1: #include <kapp.h>
2: #include “mywindow.h”
3:
4: int main(int argc, char **argv)
5: {
6: KApplication app(argc, argv);
7: MyWindow window;
8: window.setGeometry(100,100,200,100);
9: window.setCaption(“Aha!”);
10: app.setMainWidget(&window);
11: window.show();
12: return app.exec();
13: }

The Qt Toolkit

CHAPTER 3

3

T
H

E
Q

T T
O

O
LK

IT
47

05 8911 CH03 10/16/00 1:43 PM Page 47

Now you will compile the program. Common C++ programs are compiled in two steps. First,
all object files are created, and then the object files are linked into a program.

Creating all object files takes two steps when you are using signals and slots, because you must
use moc first to precompile the class definitions.

Note that the main.cpp file in Listing 3.8 can be compiled into an object file directly. No moc
keywords are in it, nor does it include any files generated by moc. To create the object file for
main.cpp, type the following:

g++ -I$QTDIR/include -c main.cpp

The mywindow.cpp file, containing the class declaration for MyWindow, can’t be compiled yet.
The class declaration contains some moc keywords (Q_OBJECT, public slots), which must be
translated into C++ code first. To translate, use the moc tool. The following command precom-
piles the mywindow.h file and the result is written to mywindow.moc:

moc mywindow.h -o mywindow.moc

Now you can compile the mywindow.cpp file like so:

g++ -I/$QTDIR/include -c mywindow.cpp

At this point, all object files have been created.

To link the object files into an executable program, use the following command:

g++ -o myprog main.o mywindow.o -L/$QTDIR/lib -lqt

The name of the executable file will be myprog.

Now you can execute your program.

I’ll now give you a quick summary of the compiling process. The first step is to precompile all
necessary files with moc. All class definitions that contains moc keywords must be precompiled.
The second step is to create all the object files. The third and last step is to link all the object
files together.

The Utility Classes
The utility classes store and process information for you. They are template classes.

Templates
One of the newer features of C++ are templates. In a template class, the same code can handle
any data type. That means you don’t have to rewrite your code for all data types you might
want to handle. Listing 3.9 shows a sample template class called MyList. MyClass below han-
dles both int and char values:

Fundamentals of KDE Application Programming

PART I
48

05 8911 CH03 10/16/00 1:43 PM Page 48

LISTING 3.9 stl.cpp: A Program That Shows How Template Classes Work

1: #include <iostream.h>
2:
3: template <class C> class MyList
4: {
5: C list[2];
6: public:
7: MyList(void) { }
8: void insert(int index, C item){ list[index] = item; }
9: C get(int index){ return list[index]; }
10: };
11:
12: int main()
13: {
14: MyList<int> list1;
15: list1.insert(0, 43);
16: list1.insert(1, 14);
17: cout << list1.get(0) << list1.get(1) << endl;
18:
19: MyList<char> list2;
20: list2.insert(0, ‘a’);
21: list2.insert(1, ‘b’);
22: cout << list2.get(0) << list2.get(1) << endl;
23:
24: return 0;
25: }

The template class MyList can store values of any type. The preceding example demonstrates
that it can store both char and int values.

Standard Template Library (STL)
STL stands for Standard Template Library. STL is part of C++. It is a set of standard tem-
plates. These templates were created because they solve common problems such as storing
values.

You can use STL in your KDE programs, although it’s not recommended. Many template
classes are available in Qt and KDE; you should use those instead of the STL classes if you
can. The Qt and KDE classes are made especially for Qt and KDE programs.

QList—A Qt Template Class
This class is a Qt template class. It maintains lists. The items in the lists can be of any type.

The Qt Toolkit

CHAPTER 3

3

T
H

E
Q

T T
O

O
LK

IT
49

05 8911 CH03 10/16/00 1:43 PM Page 49

The lists are so-called linked lists. This means that each list item stores a reference to the pre-
vious and the next list items.

Important Member Functions
To append an item to the list, use the following:

void append(const type *item)

To get the first item in the list, use the following:

type *first()

The first item becomes the current item.

To get the next item in the list, use

type *next()

The next item becomes the current item.

Sample Use of QList
Listing 3.10 shows how to use QList. I have created a simple class called MyClass. I use QList
to keep a list of MyClass objects.

LISTING 3.10 qlist.cpp: QList Example

1: #include <qlist.h>
2: #include <iostream.h>
3:
4: class MyClass{
5: public:
6: MyClass() { t=0; }
7: int get() { return t++; }
8: private:
9: int t;
10: };
11:
12:
13: int main()
14: {
15: QList<MyClass> list;
16: MyClass *temp;
17:
18: // Delete all list items, when the list is deleted.
19: list.setAutoDelete(TRUE);
20:
21: for (int i=0;i<3;i++)

Fundamentals of KDE Application Programming

PART I
50

05 8911 CH03 10/16/00 1:43 PM Page 50

LISTING 3.10 Continued

23: // Create a list item
24: temp = new MyClass;
25:
26: // Append the list item to the list
27: list.append(temp);
28: }
29:
30: // Call the member function get() in every list item,
31: // and print the result on the screen.
32: for (temp = list.first(); temp != 0; temp=list.next())
33: cout << temp.get() << endl;
34:
35: return 0;
36: }

The list items in QList can be of any type. One possible use of QList is in a MDI program to
keep a list of pointers to the windows.

Special Features (ImageIO, OpenGL, Mesa)
There are some special features in Qt that you should know about. They provide you with spe-
cial features that are not normally included with toolkits.

ImageIO
This special feature adds support for some image file formats. It opens and saves pictures for
you.

Using ImageIO
The ImageIO feature adds support for many graphics file formats. The QImage widget uses this
feature to open and save graphics files.

A Sample ImageIO Program
Listing 3.11 shows you how it works. The program will open and display a JPEG image
(shown in Figure 3.5):

LISTING 3.11 imageio.cpp: An Image Viewer Program

1: #include <kapp.h>
2: #include <qwidget.h>
3: #include <qpainter.h> // The QPainter class draws graphics on widgets.
4: #include <qimage.h>

The Qt Toolkit

CHAPTER 3

3

T
H

E
Q

T T
O

O
LK

IT
51

05 8911 CH03 10/16/00 1:43 PM Page 51

5:
6: class MyWindow : public QWidget
7: {
8: public:
9: // Constructor for the window, just call the QWidget constructor
10: MyWindow() : QWidget() { }
11: protected:
12: void paintEvent(QPaintEvent *);
13: };
14:
15: // This function is called when the window area must be updated.
16: // Load and view the image
17: void MyWindow::paintEvent(QPaintEvent *ev)
18: {
19: // Load the image that we want to show
20: QImage image;
21: if (image.load(“test.jpg”, 0)) // If the image was loaded,
22: { // Show the image.
23: // Draw graphics in this window
24: QPainter paint(this);
25: // Draw the image we loaded on the window
26: paint.drawImage(0, 0, image, 0, 0,
27: image.width(), image.height());
28: }
29: }
30:
31:
32: int main(int argc, char **argv)
33: {
34: KApplication app(argc, argv)
35: // Create the window
36: MyWindow window;
37: app.setMainWidget(&window);
38: window.setCaption(“ImageIO Example”);
39: window.setGeometry(100,100,300,300);
40: window.show();
41: return app.exec();
42: }

Fundamentals of KDE Application Programming

PART I
52

LISTING 3.11 Continued

05 8911 CH03 10/16/00 1:43 PM Page 52

FIGURE 3.5
Showing a JPEG Picture with ImageIO.

To compile the program, use the following commands:

g++ -c -I$QTDIR/include imageio.cpp
g++ -o iio imageio.o -L$QTDIR/lib -lqt -lqimgio -ljpeg

This feature is useful in all programs that need to load or store pictures. Image viewers and
paint programs are two kinds of programs that may benefit from ImageIO.

OpenGL, Mesa
OpenGL is an API for 2D and 3D graphics programming. It is quite useful, but you must buy a
license before you may develop an OpenGL program.

Mesa is a free library with similar functions. You can compile and run most OpenGL programs
with Mesa.

If you want to learn more about the OpenGL language, I recommend either the OpenGL Web
site, (http://www.opengl.org), or the Mesa Web site, (http://www.mesa3d.org).

The QGL Widget
If you want to create OpenGL programs, I recommend the QGL widget. QGL is a widget that
enables OpenGL code in Qt programs. The OpenGL compatibility in QGL comes from Mesa.
The QGL widget has three virtual member functions, into which you put your OpenGL code.

• initializeGL() is called first. In this function you write the code that sets up the
OpenGL rendering.

• paintGL() is called when the graphics must be drawn. This is where you put all the code
that draws things on the screen.

• resizeGL(int width, int height) is called when the widget is resized. If you want to
respond to resize events, this is where you do it.

The Qt Toolkit

CHAPTER 3

3

T
H

E
Q

T T
O

O
LK

IT
53

05 8911 CH03 10/16/00 1:43 PM Page 53

A Sample OpenGL Program
Listing 3.12 demonstrates the OpenGL special feature.

LISTING 3.12 main.cpp: OpenGL Program for Qt

#include <kapp.h>
#include <qgl.h>

// The QGLWidget is a QWidget with support for OpenGL
class MyWindow : public QGLWidget
{
public:
MyWindow() : QGLWidget() { }

protected:
// The functions where you put your OpenGL code.
void initializeGL(); // The start code for the widget
void resizeGL(int, int); // The widget is resized
void paintGL(); // Redraw the graphics.

};

void MyWindow::initializeGL()
{
glClearColor(1.0, 1.0, 1.0, 1.0);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0.0, 10.0, 0.0, 10.0, -1.0, 1.0);

}

void MyWindow::paintGL()
{
glClear(GL_COLOR_BUFFER_BIT);

glColor3f(0.0, 0.1, 0.4);

glBegin(GL_POLYGON);
glVertex3f(3.0, 5.5, 0.0);
glVertex3f(5.0, 8.0, 0.0);

Fundamentals of KDE Application Programming

PART I
54

You must install the Mesa or OpenGL libraries before you can use the OpenGL special
feature in Qt. The Mesa libraries can be downloaded from http://www.mesa3d.org.

CAUTION

05 8911 CH03 10/16/00 1:43 PM Page 54

LISTING 3.12 Continued

glVertex3f(7.0, 5.5, 0.0);
glEnd();

glBegin(GL_LINE_LOOP);
glVertex3f(3.0, 4.5, 0.0);
glVertex3f(5.0, 2.0, 0.0);
glVertex3f(7.0, 4.5, 0.0);
glEnd();

glFlush();
}

void MyWindow::resizeGL(int w, int h)
{
glViewport(0, 0, (GLint)w, (GLint)h);

}

// A standard main() function
int main(int argc, char **argv)
{
KApplication app(argc, argv, “QGL”);
MyWindow window;
window.setGeometry(100,100,300,200);
window.setCaption(“OpenGL extension”);
app.setMainWidget(&window);
window.show();
return app.exec();

}

This sample program is shown in Figure 3.6.

The Qt Toolkit

CHAPTER 3

3

T
H

E
Q

T T
O

O
LK

IT
55

FIGURE 3.6
The OpenGL sample program.

05 8911 CH03 10/16/00 1:43 PM Page 55

Summary
KDE is based on Qt. Much of the code in KDE programs are Qt specific (using Qt widgets or
features such as signals and slots), so you have to know Qt to be able to create KDE programs.
It is highly recommended that you download the Qt reference from the official Trolltech Web
site (http://www.trolltech.com).

The base class in Qt is QObject. If your class has signals or slots, your class must inherit from
QObject.

QWidget is the base class for all visible classes.

Always use KDE widgets instead of Qt widgets when it’s possible. That ensures that the look
and feel of your KDE program is consistent with other KDE programs. Some features in KDE
may also be better used by the KDE widgets.

You use signals and slots when you need to handle events. They are object independent. Each
slot can respond to several signals. Several slots can respond to the same signal.

A widget that uses signals or slots does not have to be compiled with moc. The moc tool is only
required when your class definition contains moc keywords. The moc keyword Q_OBJECT
enables signals and slots.

Events handling is not the only use of signals and slots. Classes can use signals and slots for
easy communication with each other. One example of this is when you have a program with
several windows. It is common that the code for one window needs to execute some code for
another window. This problem can be easily solved with signals and slots.

When you write MDI programs, the QList class may be used to store the window pointers.

Exercises
Answers to the exercises can be found in Appendix C, “Answers.”

1. Write a program that shows an empty window.

2. Create a program that shows a window with a button in it.

Fundamentals of KDE Application Programming

PART I
56

05 8911 CH03 10/16/00 1:43 PM Page 56

CHAPTER

4
Creating Custom KDE Widgets
by David Sweet

IN THIS CHAPTER
• Widget Basics 58

• Painting Widgets 63

• Using Child Widgets 71

• Handling User Input 78

06 8911 CH04 10/16/00 1:43 PM Page 57

By now you should have a good idea of what simple KDE code looks like and what Qt has to
offer. Now we will look in more detail at the building blocks of GUIs: the widgets. Although
KDE and Qt offer many useful and powerful widgets, you still need to create your own to cus-
tomize your UI. It is easy to do this—and to do it with good form—if you know how.

Widget Basics
Widgets are graphical user-interface elements. Simple widgets can be controls or indicators
such as a pushbutton or a text label. More complex widgets can perform more significant com-
putation or may require significant user input, such as the spell checker widget or the HTML-
rendering widget.

In KDE, widgets are implemented using C++ classes. Usually there is a one-to-one widget-to-
class correspondence. For example, a pushbutton is implemented by QPushButton. All widgets
are ultimately derived from the QWidget base class.

Understanding the QWidget Base Class
QWidget handles window system events, manages generic widget attributes, knows about its
parent and children, and handles functions unique to a top-level widget (if it should be one).
Window system events include geometry changes and user input. The widget is clipped by its
parent’s borders and by the children that lay on top of it. Top-level widgets have no parent.
They lie in a window on the desktop and have window borders and decorations drawn by the
window manager.

System Events
Window system events tell the widget when it needs to repaint, reposition, or resize itself,
when mouse clicks or keystrokes have been directed toward that widget, when the widget
receives or loses the focus, and so on. QWidget handles the events by calling a virtual method
for each event. Each method gets passed, as an argument, a class containing information about
the event. To handle the event, the corresponding method must be reimplemented in the sub-
class of QWidget.

A very important system event is the paint event. In response to this event, a widget draws (or
“paints”) itself. It is sent to the widget every time the widget needs to be displayed or redis-
played. For example, the event is sent when the widget is first created, when it is made visible
after being hidden, or when it is being uncovered after having been fully or partially obscured.
The paint event is discussed in detail in the next section, and techniques for repainting effi-
ciently are discussed in Chapter 9, “Constructing a Responsive User Interface.”

The following is a list of the (protected, virtual) QWidget event handlers and corresponding
events.

Fundamentals of KDE Application Programming

PART I
58

06 8911 CH04 10/16/00 1:43 PM Page 58

void event (QEvent *)

This is the main event handler. This method dispatches the events to their specialized
event handlers. Normally, you do not need to reimplement this method. The argument
tells the type of event.

void mousePressEvent (QMouseEvent *)

Gets called when one of the mouse buttons is pressed down with the mouse cursor inside
this widget. The argument tells which button was pressed, whether a modifier key (Ctrl,
Alt, or Shift) was pressed in combination with it, and where the cursor was when the but-
ton was pressed.

void mouseReleaseEvent (QMouseEvent *)

Gets called when one of the mouse buttons is released with the mouse cursor inside this
widget. (See mousePressEvent() for a description of the argument.)

void mouseDoubleClickEvent (QMouseEvent *)

Gets called when the user double-clicks on the widget. (See mousePressEvent() for a
description of the argument.)

void mouseMoveEvent (QMouseEvent *)

Gets called when the user moves the mouse with the cursor over the widget. This event is
generated only when a button is held down, unless you turn on mouse tracking with
QWidget::setMouseTracking (true). (See mousePressEvent() for a description of the
argument.)

void wheelEvent (QWheelEvent *)

Gets called when the user moves the mouse wheel (if there is one) and this widget has
the focus. The argument tells how far and in which direction the wheel has been rotated.
This event can be ignored by calling QWheelEvent::ignore() if it is not processed. In
this case, the event gets passed to the parent widget for processing.

void keyPressEvent (QKeyEvent *)

Gets called when a key is pressed and this widget has the focus. The argument contains a
code telling which key was pressed and whether a modifier key (Ctrl, Alt, or Shift) was
being held down. If you have turned on key compression with
QWidget::setKeyCompression (true), the argument may contain a text string repre-
senting all the keys that were pressed since the last time you received this event.

void keyReleaseEvent (QKeyEvent *)

Gets called when a key has been released and this widget has the focus.

void focusInEvent (QFocusEvent *)

Gets called when this widget receives the focus. If this widget is willing to accept the
focus, the default implementation calls QWidget::repaint() to redraw the widget with a
focused look.

Creating Custom KDE Widgets

CHAPTER 4
59

4

C
R

EA
TIN

G
C

U
STO

M
K

D
E

W
ID

G
ETS

06 8911 CH04 10/16/00 1:43 PM Page 59

void focusOutEvent (QFocusEvent *)

Gets called when this widget loses the focus. If this widget is willing to accept the focus,
the default implementation calls QWidget::repaint() to redraw the widget with an
unfocused look.

void enterEvent (QEvent *)

Gets called when the mouse cursor enters the widget.

void leaveEvent (QEvent *)

Gets called when the mouse cursor leaves the widget.

void paintEvent (QPaintEvent *)

Gets called when the widget needs to be repainted, such as when it is first created or
uncovered after being totally or partially obscured by another window. The argument
tells which part of the widget needs to be repainted.

void moveEvent (QMoveEvent *)

Gets called when the widget has been moved relative to its parent. The argument tells the
new and old positions.

void resizeEvent (QResizeEvent *)

Gets called when the widget has been resized. The argument tells the new and old sizes.

void closeEvent (QCloseEvent *)

For a top-level widget, this gets called when the user tries to close the window (using the
close button on the window frame, for example). For other widgets, this gets called when
the application calls the QWidget::close() method. In a Qt (non-KDE) application,
this would be a good place to ask, “Are you sure?” KDE applications should use
KTMainWindow::queryClose() for this purpose. You can accept or ignore the close
event by setting a flag in the QCloseEvent argument.

void dragEnterEvent (QDragEnterEvent *)

Gets called when a user is dragging data and the mouse cursor first enters this widget.
The argument tells where the mouse cursor is, what kind of data is being dragged, and
what the data is.

void dragMoveEvent (QDragMoveEvent *)

Gets called when a user drags data over this widget. (See dragEnterEvent() for a
description of the argument.)

void dragLeaveEvent (QDragLeaveEvent *)

Gets called when a user is dragging data and the mouse cursor leaves this widget. (See
dragEnterEvent() for a description of the argument.)

Fundamentals of KDE Application Programming

PART I
60

06 8911 CH04 10/16/00 1:43 PM Page 60

void dropEvent (QDropEvent *)

Gets called when a user drops (in a drag-and-drop operation) data onto your widget. (See
dragEnterEvent() for a description of the argument.)

void showEvent (QShowEvent *)

Gets called when the widget is first created or when the window in which it lies is
deiconified. The argument tells whether the show event originated inside the application
or outside the application (for example, the user clicked the deiconify button on the
taskbar).

void hideEvent (QHideEvent *)

Gets called right after the widget has been hidden. The argument tells whether the show
event originated inside the application or outside the application (for example, the user
clicked the iconify button on the window).

Widget Attributes
QWidget keeps track of various properties that may be of use to it or to subclasses. It holds a
Qfont, which describes a font for the widget. The font is not used by QWidget directly, but by
subclasses. A QCursor is kept in QWidget and is drawn as the mouse cursor whenever the cur-
sor passes over the widget. You can also access the position, size, colors, and other widget
attributes via the QWidget public interface.

QWidget also holds a pointer to a QStyle object. This object describes many common look-
and-feel characteristics of Qt widgets, as discussed in Chapter 3, “The Qt Toolkit.”

Signals and Slots
QWidget is a subclass of QObject, therefore it may make use of signals and slots. Widgets use
signals to communicate user interaction and/or changes in their state. A pushbutton, for exam-
ple, might emit a clicked() signal to indicate that the user has clicked the button. A check box
might emit a checked() signal to indicate that it has just been put into the checked state either
by direct user interaction or by a call from another part of the application.

Slots are used to change the widget’s state. This way, a widget can be easily configured to
react to events that do not directly affect it. Signals from other widgets (or more generally,
other subclasses of QObject) can be connected to a widget’s slots to affect its state. Imagine an
FM radio application: You connect the clicked() signals of a set of radio buttons to a station
name display so that the display reflects the station chosen by the user, even though the user
didn’t interact directly with the display.

Creating Custom KDE Widgets

CHAPTER 4
61

4

C
R

EA
TIN

G
C

U
STO

M
K

D
E

W
ID

G
ETS

06 8911 CH04 10/16/00 1:43 PM Page 61

Sample Widget Class Declaration
A sample widget header file containing its public interface is shown in Listing 4.1.

LISTING 4.1 kpushbutton.h: Class Declaration for a KDE Widget

1: #include <qwidget.h>
2:
3: /**
4: * KPushButton
5: * A sample widget header file. This widget would
6: * implement a standard pushbutton.
7: **/
8:
9: class KPushButton : public QWidget
10: {
11: Q_OBJECT
12:
13: public:
14: /**
15: * Create the pushbutton.
16: **/
17: KPushButton (QWidget *parent, const char *name=0);
18:
19: /**
20: * Set the text to be drawn on the button.
21: **/
22: void text (QString _text);
23:
24: /**
25: * Get the text being drawn on the button.
26: **/
27: QString text () const;
28:
29: signals:
30: /**
31: * Button was clicked by the user.
32: **/
33: void clicked ();
34:
35: slots:
36: /**
37: * Animate a button press.
38: **/
39: void animate ();

Fundamentals of KDE Application Programming

PART I
62

06 8911 CH04 10/16/00 1:43 PM Page 62

LISTING 4.1 Continued

40:
41: private:
42: QString theText;
43:
44: }

Listing 4.1 shows kpushbutton.h, a class declaration for a fictitious class called KPushButton.
Included in the declaration are important method types and class documentation.

KPushButton is a declared as a subclass of QWidget (line 9). The constructor (line 17) takes a
pointer to a QWidget as an argument that specifies the parent widget. This, along with the class
name, is passed to QWidget. The name is used only internally, and thus, the often-used value of
0 is made the default.

Methods are provided to get and set the configurable UI parameters (in this case, just the text;
see lines 19-27). In the standard style of KDE 2.0 and Qt 2.0, the same method name is used
for getting and setting a parameter. The function overloading feature of C++ allows this to be
done in most cases. (It would fail if both methods required the same arguments in the same
order!)

The widget emits a signal (declared on line 33) when the button is clicked, as discussed previ-
ously, and accepts, via a slot (declared on line 39), a command to animate the clicking of the
button.

Documentation
The class in Listing 4.1 is documented in the kdoc style introduced in Chapter 2, “A Simple
KDE Application.” It is discussed in detail in Chapter 15, “Creating Documentation.” You
should be familiarizing yourself with the basic form of the documentation: The documentation
appears in comments that look like /** ... **/. You should also get used to the idea of docu-
menting your classes, if you are not already, because it is such an important part of writing
code for a multiprogrammer project.

Painting Widgets
Although visible changes to the widget can happen at various times during the life of
your application, you should paint only during a paintEvent(). The drawing you do in
paintEvent() is done with the QPainter class. It offers pixel addressing, drawing primitives,
text drawing and other, more advanced functions. Widget drawing needs to be done efficiently
to provide a smooth, understandable GUI, and mechanisms are provided by Qt for doing so.

Creating Custom KDE Widgets

CHAPTER 4
63

4

C
R

EA
TIN

G
C

U
STO

M
K

D
E

W
ID

G
ETS

06 8911 CH04 10/16/00 1:43 PM Page 63

When Painting Occurs
The paintEvent() method is called automatically when

• Your widget is shown for the first time.

• After a window has been moved to reveal some part (or all) of the widget.

• The window in which the widget lies is restored after being minimized.

• The window in which the widget lies is resized.

• The user switches from another desktop to the desktop on which the widget’s window
lies.

You can generate paint events manually by calling QWidget::update(). QWidget::update()
erases the widget before generating the paint event. You can pass arguments to update(),
which can restrict painting only to areas (rectangles, in particular) that need it. The two equiva-
lent forms of the method are QWidget::update (int x, int y, int width, int height)
and QWidget::update (QRect rectangle), where x and y give the upper-left corner of the
rectangle, and width and height are obvious. Because update() places a paint event into the
event queue, no painting occurs until the current method exits and control returns to the event
handler. This is a good thing because other events may be waiting there to be processed, and
events need to be processed in a timely manner for the GUI to operate smoothly.

You can also invoke painting of the widget by calling QWidget::repaint (int x, int y,
int width, int height, bool erase) (or one of several convenience-method forms), where
all the arguments mean the same as in the case of the update() method, and erase tells repaint
whether to erase the rectangle before painting it. repaint() calls paintEvent() directly. It
does not place a paint event into the event queue, so use this method with care. If you try to
call repaint() repeatedly from a simple loop to create an animation, for example, the anima-
tion will be drawn, but the rest of your user interface will be unresponsive because the events
corresponding to mouse button clicks, keyboard presses, and so on will be waiting in the
queue. Even if you are not performing a task as potentially time-consuming as animation,
it is generally better to use update() to help keep your GUI alive.

If you paint something on your widget outside the paintEvent(), you still need to include the
logic and commands necessary to paint that same thing in paintEvent(). Otherwise, the paint-
ing you did would disappear the next time the widget is updated.

Repainting Efficiently
I mentioned earlier in this chapter that update() and repaint() may take arguments describ-
ing the rectangle that needs to be updated. The description of this rectangle is passed to
paintEvent() through the QPaintEvent class, which is the argument to paintEvent().

Fundamentals of KDE Application Programming

PART I
64

06 8911 CH04 10/16/00 1:43 PM Page 64

For the rectangle information to be useful, you must specifically take advantage of it in your
paintEvent(). Unless the painting you do will always be simple and quick, you should take
the time to repaint only the rectangle that is requested in the QPaintEvent. There are ways to
improve upon this for more difficult repainting tasks, which will be covered in Chapter 9.

Painting Your Widget with QPainter
QPainter is responsible for all the drawing you do with Qt. It is used to draw on widgets and
offscreen buffers (pixmaps) and to generate Postscript output for printing. Specifically,
QPainter draws on one of the objects derived from QPaintDevice: QWidget, QPixmap,
QPrinter, and QPicture.

Recording Drawing Commands with QPicture
QPicture is used for recording drawing commands. The commands can then be “played back”
onto another paint device (a widget, a pixmap, or a printer). To make printing easy, you could,
in your reimplementation of paintEvent(), record all your drawing commands in a QPicture,
and then play them back onto the widget. With the drawing commands still saved in QPicture,
you could respond to a print command by replaying the QPicture onto a QPrinter. This is
useful only in the simplest cases because

• Often, the printer output will not be the same as the screen output (consider a typical text
editor, for example).

• For complex enough output, the extra time spent recording and replaying in
paintEvent() will incur an unacceptable performance hit (which might be the case with
an image-manipulation program).

A Simple Widget
Listings 4.2–4.4 give the code for a simple widget called KXOSquare. This widget draws an X or
an O inside a square (see Figure 4.1).

The first time this widget paints itself, it draws a black box around at its border (the box is
drawn just inside the widget’s borders, actually). When you click the widget with the left
mouse button, it draws a blue X inside. When you click the widget with the right mouse button,
it draws a red O.

Let’s take a look at the class declaration. In Listing 4.2 the widget is, as all widgets are,
derived from the class QWidget. The state of the widget is described by one of three enum val-
ues: None (the initial state), X, or O. The widget paints itself to reflect its state in the reimple-
mented method paintEvent(). The state of the widget may be changed by calling the method
newState(). This method has been declared as a slot so that the widget may respond to signals

Creating Custom KDE Widgets

CHAPTER 4
65

4

C
R

EA
TIN

G
C

U
STO

M
K

D
E

W
ID

G
ETS

06 8911 CH04 10/16/00 1:43 PM Page 65

in a convenient way to change a widget’s state. The widget emits the signal changeRequest()
whenever the user clicks the square. It is up to the programmer using this class to use the sig-
nal appropriately. In this example, the function main() does the simplest thing and connects
the signal to the newState() slot.

Fundamentals of KDE Application Programming

PART I
66

FIGURE 4.1
KXOSquare draws a blue X or a red O in response to mouse clicks.

LISTING 4.2 kxosquare.cpp is the Class Declaration for KXOSquare, a Widget that Draws
an X or an O in a Square

1: #ifndef __KXOSQUARE_H__
2: #define __KXOSQUARE_H__
3:
4:
5: #include <qwidget.h>
6:
7:
8: /**
9: * KXOSquare
10: * Draws a square in one of three states: empty, with an X inside,
11: * or with an O inside.
12: **/
13: class KXOSquare : public QWidget
14: {
15: Q_OBJECT
16:
17: public:
18: enum State {None=0, X=1, O=2};
19:
20: /**

06 8911 CH04 10/16/00 1:43 PM Page 66

LISTING 4.2 Continued

21: * Create the widget.
22: **/
23: KXOSquare (QWidget *parent, const char *name=0);
24:
25: public slots:
26: /**
27: * Change the state of the widget to @p state.
28: **/
29: void newState (State state);
30:
31: signals:
32: /**
33: * The user has requested that the state be changed to @p state
34: * by clicking on the square.
35: **/
36: void changeRequest (State state);
37:
38: protected:
39: /**
40: * Draw the widget.
41: **/
42: void paintEvent (QPaintEvent *);
43:
44: /**
45: * Process mouse clicks.
46: **/
47: void mousePressEvent (QMouseEvent *);
48:
49: private:
50: State thestate;
51: };
52:
53: #endif

Creating Custom KDE Widgets

CHAPTER 4
67

4

C
R

EA
TIN

G
C

U
STO

M
K

D
E

W
ID

G
ETS

NOTE

The executable is named kxosquaretest because this is a common way to indicate
that the application exists only to test or demonstrate a widget and is not a full-
fledged KDE application. I will use this form throughout the book.

Listing 4.3 shows that class definition for the KXOSquare widget.

06 8911 CH04 10/16/00 1:43 PM Page 67

LISTING 4.3 kxosquare.cpp: Class Definition for the KXOSquare Widget

1: #include <qpainter.h>
2:
3: #include “kxosquare.moc”
4:
5: KXOSquare::KXOSquare (QWidget *parent, const char *name=0) :
6: QWidget (parent, name)
7: {
8: thestate = None;
9: }
10:
11: void
12: KXOSquare::paintEvent (QPaintEvent *)
13: {
14: QPainter qpainter (this);
15:
16: qpainter.drawRect (rect());
17:
18: switch (thestate)
19: {
20: case X:
21: qpainter.setPen (QPen (Qt::blue, 3));
22: qpainter.drawLine (rect().x(), rect().y(),
23: rect().x()+rect().width(), rect().y()+rect().height());
24: qpainter.drawLine (rect().x(), rect().y()+rect().height(),
25: rect().x()+rect().width(), rect().y());
26: break;
27: case O:
28: qpainter.setPen (QPen (Qt::red, 3));
29: qpainter.drawEllipse (rect());
30: break;
31: }
32: }
33:
34: void
35: KXOSquare::mousePressEvent (QMouseEvent *mouseevent)
36: {
37: switch (mouseevent->button())
38: {
39: case Qt::LeftButton:
40: emit changeRequest (X);
41: break;
42: case Qt::RightButton:
43: emit changeRequest (O);
44: break;

Fundamentals of KDE Application Programming

PART I
68

06 8911 CH04 10/16/00 1:43 PM Page 68

LISTING 4.3 Continued

46:
47: }
48:
49: void
50: KXOSquare::newState (State state)
51: {
52: thestate = state;
53: update();
54: }

KXOSquare::paintEvent() (lines 11-32) shows a somewhat typical usage of QPainter in a
paintEvent(). The QPainter object is created with this as its paint device (see line 14),
meaning that it will draw on the KXOSquare widget. The argument, of type QPaintEvent *, is
ignored.

Creating Custom KDE Widgets

CHAPTER 4
69

4

C
R

EA
TIN

G
C

U
STO

M
K

D
E

W
ID

G
ETS

Only because the items being drawn are so simple and can be rendered very quickly
do you repaint the entire widget. To save time, you should paint only the rectangle
specified in the QPaintEvent argument when the widget is complex.

You should do all of your painting inside paintEvent(). Since paint events are some-
times generated by the windowing system and sometimes by your application, you
can be sure when paintEvent() will be called. If you make changes to the state of
the widget in other methods and do your painting in paintEvent() based on the cur-
rent state of the widget, then your program’s logic will be simpler.

TIP

Line 22 draws the black bounding box using the QPainter method drawRect(). Other
QPainter methods are also demonstrated:

• setPen (QPen qpen)

Sets the color used to draw lines and figure edges.

• drawLine (int x1, int y1, int x2, int y2)

Draws a line from the point (x1, y1) to the point (x2, y2).

• drawEllipse (QRect rect)

Draws an ellipse that just fits inside the rectangle, rect (that is, the ellipse is tangent to
all four sides of the rectangle).

The first QPen, defined by QPen (Qt::blue, 3) in line 21, is blue with a width of 3 pixels.
The other QPen, defined in line 28, is red with a width of 3 pixels.

06 8911 CH04 10/16/00 1:43 PM Page 69

The next listing, Listing 4.4, presents a short main() function that creates and shows the wid-
get. You can compile the whole program with the command

g++ kxosquare.cpp main.cpp -I$KDEDIR/include

I/usr/include/qt -L$KDEDIR/lib -lkdecore -lkdeui -o kxosquaretest

The option -o kxosuaretest tells g++ to create an executable with name kxosquaretest.

LISTING 4.4 main.cpp Contains a main() Function that Can Be Used to Test the Widget
KXOSquare

1: #include <kapp.h>
2:
3: #include “kxosquare.h”
4:
5: int
6: main (int argc, char *argv[])
7: {
8: KApplication kapplication (argc, argv, “kxosquaretest”);
9: KXOSquare *kxosquare = new KXOSquare (0);
10:
11: kapplication.setMainWidget (kxosquare);
12: kxosquare->connect (kxosquare, SIGNAL (changeRequest (State)),
13: SLOT (newState (State)));
14:
15: kxosquare->show();
16: return kapplication.exec();
17: }

The signal changeRequest() takes a variable of type KXOSquare * as its second argument
because, as you will see next, this provides added flexibility. Notice, however, that in main(),
line 11 of main.cpp, I call

kxosquare.connect (kxosquare,
SIGNAL (changeRequest (KXOSquare::State, KXOSquare *)),
SLOT (newState (KXOSquare::State)));

The signal and slot don’t have the same arguments. In this case that’s just fine. It is acceptable
for the slot to have fewer arguments than the signal as long as the arguments that are retained
match. The following forms are not acceptable:

connect (pwidget1, SIGNAL (mysignal (int, char)),
pwidget2, SLOT (myslot (char)));

connect (pwidget1, SIGNAL (mysignal (int, char)),
pwidget2, SLOT (myslot (int, char, char)));

Fundamentals of KDE Application Programming

PART I
70

06 8911 CH04 10/16/00 1:43 PM Page 70

The following are acceptable:

connect (pwidget1, SIGNAL (mysignal (int, char)),
pwidget2, SLOT (myslot (int, char)));

connect (pwidget1, SIGNAL (mysignal (int, char)),
pwidget2, SLOT (myslot (int)));

Using Child Widgets
You should use the KDE and Qt widgets provided in the respective libraries as children of your
custom widgets wherever they would be useful and appropriate. By doing so, you save on
development time and reduce the overall memory footprint of your application. If the user is
running your application under KDE (or is running another KDE-based application), your
application will be sharing the KDE and Qt libraries with the programs already using them.
The code you write from scratch is not shared and thus increases the overall memory use of
your application + KDE.

You already saw in Chapter 2 how child widgets are used by KTMainWindow. The menubar,
toolbar, status line, and content area are all children of KTMainWindow.

Now you will design a simple widget, called KChildren, that creates children and connects
them to each other using the signal/slot mechanism to deliver a functioning, custom widget. All
this widget’s functionality, therefore, comes from its child widgets! The widget is shown in
Figure 4.2, and its code is given in Listings 4.5–4.7.

Creating Custom KDE Widgets

CHAPTER 4
71

4

C
R

EA
TIN

G
C

U
STO

M
K

D
E

W
ID

G
ETS

FIGURE 4.2
The KChildren widget shows how to use child widgets to easily create custom widgets.

LISTING 4.5 kchildren.h Contains the Class Declaration for KChildren, a Custom Widget

#ifndef __KCHILDREN_H__
#define __KCHILDREN_H__

/**

06 8911 CH04 10/16/00 1:43 PM Page 71

* KChildren
* Create and connect some child widgets.
**/

#include <qwidget.h>

class KChildren : public QWidget
{
public:
KChildren (QWidget *parent, const char *name=0);

};

#endif

This class declaration (Listing 4.5) is perhaps the simplest you could imagine for KDE widget,
yet the widget is still functional.

The next listing, Listing 4.6, shows the class definition that, in this case, consists mainly of the
definition of the class constructor.

LISTING 4.6 kchildren.cpp is the Class Definition for KChildren

1: #include <qlcdnumber.h>
2: #include <qslider.h>
3:
4: #include “kchildren.h”
5:
6: KChildren::KChildren (QWidget *parent, const char *name) :
7: QWidget (parent, name)
8: {
9:
10: QLCDNumber *qlcdnumber = new QLCDNumber (2, this);
11: qlcdnumber->display (0);
12: qlcdnumber->setGeometry (10, 10, 100, 150);
13:
14: QSlider *qslider = new QSlider (Qt::Horizontal, this);
15: qslider->setGeometry (10, 165, 100, 10);
16:
17: connect (qslider, SIGNAL (valueChanged (int)),
18: qlcdnumber, SLOT (display (int)));
19:
20: }

Fundamentals of KDE Application Programming

PART I
72

LISTING 4.5 Continued

06 8911 CH04 10/16/00 1:43 PM Page 72

This widget creates an LCD number and slider as child widgets. The child widgets are man-
aged by the Qt classes QLCDNumber and QSlider, respectively. In Listing 4.6 on line 17, the
call to connect() connects the QSlider::valueChanged(int) signal to the QLCDNumber::
display(int) slot so that whenever the user moves the slider, the LCD number is updated.
The actual number displayed is determined by QSlider and ranges from 0 at full left to 99 at
full right.

In this particular simple widget all the functionality is provided by the KDE/Qt child widgets.
In general, you’ll have to do a little more work than simply instantiating widgets and connect-
ing them, but the KDE/Qt widgets let you think more about the unique functionality of your
application and less about the details of UI components.

Listing 4.7 shows a main() function that can be used to test the function that can be used to
test the KChildren widget. Following convention, this program would be compiled to an exe-
cutable called kchildrentest.

LISTING 4.7 main.cpp is a main() Function Suitable for Testing the KChildren Widget

#include <kapp.h>

#include “kchildren.h”

int
main (int argc, char *argv[])
{
KApplication kapplication (argc, argv, “kchildrentest”);
KChildren *kchildren = new KChildren (0);

kapplication.setMainWidget (kchildren);

kchildren->show();
return kapplication.exec();

}

Geometry Management
In this widget you do need to do a little more than create and connect the widgets, as I alluded
to previously. You need to position them (relative to the main widget, KChildren) and set their
size. This is called geometry management. In KChildren the geometry management was per-
formed by placing the widgets at fixed, hard coded positions and giving them fixed sizes. For
example, line 12 of Listing 4.6,

qlcdnumber->setGeometry (10, 10, 100, 150);

Creating Custom KDE Widgets

CHAPTER 4
73

4

C
R

EA
TIN

G
C

U
STO

M
K

D
E

W
ID

G
ETS

06 8911 CH04 10/16/00 1:43 PM Page 73

places the LCD number widget’s upper-left corner at 10 pixels to the right and 10 pixels down
from the KChildren widget’s upper-left corner. The LCD number widget has a width of 100
pixels and a height of 150 pixels.

This is poor geometry management. Why? Try resizing the window. Notice that the child wid-
gets are unaffected—even if you resize the window so small that the child widgets cannot be
accessed (see Figure 4.3). Proper geometry management should take into account the size of
the parent widget and the size requirements of the child widgets. (A widget may, for example,
need to be of some minimum size before it can be drawn in a reasonably useful or recogniz-
able way.)

Fundamentals of KDE Application Programming

PART I
74

FIGURE 4.3
The KChildren widget does not adapt to different-sized windows because it uses poor geometry management.

Qt provides two geometry managers that can take care of this task for you in most cases. They
are QBoxLayout and QGridLayout. The former looks at your widgets as a horizontal or vertical
string of widgets, and the latter places your widgets on a grid. QGridLayout is the more flexi-
ble of the two, and I will show you an example using it.

Use a geometry manager class to organize your widgets instead of hard coding pixel
values.

TIP

The widget KTicTacToe is presented in Listings 4.8–4.10 It creates a tic-tac-toe game board by
arranging nine KXOSquare widgets in a 3×3 grid. See Figure 4.4 for a screen shot of the widget.

The first listing, Listing 4.8, shows the class declaration. Most of the work is done in the con-
structor, but you declare one slot, processClicks(), which will interpret the user’s mouse
clicks.

06 8911 CH04 10/16/00 1:43 PM Page 74

FIGURE 4.4
The KTicTacToe widget uses the KXOSquare widget nine times to create a game board.

LISTING 4.8 ktictactoe.h is the Class Declaration for the Widget KTicTacToe

1: #ifndef __KTICTACTOE_H__
2: #define __KTICTACTOE_H__
3:
4: #include <qarray.h>
5: #include <qwidget.h>
6:
7: #include “kxosquare.h”
8:
9: /**
10: * KTicTacToe
11: * Draw and manage a Tic-Tac-Toe board using KXOSquare.
12: **/
13: class KTicTacToe : public QWidget
14: {
15: Q_OBJECT
16:
17: public:
18: /**
19: * Create an empty game board.
20: **/
21: KTicTacToe (QWidget *parent, const char *name=0);
22:
23:
24: protected slots:
25: /**
26: * Process user input.
27: **/
28: void processClicks (KXOSquare *, KXOSquare::State);
29:

Creating Custom KDE Widgets

CHAPTER 4
75

4

C
R

EA
TIN

G
C

U
STO

M
K

D
E

W
ID

G
ETS

06 8911 CH04 10/16/00 1:43 PM Page 75

30: };
31:
32: #endif

At the top of the grid is a QLabel that displays the title “Tic-Tac-Toe.” The grid that you create
with QGridLayout has 4 rows and 3 columns. Three rows are for the game board, and 1 extra
row at the top is for the title. The title (the QLabel) spans all 3 columns.

This work is done in the constructor, given in Listing 4.9.

LISTING 4.9 ktictactoe.cpp is the Class Definition for KTicTacToe

1: #include <qlayout.h>
2: #include <qlabel.h>
3:
4: #include “ktictactoe.moc”
5:
6: KTicTacToe::KTicTacToe (QWidget *parent, const char *name) :
7: QWidget (parent, name)
8: {
9: int row, col;
10:
11: QGridLayout *layout = new QGridLayout (this, 4, 3);
12:
13: const int rowlabel0 = 0, rowlabel1 = 0, collabel0 = 0, collabel1 = 2,
14: rowsquares0 = 1, rowsquares1 = 4, colsquares0 = 0, colsquares1 = 3;
15:
16: for (row=rowsquares0; row<rowsquares1; row++)
17: for (col=colsquares0; col<colsquares1; col++)
18: {
19: KXOSquare *kxosquare = new KXOSquare (this);
20: layout->addWidget (kxosquare, row, col);
21: connect (kxosquare,
22: SIGNAL (changeRequest (KXOSquare *, KXOSquare::State)),
23: SLOT (processClicks (KXOSquare *, KXOSquare::State)));
24: }
25:
26: QLabel *label = new QLabel (“Tic-Tac-Toe”, this);
27: label->setAlignment (Qt::AlignCenter);
28: label->setMinimumSize (label->sizeHint());
29: layout->addMultiCellWidget (label,
30: rowlabel0, rowlabel1,
31: collabel0, collabel1);
32: }

Fundamentals of KDE Application Programming

PART I
76

LISTING 4.8 Continued

06 8911 CH04 10/16/00 1:43 PM Page 76

LISTING 4.9 Continued

33:
34:
35: void
36: KTicTacToe::processClicks (KXOSquare *square, KXOSquare::State state)
37: {
38: //In this simple example, just pass along the click to the appropriate
39: // square.
40 square->newState (state);
41: }

The layout manager, of type QLayout, is not a widget itself. On line 19, each child widget is
created with KTicTacToe as its parent.

A widget typically is added to the layout with QGridLayout::addWidget(). For example, you
add a KXOSquare to the layout with

layout->addWidget (kxosquare, row, col);

in line 20 of Listing 4.9.

You may break the strict grid structure of your widget by using QGridLayout::
addMultiCellWidget(), as you did with QLabel (lines 29-31):

layout->addMultiCellWidget (label, rowlabel1, rowlabel2,
collabel1, collabel2);

This call adds QLabel to the grid so that it spans column collabel1 to column collabel2, or
column 0 to column 2. Widgets can also call multiple rows. If rowlabel1 and rowlabel2 had
different values, this call would make the QLabel span row rowlabel1 to row rowlabel2.

Now try resizing the window. The title text moves itself so that it is always centered, as
requested on line 27 of Listing 4.9.

The squares resize themselves to fit their parent widget, which, in turn, fills the window (see
Figure 4.5). If you shrink the window very small, the squares nearly disappear, but the text
remains totally visible (see Figure 4.6). This is because you set the minimum size of the
QLabel in line 28 of Listing 4.9 with

label->setMinimumSize (label->sizeHint());

The QSize class returned by label->sizeHint() contains the size of the rectangle needed to
comfortably contain the text. You didn’t set any minimum size for the squares, so they are con-
tent simply to disappear as the window is made ever smaller.

You have used constants (for example, rowlabel1, rowsquare1) to describe the layout of the
widgets on the grid instead of hard coding the values in the calls to addWidget() and
addMultiCellWidget(). This keeps the specification of the layout of the entire grid in one
location, lines 13 and 14 of Listing 4.9, making future changes to it easier.

Creating Custom KDE Widgets

CHAPTER 4
77

4

C
R

EA
TIN

G
C

U
STO

M
K

D
E

W
ID

G
ETS

06 8911 CH04 10/16/00 1:43 PM Page 77

FIGURE 4.5
The KTicTacToe widget adapts to different-sized windows because it uses Qt’s geometry management.

Fundamentals of KDE Application Programming

PART I
78

FIGURE 4.6
The geometry manager was asked not to let the text label shrink too much. No such request was made for the game
board, so it nearly disappears when you shrink the window too much.

Playing the Game
This is quite a simple version of Tic-Tac-Toe. The KTicTacToe widget doesn’t enforce the rules
and doesn’t declare a winner! The slot KTicTacToe::processClicks() is the place for this
type of logic. The KXOSquare::changeRequest() signal thus serves as a hook into the
KXOSquare widget, allowing you to intercept the simple “click ==> draw X or O” logic and
apply arbitrary logic to the widget’s functioning. This is one way to make a widget more gen-
eral and thus useful to more developers. To simplify the interface, you might add a (bool) flag
to the constructor’s argument list, which, when true, causes the constructor to connect the
changeRequest() signal to the newState() slot. (Note: In this particular case, the arguments
of the signal and slot don’t match, so some intermediate slot, which called newState() in
KXOSquare, is necessary.) If the flag had a default value of true, the simplest usage of
KXOSquare gives the simplest behavior. More sophisticated behavior could still be achieved
by sending false for the flag’s value and managing the signal as you did in KTicTacToe.

Handling User Input
Applications receive user input most commonly via mouse and keyboard. You saw earlier that
mouse and keyboard information is passed to a KDE/Qt application from the window system
via events. The events that are important here are

• mousePressEvent()

• mouseMoveEvent()

• mouseReleaseEvent()

• mouseDoubleClickEvent()

06 8911 CH04 10/16/00 1:43 PM Page 78

• keyPressEvent()

• keyReleaseEvent() for processing keyboard input

KDisc (see Listings 4.10–4.12) demonstrates use of the mouseMoveEvent() and
keyPressEvent(). The widget draws a disc on itself and lets the user move the disc around by
dragging with the mouse or pressing one of the four arrow keys (see Figure 4.7).

Creating Custom KDE Widgets

CHAPTER 4
79

4

C
R

EA
TIN

G
C

U
STO

M
K

D
E

W
ID

G
ETS

FIGURE 4.7
The KDisc widget processes mouse-move events to let the user drag the disc around.

LISTING 4.10 kdisc.h Contains the Class Declaration for the KDisc Widget

1: #ifndef __KDISC_H__
2: #define __KDISC_H__
3:
4: #include <qwidget.h>
5:
6:
7: /**
8: * KDisc
9: * Lets the user move a disc around with the mouse or keyboard.
10: **/
11: class KDisc : public QWidget
12: {
13: public:
14: KDisc (QWidget *parent, const char *name=0);
15:
16: protected:
17: /**
18: * Disc the widget.
19: **/
20: void paintEvent (QPaintEvent *);
21:

06 8911 CH04 10/16/00 1:43 PM Page 79

22: /**
23: * Draw the disc under the mouse cursor.
24: **/
25: void mouseMoveEvent (QMouseEvent *);
26:
27: /**
28: * Examine the key pressed and move the disc accordingly.
29: **/
30: void keyPressEvent (QKeyEvent *);
31:
32: private:
33: QPoint discposition;
34:
35: };
36:
37: #endif

The previous listing, Listing 4.10, shows the class definition for the KDisc widget. You will be
processing paint events to draw the disc; mouse-move events to move the disc in response to a
mouse drag; and key press events to move the disc when one of the four arrow keys is pressed.
See Listing 4.11 for the code that accomplishes these tasks. The following two sections discuss
the mouse events and key events, respectively.

LISTING 4.11 kdisc.cpp Contains the Class Definition for the KDisc Widget

1: #include <qpainter.h>
2:
3: #include “kdisc.h”
4:
5: KDisc::KDisc (QWidget *parent, const char *name=0) :
6: QWidget (parent, name)
7: {
8:
9: discposition = QPoint (0, 0);
10: setMouseTracking (true);
11: }
12:
13: void
14: KDisc::paintEvent (QPaintEvent *)
15: {
16: QPainter painter (this);
17:
18: painter.setPen (QPen (Qt::black, 3));
19: painter.setBrush (QBrush (Qt::blue, Qt::Dense4Pattern));

Fundamentals of KDE Application Programming

PART I
80

LISTING 4.10 Continued

06 8911 CH04 10/16/00 1:43 PM Page 80

LISTING 4.11 Continued

20:
21: painter.drawEllipse (discposition.x(), discposition.y(),
22: 25, 25);
23: }
24:
25: void
26: KDisc::mouseMoveEvent (QMouseEvent *qmouseevent)
27: {
28:
29: if (qmouseevent->state()==Qt::LeftButton)
30: {
31: discposition = qmouseevent->pos();
32: update();
33: }
34:
35: }
36:
37: void
38: KDisc::keyPressEvent (QKeyEvent *qkeyevent)
39: {
40:
41: switch (qkeyevent->key())
42: {
43: case Qt::Key_Left:
44: discposition = QPoint (discposition.x()-10,
45: discposition.y());
46: update();
47: break;
48: case Qt::Key_Right:
49: discposition = QPoint (discposition.x()+10,
50: discposition.y());
51: update();
52: break;
53: case Qt::Key_Up:
54: discposition = QPoint (discposition.x(),
55: discposition.y()-10);
56: update();
57: break;
58: case Qt::Key_Down:
59: discposition = QPoint (discposition.x(),
60: discposition.y()+10);
61: update();
62: break;
63: default:
64: qkeyevent->ignore();
65: }
66:
67: }

Creating Custom KDE Widgets

CHAPTER 4
81

4

C
R

EA
TIN

G
C

U
STO

M
K

D
E

W
ID

G
ETS

06 8911 CH04 10/16/00 1:43 PM Page 81

Mouse Presses
In KXOSquare you processed a mouse click with mouseReleaseEvent(). The
QMouseEvent::button() method tells which button was clicked. The reason you chose
mouseReleaseEvent() and not mousePressEvent() is because you shouldn’t consider a user’s
mouse click to be registered until the mouse button is released. This way, the user will have a
chance to change his or her mind. This behavior is common practice. Try clicking pushbuttons
on your screen. Notice that no action occurs until the mouse button is released.

In mouseMoveEvent() you test QMouseEvent::state(), not QMouseEvent::button() to check
the state of the mouse. If the left button is being held down, the disc is moved so that it is cen-
tered under the mouse cursor (see line 31 of Listing 4.11):

discposition = qmouseevent->pos();

Then update() is called to clear the widget, erase the disc, and call paintEvent() to redraw
the disc in its new position.

In KDisc::KDisc (see line 10 of Listing 4.11) you call

setMouseTracking (true);

This informs Qt that you want to receive mouse-move events. Because the mouse can move
around quite a bit, this can generate lots of events. Generating and passing these events takes
time; therefore, by default, they are not generated. For this widget, you need those events to
make your UI function as you have designed it.

Keystrokes
QKeyEvent::key() returns a code telling which key was pressed. The constants, such as
Qt::Key_Left, Qt::Key_Right, and so on, are defined in qnamespace.h. (qnamespace.h is
included by qwindowdefs.h, which is, in turn, included by qwidget.h. Thus it is enough to
include qwidget.h if you want to process keypresses.)

You call QKeyEvent::ignore() when you don’t process the key press. This lets Qt know to
pass the keystroke on to our parent widget.

Fundamentals of KDE Application Programming

PART I
82

NOTE

Don’t return from a keystroke event handler without calling QKeyEvent::ignore() if
you don’t process the passed keystroke.

06 8911 CH04 10/16/00 1:43 PM Page 82

Next, in Listing 4.12, is a main() function that you can use to create an executable that creates
and shows the widget.

LISTING 4.12 main.cpp Contains a main() Function Suitable for Testing KDisc

1: #include <kapp.h>
2:
3: #include “kdisc.h”
4:
5: int
6: main (int argc, char *argv[])
7: {
8: KApplication kapplication (argc, argv, “kdisctest”);
9: KDisc *kdisc = new KDisc (0);
10:
11: kapplication.setMainWidget (kdisc);
12:
13: kdisc->show();
14: return kapplication.exec();
15: }

Summary
In this chapter you looked at various aspects of widgets. You learned about event processing
and the roles of signals and slots in widget design. You also saw how to paint a custom widget
and manage child widgets.

QWidget handles window system events by calling virtual methods. You reimplement these
methods to process the events. Each method receives a class containing information about the
event as an argument.

Signals are used to notify other widgets or other parts of the application that the state of the
widget has changed. Slots are used to change the state of the widget. They can be connected to
signals or invoked directly (because they are methods). A widget’s signals and slots should be
documented in the header file.

You should paint your widget only inside the paintEvent() method. This is easy to do if you
save the state of your widget as private or protected data and paint the widget to reflect that
state. You can then change the state in any other method and call update() to generate a paint
event and update the widget. Drawing is done with QPainter.

Child widgets need to be properly placed on their parent if the parent widget is to be attractive
and in the standard style. You can easily and properly place child widgets by using one of the
geometry managers provided by Qt: QBoxLayout or QGridLayout.

Creating Custom KDE Widgets

CHAPTER 4
83

4

C
R

EA
TIN

G
C

U
STO

M
K

D
E

W
ID

G
ETS

06 8911 CH04 10/16/00 1:43 PM Page 83

Exercises
See Appendix C, “Answers,” for the exercise answers.

1. Modify the method KTicTacToe::processClicks() so that the user is required to take
turns between X and O.

2. Reimplement KXOSquare::sizeHint() and use this method appropriately in the con-
structor of KTicTacToe. Compare what happens now when you resize the window to
what happened before.

3. What’s the difference between QPen and QBrush? Examine the KDisc code and consult
the Qt documentation.

4. Get to know QPainter. Construct different QPens and QBrushes in KDisc. Draw figures
other than a disc.

5. Try using mousePressEvent() instead of mouseReleaseEvent() in KDisc. Can you tell
the difference? Which feels right?

Fundamentals of KDE Application Programming

PART I
84

06 8911 CH04 10/16/00 1:43 PM Page 84

CHAPTER

5
KDE User Interface Compliance
by David Sweet

IN THIS CHAPTER
• The KDE Document-Centric Interface 86

• Helping the User Use Your Application 112

• Standard Dialog Boxes 118

07 8911 ch05 10/16/00 1:45 PM Page 85

Fundamentals of KDE Application Programming

PART I
86

KDE User Interface (UI) compliance is, in some sense, what the KDE project is all about.
KDE applications should be written so that they all look and work in similar ways. This makes
it easier for users to learn new applications. To comply with the KDE UI style, you need to
learn to use the KDE widgets, which are provided specifically for this purpose, and actions, a
concept new to KDE 2.0.

Actions are objects (instances of the C++ class KAction or one of its subclasses) that represent
the commands a user can issue to your application. Actions can be represented on a menubar
as menu entries or on a toolbar as icons. When your application’s response to a certain action
changes, it changes, logically, for all representations of the action, with minimal programming
effort. This chapter explains actions in more detail.

The KDE Document-Centric Interface
Take a look at Figure 5.1. It shows a prototypical example (KWrite) of a document-centric user
interface. This sort of interface is used by applications on all the well-known desktops: KDE,
CDE, GNOME, Windows, MacOS, OS/2, BeOS, and so on. The KDE incarnation (as well as
others) of the interface includes a menubar, one or more toolbars, a statusbar, and a client area,
as you have already learned in Chapter 2, “A Simple KDE Application.” KDE offers standard
widgets that draw and manage all these, except for the client area. The client area varies,
depending on what information is being presented.

FIGURE 5.1
KWrite offers a good example of a document-centric user interface.

07 8911 ch05 10/16/00 1:45 PM Page 86

More detailed standards govern the use of these widgets than those that are presented in this
chapter. For example, Chapter 6, “KDE Style Reference,” discusses where to place common
and application-specific menubar and toolbar entries. The techniques involved in laying out the
menubar and toolbar are discussed in the following sections of this chapter.

The Menubar and the Toolbar
The menubar and the toolbar are often discussed together because they provide access to all
your applications’ functions. Typically, in fact, the toolbar offers a subset of the menubar’s
functions.

The Menubar
The menubar lists all the functions available to the user and categorizes them under a small
number of headings. There are standard menu headings, such as File, Edit, and Help, and also
standard menu entries, such as Open…, Save… and Quit.

To access the menu entries’ functions, the user selects a menu either by first clicking the head-
ing with the mouse or by typing the key combination of Alt and a specially designated letter in
the heading (such as the F in File to open the menu). Then the menu entry can be chosen by
clicking it with the mouse or by pressing a specially designated letter (indicated by an under-
line in the entry text). Menu entries can also be accessed by an accelerator. This is a key com-
bination of Ctrl+(some key) that activates a function directly, bypassing the pull-down menu.
For example, Ctrl+S saves a document. Accelerators are available whenever the focus is some-
where in the main window. Only the most commonly used functions have accelerators associ-
ated with them.

Menubar entries are one UI representation of actions, discussed in the next section, “Creating
and Manipulating Actions.” You will rarely, if ever, need to access the menubar widget directly.

The Toolbar
Toolbars give quick access to frequently used functions listed in the menus on the menubar,
such as Open, Save, Print, and so on. The user accesses these functions via buttons, line edi-
tors, or menus attached to buttons.

Unlike the menubar, more than one toolbar can be created. Each toolbar can be used to collect
a different set of functions. Certain sets of functions may be appropriate only at certain times;
therefore, toolbars can be hidden and shown (as needed) by the application or by the user.

Toolbar buttons are another UI representation of actions (discussed in the next section), like
menubar entries. Toolbars can offer more functionality than a simple button-click, however, so
you may need to access the toolbar widget (called KToolBar) from time to time. An example is
given in the discussion in the “Custom Actions” section, later in this chapter.

KDE User Interface Compliance

CHAPTER 5

5

K
D

E U
SER

IN
TER

FA
C

E
C

O
M

PLIA
N

C
E

87

07 8911 ch05 10/16/00 1:45 PM Page 87

Creating and Manipulating Actions
Actions are an elegant new addition to the KDE API. Using them means that it will take less
time and effort to lay out, set up, and modify your user interface, and much of your user inter-
face will, quite naturally, follow the KDE standards.

The action concept is realized in the class KAction. This class holds descriptive information
about the action and contains methods for adding the action to a widget, such as the toolbar or
menubar, and for modifying the action. An action is described by some short text, an icon, an
accelerator key combination, and a slot that should be called when the user requests that the
action be performed (for example, by clicking the corresponding toolbar button). The text is
displayed as the menu entry text if the action is represented as a menubar entry and as ToolTip
text if the action is represented as a toolbar button. (Actions can have multiple representations;
that is, they can appear both in a menu and a toolbar.) The icon is displayed next to the entry in
the menu and on the toolbar button. The accelerator key combination activates the action
whenever the user presses it.

For example, saving a file is a familiar action. It can be initiated by choosing File, Save, by
clicking the toolbar button that looks like a floppy disk, or by pressing the key combination
Ctrl+S. This action can be created in the following way:

KAction *saveaction = new KAction (“Save...”, “save”,, Ctrl+S, this,
SLOT(slotSaveFile()),this, “save_action”);

However, this particular action is one of a set of standard actions that can be created in a more
convenient manner, as discussed in the next section.

Fundamentals of KDE Application Programming

PART I
88

The action is created on the heap with the new operator because you want actions to
persist so that they can continue to process user commands even after the method
that creates them finishes (such as widgets).

NOTE

Standard Actions
Some actions need to be defined again in many KDE applications. These actions should all be
represented in the UI in the same way, therefore their representations are defined by a subclass
of KAction called KStdAction. Some standard actions are Open, Save, and Quit. (The standard
actions are listed in their entirety in Chapter 6.) Each of these actions can be created with a sta-
tic convenience method, such as

KStdAction::open (this, SLOT (slotOpen()), actionCollection());

07 8911 ch05 10/16/00 1:45 PM Page 88

This method returns a pointer to an action. This action’s parent is actionCollection(). Take a
look at Listing 5.1 and then I’ll explain how actionCollection() works. Listings 5.1 and 5.2
create a top-level widget called KStdActionsDemo that shows how to handle the standard
actions in the, well, standard way.

LISTING 5.1 kstdactionsdemo.cpp: Class Declaration for KStdActionsDemo

1: #include <stdio.h>
2:
3: #include <qpopupmenu.h>
4: #include <qstringlist.h>
5:
6: #include <kapp.h>
7: #include <kmenubar.h>
8: #include <kiconloader.h>
9: #include <kaction.h>
10: #include <kstdaction.h>
11:
12: #include “kstdactionsdemo.moc”
13:
14: KStdActionsDemo::KStdActionsDemo (const char *name) : KTMainWindow (name)
15: {
16:
17: //File menu
18: KStdAction::openNew (this, SLOT (slotNew()), actionCollection());
19: KStdAction::open (this, SLOT (slotOpen()), actionCollection());
20: KStdAction::save (this, SLOT (slotSave()), actionCollection());
21:
22: recent =
23: KStdAction::openRecent (0, 0, actionCollection());
24: recent->addURL (KURL(“file:/samplepath/samplefile.txt”));
25: recent->addURL (KURL(“http://www.kde.org/sampleurl.html”));
26:
27: connect (recent, SIGNAL (urlSelected (const KURL &)),
28: this, SLOT (slotRecent (const KURL &)));
29:
30: KStdAction::quit (kapp, SLOT (closeAllWindows()), actionCollection());
31:
32: //Edit menu
33: KStdAction::cut (this, SLOT (slotCut()), actionCollection());
34: KStdAction::copy (this, SLOT (slotCut()), actionCollection());
35: KStdAction::paste (this, SLOT (slotCut()), actionCollection());
36:
37:

KDE User Interface Compliance

CHAPTER 5

5

K
D

E U
SER

IN
TER

FA
C

E
C

O
M

PLIA
N

C
E

89

07 8911 ch05 10/16/00 1:45 PM Page 89

38: createGUI();
39:
40: QLabel *dummyclientarea = new QLabel (this);
41: dummyclientarea->setBackgroundColor (Qt::white);
42: setView (dummyclientarea);
43: }
44:
45:
46:
47: void
48: KStdActionsDemo::slotNew()
49: {
50: printf (“File->New\n”);
51: }
52:
53: void
54: KStdActionsDemo::slotOpen()
55: {
56: printf (“File->Open\n”);
57: }
58:
59: void
60: KStdActionsDemo::slotSave()
61: {
62: printf (“File->Save\n”);
63: }
64:
65: void
66: KStdActionsDemo::slotCut()
67: {
68: printf (“Edit->Cut\n”);
69: }
70:
71: void
72: KStdActionsDemo::slotCopy()
73: {
74: printf (“Edit->Copy\n”);
75: }
76:
77: void
78: KStdActionsDemo::slotPaste()
79: {
80: printf (“Edit->Paste\n”);
81: }

Fundamentals of KDE Application Programming

PART I
90

LISTING 5.1 Continued

07 8911 ch05 10/16/00 1:45 PM Page 90

82:
83: void
84: KStdActionsDemo::slotRecent (const KURL &url)
85: {
86: printf (“Open recent file \”%s\”\n”,
87: (const char *) url.url());
88: }

Lines 18–23 and 30–35 create several of the standard actions using KStdAction. All these
actions will appear on the menubar and toolbar.

Each of these actions has as its parent actionCollection(). This method (a member of
KTMainWindow) returns a pointer to an instance of QActionCollection (don’t look for this
class in your Qt documentation just yet—the Qt classes related to actions are in the KDE CVS
module kdelibs/qk right now, but they will appear in Qt sometime after version 2.1); an object
that is created once per instance of KTMainWindow holds and serves to group your applications’
actions. All the actions in this group are referenced by the method createGUI(), the method
that “plugs” (this is action lingo) the actions into their correct spots on the menubar and
toolbar.

When you create the Recent Files menu (which lies under the File menu), pass 0L instead of
the usual “receiver, slotname” pair. This tells KStdAction not to connect a slot to the action’s
signal called activate()—that’s the default signal to which slots are connected when calling
the KStdAction convenience methods. Instead, connect to the signal urlSelected (const
KURL &)(see lines 27 and 28). This signal is part of the class KRecentFilesAction, the type of
the object returned by KStdAction::openRecent(). The const KURL & argument of this signal
tells which of the URLs the user chose.

On lines 24 and 25, two URLs are added to the recent files menu so that you can try out the
menu in this example. You should add URLs to this after a file is saved. Be sure to save a
pointer to the KRecentFilesAction so that you can do so.

KDE User Interface Compliance

CHAPTER 5

5

K
D

E U
SER

IN
TER

FA
C

E
C

O
M

PLIA
N

C
E

91

LISTING 5.1 Continued

The standard action KStdAction::openNew() should be connected to a slot that cre-
ates a new document. (The method name is slightly misleading. “new()” would be
better, but new is a C++ keyword and, thus, not a valid method name.)

TIP

07 8911 ch05 10/16/00 1:45 PM Page 91

LISTING 5.2 kstdactionsdemo.h: Class Definition for KStdActionsDemo

1: #ifndef __KSTDACTIONSDEMO_H__
2: #define __KSTDACTIONSDEMO_H__
3:
4: #include <ktmainwindow.h>
5: #include <kurl.h>
6:
7: class KRecentFilesAction;
8:
9: /**
10: * KStdActionsDemo
11: * Demonstrate how to use standard actions on the menubar and toolbar.
12: **/
13: class KStdActionsDemo : public KTMainWindow
14: {
15: Q_OBJECT
16: public:
17: /**
18: * Create some of the standard actions and connect them to
19: * slots.
20: **/
21: KStdActionsDemo (const char *name=0);
22:
23: public slots:
24: void slotOpen ();
25: void slotNew ();
26: void slotSave ();
27: void slotRecent (const KURL &);
28: void slotCut ();
29: void slotCopy ();
30: void slotPaste ();
31:
32: protected:
33: KRecentFilesAction *recent;
34: };
35:
36: #endif

The following main() function does a bit more than create and display the KStdActionsDemo
widget. It also shows another standard piece of a KDE main() function, the specification of

Fundamentals of KDE Application Programming

PART I
92

07 8911 ch05 10/16/00 1:45 PM Page 92

application information via the class KAboutData. The following information is passed to the
KAboutData constructor:

• Application name—”kstdactionsdemo”

• Application’s “given name”—”KStdActionsDemo”

• Version string—”1.0”

• Short description—”Demonstrate standard actions”

• License identifier—KAboutData::License_GPL (LGPL, BSD, and Artistic)

• Copyright string—” 2000, Joe Developer” (you should use this format exactly, substi-
tuing the appropriate information)

• Long description—(see Listing 5.3 for this string)

• Application home page

(The macro I18N_NOOP() marks the enclosed strings for translation. Translation is discussed in
detail in Chapter 7, “Further KDE Compliance.” I have mentioned the I18N_NOOP() macro
here to emphasize the importance of its use when specifying application information.)

The method addAuthor() adds some information about the application’s author. You may—
and should—call this method multiple times if the application has multiple authors.

The information passed to KAboutData is used to create a standard About box that can be acti-
vated by choosing Help, About (application name) from the standard Help menu, so your long
description should be informative.

KDE User Interface Compliance

CHAPTER 5

5

K
D

E U
SER

IN
TER

FA
C

E
C

O
M

PLIA
N

C
E

93

Be sure to tell the user what the application does and/or what type of data it oper-
ates on in the long description.

NOTE

KAboutData is also used by the standard bug report submission dialog that appears in the stan-
dard Help menu. The application you create here, KStdActionsDemo, has the standard Help
menu (it is created by createGUI()).

07 8911 ch05 10/16/00 1:45 PM Page 93

LISTING 5.3 main.cpp: A main() Function Suitable for Testing KStdActionsDemo

1: #include <kaboutdata.h>
2: #include <kcmdlineargs.h>
3: #include <klocale.h>
4: #include <kapp.h>
5:
6: #include “kstdactionsdemo.h”
7:
8: int
9: main (int argc, char *argv[])
10: {
11:
12: KAboutData aboutData(“kstdactionsdemo”,
13: I18N_NOOP(“KStdActionsDemo”), “1.0”,
14: I18N_NOOP(“Demonstrate standard actions”),
15: KAboutData::License_GPL,
16: “(c) 2000, Joe Developer”,
17: I18N_NOOP(“Demonstrate how to use standard “
18: “ actions on the menubar and toolbar.”),
19: “http://www.sleepyprogrammers.com/~jdevel/kstdact/”);
20:
21: aboutData.addAuthor(“Joe Developer”, 0, “jdevel@sleepprogrammers.com”,
22: “http://www.sleepyprogrammers.com/~jdevel/”);
23:
24: KCmdLineArgs::init(argc, argv, &aboutData);
25:
26: KApplication kapplication;
27: KStdActionsDemo *kstdactionsdemo = new KStdActionsDemo;
28: kapplication->setMainWidget(kstdactionsdemo);
29: kstdactionsdemo->show();
30: return kapplication.exec();
31: }

See Figure 5.2 for a screen shot of KStdActionsDemo.

Fundamentals of KDE Application Programming

PART I
94

07 8911 ch05 10/16/00 1:45 PM Page 94

FIGURE 5.2
Screen shot of KStdActionsDemo.

Custom Actions
The standard actions certainly won’t be all the actions you’ll need for all your applications; in
this section you’ll see how to create custom actions and incorporate them into your applica-
tion’s UI.

Listings 5.4–5.7 present KCustomActions, a top-level widget that demonstrates how to use a
few custom actions.

LISTING 5.4 kcustomactions.h: Class Declaration for KCustomActions

1: #ifndef __KCUSTOMACTIONS_H__
2: #define __KCUSTOMACTIONS_H__
3:
4: #include <ktmainwindow.h>
5:
6: class KToggleAction;
7: class KRadioAction;
8:
9: /**
10: * KCustomActions
11: * Create custom actions for the menubar and toolbars.
12: **/
13: class KCustomActions : public KTMainWindow
14: {
15: Q_OBJECT
16: public:
17: /**
18: * Construct the menubar and toolbars and fill

KDE User Interface Compliance

CHAPTER 5

5

K
D

E U
SER

IN
TER

FA
C

E
C

O
M

PLIA
N

C
E

95

07 8911 ch05 10/16/00 1:45 PM Page 95

19: * them with interesting things.
20: **/
21: KCustomActions (const char *name=0);
22:
23: public slots:
24: void slotMyEntry();
25: void slotLoadPage (const QString &url);
26: void slotRectangle ();
27: void slotPencil ();
28:
29:
30: protected:
31: KToggleAction *checkable;
32: KRadioAction *rectangle, *pencil;
33: };
34:
35: #endif

As in KStdActionsDemo, you declare a constructor, some slots to respond to the actions, and
classwide pointers (lines 31 and 32) to some actions. Here you use two new action types:
KToggleAction and KRadioAction. They are discussed following Listing 5.5.

LISTING 5.5 kcustomactions.cpp: Class Definition for KCustomActions

1: #include <stdio.h>
2:
3: #include <qpopupmenu.h>
4: #include <qkeycode.h>
5:
6: #include <kmenubar.h>
7: #include <ktoolbar.h>
8: #include <kiconloader.h>
9: #include <kaction.h>
10: #include <kstdaction.h>
11: #include <kapp.h>
12:
13: #include “kcustomactions.moc”
14:
15: //Widget IDs for URLToolBar
16: const int URLLabel =0,
17: URLCombo=1;
18: KCustomActions::KCustomActions (const char *name) : KTMainWindow (name)
19: {

Fundamentals of KDE Application Programming

PART I
96

LISTING 5.4 Continued

07 8911 ch05 10/16/00 1:45 PM Page 96

20: new KAction (“Specia&l”, CTRL+Key_L, 0L, 0L,
21: actionCollection(), “special”);
22: KStdAction::quit (kapp, SLOT(closeAllWindows()), actionCollection());
23:
24: KStdAction::home (0L, 0L, actionCollection());
25:
26: new KAction (“My &Entry”, 0,
27: this, SLOT (slotMyEntry()), actionCollection(),
28: “my_entry”);
29:
30: checkable = new KToggleAction (“My Checkable Entry”, 0,
31: actionCollection(),

➥“my_checkable_entry”);
32:
33: KAction *grayentry =
34: new KAction (“My &Gray Entry”, “flag”,
35: 0, 0L, 0L, actionCollection(),
36: “my_gray_entry”);
37: grayentry->setEnabled (false);
38:
39: //Create toolbox.
40:
41: rectangle =
42: new KRadioAction (“Rectangle select”,
43: “rectangle_select”, 0,
44: this, SLOT (slotRectangle()),
45: actionCollection(), “rectangle”);
46: rectangle->setExclusiveGroup (“tools”);
47:
48: pencil =
49: new KRadioAction (“Pencil”,
50: “pencil”, 0,
51: this, SLOT (slotPencil()),
52: actionCollection(), “pencil”);
53: pencil->setExclusiveGroup (“tools”);
54:
55: rectangle->setChecked(true);
56:
57: createGUI();
58: toolBar(“toolBoxToolBar”)->setBarPos (KToolBar::Left);
59:
60:
61: //Create second toolbar.
62:
63: QLabel *label = new QLabel (“URL:”, toolBar(“URLToolBar”));

KDE User Interface Compliance

CHAPTER 5

5

K
D

E U
SER

IN
TER

FA
C

E
C

O
M

PLIA
N

C
E

97

LISTING 5.5 Continued

07 8911 ch05 10/16/00 1:45 PM Page 97

64:
65: toolBar(“URLToolBar”)->
66: insertWidget (URLLabel, label->sizeHint().width(), label);
67:
68: int indexcombo =
69: toolBar(“URLToolBar”)->
70: insertCombo (QString(“http://www.kde.org”),
71: URLCombo, true,
72: SIGNAL (activated (const QString &)),
73: this, SLOT (slotLoadPage (const QString &)));
74:
75: toolBar(“URLToolBar”)->setItemAutoSized (indexcombo);
76:
77:
78:
79: QLabel *dummyclientarea = new QLabel (this);
80: dummyclientarea->setBackgroundColor (Qt::white);
81: setView (dummyclientarea);
82:
83: }
84:
85: void
86: KCustomActions::slotMyEntry()
87: {
88: printf (“Custom->My Entry\n”);
89: }
90:
91: void
92: KCustomActions::slotLoadPage(const QString &url)
93: {
94: printf (“Load page: [%s]\n”, (const char *)url);
95: }
96:
97: void
98: KCustomActions::slotRectangle ()
99: {
100: if (rectangle->isChecked())
101: printf (“Use rectangle select tool\n”);
102: }
103:
104: void
105: KCustomActions::slotPencil ()
106: {
107: if (pencil->isChecked())
108: printf (“Use pencil select tool\n”);
109: }

Fundamentals of KDE Application Programming

PART I
98

LISTING 5.5 Continued

07 8911 ch05 10/16/00 1:45 PM Page 98

You create three menus in KCustomActions: the File menu, the Go menu (another standard
menu), and a menu called Custom. Because a customized menu contains a set of application-
specific functions, you need to create each of the corresponding actions “by hand” using
KAction. You also create three differently styled toolbars.

The File and Go menus have predefined, KDE-wide layouts, so the actions on these menus
will be put in their proper order in the menus and on the main toolbar, but you can also add
application-specific entries to these menus. This is demonstrated with the action called Special
created on lines 20 and 21. In the statement on lines 20 and 21, you describe the action with
the KAction constructor, but you don’t specify on which menu this action belongs.

The layout of nonstandard actions is specified in a separate file called kcustomactionsui.rc.
This file is specified as the argument to and read by the createGUI() method (line 57). The
method createGUI() merges this file, an XML file (given in Listing 5.6) with a global XML
layout file, thereby merging your custom action layout with the global one to create a single
layout for your application.

LISTING 5.6 kcustomui.rc: XML File Describing the Layout of the KCustomActions UI

1: <!DOCTYPE kpartgui>
2: <kpartgui name=”kmenubardemo”>
3: <MenuBar>
4: <Menu name=”file”><text>&File</text>
5: <Action name=”special”/>
6: </Menu>
7: <Menu name=”custom”><text>&Custom</text>
8: <Action name=”my_entry”/>
9: <Action name=”my_checkable_entry”/>
10: <Action name=”my_gray_entry”/>
11: </Menu>
12: </MenuBar>
13: <ToolBar name=”mainToolBar”>
14: <Action name=”my_gray_entry”/>
15: </ToolBar>
16: <ToolBar name=”toolBoxToolBar”>
17: <Action name=”rectangle”/>
18: <Action name=”pencil”/>
19: </ToolBar>
20: <ToolBar name=”URLToolBar”/>
21: </kpartgui>

The file in Listing 5.6 is used to specify where actions should be placed on the menus and
toolbars, using a predefined set of XML tags.

KDE User Interface Compliance

CHAPTER 5

5

K
D

E U
SER

IN
TER

FA
C

E
C

O
M

PLIA
N

C
E

99

07 8911 ch05 10/16/00 1:45 PM Page 99

XML stands for eXtensible Markup Language, a subset of SGML created to simplify the stor-
age and transmission across platforms of structured data. The words in angle brackets (such as
<MenuBar>) are called tags, and they usually come in pairs, such as: <MenuBar>…</MenuBar>.
The pair serves to delimit the beginning and the end of a section. In the case of the
<MenuBar>…</MenuBar> tags, the information between the tags describes the layout of the
menubar.

Fundamentals of KDE Application Programming

PART I
100

XML files may remind you of HTML. That’s because they both are types of SGML, the
Standard Generalized Markup Language. All SGML files use tags in angle brackets for
markup and have a similar markup format.

NOTE

Some of the tags have attributes, which are of the form

attributename=”attributevalue”

For example, name=”custom” is an attribute of the <Menu> tag used in Listing 5.6.

Finally, some tags do not come in pairs because no more information is needed to describe
them than what is given in their tag name and/or tag attributes. Such a tag in Listing 5.6 is
<Action name=”actionname”/>. Table 5.1 shows a list of the tags that are available for use in
creating these KDE GUI XML files. (The file type is specified by the tag
<!DOCTYPE kpartgui>. The name comes from the fact that these documents originated in the
KParts component architecture. (See Chapter 12, “Creating and Using Components (KParts)”
for more information on KParts).

TABLE 5.1 XML Tags Used by kpartgui Files

Tag/Tag Pair Use/Content

<MenuBar></MenuBar> Description of the menubar

<Menu name=”name”></Menu> Description of a menu named name (name is not
displayed)

<text></text> Menu title to display in the menubar

<ToolBar name=”name”></ToolBar> Description of the toolbar named name (name is
not displayed)

<Action name=”name”/> Put an action on a menu or toolbar. This tag falls
between <Menu></Menu> tags or
<ToolBar></ToolBar> tags. The string name is the
same string that is passed as the last argument to
the KAction constructor.

07 8911 ch05 10/16/00 1:45 PM Page 100

Now back to KCustomActions. The action called “special” is described on line 5 of Listing
5.6 with

<Action name=”special”/>

and created on lines 21 and 22 of Listing 5.5. Notice that the string special is used in both
places. The method createGUI() uses this string to match actions to their corresponding XML
tags. This action will be inserted in the File menu in the proper place according to the KDE UI
standard because you have placed the action tag inside the tags <Menu name=”file”></Menu>.
The name identifier used here is defined in the global XML KDE UI description file. You
should take a look at this file to see which menus are available and what names they are given.
The file is $KDEDIR/share/config/ui/ui_standards.rc.

The next menu, called Custom, contains three entries. It is shown in Figure 5.3. The first entry,
called My Entry, is created in lines 27–29 of Listing 5.5.

KDE User Interface Compliance

CHAPTER 5

5

K
D

E U
SER

IN
TER

FA
C

E
C

O
M

PLIA
N

C
E

101

FIGURE 5.3
The Custom menu shows checkable and disabled menu entries.

The second entry is called a checkable entry because it may or may not have a check mark
placed next to it. Checkable menu entries are created with KToggleAction (see lines 31 and
32). The user may toggle a frequently changed option by selecting the corresponding entry
from a menu. The check mark indicates whether the option is on or off. You do not specify a
slot in the call to the KToggleAction constructor because there is no event to which to
respond. When you need to know whether the option is on or off, you can check the value
returned by checkable->isChecked().

The last entry in the Custom menu is a disabled entry (see lines 34–48). The entry is marked
as disabled by calling setEnabled (false), as shown on line 38. Using disabled entries lets
the user see all the functions that are included in the application, even if they aren’t currently
appropriate or usable. For example, a commonly disabled entry in the File menu is Save. This
entry would be disabled (and displayed in a different style that would indicate to the user that
it is disabled) until a document is actually opened (perhaps even until the document is
changed).

07 8911 ch05 10/16/00 1:45 PM Page 101

Lines 41–58 create a “toolbox” toolbar. This toolbar contains a set of radio buttons represent-
ing different tools that can be used to edit the document. You have created a rectangle-select
tool button and a pencil tool button. The nature of radio buttons is that only one button can be
pressed down at a time (that is, the user can use only one tool at a time).

You can create radio buttons with KRadioAction. Each time you create one of these buttons,
you insert it into a group with the method setExclusiveGroup(“name”) (see lines 46 and 53
of Listing 5.5). You can use any name you like, just be sure to use the same name for every but-
ton in a single radio-button group.

These toolbox buttons are placed on a separate toolbar that is named toolBoxToolBar on line
13 of Listing 5.6.

Fundamentals of KDE Application Programming

PART I
102

Historically, disabled menu entries were shown in gray type instead of black. Today,
displays have 24-bit color and GUIs are highly configurable and themeable; therefore,
disabled entries, although still visually distinguishable from enabled entries, are often
styled in a way that is not simply gray (for example, KDE uses a semi-transparent
effect by default).

NOTE

You can lay out multiple toolbars with your XML KDE UI file and createGUI().

TIP

The toolbox is moved to the left side of the window (a common place to find a toolbox) on
line 51 of Listing 5.5. When you need to access the toolbar widget directly, as done here, use
the KTMainWindow method toolBar(name), which returns a pointer to the toolbar named name.
The identifier name is the same one used to declare the toolbar in the XML GUI file; therefore,
on line 16 of Listing 5.6, you see the toolbox toolbar declared with

<ToolBar name=”toolBoxToolBar”>

and on line 58 of Listing 5.5, the same toolbar is referenced with

toolBar(“toolBoxToolBar”)

The final toolbar, the URL toolbar, holds a text label and a combobox. Figure 5.4 shows all
the toolbars. Because text display and text entry aren’t really actions, there are no correspond-
ing KAction subclasses. So how do you make the toolbar?

07 8911 ch05 10/16/00 1:45 PM Page 102

FIGURE 5.4
Three types of toolbars are created by KCustomActions.

One answer is to create your own subclasses of KAction—perhaps KTextLabelAction and
KComboAction—and create the toolbar with an XML UI file and createGUI(). This method,
although a little extra work, provides your application with more configurability.

The simpler method is to create them by directly accessing the KToolBar widget (the now old-
fashioned way). After setting up the UI with a call to createGUI(), add the extra URL toolbar.
This toolbar has id=2 and the corresponding KToolBar widget is created with the first call to
the method toolBar() on line 52 of Listing 5.5. Lines 55–75 insert two widgets, the static
text label (a QLabel), and the combobox into the toolbar. See the KToolBar documentation for
details of these methods.

LISTING 5.7 kcustomactions.h: The Class Definition for KCustomActions

1: #ifndef __KCUSTOMACTIONS_H__
2: #define __KCUSTOMACTIONS_H__
3:
4: #include <ktmainwindow.h>
5:
6: class KToggleAction;
7: class KRadioAction;
8:
9: /**
10: * KCustomActions

KDE User Interface Compliance

CHAPTER 5

5

K
D

E U
SER

IN
TER

FA
C

E
C

O
M

PLIA
N

C
E

103

Standard Toolbar

URL Toolbar

Toolbox Toolbar

07 8911 ch05 10/16/00 1:45 PM Page 103

11: * Create custom actions for the menubar and toolbars.
12: **/
13: class KCustomActions : public KTMainWindow
14: {
15: Q_OBJECT
16: public:
17: /**
18: * Construct the menubar and toolbars and fill
19: * them with interesting things.
20: **/
21: KCustomActions (const char *name=0);
22:
23: public slots:
24: void slotMyEntry();
25: void slotLoadPage (const QString &url);
26: void slotRectangle ();
27: void slotPencil ();
28:
29:
30: protected:
31: KToggleAction *checkable;
32: KRadioAction *rectangle, *pencil;
33: };
34:
35: #endif

Listing 5.7 declares the constructor, slots to process actions, and variables to keep track of
actions (lines 31 and 32). For example, in slotRectangle() on line 100 of Listing 5.5, refer to
the object rectangle to see whether the slot was called in response to the user choosing this
tool or deselecting it by choosing another tool.

The following main() function can be used to try out KCustomActions. (For simplicity, you
have not created an instance of KAboutData. However, you always should for any application
you intend to distribute.)

LISTING 5.8 main.cpp: A main() Function Suitable for Testing KCustomActions

1: #include <kapp.h>
2:
3: #include “kcustomactions.h”
4:
5: int
6: main (int argc, char *argv[])

Fundamentals of KDE Application Programming

PART I
104

LISTING 5.7 Continued

07 8911 ch05 10/16/00 1:45 PM Page 104

7: {
8: KApplication kapplication (argc, argv, “kcustomactions”);
9: KCustomActions *kcustomactions = new KCustomActions;
10:
11: kcustomactions->show();
12: return kapplication.exec();
13: }

The Statusbar
The statusbar gives the user information about what the application is doing, what it has just
completed, or what it might do if the user asks it to perform a task. Let’s look at two examples:
Konqueror and KWrite.

Konqueror
Figure 5.5 shows Konqueror just after pressing Enter in the line editor in the toolbar. The sta-
tusbar indicates what Konqueror is doing—loading the page at “8.0 KB/s.” It also says what it
has done: loaded 94% of the page so far. When the loading is complete, the statusbar says
Document: Done.

KDE User Interface Compliance

CHAPTER 5

5

K
D

E U
SER

IN
TER

FA
C

E
C

O
M

PLIA
N

C
E

105

LISTING 5.8 Continued

FIGURE 5.5
konqueror has loaded 94% of the KDE home page and is loading at a rate of 8.0 KB/s.

Also, when the user passes the mouse cursor over a link, the statusbar displays the full URL
pointed to by the link. This shows to what page the link would bring the user.

07 8911 ch05 10/16/00 1:45 PM Page 105

KWrite
The statusbar used in KWrite contains status indicators that are always present at the right side
of the statusbar (see Figure 5.1). They tell the user whether the file needs saving (the asterisk
indicates “yes”), whether the user is in insert or overwrite mode, and which line and column
the cursor is on.

Now create your own example. Listings 5.9–5.11 present code for KStatusBarDemo, an appli-
cation that demonstrates KStatusBar.

LISTING 5.9 kstatusbardemo.h: Contains the Class Declaration for KStatusBarDemo, a
Subclass of KTMainWindow

1: #ifndef __KSTATUSBARDEMO_H__
2: #define __KSTATUSBARDEMO_H__
3:
4: #include <ktmainwindow.h>
5:
6: class QPopupStatus;
7:
8: /**
9: * KStatusBarDemo
10: * Demonstrates functions of KStatusBar.
11: **/
12: class KStatusBarDemo : public KTMainWindow
13: {
14: Q_OBJECT
15: public:
16: /**
17: * Construct the statusbar and fill it with interesting things.
18: **/
19: KStatusBarDemo (const char *name=0);
20:
21: public slots:
22: void slotChangeMode ();
23:
24: protected:
25: bool mode;
26:
27: };
28:
29: #endif

Fundamentals of KDE Application Programming

PART I
106

07 8911 ch05 10/16/00 1:45 PM Page 106

LISTING 5.10 main.cpp: Contains a main() Function That Creates and Executes
kstatusbardemo, an Application Based on KStatusBarDemo

1: #include <kapp.h>
2:
3: #include “kstatusbardemo.h”
4:
5: int
6: main (int argc, char *argv[])
7: {
8: KApplication kapplication (argc, argv, “kstatusbardemo”);
9: KStatusBarDemo *kstatusbardemo = new KStatusBarDemo;
10:
11: kstatusbardemo->show();
12: return kapplication.exec();
13: }

The statusbar in this example is a simple one. There are two areas: one for a general status
message and one for a mode indicator (similar to the INS/OVT indicator used by KWrite).

LISTING 5.11 kstatusbardemo.cpp: Contains the Class Definition for KStatusBarDemo

1: #include <kstatusbar.h>
2: #include <kapp.h>
3: #include <kstdaction.h>
4: #include <kaction.h>
5:
6: #include “kstatusbardemo.moc”
7:
8: //Status bar IDs.
9: const int StatusBarMain = 0, StatusBarMode = 1;
10:
11: KStatusBarDemo::KStatusBarDemo (const char *name) : KTMainWindow (name)
12: {
13: KStdAction::quit (kapp, SLOT(closeAllWindows()), actionCollection());
14: new KAction (“&Change Mode”, 0,
15: this, SLOT (slotChangeMode()), actionCollection(),
16: “change_mode”);
17:
18: createGUI();
19:
20: statusBar()->
21: insertItem (“Current status of application”,
22: StatusBarMain, 1);

KDE User Interface Compliance

CHAPTER 5

5

K
D

E U
SER

IN
TER

FA
C

E
C

O
M

PLIA
N

C
E

107

07 8911 ch05 10/16/00 1:45 PM Page 107

23: statusBar()->insertItem (“ Mode2 “, StatusBarMode);
24: statusBar()->changeItem (“ Mode1 “, StatusBarMode);
25: mode=true;
26:
27: statusBar()->message (“Application is ready!”, 2000);
28:
29: QLabel *dummyclientarea = new QLabel (this);
30: dummyclientarea->setBackgroundColor (Qt::white);
31: setView (dummyclientarea);
32: }
33:
34:
35: void
36: KStatusBarDemo::slotChangeMode ()
37: {
38:
39: if (mode)
40: {
41: statusBar()->changeItem (“ Mode2 “, StatusBarMode);
42: mode=false;
43: }
44: else
45: {
46: statusBar()->changeItem (“ Mode1 “, StatusBarMode);
47: mode=true;
48: }
49:
50: }

In the KStatusBarDemo constructor, you first create a simple menubar containing an entry that
will be used to change the mode displayed by the mode indicator. This is done in lines 14–16
of Listing 5.10. See Figure 5.6 for a screen shot. (The call to create GUI() on Line 18 looks
for a file called kstatusbardemoui.rc in the directory $KDEDIR/share/kstatusbardemo. This file
is available on the Web site.)

The mode indicator should take up a fixed amount of the statusbar and be positioned on the far
right. The main message area should take up the rest of the statusbar. To partition the statusbar
in this way, the mode indicator is created with a stretch value—the third argument to
insertItem()—of 0, meaning to use as little space as possible (see line 23), and the main
message area is created with a stretch value of 1.

Fundamentals of KDE Application Programming

PART I
108

LISTING 5.11 Continued

07 8911 ch05 10/16/00 1:45 PM Page 108

FIGURE 5.6
KStatusBarDemo displays a message that disappears in two seconds.

When the stretch value is nonzero, it tells KStatusBar to apportion the statusbar width
among the various items in amounts proportional to stretch. When stretch is zero,
KStatusBar always uses the width of the text field with which the item is created. On line 23
the mode indicator is created with the text Mode2 because this is the longer of the two possible
text strings that this field will hold. In general, when the item you are inserting has a stretch
value of zero, you should always call insertItem() with the longest text string that field will
hold to be certain that there will be enough space to fit any of the text strings.

The method KStatusBar::message() (see line 27) displays a temporary message on top of the
entire statusbar. The message “Application is ready!” remains visible for two seconds. The sec-
ond argument tells how long, in milliseconds, the message will be visible. After it disappears,
the items placed in the statusbar with insertItem()appear.

Content Area
The look and function of the content area varies from application to application. The goal in
designing the content area is to convey some of or all the information contained in the docu-
ment (where “document” is somewhat loosely defined) to the user. If all the information can-
not be displayed, the user should be able to browse or search for more. You may also want to
allow the user to change (edit) the document. The style and complexity of this portion of the
interface is strongly influenced by the character of the document being presented. But always
remember to keep it simple.

Next, you see how some common applications implement their content areas.

KDE User Interface Compliance

CHAPTER 5

5

K
D

E U
SER

IN
TER

FA
C

E
C

O
M

PLIA
N

C
E

109

07 8911 ch05 10/16/00 1:45 PM Page 109

Text Editor
KWrite deals with the most obvious of documents—a text file. It displays an empty (usually
white) rectangle with a blinking text-insertion cursor (and I-shaped cursor). The user types and
sees the typed characters appear as text in the window. The user can edit the text using stan-
dard keys (Arrows, Backspace, Delete, and so on). When the text becomes too large for the
window, a horizontal or vertical scrollbar appears (whichever is necessary), giving access to the
unseen portions of the document. KWrite can be seen in Figure 5.1.

KWrite uses a custom-made widget for displaying and editing its documents. KDE applica-
tions can use either the KEdit or QMultiLineEdit class for displaying and editing text in their
client areas.

File Manager/Browser
Figure 5.7 shows Konqueror displaying the contents of a directory, which is the “document” in
this case. The user uses the scrollbars to see more of the directory. The user edits the “docu-
ment” by adding, deleting, or renaming files or subdirectories.

Fundamentals of KDE Application Programming

PART I
110

FIGURE 5.7
One document displayed and edited with konqueror is a directory.

07 8911 ch05 10/16/00 1:45 PM Page 110

Of course, Konqueror also allows navigation between documents. If you click a folder, you see
its contents. If you click an HTML file, you see it rendered. FTP sites can be displayed, navi-
gated, and so on, just like local directories. If you click a PostScript file, you will see it ren-
dered (in the same client area, but by a different application, KGhostView), and so on.
Konqueror’s view is so powerful because it displays information using components—embed-
ded applications—so that, in principle, any URL can be handled within Konqueror if a compo-
nent is available to display it.

Personal Information Manager
The KOrganizer client area consists of three parts and is shown in Figure 5.8. On the left are
the calendar and the To-Do list. On the right is the list of appointments for a given day. The
calendar is used to navigate to different days and the navigator is placed to the left, as is cus-
tomary. The To-Do list is presumably placed here to keep it always in view because it may
contain more urgent information.

KOrganizer uses QSplitter to divide the left side from the right side. The vertical frame
drawn by QSplitter can be dragged from left to right to change the layout of the client area.

KDE User Interface Compliance

CHAPTER 5

5

K
D

E U
SER

IN
TER

FA
C

E
C

O
M

PLIA
N

C
E

111

FIGURE 5.8
KOrganizer extends the idea of a document to an appointment book.

07 8911 ch05 10/16/00 1:45 PM Page 111

Helping the User Use Your Application
Although you want to try to design an interface that is intuitive, you must accept that some-
times a user just won’t get it. For this reason there are ways to provide users with help in vary-
ing degrees of detail. The ToolTip provides a few words to nudge a user who is stuck, statusbar
messages give a little more information, the “What’s This?” gives a newer user a more useful
explanation of a UI element, and Help files give full explanations of the program for users at
all levels.

ToolTips, What’s This?, and More
Listings 5.12 and 5.13 show how to provide the four types of help just discussed: ToolTips,
statusbar messages, What’s This? help, and a Help file. This program, KHelpers, creates an
empty client area and provides the user with helpful information about it.

LISTING 5.12 khelpers.h: Contains a Class Declaration for KHelpers, a Subclass of
KTMainWindow

1: #ifndef __KHELPERS_H__
2: #define __KHELPERS_H__
3:
4: #include <ktmainwindow.h>
5:
6: class QPopupMenu;
7:
8: /**
9: * KHelpers
10: * Demonstrates functions of KMenuBar and QPopupMenu.
11: **/
12: class KHelpers : public KTMainWindow
13: {
14: Q_OBJECT
15: public:
16: /**
17: * Construct the menubar and fill it with interesting things.
18: **/
19: KHelpers (const char *name=0);
20:
21: public slots:
22: /**
23: * Provide help on menu entries in the statusbar.
24: **/
25: void slotMenuEntryHelp (int);
26:

Fundamentals of KDE Application Programming

PART I
112

07 8911 ch05 10/16/00 1:45 PM Page 112

27: /**
28: * View a specific HTML Help file.
29: **/
30: void slotSpecialHelp();
31:
32: protected:
33: int idfilenew, idfileopen, idfilesave, idfilequit;
34: };
35:
36: #endif

KHelpers is derived from KTMainWindow, which manages the menu and client area. The client
area is just an empty QLabel, created on line 52 in Listing 5.13.

LISTING 5.13 khelpers.cpp: Contains a Class Definition for KHelpers

1: #include <stdio.h>
2:
3: #include <qpopupmenu.h>
4: #include <qToolTip.h>
5: #include <qwhatsthis.h>
6:
7: #include <kapp.h>
8: #include <kstddirs.h>
9: #include <kmenubar.h>
10:
11: #include “khelpers.moc”
12:
13: const int HelpMessageTime = 2000;
14:
15: KHelpers::KHelpers (const char *name) : KTMainWindow (name)
16: {
17: QPopupMenu *file = new QPopupMenu;
18:
19: idfilenew =
20: file->insertItem (“&New”);
21: idfileopen =
22: file->insertItem (“&Open...”);
23: idfilesave =
24: file->insertItem (“&Save”);
25: idfilequit =
26: file->insertItem (“&Quit”, kapp, SLOT (closeAllWindows()));
27:
28: connect (file, SIGNAL (highlighted (int)),

KDE User Interface Compliance

CHAPTER 5

5

K
D

E U
SER

IN
TER

FA
C

E
C

O
M

PLIA
N

C
E

113

LISTING 5.12 Continued

07 8911 ch05 10/16/00 1:45 PM Page 113

29: this, SLOT (slotMenuEntryHelp (int)));
30:
31: menuBar()->insertItem (“&File”, file);
32:
33:
34: QPopupMenu *help =
35: helpMenu (“KHelpers\n”
36: “Copyright (C) 2000 By Joe Developer\n\n”
37: “KHelpers demonstrates a few of the ways “
38: “that your application can provide help to a user.”);
39:
40: help->insertSeparator();
41: help->insertItem (“Help on a special topic”, this,
42: SLOT (slotSpecialHelp()));
43:
44: menuBar()->insertItem (“&Help”, help);
45:
46: //Create the statusbar.
47: statusBar();
48:
49: QLabel *clientarea = new QLabel (this);
50: clientarea->setBackgroundColor (Qt::white);
51:
52: QToolTip::add (clientarea, “Functionless client area”);
53: QWhatsThis::add (clientarea, “This client area doesn’t do anything.”);
54:
55:
56: setView (clientarea);
57:
58: clientarea->setFocus();
59:
60: }
61:
62:
63: void
64: KHelpers::slotMenuEntryHelp (int id)
65: {
66:
67: if (id==idfilenew)
68: statusBar()->message(“Create a new document.”, HelpMessageTime);
69: else if (id==idfileopen)
70: statusBar()->message(“Open a file.”, HelpMessageTime);
71: else if (id==idfilesave)

Fundamentals of KDE Application Programming

PART I
114

LISTING 5.13 Continued

07 8911 ch05 10/16/00 1:45 PM Page 114

72: statusBar()->message(“Save the current document.”, HelpMessageTime);
73: else if (id==idfilequit)
74: statusBar()->message(“Quit the application.”, HelpMessageTime);
75:
76: }
77:
78: void
79: KHelpers::slotSpecialHelp()
80: {
81: QString helpfilename (kapp->name());
82: helpfilename += “/specialhelp.html”;
83:
84: kapp->invokeHTMLHelp (helpfilename, “”);
85: }

The main() function in Listing 5.14 can be used to compile KHelper into an executable.

LISTING 5.14 main.cpp: Contains a main() Function That Creates and Executes KHelpers,
an Application Based on KHelpers

1: #include <kapp.h>
2. #include “khelpers.h”
3:
4: int
5: main (int argc, char *argv[])
6: {
7: KApplication kapplication (argc, argv, “khelpers”);
8: KHelpers *khelpers = new KHelpers;
9:
10: khelpers->show();
11: return kapplication.exec();
12: }

This program demonstrate four types of user help: ToolTips, statusbar messages, What’s This?,
and Help file access.

ToolTips are short messages that give a text name or a description of a widget. They appear
after the user has held the mouse pointer over a widget for a second or so. The text is usually
only a few words. The message Open a file, for example, might appear over the toolbar but-
ton that performs that task. The messages appear in frameless windows. They disappear after
the user moves the mouse pointer, and they won’t reappear again until the pointer has left the
widget and then returned and stayed motionless. See Figure 5.9 for a screen shot of the
KHelpers window with the ToolTip displayed.

KDE User Interface Compliance

CHAPTER 5

5

K
D

E U
SER

IN
TER

FA
C

E
C

O
M

PLIA
N

C
E

115

LISTING 5.13 Continued

07 8911 ch05 10/16/00 1:45 PM Page 115

FIGURE 5.9
KHelpers gives ToolTip help on the client area.

In KHelpers, you add a ToolTip to the client area widget using the static method
QToolTip::add() in line 52.

Fundamentals of KDE Application Programming

PART I
116

FIGURE 5.10
KHelpers also gives What’s This? help on the client area.

What’s This? help messages are longer than ToolTips—up to three paragraphs. They explain in
more detail the function of a widget. They are often used to explain elements of dialog boxes
(see Chapter 8, “Using Dialog Boxes,” for a discussion of dialog boxes).

You attach a What’s This? help message to the client area in much the same way as you attach
the ToolTip. Use the static function QWhatsThis::add() (line 53). To view the message, the
user selects What’s This? from the Help menu and then clicks the widget of interest. If a wid-
get can accept the keyboard focus, Shift+F1 displays the What’s This? message for the widget
with focus. See Figure 5.10 for a screen shot of KHelpers displaying What’s This? help on the
client area.

07 8911 ch05 10/16/00 1:45 PM Page 116

When short messages are not enough and users want to learn how to use your application, they
can read the documentation. Documentation is provided in HTML format and is accessible
through the standard Help menu entry, Contents. A standard format is used for the HTML doc-
umentation, which is described in Chapter 15, “Creating Documentation.” A standard directory
also exists for the documentation. These and other standard directories are discussed in
Chapter 7.

To create the standard Help menu, use the method KTMainWindow::helpMenu(), as shown on
lines 34–38. You should always use the standard Help menu. You will see that entries have
been added to it after adding a separator. This is fine as long as the standard entries are there
first.

The returned menu has five menu entries:

1. Contents

Starts KHelpCenter, which displays the HTML documentation for KHelpers.

2. What’s This

Enter “What’s This?” mode.

3. About khelpers

Displays the text passed as the first parameter to helpMenu(). In general, khelpers will
be replaced with the application’s name.

4. About KDE

Displays a standard dialog box describing KDE.

5. Report bug

Report a bug to http://bugs.kde.org.

To this menu, you append the entry to get “special help.” Sometimes elements of the UI need
special explanation. To demonstrate how to view help on specific topics, add this “special
help” entry and load the Help file in slotSpecialHelp().

The Help file is loaded for viewing on line 84. Help files for KHelpers are stored in the subdi-
rectory khelpers in the standard Help file directory, so you construct the path khelpers/
specialhelp.html. Of course, you also need to create the HTML documentation and place it
there if you want to view it. Creating documentation is covered in Chapter 15. (Trying to view
the documentation will give an error because the file will not be found.)

KDE User Interface Compliance

CHAPTER 5

5

K
D

E U
SER

IN
TER

FA
C

E
C

O
M

PLIA
N

C
E

117

07 8911 ch05 10/16/00 1:45 PM Page 117

Standard Dialog Boxes
KDE offers several dialog boxes for common tasks, as described in Table 5.2.

TABLE 5.2 Dialog Boxes Available for Common Tasks

Dialog Box Task

KFileDialog Selecting a file

KFontDialog Selecting a font

KColorDialog Selecting a color

KMessageBox Displaying a short message

Other dialog boxes are available, but they are more complex or more specialized and thus are
discussed elsewhere (see Chapters 6, 8, and 10).

Using these dialog boxes makes it easier to perform the common tasks of requesting file
names, fonts, and so on from the user. More importantly, it makes providing answers to these
questions for your application the same as for any other. Thus, if you use these dialog boxes,
the user will have less new material to learn to use your application.

In the following program (Listing 5.15), named kstandarddialogs by the call to KApplication
on line 10, you see how easily the dialog boxes previously listed can be used. They all provide
static methods for retrieving precisely the information you are interested in without instantiat-
ing the class, but they may also be subclassed so that their functionality can be altered or
extended.

LISTING 5.15 main.cpp: Contains a main() Function That Demonstrates Various KDE and
Qt Dialog Boxes

1: #include <kapp.h>
2: #include <kfiledialog.h>
3: #include <kfontdialog.h>
4: #include <kcolordlg.h>
5: #include <kmessagebox.h>
6:
7: int
8: main (int argc, char *argv[])
9: {
10: KApplication kapplication (argc, argv, “kstandarddialogs”);
11:
12: if (KMessageBox::
13: warningContinueCancel (0, “Are you sure you want to see this demo?”,
14: “Demo program”, “See demo”) ==

Fundamentals of KDE Application Programming

PART I
118

07 8911 ch05 10/16/00 1:45 PM Page 118

LISTING 5.15 Continued

15: KMessageBox::Cancel)
16: exit (0);
17:
18: QString filename = KFileDialog::getOpenFileName ();
19:
20: if (filename != “”)
21: {
22: QString message;
23: message.sprintf (“The file you selected was
➥\”/home/dsweet/KDE/BOOK/CH05/KStandardDialogs/main.cpp\””, // \”%s\”.”,
24: (const char *)filename);
25:
26: KMessageBox::information (0, message, “File selected”);
27: }
28:
29: QFont qfont;
30: if (KFontDialog::getFont (qfont))
31: {
32: QString message;
33: message.sprintf (“Sorry, but you selected \”%d point %s\””,
34: qfont.pointSize(),
35: (const char *) qfont.family());
36:
37:
38: KMessageBox::sorry (0, message, “Font selected”);
39: }
40:
41: QColor qcolor;
42: if (KColorDialog::getColor (qcolor))
43: {
44: QString message;
45: message.sprintf (“Oh no! The color you selected “
46: “was (R,G,B)=(%d,%d,%d).”,
47: qcolor.red(), qcolor.green(), qcolor.blue());
48:
49: KMessageBox::error (0, message, “Error: Color selected”);
50: }
51:
52: return 0;
53: }

You have used all these dialog boxes from main(). No need exists to create a main widget or
even start the application. All these dialog boxes are modal, which means that they have their
own local event loops. (Before you can display a window, you still need to create a
KApplication so that it can perform some initialization, however.)

KDE User Interface Compliance

CHAPTER 5

5

K
D

E U
SER

IN
TER

FA
C

E
C

O
M

PLIA
N

C
E

119

07 8911 ch05 10/16/00 1:45 PM Page 119

Each of the dialog boxes, except for KMessageBox, works in basically the same way. You can
call a static method to start the dialog box and you are given back the object selected by the
user.

KFileDialog has three static methods that you will often find useful:

getOpenFileName()—Ask for the name of a file to open.

getSaveFileName()—Ask for the name of a file to save.

getExistingDirectory()—Ask for the name of a directory.

These methods return a QString containing the filename or an empty string if no filename was
chosen (that is, the user clicked the Cancel button). See line 18 for usage and Figure 5.11 for a
screen shot of the file selector dialog box.

Fundamentals of KDE Application Programming

PART I
120

To use KFileDialog you must link your program with -lkfile. The other dialog boxes
covered here are in part of the standard libraries.

NOTE

FIGURE 5.11
KStandardDialogs uses KFileDialog to let the user choose a file.

The method KFontDialog::getFont(), used on line 30, takes a QFont object as an argument
and fills it with the font chosen by the user. If the user cancels the operation, getFont()
returns the constant Qt::Rejected. See Figure 5.12 for a screen shot of the font selector
dialog box.

The color selector works just like the font selector. The method KFontDialog::getColor(),
used on line 42, takes a QColor object as an argument and fills it with the color chosen by the
user. The method returns Qt::Rejected if the user clicks the Cancel button (see Figure 5.13).

07 8911 ch05 10/16/00 1:45 PM Page 120

FIGURE 5.12
KStandardDialogs uses KFontDialog to let the user choose a font.

KDE User Interface Compliance

CHAPTER 5

5

K
D

E U
SER

IN
TER

FA
C

E
C

O
M

PLIA
N

C
E

121

FIGURE 5.13
KStandardDialogs uses KColorDialog to let the user choose a color.

KMessageBox can display several types of messages:

KMessageBox::warningContinueCancel()

Displays a warning dialog box and gives the user the option to continue with the operation or
cancel it. The final argument to this method is the text string that will be placed on the
Continue button. In this sample program, you ask users whether they would really like to see
the demo, and you put See Demo on the Continue button.

07 8911 ch05 10/16/00 1:45 PM Page 121

FIGURE 5.14
KMessageBox::warningContinueCancel() displays this style dialog box.

KMessageBox::information()

Tells the user something informative, but not related to an error (see Figure 5.15).

Fundamentals of KDE Application Programming

PART I
122

FIGURE 5.15
KMessageBox::information() displays this style dialog box.

KMessageBox::sorry()

Tells the user that some requested action is not allowed (see Figure 5.16).

FIGURE 5.16
KMessageBox::sorry() displays this style dialog box.

KMessageBox::error()

Tells the user that some error has occurred in the execution of a task (see Figure 5.17).

FIGURE 5.17
KMessageBox::error() displays this style dialog box.

07 8911 ch05 10/16/00 1:45 PM Page 122

Summary
This chapter covered many things. You learned how to create a menubar, toolbars, and a status-
bar. You learned about various types of content areas, how to program simple drag-and-drop,
how to give users help on your application, and how to use standard dialog boxes.

The menubar, toolbars, and the statusbar look and functionality is provided—and con-
strained—by the KDE widgets KMenuBar, KToolBar, and KStatusBar. Using these will auto-
matically give you much of the KDE look and feel.

You can give help at three levels. The simplest, shortest messages come from ToolTips or sta-
tusbar messages. Longer descriptions (about three paragraphs at most) come from What’s
This? help. These are useful for explaining complicated widgets or dialog boxes. And, when all
else fails, the user can read the full program documentation.

KDE and Qt provide dialog boxes for common tasks, such as requesting a filename, a font, a
color, and displaying messages. Using these dialog boxes is not only easier than writing your
own, it makes the method of answering these common questions the same in your application
as in others.

Exercises
1. Use KStatusBar::insertWidget() to insert the KDE widget of your choice into the sta-

tusbar. Is the widget appropriate for the statusbar? What information does it convey to
the user?

2. Create a document-centric application that has QMultiLineEdit as its client area. Be
sure to use KMenuBar, KToolBar, and KStatusBar. Include New and Quit on the File
menu and New on the toolbar. Put the line number into the statusbar. (You will need to
refer to the Qt documentation for QMultiLineEdit for this exercise.)

KDE User Interface Compliance

CHAPTER 5

5

K
D

E U
SER

IN
TER

FA
C

E
C

O
M

PLIA
N

C
E

123

07 8911 ch05 10/16/00 1:45 PM Page 123

07 8911 ch05 10/16/00 1:45 PM Page 124

CHAPTER

6
KDE Style Reference
by Charles Samuels

IN THIS CHAPTER
• Accessing the Standard Actions 126

• Session Management 129

• The Standard KDE Icons 133

• Internationalization 135

• Playing Sounds 136

• User Notifications 136

• Executing Other Programs 138

• Network Transparency 140

• User Friendliness 144

08 8911 CH06 10/16/00 1:45 PM Page 125

Fundamentals of KDE Application Programming

PART I
126

The KDE libraries and services are able to provide icons, translations, sounds, data, and network
files. It's important to use these resources, rather than your own implementations, because even
internal happenings, such as receiving a file from the Internet, may have a system-provided
progress bar.

KDE is not just a few applications; it is more a set of libraries that allow users to feel that they
are in an environment, not just using the same widget toolkit.

Accessing the Standard Actions
A new feature of KDE 2.0 is the KAction class. In a standard toolbar you have standard events.
Most applications share toolbars and menu items; rather than sharing those items, they are in
fact sharing the KActions. For these events, there is the KStdAction class.

Each KStdAction is created in the following form:

KStdAction::stdActionName(this, SLOT(receiver()), actionCollection());

At the time this chapter was written, KDE provided the following actions that applications may
share:

• aboutApp—Show the About dialog for your application. Required.

• aboutKDE—Show the About KDE dialog for your application. Also required.

• actualSize—View the document with no zoom.

• addBookmark—Add a bookmark for the current position.

• back—Move back in a list.

• close—Close the current window. Be aware that you're not terminating the entire appli-
cation unless this is the only window open. This does not cause the document to close,
unless this is the only view for it.

• configureToolbars—Show the Customize Toolbars dialog box.

• copy—Copy the data to the clipboard.

• cut—Cut the currently selected text to the clipboard.

• editBookmarks—Manage the list of bookmarks for the document.

• find—Open the Find dialog box.

• findNext—Try to search for another instance of the text selected in the Find dialog box.

• findPrev—Search again, but backward.

• firstPage—Go to the beginning of the document.

• fitToHeight—Zoom so that the full height of the document is visible.

• fitToPage—Zoom so that the entire document is visible.

08 8911 CH06 10/16/00 1:45 PM Page 126

• fitToWidth—Zoom so that the entire width of the document is visible.

• forward—Move forward in the list.

• goTo—Show a dialog, allowing the user to select a general position to go to.

• gotoLine—Allow the user to select a page from a dialog box.

• gotoPage—Show a dialog enabling the user to select a page to go to.

• help—Go to the main Help page.

• helpContents—Show the table of contents of Help.

• home—Go to the original position.

• keyBindings—Configure Key bindings.

• lastPage—Move to the end of the document.

• mail—Send this file via email.

• next—Go to the next page.

• openNew—Open a new window with an empty document.

• open—Open a file.

• openRecent—Return a KRecentFilesAction (a “recently opened files” list in the File
menu).

• paste—Paste data into the document from the clipboard.

• preferences—Set preferences.

• print—Print the currently open file.

• printPreview—Preview how the document will look when printed.

• prior—Move to the previous page.

• quit—Closes all views for this document, not for the entire app.

• redisplay—Refresh the display.

• redo—Redo a change that was undone.

• replace—Run a Find and Replace action.

• reportBug—Show the Report a Bug dialog box. All programs should have this.

• revert—Destroy changes since the last save.

• save—Save the currently open file.

• saveAs—Save the currently open file under a new name.

• saveOptions—Save all settings to disk.

• selectAll—Select the entire document.

• showMenubar—Toggle the visibility of the menubar.

KDE Style Reference

CHAPTER 6

6

K
D

E
S

TY
LE

R
EFER

EN
C

E
127

08 8911 CH06 10/16/00 1:45 PM Page 127

• showStatusbar—Show or hide the statusbar.

• showToolbar—Toggle the visibility for the toolbar.

• spelling—Show the Spell Check dialog box.

• undo—Undo the previous change.

• up—Move up a level in a hierarchy.

• whatsThis—Changes the cursor to the question arrow, enabling the user to click a widget.

• zoom—Show a Zoom dialog box, enabling users to select their zoom level.

• zoomIn—Increase the zoom for the document, usually by 10 percent increments.

• zoomOut—Decrease the zoom by 10 percent.

The standard actions provide their own icons, and the user can select those icons; the settings
are set system-wide.

Some special actions also exist, such as openRecent (which returns a KRecentFilesAction)
rather than a KAction, showMenubar, showToolbar, and showStatusbar, which return
KToggleAction.

These actions are automatically placed into the correct positions in the menus:

Fundamentals of KDE Application Programming

PART I
128

File

• New

• Open

• Open Recent

(Separator)

• Save

• Save As

• Revert

(Separator)

• Close

(Separator)

• Print

(Separator)

• Quit

Edit

• Undo

• Redo

(Separator)

• Cut

• Copy

• Paste

• Select All

(Separator)

• Find…

• Find Next

• Replace…

View

• Actual Size

• Fit To Page

• Fit To Page Width

• Fit To Page Height

(Separator)

• Zoom In

• Zoom Out

• Zoom…

(Separator)

• Redisplay

08 8911 CH06 10/16/00 1:45 PM Page 128

KDE Style Reference

CHAPTER 6

6

K
D

E
S

TY
LE

R
EFER

EN
C

E
129

Keep in mind that KDE differentiates between “Options” and “Configuration.” Options are
preferences only for this instance of the application. They are lost when the window is closed.
Save Options makes them the default (and causes all other instances to inherit the options
immediately). The configuration is relayed through all instances immediately and saved to disk
when the OK button is pressed in the dialog.

The application name is all in lowercase; it's recommended that you use the same name you
used as the first argument to the KAboutData constructor, as described in Chapter 5, “KDE
User Interface Compliance.”

The settings are checkable—toggled on and off with a check mark.

Session Management
When a user logs out from a KDE session, all running KDE applications are alerted of this
event and are told to save and quit. When the user logs in again, those programs are restored
and should go to the same state as they were in before.

Your main() function checks whether it is being restored; if so, it then triggers the restart.

In Listings 6.1–6.3, session management is shown.

Go

• Up

• Back

• Forward

• Home

Bookmarks

• Add Bookmark

• Edit Bookmarks

(Separator)

• [Bookmarks]

Tools

• Spelling

Settings

• Show Menubar

• Show Toolbar

• Show Statusbar

• [Show any other
hideable elements]

(Separator)

• [Application-specific
entries]

• Save Options

(Separator)

• Configure Key
Bindings…

• Configure
[Appname]…

Help

• Contents…

(Separator)

• About [Application
Name]…

• About KDE…

08 8911 CH06 10/16/00 1:45 PM Page 129

LISTING 6.1 main.cpp: Example of Session Management

1: In main.cpp:
2:
3: #include "mykapp.h"
4: #include <kapp.h>
5: #include <dcopclient.h>
6:
7: int main(int argc, char **argv)
8: {
9: // ... KAboutData code here ...
10: KApplication app;
11:
12: // register ourselves as a dcop client
13: app.dcopClient()->registerAs(app.name());
14:
15: // see if we are starting with session management
16: if (app.isRestored())
17: RESTORE(MyKApp)
18: else
19: {
20: // no session.. just start up normally
21: MyKApp *widget = new MyKApp;
22: widget->show();
23: }
24:
25: return app.exec();
26: }

LISTING 6.2 mykapp.h: Header File for Main Window

1: #include <ktmainwindow.h>
2:
3: class MyKApp : public KTMainWindow
4: {
5: // ... Declaration of class ...
6:
7: protected:
8: void saveProperties(KConfig *);
9: void readProperties(KConfig *);
10:
11: // ... Rest of Class declaration ...
12: };

Fundamentals of KDE Application Programming

PART I
130

08 8911 CH06 10/16/00 1:45 PM Page 130

LISTING 6.3 mykapp.cpp: Source File for Main Window

1: void MyKApp::saveProperties(KConfig *config)
2: {
3: // config is where you write all the options to save.
4: // It's already opened and ready for your use.
5: }
6:
7: void MyKApp::readProperties(KConfig *config)
8: {
9: // config will have been opened for you, just
10: // read what you saved in saveProperties(..)
11: // and recover your program.
12: }

KEdit is a fine example of a simple but effective session management. In Listing 6.4, its session
management code is shown:

LISTING 6.4 kedit.cpp: A Part of KEdit's Main Window Source File

1: void TopLevel::saveProperties(KConfig* config)
2: {
3: // Test if document needs to be saved
4: // If empty AND isn't modified, no need to save.
5: if(location.isEmpty() && !eframe->isModified())
6: return;
7:
8: // Store the config filename
9: config->writeEntry("filename",name());
10: // Store the state of modification, if it's modified,
11: // we'll also store a temporary file elsewhere
12: config->writeEntry("modified",eframe->isModified());
13:
14: if(eframe->isModified())
15: {
16: QString tmplocation = kapp->tempSaveName(name());
17: saveFile(tmplocation);
18: }
19: }
20:
21: void TopLevel::readProperties(KConfig* config)
22: {
23: QString filename = config->readEntry("filename","");
24: int modified = config->readNumEntry("modified",0);

KDE Style Reference

CHAPTER 6

6

K
D

E
S

TY
LE

R
EFER

EN
C

E
131

08 8911 CH06 10/16/00 1:45 PM Page 131

25:
26: if(!filename.isEmpty() && modified)
27: {
28: bool ok;
29: QString fn = kapp->checkRecoverFile(filename,ok);
30:
31: if(ok)
32: { // Yes, there's a temporary file, and it's 'fn'
33: openFile(fn,KEdit::OPEN_READWRITE);
34: location = filename;
35: eframe->setModified();
36: setFileCaption();
37: }
38: }
39: else if(!filename.isEmpty())
40: { // No temp file, so we just open up the previously
41: // opened file.
42: openFile(filename,KEdit::OPEN_READWRITE);
43: location = filename;
44: eframe->setModified(false);
45: setFileCaption();
46: }
47: }

Note that the following methods have been declared and defined by KEdit itself:

• eframe->setModified(..);(line 12)

• saveFile(..);(line 17)

• openFile(..);(line 33)

• setFileCaption();(line 36)

If your program does not need to open any files, you should at least store the state—the value
in a calculator output, for example:

void IntCalc::saveProperties(KConfig* config)
{
// Store the value
config->writeEntry("amount", theNumber);

}

void IntCalc::readProperties(KConfig* config)
{
// Read the value, where "theNumber" is a
// member variable
theNumber = config->readNumEntry("theNumber",0);

}

Fundamentals of KDE Application Programming

PART I
132

LISTING 6.4 Continued

08 8911 CH06 10/16/00 1:45 PM Page 132

The Standard KDE Icons
KDE provides its own set of original themable icons, as well as possibly one of the best icon
engines of its kind. Using these icons makes theming them possible; it allows the user to select
a set of icons that all programs use. Using your own icons would make your application appear
out-of-place if the user uses nondefault icons. At times, however, it will become absolutely
necessary to design your own icons—for example, application icons and special-function tool-
bar icons.

First, a word of note by Torsten Rahn, KDE's lead artist:

Did you ever see a traffic sign showing a photo-realistic train? Certainly not:
traffic-signs were designed to make it easy to recognize them and get their
meaning very fast. Therefore they are kept simple: They are very plain, symbolic,
and consist of very few colors. Icons used in desktop environments have a similar
aim: They should be designed in a way that makes it easy to get their message fast.
On the other side the typical user wants to have a desktop that doesn't look ugly
or too technical.

You will need several icons for your application. These must be in the PNG (Portable Network
Graphics) format.

For application icons, you should draw the following icon resolutions and color depths:

• 16×16 pixels, low color: required

• 32×32 pixels, low color: required

• 32×32 pixels, high color: recommended

• 48×48 pixels, high color: optional

For your toolbars, you should use the following types:

• 16×16 pixels, low color: required

• 22×22 pixels, high color: required

• 32×32 pixels, high color: highly recommended

Toolbar icons appear in three states: active, disabled, and default. Active is when they are high-
lighted, with a cursor over them. Disabled is “grayed out,” and default is just the standard icon.
Be sure that these icons look good in all these states; the icons are generated by the libraries.

Note that low color consists of 40 colors in a 6×7 table, with black appearing three times. In
the following table, the colors are listed in their hexadecimal equivalents, and the same colors
are shown in Figure 6.1:

KDE Style Reference

CHAPTER 6

6

K
D

E
S

TY
LE

R
EFER

EN
C

E
133

08 8911 CH06 10/16/00 1:45 PM Page 133

#303030 #585858 #808080 #a0a0a0 #c0c0c0 #dcdcdc
#400000 #004000 #000000 #404000 #004040 #000000
#800000 #008000 #000080 #808000 #008080 #800080
#c00000 #00c000 #0000c0 #c0c000 #00c0c0 #c000c0
#ff0000 #00ff00 #0000ff #ffff00 #00ffff #ff00ff
#ffc0c0 #c0ffc0 #c0c0ff #ffffc0 #c0ffff #ffc0ff
#ff8000 #c05800 #ffa858 #ffdca8 #ffffff #000000

Fundamentals of KDE Application Programming

PART I
134

FIGURE 6.1
High color should remain consistent with the low-color version, perhaps with a loss of dithering and smoother gradients.

When installing icons, the Makefile will place them according to their name. There's a trick to
naming your icons: ColordepthSize-Type-Name.png.

Colordepth may be “lo” or “hi.”

Type may be app, device, action, filesystem, or mimetype. app is an application icon; device
is most of those icons you find when you browse the /dev/ directory; action is toolbar and
menubar icons (KAction icons); filesystem is for the folder icons and such; and mimetype is
the icon for file types.

Name, of course, is just a short description of your icon.

For example, KEdit's 16×16 low-color icon can be named lo16-app-kedit.png, and the name for a
32×32 pixel icon for a text document that Kedit opens may be lo32-mimetype-textdocument.png.

You should use only lowercase in these filenames.

08 8911 CH06 10/16/00 1:45 PM Page 134

Internationalization
KDE is an international product and, as such, supports multiple languages. This is accom-
plished very easily, with calls to the function i18n(). This function accepts a string and returns
the translated string. The default language is English. You also do not need to translate internal
messages. Likewise, all messages that end up with the user should be translated. This includes
error messages, dialog and menubar titles, tooltips, and so on.

Generally, the syntax is i18n("My String");

When your locale is set to en (for English), the preceding is equivalent to "My String".

new QListViewItem(listview, "Item Number Six");
// Wrong!

new QListViewItem(listview, i18n("Item Number Six"));
// Right!

This should be your course of action, even if you do not plan on internationalizing your soft-
ware. Another person may volunteer, and increasing your audience is always a good thing.

KDE Style Reference

CHAPTER 6

6

K
D

E
S

TY
LE

R
EFER

EN
C

E
135

NOTE

Don't try to create garbled messages with i18n:

i18n("Couldn't open " + file + ", please check the path and try again.");

Translating such messages into other languages will not work very well, when word
order issues come into play. A better idea is:

i18n("Couldn't open %1, please check the path and try again.").arg(file);

When you think your program is ready for translation, you can pick up a tool such as KBabel,
create the proper message files, and include them with your application.

Remember to also translate documentation files.

Another source for information on the subject can be found at the KDE Translator's and
Documenter's Web site: http://i18n.kde.org.

Translation files (*.po), which can be generated with KBabel, are generally placed in the po/
directory of your package. Those .po files are produced by running the following:

xgettext -C -ki18n -kI18N_NOOP \ktranslate -x$KDEDIR/include/kde.pot *.cpp

The program xgettext should be provided by the gettext package.

08 8911 CH06 10/16/00 1:45 PM Page 135

After the po file is produced, move it to the proper directory and open it in KBabel. Your file
hierarchy should look like this:

appname
po
fr
de
[...]

doc
fr
de
en
[...]

src

Playing Sounds
There should rarely be a need for playing a sound. Sounds should be used only in games, and
they should never be required for the use of your program unless, of course, your program's
purpose is to play sound. Do not play sounds in the event of an error; that is the purpose of
KNotify, which will be discussed shortly.

Playing sound is a simple command:

KAudioPlayer::play("squish.wav");

You can also use this in a slot:

QButton *button = new QButton(this);
KAudioPlayer *player = new KAudioPlayer("foo.wav", button);
connect(button, SIGNAL(clicked()), player, SLOT(play()));

In this example, the file $KDEDIR/share/sounds/foo.wav is played whenever button is
clicked.

You can also send absolute filenames, in which case it will ignore the KDEDIR/share/sounds
path.

This is not a superbly fast class, because it plays sounds via DCOP. For true real-time sound,
you should use MCOP. For more information on multimedia, see Chapter 14, “Multimedia.”

User Notifications
KNotifyClient is the class for notifying the user when something special happened.

For example, if you are writing a KDE version of wget, the popular GNU utility to grab files
off the Web, you would do this:

Fundamentals of KDE Application Programming

PART I
136

08 8911 CH06 10/16/00 1:45 PM Page 136

#include <knotifyclient.h>
[...]
KNotifyClient::event("done getting",i18n("The file is downloaded!"));
[...]

And with your program, you would install a file named eventsrc to
$KDEDATADIR/APP/eventsrc ($KDEDIR/share/apps/APPNAME/eventsrc). Continuing with
our example, you would use the following eventsrc:

[!Global!]
Name=kwget
Comment=KDE Web-Get

[done getting]
Name=Download Completion
Name[fr]=Completion de Telechargement
Comment=Download of File is Complete
Comment=Telechargement de Lime est Complete
default_sound=downloaddone.wav
default_presentation=1
nopresentation=0
level=1

The presentation and nopresentation fields are produced by adding:

None=0, Sound=1, Messagebox=2, Logfile=4, Stderr=8

nopresentation was originally created to prevent an infinite recursion situation with KWin
calling KNotify, which opens a window, for which KWin calls KNotify. You should have very
little need for it.

And the level field is produced by adding:

None=0, Notification=1, Warning=2, Error=4, Catastrophe=8

Logfile uses the key default_file, in the same format as default_sound.

Several systemwide handlers also exist, all defined in your own $KDEDIR/share/config direc-
tory: cannotopenfile, notification, warning, fatalerror, and catastrophe. A more
complete list is availible in: KDEDIR/share/config/eventsrc

These can be called with

KNotifyClient::event("fatalerror", i18n("An internal error occurred,
opened files have been backed up, and this program will now quit");

KDE Style Reference

CHAPTER 6

6

K
D

E
S

TY
LE

R
EFER

EN
C

E
137

08 8911 CH06 10/16/00 1:45 PM Page 137

Executing Other Programs
KDE has the KRun class, a member of the KIO library. It is able to run executables and .desk-
top files (as produced by KDE).

The most useful members of this class are the static run() functions, shown in Listing 6.5:

LISTING 6.5 Static run Functions

1: #include <krun.h>
2:
3: bool run(const KService& _service,
4: const KURL::List& _urls)
5: bool run(const QString& _exec,
6: const KURL::List& _urls,
7: const QString& _name = QString::null,
8: const QString& _icon = QString::null,
9: const QString& _mini_icon = QString::null,
10: const QString& _desktop_file = QString::null)

The first of these two static run functions allows you to execute services. Those that are avail-
able are in your $KDEDIR/share/services. To execute Konqueror, you can use
KRun::run(KService(locate("services", "konqueror.desktop")), QStringList());.

This method is, in fact, preferable to just executing Konqueror and hoping that it will work. By
filling the QStringList at the end, you can send arguments to Konqueror.

The second static method can be used to execute a program, like so:

KRun::run("netscape", QStringList("http://www.kde.org"),
"Netscape", locate("icon", "locolor/32x32/apps/netscape.png"));

It is still, of course, preferable to visit http://www.KDE.org with Konqueror.

You can also open files with KRun. In the next example (see Listings 6.6 and 6.7), when the
libraries are ready for their next command, the Open File button becomes re-enabled.

LISTING 6.6 runwalk.h: Open a File (Header)

1:
2: #ifndef _RUNWALK_H
3: #define _RUNWALK_H
4:
5: #include <krun.h>
6: #include <qpushbutton.h>
7: #include <klineedit.h>
8:

Fundamentals of KDE Application Programming

PART I
138

08 8911 CH06 10/16/00 1:45 PM Page 138

LISTING 6.6 Continued

9: class RunWalk : public QWidget
10: {
11: Q_OBJECT
12: public:
13: RunWalk();
14: public slots:
15: void slotDoneExec();
16: void slotRun();
17: private:
18: QPushButton *pushme;
19: KLineEdit *program;
20: };
21:
22: #endif

LISTING 6.7 runwalk.cpp: Open a File (Source).XXX

1: #include <qlayout.h>
2: #include "runwalk.h"
3: #include <klocale.h>
4:
5: RunWalk::RunWalk()
6: {
7: QVBoxLayout *layout=new QVBoxLayout(this,0,2);
8: layout->setAutoAdd(true);
9: program=new KLineEdit("http://www.kde.org/",this);
10: pushme=new QPushButton(i18n("Open File"),this);
11: show();
12:
13: connect(pushme, SIGNAL(clicked()), SLOT(slotRun()));
14: }
15:
16: void RunWalk::slotDoneExec()
17: {
18: pushme->setEnabled(true);
19: program->setEnabled(true);
20: }
21:
22: void RunWalk::slotRun()
23: {
24: KRun *run=new KRun(KURL(program->text()));
25: connect(run, SIGNAL(finished()), SLOT(slotDoneExec()));
26: connect(run, SIGNAL(error()), SLOT(slotDoneExec()));
27: pushme->setEnabled(false);
28: program->setEnabled(false);

KDE Style Reference

CHAPTER 6

6

K
D

E
S

TY
LE

R
EFER

EN
C

E
139

08 8911 CH06 10/16/00 1:45 PM Page 139

29: }
30:
31: int main(int argc, char **argv)
32: {
33: KApplication app(argc, argv, "runwalk", true);
34: RunWalk runwalk;
35:
36: app.setMainWidget(&runwalk);
37: return app.exec();
38: }

Network Transparency
If you want a program to be able to have the KDE sticker, it needs to be network transparent.
Fortunately, this isn't all that difficult! The importance of such a functionality cannot be under-
stated; more information on network transparency is also presented in Chapter 7, “Further
KDE Compliance.”

Generally, the only two classes that need to be worried about are KIO::Job and
KIO::NetAccess. KIO is a namespace.

Remember that KDE would rather deal with URLs than with filenames. Both can be stored in
a QString, but you should prefer a KURL, because it can do all the parsing for you.

In the following example (Listing 6.8), the user has clicked the Open toolbar or menu item.
The Open File window appears, and then the selected file opens.

You'll have to include kfiledialog.h, netaccess.h, and knotifyclient.h.

LISTING 6.8 Opening a File, Network Transparently

1: // In this class, we have declared a QString file, which is the filename
2: // of the local copy of our file. We also have a KURL url which contains
3: // the local/remote location of the file that is opened
4:
5: // TODO: Test if there is already a file open, or, if the current file
6: // has been edited
7:
8: url=KFileDialog::getOpenURL(0,
9: "*.txt|Text Files (*.txt)\n*.cpp|C++ Source Files (*.cpp)",this);
10:
11: if (!KIO::NetAccess::download(url, file))
12: KNotifyClient::event("cannotopenfile"), return;

Fundamentals of KDE Application Programming

PART I
140

LISTING 6.7 Continued

08 8911 CH06 10/16/00 1:45 PM Page 140

LISTING 6.8 Continued

13:
14: // That's it! Now, we get to open the string "local" the standard way
15:
16: QFile f(file);
17: // TODO: read and open the file....

When the user clicks Save, you want to store the file to the server, if necessary:

// file and url have been declared, remember?
QFile f(file);
// [...] store data to file
f.close();

if (!KIO::NetAccess::upload(file, url))
KNotifyClient::event("cannotopenfile"), return;

Not that bad at all, is it?

What if the user has not selected a filename for this file yet? Listing 6.9 shows what to do in
such a situation:

LISTING 6.9 More Network Transparency Checks

1: if (url.isEmpty())
2: {
3: url=KFileDialog::getSaveUrl(0,
4: "*.txt|Text Files (*.txt)\n*.cpp|C++ Source (*.cpp)", this)
5: // URL now contains where we want to save this to
6: file=url.path();
7: // This won't be useful if it's not a local file, but if it is a local

➥file
8: // we get to save directly into this!
9: if (!file.isLocalPath())
10: // We must come up with a temporary file to save to (more info on this
➥shortly)
11:
12: [...]

Your application should have two menu items: Save and Save As.

Save As asks you to save a file in another filename and format. Save just saves it under the cur-
rently selected filename; if that filename has not been selected, Save acts as Save As.

Listing 6.10 is the full and complete code of those two methods; you should often be able to
just plug this in with minimal changes. Just remember that KURL url and QString file have
been declared.

KDE Style Reference

CHAPTER 6

6

K
D

E
S

TY
LE

R
EFER

EN
C

E
141

08 8911 CH06 10/16/00 1:45 PM Page 141

LISTING 6.10 Complete Network Transparency Example

1: #include <ktempfile.h>
2:
3: void MainWindow::slotSaveAs()
4: {
5: url=KFileDialog::getSaveUrl(0,
6: "*.txt|Text Files (*.txt)\n*.cpp|C++ Source (*.cpp)",
7: this)
8: file=url.path();
9:
10: if (!file.isLocalPath())
11: {
12: KTempFile temp;
13: file=temp.name(); // Get somewhere local to write to
14:
15: slotSave(); // write to that
16: temp.unlink();
17: return;
18: }
19: // As of here, the url will always be local, which means
20: // that file contains the local path of the file to save!
21: // So lets just save it!
22: slotSave();
23: }
24:
25: void MainWindow::slotSave()
26: {
27: // Looks like there isn't a selected file yet!
28: if (url.isEmpty() || file.isEmpty())
29: slotSaveAs(), return;
30:
31: // Lets save the file.
32: QFile f(file);
33:
34: // IO_Truncate purges the file so we start with a
35: // clean slate
36: if (!f.open(IO_WriteOnly | IO_Truncate))
37: KNotifyClient::event("cannotopenfile"), return;
38:
39: QTextStream t(&f);
40: // QDataStream may be more appropriate for some
41: // purposes, check the QT documentation for all your
42: // file-storing needs.

Fundamentals of KDE Application Programming

PART I
142

08 8911 CH06 10/16/00 1:45 PM Page 142

LISTING 6.10 Continued

43: t << "The filename that was stored is " << file << '\n';
44:
45: f.close();
46:
47: // TODO: Set a flag, telling you that this file is
48: // currently saved.
49: }
50:
51: void MainWindow::slotOpen()
52: {
53: if (/* TODO: test if the currently opened file needs to be saved */)
54: { // User already has a file open! What does this
55: // person want to do with this file?
56: int result=KMessageBox::questionYesNo(this,
57: i18n("You already have a file open! Would you"
58: "like to save the currently "
59: "opened file and open another?"),
60: i18n("Continue?"));
61:
62: if (result==KMessageBox::Yes)
63: slotSave();
64: else
65: return;
66: }
67:
68: url=KFileDialog::getOpenURL(0,
69: "*.txt|Text Files (*.txt)\n*.cpp|C++ Source(*.cpp)",
70: this);
71:
72: if (!KIO::NetAccess::download(url, file))
73: KNotifyClient::event("cannotopenfile"), return;
74:
75: QFile f(file);
76: if (!f.open(IO_ReadOnly))
77: KNotifyClient::event("cannotopenfile"), return;
78:
79: QTextStream t(&f);
80: QString dataFromFile;
81: t>>dataFromFile;
82: // TODO: Do something with the data!
83:
84: f.close();
85: }

KDE Style Reference

CHAPTER 6

6

K
D

E
S

TY
LE

R
EFER

EN
C

E
143

08 8911 CH06 10/16/00 1:45 PM Page 143

User Friendliness
A lot of software is available that's powerful and useful, but that fails in its ease of use. Before
implementing a feature, think about how a user will react to it: Does it make sense? Is it easy
to use? Can anyone figure it out without the use of a manual?

Before you release your program, give it to a friend who has not seen it before. If the friend
asks you a question, you may have done something wrong.

Writing documentation is important, but remember that having users who do not need it at all
is just as good (but it should still be provided).

In fact, before you start designing your user interface, take a look at the “Interface Hall of
Shame” at http://www.iarchitect.com/mshame.htm to get a hint at what you may not realize
is horrible. We all may be guilty of such a horror and not even be aware of it!

You may ask potential readers to not judge a book by its cover; asking the same of potential
users will consistently give the same results: None. It is impossible for users to not judge a
program's power by its “looks.” The moral is to keep a keen eye on making your program look
good. Now, I'm not asking you to go too far. It's as simple as your placement of widgets. Do
not spruce it up with color and icons; spruce it up with convenient placement of tools. Line up
your widgets neatly and keep it organized.

Fundamentals of KDE Application Programming

PART I
144

NOTE

About widget placement: use your own computer for a while and note where your
cursor is. Hint: It's often on the right side of the screen. If you want a tool that the
user will need to click often, put it on the right, if possible.

The following is a little tidbit that comes from the KDE Development lists (from an author I
cannot remember): People tend to form a center valley with a mound of papers to the sides. To
another person, this will look like complete chaos, but to the owner of this mess, it makes per-
fect sense. The reason is that the mound is generally organized with recently used papers near-
est the valley and the old papers to the edges (where they may fall off the table into the circular
file). In fact, it has been proven that people work most efficiently this way! On this note,
remember to keep the most often used stuff nearest the user display—and the rare tools and
data in the outliers. You may think that by increasing the size of the mound, you would
increase the efficiency, but that just causes the mound's owner to be forced to rustle around in
them more. Keep the front of the user interface simple, limited to the most often used tools.
The menus and configuration dialog boxes should have the more rare tools.

08 8911 CH06 10/16/00 1:45 PM Page 144

Figure 6.2 is an example of an excellent user interface: Lotus WordPro '98. It has a little float-
ing control center that is neatly organized, inobtrusive, and very iconic. It's just a context menu
or a toolbar button away!

KDE Style Reference

CHAPTER 6

6

K
D

E
S

TY
LE

R
EFER

EN
C

E
145

FIGURE 6.2
Lotus WordPro '98 floating control panel.

Summary
The guidelines presented in this chapter are what cause KDE to be such a coherent and user-
friendly environment. By correctly implementing session management and network trans-
parency in addition to artistry, you can produce a KDE-guided application.

Pay attention to session management, which allows your software to be restarted in the same
state that it was in at the time the user logged out. Be sure your application's network trans-
parency is implemented with the KIO::NetAccess class. You also should create icons for your
application and use them appropriately.

Follow the guidelines for alerting the user with KAudioPlayer and KNotifyClient.

Remember, too, that documentation is important for every KDE application. (See Chapter 15,
“Creating Documentation.”)

By following the guidelines presented in this chapter, you can create a well-designed application.

Exercises
1. Improve the program you wrote for Exercise 2 from Chapter 5. Create a fully featured

Edit menu (with Copy, Paste, Cut, Undo, and Redo) and support file saving and opening
with KIO::NetAccess.

2. Use KRun to execute a program (and tell the user of its completion). Store the text of the
KLineEdit for the sake of session management.

08 8911 CH06 10/16/00 1:45 PM Page 145

08 8911 CH06 10/16/00 1:45 PM Page 146

IN THIS PART
7 Further KDE Compliance 149

8 Using Dialog Boxes 179

9 Constructing a Responsive User Interface 213

10 Complex-Function KDE Widgets 231

11 Alternative Application Types 251

Advanced KDE Widgets and
UI Design Techniques

PART

II

09 8911 Part02 10/16/00 1:48 PM Page 147

09 8911 Part02 10/16/00 1:48 PM Page 148

CHAPTER

7
Further KDE Compliance
by David Sweet

IN THIS CHAPTER
• Drag and Drop 150

• Application Configuration Information 157

• Session Management 161

• Application Resources 166

• Network Transparency 172

10 8911 ch07 10/16/00 1:44 PM Page 149

Advanced KDE Widgets and UI Design Techniques

PART II
150

Complying with KDE standards requires more than using the right widgets. Applications
should offer drag-and-drop support, keep track of program options, cleanly handle session
management, and make use of application resources such as translated text strings. Another
important aspect of KDE compliance is called network transparency. This refers to allowing
users to load and save remotely stored files as easily as local ones. Fortunately, the KDE
libraries contain classes which simplify these tasks.

Drag and Drop
Drag and drop is by now a familiar aspect of operating systems. The user clicks an object and,
without releasing the mouse button, moves the mouse pointer (drags the object) to another
position, and then releases the button (drops the object). Usually an icon is displayed under or
near the mouse pointer that indicates what kind of data is being dragged and whether the cur-
rent widget lying under the pointer is a valid drop target.

Drag and drop is used, for example, to move a file or folder from one folder to another. The
user can also drag a file onto an open application and, if the file type is appropriate, expect the
application to open the file for viewing or editing. In KDE, drag and drop is also used to place
applications, (in the form of .desktop files, discussed in “Application Resources”) on the
panel.

The Qt drag-and-drop system is based on XDND protocol. This is a publicly available drag-
and-drop protocol and is used by GNOME/GTK+, Mozilla, Star Office, XEmacs, and other
projects and applications. The drag types are described using public, standard MIME types,
which means that drag data types should be identifiable even when the drag is coming from a
non-Qt system. You can find more information about the XDND protocol at
http://www.cco.caltech.edu/~jafl/xdnd/.

KDE/Qt applications can also accept drops which have been dragged from Motif-based appli-
cations, such as Netscape Navigator, further integrating the user’s desktop. (Currently, how-
ever, you cannot drag from a KDE/Qt program to a Motif program.)

Responding to Drop Events
When a user drags some data over a widget, a drag-enter event is generated. A drop generates a
drop event. You can reimplement the QWidget handlers for these events to process drops.

Listings 7.1 and 7.2 show code for a widget called KDropDemo, which demonstrates how to
process drop events.

10 8911 ch07 10/16/00 1:44 PM Page 150

LISTING 7.1 kdropdemo.h: Contains the Class Definition for the Widget KDropDemo

1: #ifndef __KDROPDEMO_H__
2: #define __KDROPDEMO_H__
3:
4:
5: #include <qlabel.h>
6:
7: /**
8: * KDropDemo
9: * Accepts dropped URLs.
10: **/
11: class KDropDemo : public QLabel
12: {
13: public:
14: KDropDemo (QWidget *parent, const char *name=0);
15:
16: protected:
17: void dropEvent (QDropEvent *qdropevent);
18: void dragEnterEvent (QDragEnterEvent *qdragenterevent);
19: };
20:
21: #endif

KDropDemo inherits QLabel, but any subclass of QWidget can accept drops in the same way as
presented here. You just need to reimplement dragEnterEvent() and dropEvent(), as shown
in Listing 7.2, to process the corresponding events.

LISTING 7.2 kdropdemo.cpp: Contains the Class Declaration for the Widget KDropDemo

1: #include <qdragobject.h>
2:
3: #include “kdropdemo.h”
4:
5: KDropDemo::KDropDemo (QWidget *parent, const char *name) :
6: QLabel (parent, name)
7: {
8: setAcceptDrops(true);
9: setText (“---------------No drops yet.---------------”);
10: }
11:
12: void
13: KDropDemo::dragEnterEvent (QDragEnterEvent *qdragenterevent)
14: {

Further KDE Compliance

CHAPTER 7

7

F
U

R
TH

ER
K

D
E

C
O

M
PLIA

N
C

E
151

10 8911 ch07 10/16/00 1:44 PM Page 151

15: qdragenterevent->accept (QTextDrag::canDecode (qdragenterevent));
16: }
17:
18: void
19: KDropDemo::dropEvent (QDropEvent *qdropevent)
20: {
21: QString text;
22:
23: if (QTextDrag::decode (qdropevent, text))
24: {
25: setText (text);
26: }
27: }

First, you need to tell Qt that you want to accept drops by calling setAcceptDrops(true) in
line 8. This instructs Qt to generate drag-enter and drop events for your application. Before you
get a drop event for any given particular data type, you also need to announce that you are
interested in it. You do this in the method dragEnterEvent(). The method
QDragEnterEvent::accept() is called to tell Qt that you are interested in some data type. Line
15 says you are interested in receiving text drops.

You can determine whether the data is actually text by calling the static method
QTextDrag::canDecode() with the pointer to the instance of QDragEnterEvent as an argument
in the method dropEvent() (see lines 18–27). This makes the process somewhat transparent.
Qt contains classes that support text (QTextDrag) and images (QImageDrag). To accept drags of
other types, you need to examine the data’s MIME type (returned by the methods
QDragObject::provides() or QDragObject::format()). If you plan to drag and drop custom
data types within an application, you will need to create subclasses of QDragObject, which will
hold data of your custom types.

In dropEvent(), you do the interesting work. You decode the data into a QString using
QTextDrag (line 23) and change the text of the QLabel to the new QString.

Listing 7.3 presents a simple main() function that you can use to try out KDropDemo.

LISTING 7.3 main.cpp: Contains a main() Function Suitable for Testing the KDropDemo
Widget

1: #include <kapp.h>
2:
3: #include “kdropdemo.h”
4:

Advanced KDE Widgets and UI Design Techniques

PART II
152

LISTING 7.2 Continued

10 8911 ch07 10/16/00 1:44 PM Page 152

5: int
6: main (int argc, char *argv[])
7: {
8: KApplication kapplication (argc, argv, “kdropdemotest”);
9: KDropDemo kdropdemo (0);
10:
11: kdropdemo.show();
12: kapplication.setMainWidget (&kdropdemo);
13: return kapplication.exec();
14: }

You can try this widget out by dragging a file from konqueror to the window. The URL of the
file will be displayed in the widget. (You may have to enlarge the window to see the entire
URL.) Figure 7.1 shows the results of this drag-and-drop action.

Further KDE Compliance

CHAPTER 7

7

F
U

R
TH

ER
K

D
E

C
O

M
PLIA

N
C

E
153

LISTING 7.3 Continued

FIGURE 7.1
KDropDemo accepts text drop events and displays the data contained in them. Here it has just accepted a URL drop
from Konqueror.

Starting a Drag
The problem with starting a drag lies not in informing Qt that you would like it to be done, but
in informing the user that it is possible. How can you do this?

The draggable objects in Konqueror are the icons representing the files or folders. This is a
common enough situation (in terms of file managers) that many users are familiar with.

Netscape Navigator 4.51 places a small icon on the toolbar that is draggable and represents the
page being viewed. To inform the user that they can drag this icon, a message saying so is
placed in the statusbar whenever the user passes the mouse pointer over the icon. Also, a
ToolTip pops up to again inform the user that the icon is draggable. (These types of help mes-
sages are discussed in the next section.)

10 8911 ch07 10/16/00 1:44 PM Page 153

The next example shows how to start the drag process. (Because this widget is not presented in
the context of an application, this example will focus on dragging and not on the problem of
informing the user that the widget is a place to start dragging.)

Listings 7.4–7.6 show code that demonstrates how to start a drag event.

LISTING 7.4 kdragdemo.h: Contains a Class Declaration for the Widget KDragDemo

1: #ifndef __KDRAGDEMO_H__
2: #define __KDRAGDEMO_H__
3:
4:
5: #include <qlabel.h>
6:
7: /**
8: * KDragDemo
9: *
10: **/
11: class KDragDemo : public QLabel
12: {
13: public:
14: KDragDemo (QWidget *parent, const char *name=0);
15:
16: protected:
17: bool dragging;
18:
19: void mouseMoveEvent (QMouseEvent *qmouseevent);
20: void mouseReleaseEvent (QMouseEvent *qmouseevent);
21: };
22:
23: #endif

In the nomenclature of XDND, the widget you are creating is a drag source. You can drag the
text to any target that accepts text drops, such as kdropdemotest.

Again, we derive from QLabel but note that the technique presented here is valid for any sub-
class of QWidget.

LISTING 7.5 kdragdemo.cpp: Contains a Class Definition for the Widget KDragDemo

1: #include <qdragobject.h>
2:
3: #include <kglobalsettings.h>
4:
5: #include “kdragdemo.h”

Advanced KDE Widgets and UI Design Techniques

PART II
154

10 8911 ch07 10/16/00 1:44 PM Page 154

6:
7:
8: KDragDemo::KDragDemo (QWidget *parent, const char *name) :
9: QLabel (parent, name)
10: {
11: setText (“This is draggable text.”);
12: }
13:
14:
15: void
16: KDragDemo::mousePressEvent (QMouseEvent *qmouseevent)
17: {
18: startposition = qmouseevent->pos();
19: }
20:
21: void
22: KDragDemo::mouseMoveEvent (QMouseEvent *qmouseevent)
23: {
24: int mindragdist = KGlobalSettings::dndEventDelay();
25:
26: if (qmouseevent->state() & Qt::LeftButton
27: && (qmouseevent->pos().x() > startposition.x() + mindragdist
28: || qmouseevent->pos().x() < startposition.x() - mindragdist
29: || qmouseevent->pos().y() > startposition.y() + mindragdist
30: || qmouseevent->pos().y() < startposition.y() - mindragdist))
31: {
32: QTextDrag *qtextdrag = new QTextDrag(text(), this);
33: qtextdrag->dragCopy();
34: }
35: }

In the constructor, you set the text to be displayed in the window. The start of a drag is defined
as when the user holds down the left mouse button and moves the mouse more than a certain
number of pixels. That certain number is used in all KDE applications (to give them a consis-
tent feel) and is returned by the static function KGlobalSettings::dndEventDelay(). You can
implement this behavior by first saving the position at which the user first clicks the mouse, on
line 18, in the method mousePressEvent(). Then, in the method mouseMoveEvent() check
QMouseEvent::state() (line 26) to see whether the mouse button is being held down—in
which case the bit given by Qt::LeftButton will be set in QMouseEvent()::stat()—and see
whether the user has moved more than KGlobalSettings::dndEventDelay() pixels in any
direction from startposition. The first time this happens, you create a QTextDrag (derived
from QDragObject) object (line 20). This object handles the communication with potential
XDND targets and, since it is owned by Qt, don’t delete it at any point.

Further KDE Compliance

CHAPTER 7

7

F
U

R
TH

ER
K

D
E

C
O

M
PLIA

N
C

E
155

LISTING 7.5 Continued

10 8911 ch07 10/16/00 1:44 PM Page 155

On line 33, you indicate to the QTextDrag object that you want to allow drag-and-drop opera-
tions that result in the data being copied to the target. The types of operations are

DragCopy

Copy the data from the source to the target.

DragMove

Copy the data from the source to the target, and remove it from the source.

DragDefault

The mode is determined by Qt.

DragCopyOrMove

The default mode is used unless the user holds down the control key while dragging.

These are constants of type DragMode and are defined in qdragobject.h. To use them, call
QDragObject::drag() (with a DragMode as an argument instead of dragCopy()).

To avoid creating more instances of QTextDrag for each of the subsequent mouse-move events
you should expect to receive, set the flag dragging to true and avoid starting new drags while
this flag is still true. Reset it to false after the user releases the mouse button. This indicates
the end of the drag operation regardless of whether the drop was successful.

Listing 7.6 is a main() function, which you can use to create a simple program, kdragde-
motest, which you can use to test the KDragDemo widget. You can try kdragdemotest by drag-
ging to kdropdemotest. You can also drag to KEdit or Konsole. Figure 7.2 shows
kdragdemotest.

Advanced KDE Widgets and UI Design Techniques

PART II
156

FIGURE 7.2
kdragdemotest shows some draggable text. You can drag the text starting from anywhere inside the widget to a suitable
target, such as kdropdemotest.

10 8911 ch07 10/16/00 1:45 PM Page 156

LISTING 7.6 main.cpp: Contains a main() Function Suitable for Testing KDragDemo

1: #include <kapp.h>
2:
3: #include “kdragdemo.h”
4:
5: int
6: main (int argc, char *argv[])
7: {
8: KApplication kapplication (argc, argv, “kdragdemotest”);
9: KDragDemo kdragdemo (0);
10:
11: kdragdemo.show();
12: kapplication.setMainWidget (&kdragdemo);
13: return kapplication.exec();
14: }

Application Configuration Information
Configuration information for KDE applications is stored in human-readable text files in a
standard format. An example is shown in Listing 7.7. Applications generally store user set-
tings, such as the name of a mail server or the number of times to try connecting to a site
before giving up and user preferences for things such as UI layout and colors. The files are
stored as human-readable text so that users and administrators can read and modify these files
with any text editor. These files offer advantages over the binary-format configuration files
used on some other systems:

• You can automate configuration and reconfiguration (from scripts, for example).

• The files are safer from corruption. Having a few small errors in a file such as the one in
Listing 7.7 is unlikely to make it unreadable to a human. The human can correct these
errors so that the application can read the file. Small errors in a compact, binary format
may destroy information and make the file unusable by the application.

KDE configuration files store information as Key, Value pairs as shown in Listing 7.7 One pair
appears per line.

LISTING 7.7 A Sample KDE Application Configuration File

1: #KDE Config File
2: DefaultHeight=300
3: [Options]
4: BackgroundColor=255,255,255
5: ForegroundColor=100,100,255

Further KDE Compliance

CHAPTER 7

7

F
U

R
TH

ER
K

D
E

C
O

M
PLIA

N
C

E
157

10 8911 ch07 10/16/00 1:45 PM Page 157

The pairs can be grouped to help organize the information for the application or to make the
file more readable. Group names appear in brackets alone on a line preceding the group they
label (line 3).

The files can also include comments. Comments appear on lines starting with a # (line 1).

KDE configuration files are stored in .kde/share/config in the user’s home directory. Each
application creates a configuration file called kappnamerc, where kappname is the name of the
application. For example, knotes creates knotesrc.

Accessing Configuration Files
Configuration files are read and written with the KConfig class. The default configuration file,
kappnamerc, can be accessed with the KConfig object returned by the method
KApplication::config(). You typically access this object with kapp->config(). (kapp is a
macro defined in kapp.h that returns a pointer to the current KApplication object. A KDE
application uses only one KApplication object; therefore, kapp can reliably be used from any
source-code file that is part of your application.)

Listings 7.8 and 7.9 show the code for KConfigDemo, a widget that demonstrates the use of
KConfig.

LISTING 7.8 kconfigdemo.h: Class Declaration for KConfigDemo, a widget that demon-
strates KConfig

1: #ifndef __KCONFIGDEMO_H__
2: #define __KCONFIGDEMO_H__
3:
4: #include <qlineedit.h>
5:
6: /**
7: * KConfigDemo
8: * Show how to access KDE configuration files with KConfig.
9: **/
10: class KConfigDemo : public QLineEdit
11: {
12: public:
13: KConfigDemo ();
14:
15: protected:
16: void closeEvent (QCloseEvent *qcloseevent);
17:
18: };
19:
20: #endif

Advanced KDE Widgets and UI Design Techniques

PART II
158

10 8911 ch07 10/16/00 1:45 PM Page 158

KConfigDemo is a line editor widget that saves its text in a configuration file when the user
closes the window, and it reloads it the next time the program is run.

KConfigDemo is subclassed from QLineEdit, which does most of the work for you. You just
need to add the configuration file access.

LISTING 7.9 kconfigdemo.cpp: Class Definition for KConfigDemo

1: #include <kapp.h>
2: #include <kconfig.h>
3:
4: #include “kconfigdemo.h”
5:
6: KConfigDemo::KConfigDemo () : QLineEdit (0)
7: {
8: kapp->config()->setGroup (“LineEditor”);
9: setText (kapp->config()->readEntry (“Text”, “Hello”));
10: }
11:
12: void
13: KConfigDemo::closeEvent (QCloseEvent *qcloseevent)
14: {
15: kapp->config()->setGroup (“LineEditor”);
16: kapp->config()->writeEntry (“Text”, text());
17: kapp->config()->sync();
18:
19: qcloseevent->accept();
20: }

In the constructor, you look in the group LineEditor (line 8) for the key Text (line 9). (Note:
If you had not specified a group with setGroup(), the Key, Value pair would have been written
to the default, unnamed group.) readEntry() returns the value found to the right of Text= in
the configuration file as a QString. In the event that the key Text does not appear at all—as is
the case when the program is run for the first time—readEntry() returns Hello, the value
specified as the default (line 9).

You want to save the text when the user closes the window. To do this, reimplement the virtual
method closeEvent(). This method is called when a close request is made, but before the
window is actually closed. In this method, place the text of the widget (returned by text()) to
the configuration file into the group LineEditor. The call on line 17 is very important. This
call actually writes the new configuration information to disk.

Further KDE Compliance

CHAPTER 7

7

F
U

R
TH

ER
K

D
E

C
O

M
PLIA

N
C

E
159

10 8911 ch07 10/16/00 1:45 PM Page 159

Finally, call qcloseevent->accept(), which lets Qt know that the widget is willing to grant
the user’s request and be closed.

Listing 7.10 is for a main() function that you can use to test KConfigDemo. Figure 7.3 shows
the program that is created—kconfigdemotest—running.

LISTING 7.10 main.cpp: A main() Function Suitable for Testing KConfigDemo

1: #include <kapp.h>
2:
3: #include “kconfigdemo.h”
4:
5: int
6: main (int argc, char *argv[])
7: {
8: KApplication kapplication (argc, argv, “kconfigdemotest”);
9:
10: KConfigDemo *kconfigdemo = new KConfigDemo;
11:
12: kapplication.setMainWidget (kconfigdemo);
13:
14: kconfigdemo->show();
15: return kapplication.exec();
16: }

KConfig can read and write many types of data, not just strings. For example, in the next sec-
tion you read and write a QFont. The supported types are listed in the documentation (and
header file) for KConfigBase.

Advanced KDE Widgets and UI Design Techniques

PART II
160

KConfig caches the information in memory until the method KConfig::sync() is
called, so be sure to call it before your application exits or else your settings will be
lost.

CAUTION

10 8911 ch07 10/16/00 1:45 PM Page 160

FIGURE 7.3
KConfigDemo saves the text you enter in its configuration file.

Session Management
We touched on session management in Chapter 2, “A Simple KDE Application.” You created
KSimpleApp and endowed it with the capability to be restarted and maintain its position and
size across sessions. (Session refers to the time between logging in and logging out.) Actually,
this functionality was provided by KTMainWindow from which the class KSimpleApp was
derived.

In general, you’ll want to save more information across sessions than just the window position
and size. KTMainWindow offers the virtual methods saveProperties() and readProperties()
for this purpose. Also, you will want to save the user’s data (or at least offer this option) before
a session exits. You reimplement the virtual method queryClose() to do this. Listings
7.11–7.13 show the source code for KSaveAcross, an application that demonstrates these fea-
tures.

LISTING 7.11 ksaveacross.h: Class Declaration for KSaveAcross, a Widget That
Demonstrates Session Management Features of KTMainWindow

1: #ifndef __KSAVEACROSS_H__
2: #define __KSAVEACROSS_H__
3:
4: #include <ktmainwindow.h>
5:
6: /**
7: * KSaveAcross
8: * This application saves its data across sessions. Its data is

Further KDE Compliance

CHAPTER 7

7

F
U

R
TH

ER
K

D
E

C
O

M
PLIA

N
C

E
161

10 8911 ch07 10/16/00 1:45 PM Page 161

9: * the contents of a QLineEdit.
10: **/
11: class KSaveAcross : public KTMainWindow
12: {
13: Q_OBJECT
14: public:
15: KSaveAcross (const char *name=0);
16:
17: public slots:
18: /**
19: * Change the font used by qlineedit.
20: **/
21: void slotChangeFont();
22:
23: protected:
24: QLineEdit *qlineedit;
25:
26: /**
27: * Ask the user if he/she wants to save the document.
28: **/
29: bool queryClose();
30:
31: /**
32: * Save the chosen font.
33: **/
34: void saveProperties (KConfig *kconfig);
35: /**
36: * Read the chosen font.
37: **/
38: void readProperties (KConfig *kconfig);
39:
40: };
41:
42: #endif

The content area of the KSaveAcross widget is a QLineEdit widget. The menubar offers two
choices: change the font used by the QLineEdit widget or quit the application. The font chosen
by the user is saved across sessions.

Advanced KDE Widgets and UI Design Techniques

PART II
162

LISTING 7.11 Continued

10 8911 ch07 10/16/00 1:45 PM Page 162

LISTING 7.12 ksaveacross.cpp: Class Definition for KSaveAcross

1: #include <kapp.h>
2: #include <kfontdialog.h>
3: #include <kstdaction.h>
4: #include <kaction.h>
5: #include <kmessagebox.h>
6: #include <kconfig.h>
7:
8: #include “ksaveacross.moc”
9:
10:
11: KSaveAcross::KSaveAcross (const char *name)
12: {
13: KStdAction::quit (kapp, SLOT (closeAllWindows()),
14: actionCollection());
15:
16: new KAction (“Change Font...”, 0, this, SLOT(slotChangeFont()),
17: actionCollection(), “change_font”);
18: createGUI();
19:
20: qlineedit = new QLineEdit (this);
21:
22: setView (qlineedit);
23: }
24:
25: void
26: KSaveAcross::slotChangeFont()
27: {
28: QFont qfont = qlineedit->font();
29:
30: if (KFontDialog::getFont (qfont))
31: qlineedit->setFont(qfont);
32: }
33:
34: bool
35: KSaveAcross::queryClose()
36: {
37:
38:
39: const int yes=0, no=1, cancel=2;
40: int yesnocancel;

Further KDE Compliance

CHAPTER 7

7

F
U

R
TH

ER
K

D
E

C
O

M
PLIA

N
C

E
163

10 8911 ch07 10/16/00 1:45 PM Page 163

41:
42: yesnocancel =
43: KMessageBox::
44: questionYesNo (this, “Save changes to document?”, “ksaveacross”);
45:
46: switch (yesnocancel)
47: {
48: case (yes):
49: //You would save the document here and let the application exit.
50: return true;
51: case (no):
52: //Let the application exit without saving the document.
53: return true;
54: case (cancel):
55: //Don’t save, but don’t let the application exit.
56: return false;
57: }
58: }
59:
60:
61: void
62: KSaveAcross::saveProperties (KConfig *kconfig)
63: {
64: kconfig->writeEntry (“LineEditorFont”, qlineedit->font());
65: kconfig->sync();
66: }
67:
68: void
69: KSaveAcross::readProperties (KConfig *kconfig)
70: {
71: qlineedit->setFont (kconfig->readFontEntry (“LineEditorFont”));
72: }

The method saveProperties() (lines 61–66) is called just before the application is terminated
by the session manager. If the user quits the application normally, the method is not called.
When the session manager restarts the application at the beginning of the next session, the
method readProperties() is called. In these methods, you should save and read in properties
that describe the current state of the application but that may not be saved in or specified in the
configuration file. A Web browser, for example, might save the URL of the current page in the
method saveProperties(), although it wouldn’t want to store this in the configuration file.

saveProperties() and readProperties() work with KConfig objects. These KConfig objects
do not operate on the default application configuration file. Instead, they operate on instance-

Advanced KDE Widgets and UI Design Techniques

PART II
164

LISTING 7.12 Continued

10 8911 ch07 10/16/00 1:45 PM Page 164

specific configuration files created solely for the purpose of saving this session. The reading
and writing methods were described in the previous section. Don’t forget to call
kconfig->sync() (line 65) at the end of saveProperties() to write the information to disk.

Before the application exits, it should ask the user whether he or she wishes to save the current
document. If the application does this in the method queryClose() (a virtual method of the
class KTMainWindow), the question is asked whether the application is closed by the user or by
the session manager.

If queryClose() returns false, the application does not exit. The reimplementation of
queryClose() in KSaveAcross (line 34–58) presents the user with the choices Yes, No, and
Cancel as answers to the question, “Save changes to document?” If the user answers Yes or
No, queryClose() returns true, letting the application exit. If the user chooses Cancel,
queryClose() returns false and the user can continue working.

Further KDE Compliance

CHAPTER 7

7

F
U

R
TH

ER
K

D
E

C
O

M
PLIA

N
C

E
165

You’ll need to create a file called ksaveacrossui.rc and place it in the directory
$KDEDIR/share/apps/ksaveacross as explained in Chapter 5, “KDE User Interface
Compliance.” A usable version of ksaveacrossui.rc is included with the code on this
book’s Web site.

NOTE

Listing 7.13 provides the main() function needed to create and start this application. Notice
that I have included the session management code (lines 9–15), which was discussed in
Chapter 2. Figure 7.4 shows running KSaveAcross.

To create an executable, you’ll need the code in Listing 7.13, and you’ll need to place the GUI
file, ksaveacrossui.rc (found on this book’s web site), in the directory $KDEDIR/share/
kstatusbardemo.

LISTING 7.13 main.cpp: A main() Function Suitable for Testing KSaveAcross

1: #include <kapp.h>
2:
3: #include “ksaveacross.h”
4:
5: int
6: main (int argc, char *argv[])/
7: {
8: KApplication kapplication (argc, argv, “ksaveacross”);

10 8911 ch07 10/16/00 1:45 PM Page 165

9:
10: if (kapplication.isRestored())
11: RESTORE(KSaveAcross)
12: else
13: {
14: KSaveAcross *ksaveacross = new KSaveAcross;
15: ksaveacross->show();
16: }
17:
18: return kapplication.exec();
19: }

Advanced KDE Widgets and UI Design Techniques

PART II
166

LISTING 7.13 Continued

FIGURE 7.4
KSaveAcross saves its options across sessions and offers to save the user’s data before it is closed.

Application Resources
Applications often need to internally use data that is stored outside the program source code.
You might choose to keep data outside the source code because it is large or subject to change.
Such data, called application resources, might include icons, pixmaps, sounds, text strings, and
documentation.

Standard Resource Locations
By default, global application resources are stored in the directory trees rooted at
$KDEDIR/share and .kde/share (the latter being in the user’s home directory). These subdirec-
tories may exist in either place, and applications should make use of both sets of resources.
Application-specific resources are stored in the subdirectory apps/kappname (where kappname
is an application’s name). These default locations can be modified by the user. The user can
set the KDEDIRS (note the trailing “S” in this variable name) to contain a colon-separated list of
directories under which the share subdirectory could lie. For example, the default setting is
functionally equivalent to setting KDEDIRS equal to $KDEDIR:$HOME/.kde (where $HOME refers
to the user’s home directory).

10 8911 ch07 10/16/00 1:45 PM Page 166

Application Resources
Applications never need to specify full paths to resources or even be concerned with whether
they are using resources from $KDEDIR/share or .kde/share. They can use the class
KStandardDirs to locate resources by resource type. Table 7.1 summarizes the resource types
that are supported by the KStandardDirs class. The subdirectory may lie in $KDEDIR or in
.kde in the user’s home directory.

TABLE 7.1 Resource Types Supported by KStandardDirs Class

Identifier Subdirectory Resource Type

appdata share/apps/kappnamerc Application-specific data

apps share/applnk K-Menu structure

cgi cgi-bin CGI scripts to run from
KHelpcenter

config share/config Configuration files (for
example, kappnamerc)

data share/apps Directory holding all
application-specific data
subdirectories

exe bin KDE executables
(binaries) directory

html share/doc/html HTML documentation

icon share/icons Application icons and
miniicons

lib lib KDE libraries directory

locale share/local Translation files for the
KLocale class

mime share/mimelnk Mime type description
files

services share/services Descriptions of the
services provided by
libraries and programs

servicetypes share/servicetypes Categories of services

sound share/sounds Application sounds

toolbar share/toolbar Pictures for use on
toolbars

wallpaper share/wallpapers Pictures for use as
Idesktop wallpaper

Further KDE Compliance

CHAPTER 7

7

F
U

R
TH

ER
K

D
E

C
O

M
PLIA

N
C

E
167

10 8911 ch07 10/16/00 1:45 PM Page 167

Resources of the types mentioned in the preceding table can be accessed, loaded, and manipu-
lated using standard KDE/Qt classes. Custom data types, stored in the application-specific
resources directory, might, of course, need custom classes to manipulate them.

The widget KResourceDemo, given in Listings 7.14 and 7.15, shows how to find and load a pic-
ture, a sound, and a custom resource (in this case, a text file).

LISTING 7.14 kresourcedemo.h: Class Declaration for KResourceDemo, a Widget That
Demonstrates Loading and Using Application Resources

1: #ifndef __KRESOURCEDEMO_H__
2: #define __KRESOURCEDEMO_H__
3:
4: #include <qlabel.h>
5:
6: #include <kaudio.h>
7:
8:
9: /**
10: * KResourceDemo
11: * Show how to access application resources.
12: **/
13: class KResourceDemo : public QLabel
14: {
15: public:
16: KResourceDemo (QWidget *parent);
17:
18: };
19:
20: #endif

KResourceDemo is derived from the QLabel widget. Its background pixmap is the image
Paper01.jpg, a standard KDE global resource. The text displayed in the widget is loaded from
the file text.txt, an application-specific resource.

LISTING 7.15 kresourcedemo.cpp: Class Definition for KResourceDemo

1: #include <qpixmap.h>
2: #include <qfile.h>
3:
4: #include <kglobal.h>
5: #include <kstddirs.h>
6: #include <kimgio.h>
7: #include <klocale.h>

Advanced KDE Widgets and UI Design Techniques

PART II
168

10 8911 ch07 10/16/00 1:45 PM Page 168

LISTING 7.15 Continued

8:
9:
10: #include “kresourcedemo.h”
11:
12: KResourceDemo::KResourceDemo (QWidget *parent) :
13: QLabel (parent)
14: {
15: KStandardDirs *dirs = KGlobal::dirs();
16:
17: //Load picture and set as background.
18: QString picturepath;
19: picturepath = dirs->findResource (“wallpaper”, “Paper01.jpg”);
20:
21: kimgioRegister();
22: QPixmap qpixmap;
23: qpixmap.load (picturepath);
24: setBackgroundPixmap (qpixmap);
25:
26:
27: //Draw some text from a resource file.
28: QFont qfont = font();
29: qfont.setBold(true);
30: setFont (qfont);
31:
32: QString textpath;
33: textpath = dirs->findResource (“appdata”, “text.txt”);
34:
35: char * buffer = new char [1024];
36: QFile qfile (textpath);
37: qfile.open (IO_ReadOnly);
38: qfile.readBlock (buffer, 1024);
39:
40: QString datatext (buffer);
41: delete buffer;
42:
43: datatext.prepend (i18n(“Here is some text:\n”));
44: setText (datatext);
45: }

A global instance of KStandardDirs, a class used to locate resources, is available from the sta-
tic function KGlobal::dirs(). For readability, assign the return value to the pointer dirs.

In line 19, findResource() returns the full path to the file Paper01.jpg. It searches for this file
in the directories that hold resources of type wallpaper.

Further KDE Compliance

CHAPTER 7

7

F
U

R
TH

ER
K

D
E

C
O

M
PLIA

N
C

E
169

10 8911 ch07 10/16/00 1:45 PM Page 169

To manipulate a JPEG file like Paper01.jpg, you need to make use of the kimgio library. Be
sure to compile this program by passing the option -lkimgio to g++. This links the kimgio
library to the program, giving it access to the functions in the library.

Using the library is quite simple; just call kimgioRegister() (line 21) and you are done with
kimgio! (See Chapter 10, “Complex-Function KDE Widgets,” for a discussion of KImgIO.)
Now you load the picture into the instance of QPixmap called qpixmap with the statement

qpixmap.load (picturepath)

seen on line 23. The pixmap is set as the widget’s background in line 24.

Next you find and load an application-specific resource, a text file in this case, and display its
contents. In line 33, you search for a resource of type appdata called text.txt. This file, shown
in Listing 7.16, contains the text that will be displayed in the label. Figure 7.5 shows a screen-
shot of KResourceDemo.

Advanced KDE Widgets and UI Design Techniques

PART II
170

FIGURE 7.5
KResourceDemo places a pixmap in the background and some text in the foreground, both of which are stored as appli-
cation resources.

LISTING 7.16 Contents of $KDEDIR/share/appstext.txt, Which is Displayed by
kresourcedemo

This text was taken from the file
$KDEDIR/share/apps/kresourcedemo/text.txt

Lines 35–44 of Listing 7.15 contain code to read in and display the text. The code uses QFile,
a class that allows you to read and write files. It is not covered in detail; therefore, see the Qt
documentation for more information.

10 8911 ch07 10/16/00 1:45 PM Page 170

The final resource you access is a translation. The function i18n() is defined in klocal.h. (i18n
is a commonly used shorthand for internationalization. Internationalization is such a long word
that programmers abbreviate it by its first and last letters with a number in between that is
equal to the number of letters left out of the word.) All string constants in an application
should be enclosed in a call to i18n(). These strings can be translated to other languages, and
when your application runs on a foreign desktop, the strings are displayed in the local lan-
guage.

You create the string translations by extracting all the strings passed to i18n() with xgettext,
a GNU utility. Use the call

xgettext --c++ --keyword=i18n kresourcedemo.cpp --output=kresourcedemo.po

to extract the strings from kresourcedemo.cpp and place them in the file kresourcedemo.po. PO
stands for Portable Object. This reflects the fact that they are text files that can be easily
moved between platforms. The file kresource.po is shown in Listing 7.17.

LISTING 7.17 kresource.po: The Translation Template File Generated by xgettext

1: # SOME DESCRIPTIVE TITLE.
2: # Copyright (C) YEAR Free Software Foundation, Inc.
3: # FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.
4: #
5: #, fuzzy
6: msgid “”
7: msgstr “”
8: “Project-Id-Version: PACKAGE VERSION\n”
9: “POT-Creation-Date: 1999-11-20 13:31-0500\n”
10: “PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n”
11: “Last-Translator: FULL NAME <EMAIL@ADDRESS>\n”
12: “Language-Team: LANGUAGE <LL@li.org>\n”
13: “MIME-Version: 1.0\n”
14: “Content-Type: text/plain; charset=iso-8859-1\n”
15: “Content-Transfer-Encoding: ENCODING\n”
16:
17: #: kresourcedemo.cpp:45
18: msgid “Here is some text:\n”
19: msgstr “”

To test the translation feature, fill in the msgstr entry at the bottom of kresourcedemo.po using
any text editor. That is, change the empty string “” to some other string, such as “Look at this
text!” or try translating it into another language.

Further KDE Compliance

CHAPTER 7

7

F
U

R
TH

ER
K

D
E

C
O

M
PLIA

N
C

E
171

10 8911 ch07 10/16/00 1:45 PM Page 171

The files used by running KDE programs are machine-object (binary) files. The machine-
object file for kresourcedemo is created by msgfmt with

msgfmt kresourcedemo.po -o kresourcedemo.mo

Move this file into $KDEDIR/share/locale/de/LC[lowbar]MESSAGES (create the directory if
it does not exist). Now run the KDE control center from the K Menu on the panel. Click
Language in the Desktop subtree and choose German as your primary language.

Now, open up a new terminal from the panel and run kresourcedemo. Instead of displaying
Here is some text:, it should display the alternative string you entered in kresourcedemo.po.

Creating .desktop Files
KDE 2.0 uses files with the extension .desktop, in a standard Key, Value pair format (discussed
shortly) to describe applications. These are called “application .desktop files” because these
files are used to describe other objects as well (see Chapter 12, “Creating and Using
Components (KParts)”). KDE 1.x used similar files, but with the extension .kdelnk. The exten-
sion .kdelnk is still supported, but it is best to use the newer .desktop extension to ensure future
compatibility.

Network Transparency
The term “network transparent” refers to an interface that allows a user to access remote files
using the same methods as accessing local files. KDE applications should be network transpar-
ent to be KDE compliant. Luckily for you, the KDE application developers, all of the hard
work of accessing remote files has been done and made available (in simplest form) through
static convenience functions.

Programming Example
The KDE library libkio contains the classes that implement network transparency (among other
things). The class of particular interest is KIO::NetAccess. It contains the methods download()
and upload(), which transfer files to and from remote sources. These methods work synchro-
nously but keep your GUI alive, so they are easy to work with. The download() and upload()
methods can use FTP and HTTP (or any protocol for which a handler has been written) for
accessing remote files. (The protocol is identified by the protocol identifier in the URL. For
example, http://www.kde.org uses HTTP.)

Advanced KDE Widgets and UI Design Techniques

PART II
172

10 8911 ch07 10/16/00 1:45 PM Page 172

The following program, KRemoteDemo, shows how the KIO::NetAccess methods download()
and upload() can be used to implement basic network transparency in a KDE application.

LISTING 7.18 kremotedemo.h: Class declaration for KRemoteDemo

1: #ifndef __KREMOTEDEMO_H__
2: #define __KREMOTEDEMO_H__
3:
4: #include <qstring.h>
5:
6: #include <ktmainwindow.h>
7: #include <kurl.h>
8:
9: class QMultiLineEdit;
10: class KAction;
11:
12: /**
13: * KRemoteDemo
14: *
15: * Load and save remote and local files.
16: **/
17: class KRemoteDemo : public KTMainWindow
18: {
19: Q_OBJECT
20:
21: public:
22: KRemoteDemo (const char *name=0);
23:
24: protected slots:
25: void slotOpen();
26: void slotSave();
27:
28: protected:
29: KAction *save;
30: KURL kurl;
31: QString localfilename;
32: QMultiLineEdit *editor;
33: };
34:
35: #endif

Further KDE Compliance

CHAPTER 7

7

F
U

R
TH

ER
K

D
E

C
O

M
PLIA

N
C

E
173

10 8911 ch07 10/16/00 1:45 PM Page 173

This is a typical class declaration. KRemoteDemo uses a QMultiLineEdit object as its content
area and offers remote or local file opening and saving (see Listing 7.19).

LISTING 7.19 kremotedemo.cpp: Class definition for KRemoteDemo

1: #include <errno.h>
2: #include <string.h>
3:
4: #include <qmultilineedit.h>
5:
6: #include <kapp.h>
7: #include <kstdaction.h>
8: #include <kaction.h>
9: #include <kfiledialog.h>
10: #include <kio/netaccess.h>
11: #include <knotifyclient.h>
12:
13: #include “kremotedemo.moc”
14:
15: KRemoteDemo::KRemoteDemo (const char *name) :
16: KTMainWindow (name)
17: {
18: KStdAction::open (this, SLOT (slotOpen()),
19: actionCollection());
20: save = KStdAction::save (this, SLOT (slotSave()),
21: actionCollection());
22: KStdAction::quit (kapp, SLOT (closeAllWindows()),
23: actionCollection());
24: createGUI();
25: save->setEnabled (false);
26:
27: editor = new QMultiLineEdit (this);
28: setView (editor);
29: }
30:
31: void
32: KRemoteDemo::slotOpen()
33: {
34: kurl = KFileDialog::getOpenURL ();
35:
36: if (kurl.isLocalFile())
37: localfilename = kurl.path();
38: else if (!KIO::NetAccess::download (kurl, localfilename))
39: {
40: KNotifyClient::event (“Could not download file.”);
41: return;
42: }
43:

Advanced KDE Widgets and UI Design Techniques

PART II
174

10 8911 ch07 10/16/00 1:45 PM Page 174

LISTING 7.19 Continued

44:
45: QFile qfile (localfilename);
46: if (qfile.open (IO_ReadOnly))
47: {
48: char *buffer = new char [qfile.size()+1];
49:
50: qfile.readBlock (buffer, qfile.size());
51: buffer [qfile.size()]=’\0’;
52: editor->setText (buffer);
53:
54: delete buffer;
55: }
56: else
57: {
58: QString qerr;
59: qerr.sprintf (“Could not open file: %s”, strerror (errno));
60: KNotifyClient::event (qerr);
61: return;
62: }
63: save->setEnabled (true);
64: }
65:
66: void
67: KRemoteDemo::slotSave()
68: {
69: QFile qfile (localfilename);
70: if (qfile.open (IO_ReadOnly))
71: {
72: qfile.writeBlock (editor->text(),
73: editor->text().length());
74: qfile.close();
75: }
76: else
77: {
78: QString qerr;
79: qerr.sprintf (“Could not write file: %s”, strerror (errno));
80: KNotifyClient::event (qerr);
81: return;
82: }
83:
84: if (!kurl.isLocalFile())
85: if (!KIO::NetAccess::upload (localfilename, kurl))
86: {
87: KNotifyClient::event (“Could not upload file.”);
88: return;
89: }
90: }

Further KDE Compliance

CHAPTER 7

7

F
U

R
TH

ER
K

D
E

C
O

M
PLIA

N
C

E
175

10 8911 ch07 10/16/00 1:45 PM Page 175

The KRemoteDemo constructor, lines 15–29, uses actions to create the menubar and toolbar and
creates an instance of QMultiLineEdit for use as the content area. The action corresponding to
File, Save is stored in the variable save so that the action can be disabled and reenabled later
after a file has been loaded. (For simplicity, and to avoid straying too far from the topic, a File,
Save As function is not included here, so don’t be surprised when you cannot save a newly cre-
ated piece of text. In a full KDE application, you should include a File, Save As function and
enable it when the document changes from empty to non-empty.)

On line 36, in slotOpen(), you check to see whether the URL returned by getOpenURL()
refers to a local file. If it does, you open the file pointed to by kurl.path(), the full path to the
file. If the URL does not refer to a local file, you download the remote file using
KIO::NetAccess::download(). The second argument to this method (see line 38) is passed by
reference and, if it is an empty string, filled in upon return with the name of a local, temporary
file. This local file holds a copy of the downloaded remote file. The method download()
returns false if an error occurs during download.

Notice that errors are reported to the user with KNotifyClient. In the event of a standard C
library error, include the error string (returned by the standard C library function strerror())
in your report to the user (see lines 60 and 81). (Refer to Chapter 6, “KDE Style Reference”
for details on KNotifyClient.)

The slot slotSave() shows how to return an edited file to its proper local or remote place. The
file is saved to the local location pointed to by the variable localfilename. This is either the
original location of the file or the location of the temporary file created by download(). If it is
a temporary file (if the file requested by the user was originally stored remotely), slotSave()
uploads the file to it original location. The upload() method (line 88) will delete the tempo-
rary file after it has been uploaded.

When you create a full KDE application, you should treat user-requested remote and local
URLs in the same fashion. Beside loading and saving from and to the URLs, you should keep
both local and remote URLs in the Recent submenu of the File menu.

Listing 7.20 shows the main() function that you can use to create an executable application
showing how KRemoteDemo works. You will also need to place the XML GUI file, kremotede-
moui.rc (available from the Web site), in directory $KDEDIR/share/kremotedemo.

LISTING 7.20 main.cpp: A main() function suitable for testing KRemoteDemo

1: #include <kapp.h>
2:
3: #include “kremotedemo.h”
4:
5: int

Advanced KDE Widgets and UI Design Techniques

PART II
176

10 8911 ch07 10/16/00 1:45 PM Page 176

LISTING 7.20 Continued

6: main (int argc, char *argv[])
7: {
8: KApplication kapplication (argc, argv, “kremotedemo”);
9:
10: KRemoteDemo *KRemotedemo = new KRemoteDemo (0);
11:
12: kapplication.setMainWidget (KRemotedemo);
13:
14: KRemotedemo->show();
15: return kapplication.exec();
16: }

Summary
KDE offers users many features such as drag and drop, session management, internationaliza-
tion, and network transparency, but application developers are the ones who must implement
them. The KDE/Qt libraries make this task easier by performing common application func-
tions. Configuration files are accessed with the class KConfig; session management is handled
in most cases by KTMainWindow; application resources can be located with KStandardDirs and
are usually manipulated with KDE/Qt classes, such as QPixmap or KAudioPlayer; files can be
loaded or saved locally or remotely using KIO_NetAccess.

Exercises
Answers to the exercises can be found in Appendix C, “Answers.”

1. Starting with KDropDemo as a base, write a program that accepts drops of images. Use
QImageObject instead of QTextObject.

2. Now, using KDragDemo as a base, write a program that lets the user drag a pixmap to
another application. You can use a QPixmap returned by BarIcon() as the data for the
drag.

3. Look up KAudio in the KDE class documentation. Using KStandardDirs and KAudio,
locate and play one of the sounds distributed with KDE. (The sounds are in
$KDEDIR/share/sounds.)

Further KDE Compliance

CHAPTER 7

7

F
U

R
TH

ER
K

D
E

C
O

M
PLIA

N
C

E
177

10 8911 ch07 10/16/00 1:45 PM Page 177

10 8911 ch07 10/16/00 1:45 PM Page 178

CHAPTER

8
Using Dialog Boxes
by Espen Sand

IN THIS CHAPTER
• Getting Started with the Dialog Widgets 180

• Dialog Layout the Simple Way 183

• Dialog Modality—Modal or Modeless

Dialogs 191

• KDE User-Interface Library (kdeui) 196

• Dialog Style and KDialogBase 199

• A Larger Example: The Option Dialog in

KEdit 201

• User Interface Design Rules for Dialogs 210

11 8911 ch08 10/16/00 1:47 PM Page 179

Advanced KDE Widgets and UI Design Techniques

PART II
180

A dialog is a very important part of an application. If the dialogs are not well-designed or
suited for their task, the usefulness of the application is often greatly reduced. This chapter
describes how to successfully create dialogs that are easy to use, that have a distinct KDE look
and feel, and that are simple to develop and later extend and maintain by the developer. The
KDE interface library (kdeui) contains several building blocks and widgets that, combined with
the regular widgets and layout managers of the Qt library, provide you with what you need to
get an optimal result. I emphasize the use of a framework widget named KDialogBase. The use
of the KDialogBase class greatly simplifies dialog writing because it takes care of much of the
tedious work that has to be repeated for every dialog you make.

Although several interface builders are available that can create dialogs for you (see Chapter
18, “The KDevelop IDE: The Integrated Development Enviroment for KDE”), the KDE inter-
face library widgets are designed to simplify a hand-coded design process. In addition, they
automatically give your dialogs the look and feel recommended by the KDE style guide, which
is available on the Web page: http://developer.kde.org/documentation/standards/kde
/style/basics. Several examples illustrate how to use these basic widgets.

Getting Started with the Dialog Widgets
Let’s start with an example. Figure 8.1 shows a very simple dialog that is used in the standard
KDE hex editor—KHexEdit. The code in Listing 8.1 shows how the dialog class is derived
from KDialogBase. Most of the initialization of KDialogBase class takes place in the construc-
tor of that class. The class definition is normally placed in a separate header file, but for sim-
plicity it is shown here together with the regular code.

FIGURE 8.1
This dialog is used to display the number of bytes currently selected in KHexEdit’s editor window. The value is printed
in decimal and hexadecimal.

LISTING 8.1 Simplified Listing of the SelectDialog Dialog Class

1: class SelectDialog : public KDialogBase
2: {
3: Q_OBJECT
4:
5: public:

11 8911 ch08 10/16/00 1:47 PM Page 180

LISTING 8.1 Continued

6: SelectDialog(QWidget *parent=0, const char *name=0,
7: bool modal=false);
8: ~SelectDialog(void);
9:
10: private:
11: void setSelectionSize(uint selectionSize);
12:
13: private:
14: QLineEdit *mSelectSizeEdit;
15: uint mSelectionSize;
16: };
17:
18: SelectDialog::SelectDialog(QWidget *parent, const char *name,
19: bool modal)
20: :KDialogBase(parent, name, modal, i18n(“Select Indicator”),
21: Cancel, Cancel)
22: {
23: QWidget *page = new QWidget(this);
24: CHECK_PTR(page);
25: setMainWidget(page);
26:
27: QVBoxLayout *topLayout = new QVBoxLayout(page, 0, spacingHint());
28: CHECK_PTR(page);
29:
30: QLabel *label = new QLabel(i18n(“Selection size [bytes]:”), page);
31: CHECK_PTR(label);
32: topLayout->addWidget(label);
33:
34: mSelectSizeEdit = new QLineEdit(page);
35: CHECK_PTR(mSelectSizeEdit);
36: mSelectSizeEdit->setMinimumWidth(fontMetrics().maxWidth()*17);
37: mSelectSizeEdit->setFocusPolicy(QWidget::NoFocus);
38: topLayout->addWidget(mSelectSizeEdit);
39:
40: topLayout->addStretch(10);
41:
42: setSelectionSize(0);
43: }
44:
45: SelectDialog::~SelectDialog()
46: {
47: }
48:
49: void
50: SelectDialog::setSelectionSize(uint selectionSize)

Using Dialog Boxes

CHAPTER 8

8

U
SIN

G
D

IA
LO

G
B

O
X

ES
181

11 8911 ch08 10/16/00 1:47 PM Page 181

51: {
52: mSelectionSize = selectionSize;
53: QString msg;
54:
55: msg.sprintf(“%08u, %04x:%04x”, mSelectionSize, mSelectionSize>>16,
56: mSelectionSize&0x0000FFFF);
57: mSelectSizeEdit->setText(msg);
58: }
59:
60: // The dialog used as the main application window
61:
62: #include <kcmdlineargs.h>
63: int main(int argc, char **argv)
64: {
65: KCmdLineArgs::init(argc, argv, “khexedit”, 0, 0);
66: KApplication app;
67: SelectDialog *dialog = new SelectDialog();
68: dialog->show();
69: int result = app.exec();
70: return(result);
71: }

The KDialogBase widget is described in more detail in the section “Building Blocks (Manager
Widgets)” later in this chapter. Notice the signature of the constructor on line 18. These are the
arguments you should at least provide when making a dialog. Note as well that in the class def-
inition (line 6), the argument has been assigned default values. The values shown in the code
are the most commonly used in KDE and Qt code and is in many respects assumed to be the
standard implementation. The parent widget is the widget around which the dialog is centered.
Normally, you use the top-level widget or your application as the parent of a dialog. The dialog
will then be positioned in the center of your main application window. If the parent is 0 (null),
the dialog is centered with respect to the desktop. The name is the name of the dialog widget. It
should not be used for the dialog title string (often called the caption) because it is not of type
QString (the Unicode string class). The name is used to identify the widget during development
and is very handy if you need to dump a widget hierarchy. You can safely assign 0 to the name
if you don’t need it. The last argument, modal, determines the modality of the dialog. See the
section “Dialog Modality—Modal or Modeless Dialogs” later in this chapter for an extended
description and a description of the implications of modal and modeless dialog behavior.

Advanced KDE Widgets and UI Design Techniques

PART II
182

LISTING 8.1 Continued

11 8911 ch08 10/16/00 1:47 PM Page 182

Dialog Layout the Simple Way
When you have decided what components are needed in the dialog to accomplish the intended
task, place them in such a way that the usage is intuitive for the end user. Any widget can be
placed in a dialog by defining its x and y coordinates with respect to the upper-left corner of
the parent widget, along with the width and height. This must be repeated for each and every
widget in the dialog. In theory, this is straightforward, but in practical life several complicating
factors exist:

1. What to do when a dialog is resized? Which widgets should stretch and how much, and
which remain fixed in size?

2. How much work is required when you suddenly need to add one or more widgets or per-
haps remove another? This may require completely new layout code and can take consid-
erable time to finish for complex dialogs.

3. What extra complexity do you have to add to your code to handle font and font-size
changes? Remember that the users may prefer another font and/or font-size than you.

4. How easy is it, in general, to support label strings and text that have no predictable size?
This is the case for KDE applications that need to support multiple languages.

The remedy to all these problems is to use the QLayout classes to manage the widgets. The
widgets’ size, stretchability, and position with respect to the others are easily controlled this
way. Listing 8.2 contains the same constructor using old-style manual placement (OldDialog)
and the QLayout-based (NewDialog). The difference should easily convince you to use the
QLayout classes and the KDialogBase widget class to manage the widgets, because you no
longer have to use the setGeometry() calls. What would you have to do in OldDialog if the
string length of the first QLabel got longer or another font size should be used? Try to add a
new label below the first one in the OldDialog. Figure 8.2 shows what the dialog looks like
when it is based on QLayouts.

LISTING 8.2 The Difference Between the Old Style (Manual) Geometry Strategy and the
New Based on QLayouts

1: OldDialog::OldDialog(QWidget *parent, const char *name, bool modal)
2: : QDialog(parent, name, modal)
3: {
4: setCaption(i18n(“Update Frequency”));
5:
6: QLabel *label = new QLabel(this, “label”);
7: label->setGeometry(16, 24, 180, 24);
8: label->setText(i18n(“Update frequency in seconds:”));

Using Dialog Boxes

CHAPTER 8

8

U
SIN

G
D

IA
LO

G
B

O
X

ES
183

11 8911 ch08 10/16/00 1:47 PM Page 183

9:
10: QScrollBar *scrollbar = new QScrollBar(this, “scrollbar”);
11: scrollbar->setGeometry(24, 48, 160, 16);
12: scrollbar->setOrientation(QScrollBar::Horizontal);
13:
14: QLCDNumber *lcdNumber = QLCDNumber(this, “lcdnumber”);
15: lcdNumber->setGeometry(192, 32, 72, 32);
16: lcdNumber->setSmallDecimalPoint(false);
17: lcdNumber->setNumDigits(5);
18: lcdNumber->setMode(QLCDNumber::DEC);
19:
20: QPushButton *okPushButton = new QPushButton(this, “ok”);
21: okPushButton->setGeometry(32, 120, 80, 24);
22: okPushButton->setText(i18n(“&OK”));
23:
24: QPushButton *cancelPushButton = new QPushButton(this, “PushButton_2”);
25: cancelPushButton->setGeometry(176, 120, 80, 24);
26: cancelPushButton->setText(i18n(“&Cancel”));
27:
28: resize(288, 168);
29:
30: connect(scrollbar, SIGNAL(valueChanged(int)),
31: lcdNumber, SLOT(display(int)));
32: connect(okPushButton, SIGNAL(clicked()), this, SLOT(accept()));
33: connect(cancelPushButton, SIGNAL(clicked()), this, SLOT(reject()));
34: }
35:
36: NewDialog::NewDialog(QWidget *parent, const char* name, bool modal)
37: : KDialogBase(parent, name, modal, i18n(“Update Frequency”),
38: Ok|Cancel, Ok)
39: {
40: QWidget *page = new QWidget(this);
41: setMainWidget(page);
42:
43: QVBoxLayout *topLayout = new QVBoxLayout(page, 0, spacingHint());
44: QHBoxLayout *hlay = new QHBoxLayout(topLayout);
45: QVBoxLayout *vlay = new QVBoxLayout(hlay, 10);
46:
47: QLabel *label2 = new QLabel(page, “label1”);
48: label->setText(i18n(“Update frequency in seconds:”));
49: vlay->addWidget(label);
50:
51: //
52: // It is very simple to add a new label here.

Advanced KDE Widgets and UI Design Techniques

PART II
184

LISTING 8.2 Continued

11 8911 ch08 10/16/00 1:47 PM Page 184

53: //
54: //QLabel *label2 = new QLabel(page, “label2”);
55: //label2->setText(i18n(“A new label text”));
56: //vlay->addWidget(label2);
57:
58: QScrollBar *scrollbar = QScrollBar(page, “scrollbar”);
59: scrollbar->setOrientation(QScrollBar::Horizontal);
60: vlay->addWidget(scrollbar);
61:
62: QLCDNumber *lcdNumber = QLCDNumber(page, “lcdnumber”);
63: lcdNumber->setSmallDecimalPoint(false);
64: lcdNumber->setNumDigits(3);
65: lcdNumber->setMode(QLCDNumber::DEC);
66: hlay->addWidget(lcdNumber, 0);
67:
68: connect(scrollbar, SIGNAL(valueChanged(int)),
69: lcdNumber, SLOT(display(int)));
70: }

Using Dialog Boxes

CHAPTER 8

8

U
SIN

G
D

IA
LO

G
B

O
X

ES
185

LISTING 8.2 Continued

FIGURE 8.2
The appearance of the dialog that is implemented in the second constructor of Listing 8.2.

A QLayout can be vertically oriented (QVBoxLayout), horizontally oriented (QHBoxLayout) or be
a grid layout (QGridLayout). The Qt layout mechanism is to some extent described in Chapter
4, “Creating Custom KDE Widgets.” Therefore, in the following section, some problems that
often appear when writing dialogs are described.

You can also define your own custom layout managers, but that is outside the scope
of this chapter.

NOTE

The first important thing you must know is that there can be only one layout manager per
widget. This constraint does not prevent you from nesting layouts. As Listing 8.2 illustrates,

11 8911 ch08 10/16/00 1:47 PM Page 185

a layout can be inserted into a parent layout, thus becoming a child layout. On line 43,
topLayout is the parent of the horizontal layout hlay, which, in turn, is the parent of the verti-
cal layout vlay.

The second constraint you must know is that a widget that is managed by a layout (a parent or
a child layout) must be a child widget of the same widget that contains the layout manager.
This can been seen in Listing 8.2 on lines 58–60, where scrollbar is a child of page and is
managed by vlay, which is a grandchild layout of topLayout.

A widget that is managed by a layout manager can itself contain its own layout manager. Thus
you can create a hierarchy of layouts and widgets of any desired complexity. Listing 8.3 shows
how the Goto dialog of KHexEdit is using a frame with a title that groups the toggle buttons.
The group widget is managed by the topLayout manager and contains the gbox layout. Figure
8.3 shows the appearance of this dialog.

LISTING 8.3 The CGotoDialog Class Uses the KDialogBase Class Somewhat Differently
from What Has Been Shown Earlier

1: class CGotoDialog : public KDialogBase
2: {
3: Q_OBJECT
4:
5: public:
6: CGotoDialog(QWidget *parent=0, const char *name=0,
7: bool modal=false);
8: ~CGotoDialog();
9: void defaultFocus();
10:
11: protected slots:
12: virtual void slotOk();
13:
14: signals:
15: void gotoOffset(uint offset, uint bit, bool fromCursor,
16: bool forward);
17:
18: private:
19: QComboBox *mComboBox;
20: QCheckBox *mCheckBackward;
21: QCheckBox *mCheckFromCursor;
22: QCheckBox *mCheckVisible;
23: };
24:
25: CGotoDialog::CGotoDialog(QWidget *parent, const char *name, bool modal)
26: :KDialogBase(Plain, i18n(“Goto Offset”), Ok|Cancel, Ok, parent, name,
27: modal)

Advanced KDE Widgets and UI Design Techniques

PART II
186

11 8911 ch08 10/16/00 1:47 PM Page 186

LISTING 8.3 Continued

28: {
29: QVBoxLayout *topLayout = new QVBoxLayout(plainPage(), 0,
30: spacingHint());
31: CHECK_PTR(topLayout);
32:
33: QVBoxLayout *vbox = new QVBoxLayout(topLayout);
34: CHECK_PTR(vbox);
35:
36: mComboBox = new QComboBox(true, plainPage());
37: CHECK_PTR(mComboBox);
38: mComboBox->setMaxCount(10);
39: mComboBox->setInsertionPolicy(QComboBox::AtTop);
40: mComboBox->setMinimumWidth(fontMetrics().maxWidth()*17);
41:
42: QLabel *label = new QLabel(mComboBox, i18n(“O&ffset:”), plainPage());
43: CHECK_PTR(label);
44:
45: vbox->addWidget(label);
46: vbox->addWidget(mComboBox);
47:
48: QButtonGroup *group = new QButtonGroup(i18n(“Options”), plainPage());
49: CHECK_PTR(group);
50: topLayout->addWidget(group, 10); // Only the group will be resized
51:
52: QGridLayout *gbox = new QGridLayout(group, 4, 2, spacingHint());
53: CHECK_PTR(gbox);
54: gbox->addRowSpacing(0, fontMetrics().lineSpacing());
55: mCheckFromCursor = new QCheckBox(i18n(“&From cursor”), group);
56: CHECK_PTR(mCheckFromCursor);
57: gbox->addWidget(mCheckFromCursor, 1, 0);
58: mCheckBackward = new QCheckBox(i18n(“&Backwards”), group);
59: CHECK_PTR(mCheckBackward);
60: gbox->addWidget(mCheckBackward, 1, 1);
61: mCheckVisible = new QCheckBox(i18n(“&Stay visible”), group);
62: CHECK_PTR(mCheckVisible);
63: gbox->addWidget(mCheckVisible, 2, 0);
64: gbox->setRowStretch(3, 10); // Eat up all extra space when resized.
65: mCheckVisible->setChecked(true);
66:
67: defaultFocus();
68: }
69:
70: CGotoDialog::~CGotoDialog()
71: {
72: }

Using Dialog Boxes

CHAPTER 8

8

U
SIN

G
D

IA
LO

G
B

O
X

ES
187

11 8911 ch08 10/16/00 1:47 PM Page 187

73:
74: void
75: CGotoDialog::defaultFocus()
76: {
77: mComboBox->setFocus();
78: }
79:
80: void
81: CGotoDialog::slotOk()
82: {
83: uint offset;
84: bool success = stringToOffset(mComboBox->currentText(), offset);
85: if(success == false)
86: {
87: return;
88: }
89:
90: if(mCheckVisible->isChecked() == false)
91: {
92: hide();
93: }
94: emit gotoOffset(offset, 7, mCheckFromCursor->isChecked(),
95: mCheckBackward->isChecked() == true ? false : true);
96: }
97:
98: // The dialog used as the main application window
99: #include <kcmdlineargs.h>
100: int main(int argc, char **argv)
101: {
102: KCmdLineArgs::init(argc, argv, “khexedit”, 0, 0);
103: KApplication app;
104: CGotoDialog *dialog = new CGotoDialog;
105: dialog->show();
106: int result = app.exec();
107: return result;
108: }

As can be seen from Listing 8.3, the Plain mode in the constructor instructs KDialogBase to
create a main widget by itself. This widget is returned by plainPage() and serves as the parent
widget for all layouts and other widgets. A little—but important—trick is used in Listing 8.3 as
well. On line 54, notice the fontMetrics().lineSpacing(). It reserves space so that the
uppermost child widget (the From Cursor toggle button) of the frame does not obscure the title
string. Never make this spacing by using a fixed integer value. It will work with the font that

Advanced KDE Widgets and UI Design Techniques

PART II
188

LISTING 8.3 Continued

11 8911 ch08 10/16/00 1:47 PM Page 188

you use, but when the users of your application change the font size, it will break. The
fontMetrics().lineSpacing() returns a value that depends on the font. This seems to be a
missing feature in the Qt library code, so future versions of the Qt library may not require this
workaround.

Using Dialog Boxes

CHAPTER 8

8

U
SIN

G
D

IA
LO

G
B

O
X

ES
189

FIGURE 8.3
The Goto dialog of Listing 8.3.

The method of first creating a widget and then the layout for each and every widget that needs
it can be cumbersome if it has to be repeated for many widgets. To simplify this, the Qt library
contains two widgets, QVBox and QHBox, which create the layout manager internally. These are
intended for simple layouts. The widget children of a QVBox widget are placed vertically, and
the children of QHBox widget are placed next to each other. A QVBox widget itself can, of
course, be managed by a layout. Listing 8.4 shows the constructor of Listing 8.3 but uses a
QVBox instead of a layout. You make only one layout yourself in this example.

LISTING 8.4 The CGotoDialog Class Using a QVBox Widget to Do the Geometry
Management

1: CGotoDialog::CGotoDialog(QWidget *parent, const char *name, bool modal)
2: :KDialogBase(Plain, i18n(“Goto Offset”), Ok|Cancel, Ok, parent, name,
3: modal)
4: {
5: QVBoxLayout *topLayout = new QVBoxLayout(plainPage(), 0, spacingHint());
6: CHECK_PTR(topLayout);
7:
8: QVBox *topBox = new QVBox(plainPage());
9: CHECK_PTR(topBox);
10: topBox->setSpacing(spacingHint());
11: topLayout->addWidget(topBox);
12:
13: QLabel *label = new QLabel(i18n(“O&ffset:”), topBox);
14: CHECK_PTR(label);
15:
16: mComboBox = new QComboBox(true, topBox);

11 8911 ch08 10/16/00 1:47 PM Page 189

17: CHECK_PTR(mComboBox);
18: mComboBox->setMaxCount(10);
19: mComboBox->setInsertionPolicy(QComboBox::AtTop);
20: mComboBox->setMinimumWidth(fontMetrics().maxWidth()*17);
21: label->setBuddy(mComboBox); // To get the underlining to work
22:
23: QButtonGroup *group = new QButtonGroup(i18n(“Options”), topBox);
24: CHECK_PTR(group);
25:
26: QGridLayout *gbox = new QGridLayout(group, 4, 2, spacingHint());
27: CHECK_PTR(gbox);
28: gbox->addRowSpacing(0, fontMetrics().lineSpacing());
29: mCheckFromCursor = new QCheckBox(i18n(“&From cursor”), group);
30: CHECK_PTR(mCheckFromCursor);
31: gbox->addWidget(mCheckFromCursor, 1, 0);
32: mCheckBackward = new QCheckBox(i18n(“&Backwards”), group);
33: CHECK_PTR(mCheckBackward);
34: gbox->addWidget(mCheckBackward, 1, 1);
35: mCheckVisible = new QCheckBox(i18n(“&Stay visible”), group);
36: CHECK_PTR(mCheckVisible);
37: gbox->addWidget(mCheckVisible, 2, 0);
38: gbox->setRowStretch(3, 10); // Eat up all extra space when resized.
39: mCheckVisible->setChecked(true);
40:
41: defaultFocus();
42: }

You should keep several design issues in mind when using QLayouts. The following list can be
considered a checklist:

1. What spacing and margin values do you use in the QLayouts? Make sure you use the
same values for spacing and margins for all dialogs you make, because this makes the
overall appearance much better. Never use hard-coded values. Define constants in a com-
mon header file and use them without exception. As indicated in Listing 8.3, dialogs
derived from KDialogBase have access to a spacingHint() and (not shown) a
marginHint() method. These provide the values you need. Note: Normally you can
ignore the marginHint() because this is reserved for the space between the dialog edge
and the outermost widget. The KDialogBase takes care of setting up this space internally.

2. Should your dialog be resizable? In most cases, there is no reason to not allow resizing.
This means that a dialog can be made larger than the default minimum size, but never
smaller. The default minimum size is automatically computed by the QLayouts just
before the dialog becomes visible. A dialog that contains editable fields or lists should

Advanced KDE Widgets and UI Design Techniques

PART II
190

LISTING 8.4 Continued

11 8911 ch08 10/16/00 1:47 PM Page 190

always be resizable, whereas dialogs that contain widgets that require a long time to
resize should perhaps be fixed. The KDialogBase class contains one method,
disableResize(), which prevents the dialog from being resized. It must be called just
before show() or exec(). The default behavior of KDialogBase is to allow resizing.

3. Which widgets in your dialog are stretchable? When you add a widget to a layout with
addWidget(…), you can also specify a stretch factor. The widget with the biggest stretch
factor is resized the most when the layout is resized. Normally, list widgets and multiline
edit widgets should be at least stretchable vertically, and anything containing an edit field
should be horizontally stretchable. You can also set an empty space to be stretchable.
This is done in Listing 8.4 on line 38.

4. How does your dialog look when you change the length of the strings? Always test with
both short and long strings for the various labels and so on. You will then locate potential
problems long before a translation is being made or before a modification of an original
string is made.

Dialog Modality—Modal or Modeless Dialogs
A dialog can be used in two ways. Basically, it either blocks access (by mouse or keyboard) to
any other parts of an application while visible, or it does not impose any restrictions to what
the user can do. The first approach is known as modal dialog behavior, and the second is mod-
eless dialog behavior.

The decision when to use a modal or modeless dialog depends very much on the dialog itself
and on what the purpose of the dialog is. At one extreme: In a situation where you cannot do
any useful work until a decision has been made and the dialog has been closed, you can safely
go for a modal dialog. A file selector is a typical example and is often implemented as a modal
dialog. At the opposite end of the scale, a search dialog is modeless in most cases. Modeless
dialogs introduce greater flexibility for end users because they are not forced to work in a spe-
cific pattern decided by the developer. The cost for the greater flexibility is that the code
required to make a modeless dialog work as intended can be somewhat more complicated.
However, if it is possible, you will normally get a better result using modeless dialogs. The
standard KDE file selector can be used as a modeless dialog, and a dialog derived from the
KDialogBase class can be either modal or modeless.

For a developer, the main differences between modal and modeless dialogs are how the dialog
becomes visible and how it can transfer information—that is, the dialog settings—to the rest of
the program. Listing 8.5 illustrates how the KDE color selector is used as a modal dialog. It is
modal because the last argument is true (line 4 in Listing 8.5). Every modal dialog must use
QDialog::exec(). This is a method that starts the dialog and returns the result only after the
dialog is once again hidden. The QDialog::exec() on line 8 blocks access to any other part of
the program but the dialog while it is active.

Using Dialog Boxes

CHAPTER 8

8

U
SIN

G
D

IA
LO

G
B

O
X

ES
191

11 8911 ch08 10/16/00 1:47 PM Page 191

LISTING 8.5 A Modal Dialog Located on the Stack

1: int
2: getColor(QColor &theColor, QWidget *parent)
3: {
4: KColorDialog dialog(parent, “colordialog”, true);
5: if(theColor.isValid())
6: {
7: dialog.setColor(theColor);
8: }
9: int result = dialog.exec();
10: if(result == Accepted)
11: {
12: theColor = dialog.color();
13: }
14: return result;
15: }

The dialog state is in this case collected by the color() method. Note that since the dialog
object is stored on the stack, the dialog is automatically destroyed when the function returns. A
modal dialog does not have to be located at the stack while it is in use. Many developers prefer
the implementation shown in Listing 8.6. This can be a very important design decision if the
dialog object is so large that a stack overflow could otherwise occur. Make sure that the dialog
object is removed from memory (as shown on line 20) before the function returns. Otherwise,
you will have a memory leak (bug) in your program.

LISTING 8.6 A Modal Dialog Allocated from the Heap

1: int
2: getColor(QColor &theColor, QWidget *parent)
3: {
4: KColorDialog *dialog = new KColorDialog(parent, “colordialog”, true);
5: if(dialog == 0)
6: {
7: return Rejected; // Rejected is a constant defined in QDialog
8: }
9:
10: if(theColor.isValid())
11: {
12: dialog->setColor(theColor);
13: }
14: int result = dialog->exec();
15: if(result == Accepted)

Advanced KDE Widgets and UI Design Techniques

PART II
192

11 8911 ch08 10/16/00 1:47 PM Page 192

LISTING 8.6 Continued

16: {
17: theColor = dialog->color();
18: }
19:
20: delete dialog; // Important to avoid memory leaks
21:
22: return result;
23: }

When you want to use a modeless dialog, you have to do two things. First, you must allocate
the dialog object from the heap (with new); second, you must make it visible with show().
When you call show() on a dialog, the method starts the dialog and then returns immediately,
not waiting for the dialog to be hidden. To avoid a memory leak, you must now store the
pointer as well so that you can release the memory occupied by the dialog code when the dia-
log is no longer needed. Listing 8.7 shows how the CGotoDialog dialog class (see Listing 8.3)
of KHexEdit is used as a modeless dialog.

LISTING 8.7 A Modeless Dialog

1: CHexEditorWidget::CHexEditorWidget()
2: {
3: mGotoDialog = 0;
4: }
5:
6: CHexEditorWidget::~CHexEditorWidget()
7: {
8: delete mGotoDialog;
9: }
10:
11: void
12: CHexEditorWidget::gotoOffset()
13: {
14: if(mGotoDialog == 0)
15: {
16: mGotoDialog = new CGotoDialog(topLevelWidget(), “goto”, false);
17: if(mGotoDialog == 0)
18: {
19: return;
20: }
21: connect(mGotoDialog, SIGNAL(gotoOffset(uint, uint, bool, bool)),
22: mHexView, SLOT(gotoOffset(uint, uint, bool, bool)));
23: }
24: mGotoDialog->show();
25: }

Using Dialog Boxes

CHAPTER 8

8

U
SIN

G
D

IA
LO

G
B

O
X

ES
193

11 8911 ch08 10/16/00 1:47 PM Page 193

The mGotoDialog is a pointer stored in the CHexEditorWidget class, and it is initialized to 0 in
the constructor and deleted in the destructor of CHexEditorWidget. The first time the dialog is
used, it is first allocated (line 16) and next started (with show() on line 24). Then, the next
time it is used, it is only started. The gotoOffset() function returns immediately after the dia-
log has been started.

When a dialog is modeless, other parts of a program have to be notified when the dialog set-
tings are ready to be used. Because the show() returns immediately, the dialog must emit a sig-
nal to indicate that the data is ready. In Listing 8.7, the gotoOffset(…) signal of the
CGotoDialog class is emitted for this purpose.

Removal of Modeless Dialogs
How and when can modeless dialogs be removed from memory? First, you must store a
pointer to the allocated dialog object. The memory can be released only when the dialog is no
longer needed (hidden). This can be done when one of these two criteria is met:

1. The application terminates or the parent widget is destroyed.

2. The dialog becomes hidden or is closed.

Option 1 is by far the simplest and is, perhaps, the best way to handle a modeless dialog. It has
the advantage that you can easily hide and redisplay a dialog on the same position on the
screen (which many users prefer) without extra coding. The biggest disadvantage is that it
remains in memory even when it is not visible. Normally, this is done as with the dialog in
Listing 8.7. The dialog object is destroyed in the destructor of the object that stores the pointer
to the dialog.

Option 2 can be the best option if your dialog can be created quickly or is rarely used.
However, if it takes a long time to prepare and set up the dialog and its contents, or if it is a
lightweight dialog (uses little memory) or is used frequently, this may not be the best option.

You should never delete the dialog from within the dialog code itself. This means that delete
this is never a safe way to do it, unless you know exactly what you do and how the library
code you use works. Listing 8.8 illustrates a dangerous attempt to release the memory the Goto
dialog has allocated when the Cancel button has been activated.

LISTING 8.8 This Can Make Your Code Buggy!

1: void
2: CGotoDialog::slotCancel()
3: {
4: hide(); // Ok, will hide the dialog
5: delete this; // Bad!
6: }

Advanced KDE Widgets and UI Design Techniques

PART II
194

11 8911 ch08 10/16/00 1:47 PM Page 194

The problem with this code is that the slot is connected to a signal in the Cancel button.
Remember this: When a signal is emitted from an object, it returns only after every slot
method it is connected to has finished. If one of these destroys the dialog and thereby the but-
ton itself, anything can happen on the return—and perhaps even before that—because the
internal variables of the button object are no longer valid. The real danger is that it can some-
times work and sometimes it can cause a segmentation fault later.

To simplify the destruction procedure, the KDialogBase class emits a signal,
KDialogBase::hidden(), whenever it receives a QHideEvent (becomes hidden). You can use
this signal to start the destruction process. However, the same restriction applies to the slot
function you used to connect to the hidden() signal in the previous example with the Cancel
button. One common solution to avoiding this problem is to activate a one-shot timer with a
zero delay. This is a safe method because even with a delay equal to zero, the timer function
can be executed only when the program again runs in the main event loop. This can happen
only after the signal has returned. Listing 8.9 shows how a modeless option dialog in KJots is
destroyed this way. KJots is a KDE utility application that is used to manage short text notes.

LISTING 8.9 A Secure Way to Remove a Modeless Dialog Object from Memory After It
Has Been Hidden

1: void
2: KJotsMain::configure()
3: {
4: if(mOptionDialog == 0)
5: {
6: mOptionDialog = new ConfigureDialog(topLevelWidget(), 0, false);
7: if(mOptionDialog == 0)
8: {
9: return;
10: }
11: connect(mOptionDialog, SIGNAL(hidden()),this,SLOT(configureHide()));
12: connect(mOptionDialog, SIGNAL(valueChanged()),
13: this, SLOT(updateConfiguration()));
14: }
15: mOptionDialog->show();
16: }
17:
18: void
19: KJotsMain::configureHide()
20: {
21: QTimer::singleShot(0, this, SLOT(configureDestroy())); // Zero delay
22: }

Using Dialog Boxes

CHAPTER 8

8

U
SIN

G
D

IA
LO

G
B

O
X

ES
195

11 8911 ch08 10/16/00 1:47 PM Page 195

23:
24: void
25: KJotsMain::configureDestroy()
26: {
27: if(mOptionDialog != 0 && mOptionDialog->isVisible() == false)
28: {
29: delete mOptionDialog;
30: mOptionDialog = 0;
31: }
32: }

If you think this was a tedious method, then KDialogBase can help you with this as well. There
is a function named KDialogBase::delayedDestruct() that automates the destruction process.
This function will do a delete this but in a controlled fashion. You can call this function
from the slots that normally hide the dialog. Note however that if you have stored a pointer to
the dialog object outside the class as in Listing 8.9, then this pointer becomes a dangerous dan-
gling pointer once the dialog has destroyed itself. You can solve this problem by using the Qt
QGuardedPtr class to protect the external pointer.

KDE User-Interface Library (kdeui)
Before you start designing a new dialog or a widget that is intended to be used in a dialog or
elsewhere, make sure it has not already been made by someone else. The KDE user-interface
library (kdeui) is a collection of widgets that extends the functionality of the standard Qt wid-
get set. Generally, widgets have been added to the kdeui because the functionality they provide
is not present in the Qt widget library. Another reason is that the widget code would otherwise
be duplicated in many applications, and because the widgets support the KDE look and feel for
issues such as dialog titles, margins, and keyboard accelerators to the interface.

Ready-to-Use Dialogs
The most commonly used ready-to-use dialogs are the following:

• File selector (KFileDialog)—This dialog is actually not in kdeui but is in its own library.

• Font selector (KFontDialog).

• Keyboard bindings selector (KKeyDialog).

• Color selector (KColorDialog).

• Icon selector (KIconLoaderDialog).

• Single line input dialog with browsing capability (KLineEditDlg).

• Message boxes for warning, error, and information (KMessageBox).

Advanced KDE Widgets and UI Design Techniques

PART II
196

LISTING 8.9 Continued

11 8911 ch08 10/16/00 1:47 PM Page 196

Some of these dialogs have counterparts in the Qt library that can be used for the same task.
The reason for this duality is that the KDE versions match better with the accepted KDE style
guidelines. Use the KDE version when in doubt because it will improve your program’s com-
pliance with the KDE-style-guide recommendations.

If there is a dialog that serves your requirements, then use it instead of making your own! The
benefits are several: The users don’t have to learn a new dialog and how it works; you save a
lot of time; and most of the dialogs are really easy to use, as Listing 8.10 illustrates. The code
uses the font selector to pick a font and install it in the widget.

LISTING 8.10 Using a Dialog from the kdeui Library

1: void
2: Editor::selectFont()
3: {
4: QFont fnt = font(); // Get current font
5: KFontDialog::getFont(fnt); // Select a new, default is current font
6: setFont(fnt); // Install new font
7: }

Nevertheless, if you decide that you really need a dialog or a widget that is similar to an exist-
ing one, but one with an extended feature set, you should not hesitate to contact the author of
the code and ask whether your requirements can be fulfilled by improving the current dialog. If
you can provide code that can be merged into the existing library code without breaking com-
patibility, your chances for acceptance increase.

Using Dialog Boxes

CHAPTER 8

8

U
SIN

G
D

IA
LO

G
B

O
X

ES
197

You should also know that a widget or dialog that is used by several applications or
that is generally useful might be incorporated into the library.

NOTE

Building Blocks (Manager Widgets)
The kdeui library provides some very important manager widgets that you must know when
you make a dialog. This will greatly simplify your task and make maintaining a lot easier. The
KDialogBase class has already been mentioned. Here is a short summary:

• KButtonBox—Manages a set of action buttons. You can add as many buttons as you want,
and the widget will position and resize them as required. To use this widget, you must
specify the text and the accelerators of the buttons. An example showing how the
KButtonBox can be used is in Listing 8.11. Note that if you derive your dialog from the
KDialogBase class, the buttons will be prepared automatically as other examples have
shown.

11 8911 ch08 10/16/00 1:47 PM Page 197

LISTING 8.11 Usage of KButtonBox in a Dialog

1: MyDialog::MyDialog(QWidget *parent, const char *name, bool modal)
2: : KDialog(parent, name, modal)
3:{
4: QVBoxLayout *topLayout = new QVBoxLayout(this, marginHint(),
5: spacingHint());
6: CHECK_PTR(topLayout);
7:
8: // Main body of the dialog is not shown here, just the button
9: // box
10:
11: KButtonBox *bbox = new KButtonBox(this, KButtonBox::HORIZONTAL,
12: 0, spacingHint());
13: CHECK_PTR(bbox);
14: topLayout->addWidget(bbox);
15:
16: buttonBox->addStretch();
17: QPushButton *ok = bbox->addButton(i18n(“&Ok”), false);
18: QPushButton *cancel = bbox->addButton(i18n(“&Cancel”), false);
19: buttonBox->layout();
20: ok->setDefault(true);
21: connect(ok , SIGNAL(clicked()), this, SLOT(accept()));
22: connect(cancel , SIGNAL(clicked()), this, SLOT(reject()));
23:}

• KJanusWidget—This is a widget that provides a number of faces (thereby the name) or
layouts. Depending on how it is initialized, it can display widgets in a tabbed fashion, in
a paged tree list in a paged icon list, or on a single page. Its main use is as an internal
widget in KDialogBase, but it can be used as a standalone widget as well. Figure 8.4
shows a KJanusWidget widget in Tabbed mode.

• KDialog (derived from QDialog)—This dialog widget provides resources that give you
easy access to global properties concerning style settings. At the moment, you can get
access to the spacing and margin sizes you should use between widgets in your dialog
and a redefined setCaption() so that your dialog uses the proper dialog title style. If
your code uses these methods, any change in the future (for example, a new margin set-
ting as a part of a theme selection) will automatically be used in your dialog as well. See
Listing 8.11 for a typical example on how to use a KDialog dialog widget.

• KDialogBase (derived from KDialog)—This is a dialog frame widget. It is designed to
take care of a lot of work that you would otherwise spend much time getting right for
each dialog you create. It provides access to the resources of KDialog; it takes care of the
action buttons; it draws a separator above the buttons (if you tell it to do so); it resizes

Advanced KDE Widgets and UI Design Techniques

PART II
198

11 8911 ch08 10/16/00 1:47 PM Page 198

itself automatically to fit the contents when shown; and it uses the KJanusWidget to sup-
port various dialog types. The philosophy is that you only need to worry about the con-
tents of the dialog that performs your specific task.

Dialog Style and KDialogBase
Dialog appearance is an important topic when you are designing a dialog. The best design rule
is simply to think first and to select the components that are best suited for the task. A quick
sketch on a piece of paper to show how the dialog should look is helpful.

The KDialogBase class has itself been designed to simplify dialog creation. It provides you
with the framework that you will need every time you design a dialog. This includes standard-
ized action buttons, an optional button separator above these buttons, methods that give you the
margin and spacing you should use, and automatic dialog title creation that complies with the
KDE style guide. If you use the class properly, KDialogBase makes sure that a certain style is
enforced. This is important from an end-user perspective because the more familiar a dialog is,
the easier it is to use it. The KDialogBase class simplifies the design process; the time you
need to spend on coding and later maintaining it will be reduced. For example, as indicated in
the previous code listings using KDialogBase, you define what kind of action buttons you want
to display, but the KDialogBase dialog code decides where the buttons should be placed, what
text and accelerators they should display, and the margins, the spacing, and the order. The
KDialogBase class provides a number of predefined action buttons. A list of the available ones
follows. The list order decides the order in which they are displayed.

Using Dialog Boxes

CHAPTER 8

8

U
SIN

G
D

IA
LO

G
B

O
X

ES
199

Even though you should normally use the standard text and assign your special pur-
pose actions to the UserN buttons, it is still possible to override the default text and
accelerators by using the KDialogBase::setButtonText(…) method.

TIP

The action button order is defined by the current KDE style. When this chapter was written, no
format style had been defined, but KDialogBase uses what has become a standard button order:

Help,Default,User3,User2,User1,Ok,Apply|Try,Cancel|Close

The | sign indicates that Apply and Try cannot be present at the same time, nor Cancel and
Close. A stretchable space will be added to the right of the Default button. You must add your
own text and accelerators to the user-definable buttons.

Figure 8.4 illustrates the stretchable space and custom button texts as shown in a typical print
dialog box. Listing 8.12 shows the constructor signature that makes the dialog.

11 8911 ch08 10/16/00 1:47 PM Page 199

LISTING 8.12 Setting the Text of User-Definable Action Buttons in the Constructor

1: CPrinterDialog::CPrinterDialog(QWidget *parent, char *name, bool modal)
2: :KDialogBase(Tabbed, i18n(“Print Document”),
3: Help|User2|User1|Cancel, User1, parent, name, modal, false,
4: i18n(“&Print”), i18n(“Pre&view”)),
5: {
6: // The code has been removed in this example.
7: }

Advanced KDE Widgets and UI Design Techniques

PART II
200

FIGURE 8.4
Usage of user-definable action buttons and stretchable space between them. The dialog itself is based on the
KDialogBase class in Tabbed mode.

The default button layout area is at the bottom of the dialog. The buttons are then, as you have
seen, placed horizontally on a line in this area. However, it is possible to place the buttons ver-
tically at the right edge area of the dialog as well. To accomplish this, tell KDialogBase to do
so by using the function KDialogBase:: setButtonBoxOrientation(int orientation)in the
constructor of your dialog. The orientation argument shall then be Vertical.

For each button, the KDialogBase class provides a slot and a signal. The Apply button, when
activated, executes the KDialogBase::slotApply(), which, in turn, emits the
KDialogBase::applyClicked() signal. Every slot method is a virtual method; therefore, you
can override it with your own slot method. This was done in Listing 8.3 where the original
slotOk() was replaced. Note: The signal will not be emitted if you replace the default slot.
Each button has a slot (for example, slotHelp(), slotUser2()) and a signal (for example,
helpClicked(), user2Clicked()).

11 8911 ch08 10/16/00 1:47 PM Page 200

You can deduce from Listing 8.12 and Figure 8.4 that the dialog title string is modified before
it is displayed in the window manager (WM) field. The KDialogBase class code does this
according to the KDE-style-guide recommendation. The style is dependent on a global setting,
which the user can change, so generally, you should not assume anything about the format of
the displayed text.

Using Dialog Boxes

CHAPTER 8

8

U
SIN

G
D

IA
LO

G
B

O
X

ES
201

This can be overridden for those rare cases where you need a determinable title lay-
out. Use KDialogBase::setPlainCaption() in this case.

TIP

Note that KDE does not depend on a specific window manager. There is actually no guarantee
that the active window manager will show the title (although this is by far the most common
behavior). Therefore, you should not depend on the title for the dialog box function. The title
is not the place to print a help string.

Generally, you should not be dependent on the window manager at all. It is there for conve-
nience. Never make a dialog box that cannot be closed or hidden without using a Close button
normally provided by the window manager. Most window managers in Linux/UNIX are
highly configurable, and your target user may have a window manager preference that you
have not anticipated. For example, the standard window manager for the KDE 1.x versions
could be configured to turn off all decorations. Some people will do that.

A Larger Example: The Option Dialog in KEdit
This section describes a real, and quite big, dialog—the Option dialog of KEdit. It is based on
the KDialogBase class used in IconList mode. Figure 8.5 shows what this dialog looks like.
This way of representing data is effective when you want to keep the number of dialog boxes
to a minimum.

It may seem complicated to make such a dialog, but in fact it is very easy. As a bonus, it is
also easy to add or remove a page without interfering with the rest of the code. Listing 8.13
shows how the dialog code is partitioned. A good technique is to deal with each page of the
dialog in a separate function or even as a separate class. The first approach is used here. This
way, you keep the code clean and easy to understand. The setupColorPage() method starting
on Line 105 creates the color page. The method KdialogBase::addPage(…) prepares the page
and returns the top level widget of the page. An icon list layout is selected by specifying
IconList in the KDialogBase constructor. If you change the flag to Tabbed or IconList, the
dialog will switch to a tabbed or a tree list shaped dialog respectively. This feature is espe-
cially useful when you make a dialog in Tabbed mode, but after a while realize that too many

11 8911 ch08 10/16/00 1:47 PM Page 201

tabs are present in the dialog (the Qt library does not support multiple rows of tabs). You can
then easily switch to a TreeList or IconList layout by changing only the flag. The
KDialogBase class will take care of the rest; no redesign is required.

Advanced KDE Widgets and UI Design Techniques

PART II
202

FIGURE 8.5

The KEdit Option dialog. The dialog is based on the KDialogBase class in IconList mode.

LISTING 8.13 The KEdit Dialog Code, Somewhat Simplified

1:
2: class COptionDialog : public KDialogBase
3: {
4: Q_OBJECT
5:
6: public:
7: enum Page
8: {
9: page_font = 0,
10: page_color,
11: page_spell,
12: page_misc,
13: page_max
14: };
15:
16: COptionDialog(QWidget *parent = 0, char *name = 0, bool modal = false);
17: ~COptionDialog();
18:
19: void setFont(const SFontState &font);
20: void setColor(const SColorState &color);
21: void setSpell(const SSpellState &spell);
22: void setMisc(const SMiscState &misc);
23: void setState(const SOptionState &state);

11 8911 ch08 10/16/00 1:47 PM Page 202

LISTING 8.13 Continued

24:
25: public slots:
26:
27: virtual void slotDefault();
28: virtual void slotOk();
29: virtual void slotApply();
30:
31: private:
32: struct SFontWidgets
33: {
34: KFontChooser *chooser;
35: };
36:
37: struct SColorWidgets
38: {
39: KColorButton *fgColor;
40: KColorButton *bgColor;
41: };
42:
43: struct SSpellWidgets
44: {
45: KSpellConfig *config;
46: };
47:
48: struct SMiscWidgets
49: {
50: QComboBox *wrapCombo;
51: QLabel *wrapLabel;
52: QLineEdit *wrapInput;
53: QCheckBox *backupCheck;
54: QLineEdit *mailInput;
55: };
56:
57: private slots:
58: void wrapMode(int mode);
59:
60: private:
61: void setupFontPage();
62: void setupColorPage();
63: void setupSpellPage();
64: void setupMiscPage();
65:
66: signals:
67: void fontChoice(const SFontState &font);
68: void colorChoice(const SColorState &color);
69: void spellChoice(const SSpellState &spell);
70: void miscChoice(const SMiscState &misc);
71:

Using Dialog Boxes

CHAPTER 8

8

U
SIN

G
D

IA
LO

G
B

O
X

ES
203

11 8911 ch08 10/16/00 1:47 PM Page 203

72: private:
73: SOptionState mState;
74: SColorWidgets mColor;
75: SFontWidgets mFont;
76: SSpellWidgets mSpell;
77: SMiscWidgets mMisc;
78: };
79:
80:
81:
82:
83:
84: COptionDialog::COptionDialog(QWidget *parent, char *name, bool modal)
85: :KDialogBase(Iconist, i18n(“Options”), Help|Default|Apply|Ok|Cancel,
86: Ok, parent, name, modal, true)
87: {
88: setHelp(“kedit/index.html”, QString::null); // When Help is pressed
89:
90: setupFontPage();
91: setupColorPage();
92: setupSpellPage();
93: setupMiscPage();
94: }
95:
96: COptionDialog::~COptionDialog()
97: {
98: }
99:
100:
101: void
102: COptionDialog::setupFontPage()
103: {
104: QVBox *page = addVBoxPage(i18n(“Font”),
105: i18n(“Editor font”), UserIcon(“fonts”));
106: mFont.chooser = new KFontChooser(page, “font”, false, QStringList(),
107: false, 6);
108: mFont.chooser->setSampleText(i18n(“KEdit editor font”));
109: }
110:
111:
112: void
113: COptionDialog::setupColorPage()
114: {

Advanced KDE Widgets and UI Design Techniques

PART II
204

LISTING 8.13 Continued

11 8911 ch08 10/16/00 1:47 PM Page 204

115: QFrame *page = addPage(i18n(“Color”), i18n(“Text color in editor
➥area”),
116: UserIcon(“colors”));
117: QVBoxLayout *topLayout = new QVBoxLayout(page, 0, spacingHint());
118: if(topLayout == 0) { return; }
119:
120: QGridLayout *gbox = new QGridLayout(2, 2);
121: topLayout->addLayout(gbox);
122:
123: QLabel *label;
124: mColor.fgColor = new KColorButton(page);
125: mColor.bgColor = new KColorButton(page);
126: label = new QLabel(mColor.fgColor, “Foreground color”, page);
127: label = new QLabel(mColor.bgColor, “Background color”, page);
128:
129: gbox->addWidget(label, 0, 0);
130: gbox->addWidget(label, 1, 0);
131: gbox->addWidget(mColor.fgColor, 0, 1);
132: gbox->addWidget(mColor.bgColor, 1, 1);
133:
134: topLayout->addStretch(10);
135: }
136:
137:
138: void
139: COptionDialog::setupSpellPage()
140: {
141: QFrame *page = addPage(i18n(“Spelling”), i18n(“Spell checker
➥behaviour”),
142: SmallIcon(“spell”));
143: QVBoxLayout *topLayout = new QVBoxLayout(page, 0, spacingHint());
144: if(topLayout == 0) { return; }
145:
146: mSpell.config = new KSpellConfig(page, “spell”);
147: topLayout->addWidget(mSpell.config);
148:
149: topLayout->addStretch(10);
150: }
151:
152:
153: void
154: COptionDialog::setupMiscPage()
155: {
156: QFrame *page = addPage(i18n(“Miscellaneous”), i18n(“Various
➥properties”),

Using Dialog Boxes

CHAPTER 8

8

U
SIN

G
D

IA
LO

G
B

O
X

ES
205

LISTING 8.13 Continued

11 8911 ch08 10/16/00 1:47 PM Page 205

157: UserIcon(“misc”));
158: QVBoxLayout *topLayout = new QVBoxLayout(page, 0, spacingHint());
159: if(topLayout == 0) { return; }
160:
161: QGridLayout *gbox = new QGridLayout(5, 2);
162: topLayout->addLayout(gbox);
163:
164: QString text;
165:
166: text = i18n(“Word Wrap”);
167: QLabel *label = new QLabel(text, page, “wraplabel”);
168: gbox->addWidget(label, 0, 0);
169: QStringList wrapList;
170: wrapList.append(i18n(“Disable wrapping”));
171: wrapList.append(i18n(“Let editor width decide”));
172: wrapList.append(i18n(“At specified column”));
173: mMisc.wrapCombo = new QComboBox(false, page);
174: connect(mMisc.wrapCombo,SIGNAL(activated(int)),this,SLOT
➥(wrapMode(int)));
175: mMisc.wrapCombo->insertStringList(wrapList);
176: gbox->addWidget(mMisc.wrapCombo, 0, 1);
177:
178: text = i18n(“Wrap Column”);
179: mMisc.wrapLabel = new QLabel(text, page, “wrapcolumn”);
180: gbox->addWidget(mMisc.wrapLabel, 1, 0);
181: mMisc.wrapInput = new QLineEdit(page, “values”);
182: mMisc.wrapInput->setMinimumWidth(fontMetrics().maxWidth()*10);
183: gbox->addWidget(mMisc.wrapInput, 1, 1);
184:
185: gbox->addRowSpacing(2, spacingHint()*2);
186:
187: text = i18n(“Make backup when saving a file”);
188: mMisc.backupCheck = new QCheckBox(text, page, “backup”);
189: gbox->addMultiCellWidget(mMisc.backupCheck, 3, 3, 0, 1);
190:
191: mMisc.mailInput = new QLineEdit(page, “mailcmd”);
192: mMisc.mailInput->setMinimumWidth(fontMetrics().maxWidth()*10);
193: text = i18n(“Mail Command”);
194: label = new QLabel(text, page,”mailcmdlabel”);
195: gbox->addWidget(label, 4, 0);
196: gbox->addWidget(mMisc.mailInput, 4, 1);
197:
198: topLayout->addStretch(10);
199: }

Advanced KDE Widgets and UI Design Techniques

PART II
206

LISTING 8.13 Continued

11 8911 ch08 10/16/00 1:47 PM Page 206

200:
201:
202: void
203: COptionDialog::wrapMode(int mode)
204: {
205: bool state = mode == 2 ? true : false;
206: mMisc.wrapInput->setEnabled(state);
207: mMisc.wrapLabel->setEnabled(state);
208: }
209:
210:
211: void
212: COptionDialog::slotOk()
213: {
214: slotApply();
215: accept();
216: }
217:
218:
219: void
220: COptionDialog::slotApply()
221: {
222: switch(activePageIndex())
223: {
224: case page_font:
225: mState.font.font = mFont.chooser->font();
226: emit fontChoice(mState.font);
227: break;
228:
229: case page_color:
230: mState.color.textFg = mColor.fgColor->color();
231: mState.color.textBg = mColor.bgColor->color();
232: emit colorChoice(mState.color);
233: break;
234:
235: case page_spell:
236: mState.spell.config = *mSpell.config;
237: emit spellChoice(mState.spell);
238: break;
239:
240: case page_misc:
241: mState.misc.wrapMode = mMisc.wrapCombo->currentItem();
242: mState.misc.backupCheck = mMisc.backupCheck->isChecked();
243: mState.misc.wrapColumn = mMisc.wrapInput->text().toInt();
244: mState.misc.mailCommand = mMisc.mailInput->text();
245: emit miscChoice(mState.misc);

Using Dialog Boxes

CHAPTER 8

8

U
SIN

G
D

IA
LO

G
B

O
X

ES
207

LISTING 8.13 Continued

11 8911 ch08 10/16/00 1:47 PM Page 207

246: break;
247: }
248: }
249:
250:
251: void
252: COptionDialog::slotDefault()
253: {
254: //
255: // The constructors store the default settings.
256: //
257: switch(activePageIndex())
258: {
259: case page_font:
260: setFont(SFontState());
261: break;
262:
263: case page_color:
264: setColor(SColorState());
265: break;
266:
267: case page_spell:
268: setSpell(SSpellState());
269: break;
270:
271: case page_misc:
272: setMisc(SMiscState());
273: break;
274: }
275: }
276:
277:
278: void
279: COptionDialog::setFont(const SFontState &font)
280: {
281: mState.font = font;
282: mFont.chooser->setFont(font.font, false);
283: }
284:
285:
286: void
287: COptionDialog::setColor(const SColorState &color)
288: {

Advanced KDE Widgets and UI Design Techniques

PART II
208

LISTING 8.13 Continued

11 8911 ch08 10/16/00 1:47 PM Page 208

289: mState.color = color;
290: mColor.fgColor->setColor(color.textFg);
291: mColor.bgColor->setColor(color.textBg);
292: }
293:
294:
295: void
296: COptionDialog::setSpell(const SSpellState &spell)
297: {
298: *mSpell.config = spell.config;
299: }
300:
301:
302: void
303: COptionDialog::setMisc(const SMiscState &misc)
304: {
305: mState.misc = misc;
306: mMisc.wrapCombo->setCurrentItem(misc.wrapMode);
307: mMisc.wrapInput->setText(QString().setNum(misc.wrapColumn));
308: mMisc.backupCheck->setChecked(misc.backupCheck);
309: mMisc.mailInput->setText(misc.mailCommand);
310: wrapMode(mMisc.wrapCombo->currentItem());
311: }
312:
313:
314: void
315: COptionDialog::setState(const SOptionState &state)
316: {
317: setFont(state.font);
318: setColor(state.color);
319: setSpell(state.spell);
320: setMisc(state.misc);
321: }
322:
323:
324: // The dialog used as the main application window
325: #include <kcmdlineargs.h>
326: int main(int argc, char **argv)
327: {
328: KCmdLineArgs::init(argc, argv, “kedit”, 0, 0);
329: KApplication app;
330: COptionDialog *dialog = new COptionDialog():
331: dialog->show();
332: int result = app.exec();
333: return(result);
334: }

Using Dialog Boxes

CHAPTER 8

8

U
SIN

G
D

IA
LO

G
B

O
X

ES
209

LISTING 8.13 Continued

11 8911 ch08 10/16/00 1:47 PM Page 209

In the constructor, the path to the Help file is set. If you have specified a Help button, you
should make sure the help path is defined. If you do not specify a path, the PC bell will make a
short alarm when the user activates the Help button. You can disable (gray out) any button by
using the KDialogBase::enableButton(…) method. Notice how the spacingHint() function is
used everywhere to get identical spacing as on line 117. You never have to worry again that the
spacing use the same value as well.

The dialog has embedded a regular font selector widget in the Font page starting on line 101.
This is the same widget that is used in the font selector dialog. By doing it this way, the user
has one less dialog to remember while the familiar font selector interface remains intact but
embedded into a larger dialog. The interface becomes easier to understand and remember.

The kind of dialog boxes that contain many settings should always include a Default button.
When activated, this button resets the dialog settings of the displayed page to the default hard-
coded settings. By having this kind of feature, you will get more satisfied users. Many people
are reluctant to try the available options because they are afraid to “destroy” the program. By
providing a way to reset any settings to a known state, this fear will often vanish.

User Interface Design Rules for Dialogs
When you are going to design a dialog, you should follow several rules to obtain a successful
result. Some rules are listed next:

• Never make the dialog contents so large that you need scrollbars to manage it. You can
always partition the contents into pages of a tabbed dialog or other paged dialog types.
This does not exclude lists and editor widgets inside a dialog. These components need
scrollbars, but never make a dialog with 100 pushbuttons.

• Never make a menu or a toolbar in the dialog. Menus and toolbars belong to the top level
program window. The dialog should be as simple as possible and contain only action but-
tons (for example, OK, Cancel, Apply) that do something with the selected setting of a
dialog.

• Use existing widgets whenever possible when you design a dialog. Remember that users
need to spend time learning a new interface. You should not make their task more diffi-
cult. Most likely, they are already familiar with standard graphical user-interface compo-
nents and know what to expect from them.

• Make the interface as simple as possible. Collect related widgets inside a rectangular
frame with a title, or use a horizontal or vertical line to indicate what belongs to what.
Never use too many frames or lines. Placing every widget in a dialog inside one big
frame makes no sense; rather, it just wastes screen real estate.

Advanced KDE Widgets and UI Design Techniques

PART II
210

11 8911 ch08 10/16/00 1:47 PM Page 210

• Avoid using colors to indicate a state or a setting. Using text instead is almost always a
better solution (assuming that your target users can read). Colors can have different
meanings in different cultures and some people even lack the ability to differentiate
between certain colors, such as green and red. Do not exclude those users from your
potential user base. Stop is better than red.

If you are interested in more information on how to do it right and how to do it wrong, visit
the Interface Hall of Shame on the Web, http://www.iarchitect.com/mshame.htm, and learn
from mistakes other developers have already made. You don’t have to reinvent others’ mis-
takes.

Summary
The KDialogBase dialog class will simplify and speed up your work when you design dialogs.
The class supports common dialog layouts such as a tabbed, icon list and tree list shapes as
well a blank (or empty) shape that you can use for whatever you need.

Try to make a dialog modeless if you think this will make the work simpler for the user. It can
be a bit harder to implement a modeless dialog but you should always care about your user
first. Some dialogs, such as a file selector can be modal.

The KDE user interface library (kdeui) contains a number of ready to use dialogs and widgets.
Use them! Your users expect to see familiar dialogs for standard tasks such as selecting a font.
Use the freely available source code. Look at other programs and don’t be shy about copying
the code fragments that fit you needs, as long as you do what the license of that programs tells
you to do and you credit their authors. But, to make good dialogs, you must nevertheless try to
understand why and how. Non optimal solutions, errors, and potential bugs are located more
easily this way.

Exercises
See Appendix C, “Answers,” for the exercise answers.

1. Make a dialog box that can be used to compose and send an email message. The dialog
box must contain vertically aligned “From:”, “To:”, “Cc”:, and “Subject:” labels each
with a line edit widget to the right. The line edit widgets shall be able to display at least
20 characters regardless of the font size. Beneath the labels, add a multiline edit widget
that uses the rest of the available space in the dialog box. The dialog box should have the
following action buttons at the bottom: Address”, “Send”, and “Cancel”.

2. Change the dialog box so that it no longer contains the “Address” action button. Add a
“Help” button instead. Add pushbuttons labeled “Choose...” to the right of the line edit
widgets belonging to the “To:” and “Cc:” fields.

Using Dialog Boxes

CHAPTER 8

8

U
SIN

G
D

IA
LO

G
B

O
X

ES
211

11 8911 ch08 10/16/00 1:47 PM Page 211

11 8911 ch08 10/16/00 1:47 PM Page 212

CHAPTER

9
Constructing A Responsive
User Interface
by David Sweet

IN THIS CHAPTER
• The Importance of Responsiveness 214

• Speeding Up Window Updates 215

• Performing Long Jobs 220

12 8911 CH09 10/16/00 1:47 PM Page 213

Advanced KDE Widgets and UI Design Techniques

PART II
214

All too often, you have probably used GUI applications that fail to repaint their windows,
leaving an empty, or partially empty frame on the screen, or you have used an application that
begins a task and ignores you until it is done—not knowing if you preferred to abort the task
rather than wait. In general, many applications—even popular, regularly used applications—at
times provide no feedback or do not respond to user input. In this chapter you learn how to
avoid writing code that behaves so poorly.

The methods presented in this chapter are not the only relevant ones. In particular,
multithreading is continually gaining popularity as a way of separating GUI code from
“back-end” work code. Qt is not currently thread-safe (thus, neither is KDE), but there are
ways around this problem. Multithreading is beyond the scope of this book, but useful
discussion of the subject exists in the qt-interest mailing-list archive at
http://www.troll.no/qt-interest/.

The Importance of Responsiveness
Your application’s interface needs to be constructed so that the user

• Knows the current state of the application

• Knows whether a command given to the application has been received

• Knows that the application is working on a task and not simply “hung”

• Can always control the flow of the program

It is generally simpler to think linearly about the functions your applications need to perform.
Many of you may be intimately familiar with this style of programming from writing
command-line interface programs. When writing for a GUI, of course, things are different.
Your application needs to always be aware of the user interface—even while it is performing
other tasks. Essentially, your application needs to perform rudimentary multitasking to keep
the UI alive while still doing useful work.

To get a feel for the importance of a responsive UI, let’s look at some common problems GUI
application programmers come across (but don’t always solve!).

Some windows can take a long time to repaint. During the repainting, the application gives
no CPU cycles to the UI, and the user has to wait for the window to be completely updated
before any mouse clicks or key presses are processed. Slow updates at best make the UI seem
sluggish and at worst make the application unusable. Imagine if an automobile responded in a
similar way: You turn the steering wheel and after a half-second or so, the wheels respond.
This car would be quite difficult to control!

12 8911 CH09 10/16/00 1:47 PM Page 214

A similar problem occurs when your application must perform long jobs, such as connecting to
another computer, searching a database, or filtering an image. It is tempting to write a method
that performs the entire task and then returns, perhaps updating the display with the results
of the computation, but the user will not be able to interact with your application, so the
following problems occur:

• The user cannot cancel the long job.

• The application’s windows will not get repainted. (They may need to be repainted if, for
example, another window is dragged over them.)

• The user cannot take advantage of other features of your application that might logically
still be usable while the long job progresses.

Of course, while performing a long task, you should also let the user know that the task is
progressing so that the user knows the application is working as expected. You should
periodically update a window with a progress bar or something similar.

Speeding Up Window Updates
Next, you examine a technique for speeding up window draws that makes use of QPixmap,
an offscreen buffer in which you can draw with QPainter. The speed increase comes from
realizing that many window redraws are invoked from outside the application and not in
response to a need to change the contents of the window.

The technique works like this: You draw your window contents to an offscreen buffer, a
QPixmap, and then use a bit-block transfer (or “bitblt,” pronounced “bit blit”) to copy the buffer
to the screen. Whenever you need to update the window, but its contents have not changed, you
just bitblt the buffer to the screen again. The bit-block transfer operation is much quicker than
redrawing the window contents from scratch, and on most PCs and many workstations, it is
made even quicker by specialized hardware designed to perform the task (that is, 2D video
accelerators). This technique is called double-buffering.

Let’s take a look at this technique in action. Listings 9.1 and 9.2 present a widget call
KQuickDraw, which demonstrates double-buffering.

LISTING 9.1 kquickdraw.h: Class Declaration for KQuickDraw, a Widget That
Demonstrates Double-buffering

1: #ifndef __KQUICKDRAW_H__
2: #define __KQUICKDRAW_H__
3:
4:
5: #include <qwidget.h>

Constructing A Responsive User Interface

CHAPTER 9

9

C
O

N
STR

U
C

TIN
G

A
R

ESPO
N

SIV
E

U
SER

IN
TER

FA
C

E

215

12 8911 CH09 10/16/00 1:47 PM Page 215

LISTING 9.1 Continued

6:
7: class QPixmap;
8:
9: const int NEllipses=1000;
10:
11: /**
12: * KQuickDraw
13: * Quickly redraw a window.
14: **/
15:
16: class KQuickDraw : public QWidget
17: {
18: public:
19: KQuickDraw (QWidget *parent, const char *name=0);
20:
21: protected:
22: /**
23: * Repaint the window using a bit-block transfer from the
24: * off-screen buffer (a QPixmap). Re-create the pixmap first,
25: * if necessary.
26: **/
27: void paintEvent (QPaintEvent *);
28:
29: void resizeEvent (QResizeEvent *);
30:
31: private:
32: QPixmap *qpixmap;
33: bool bneedrecreate;
34: double x[NEllipses], y[NEllipses];
35:
36: };
37:
38: #endif

KQuickDraw displays 1,000 randomly placed ellipses in its content area using a double-buffer
method. A flag, bneedrecreate, is set to true whenever the window contents need to be
re-created. In this program, the window contents need to be re-created (or simply created)
when the program first starts and whenever the window is resized. When the window is
restored after being minimized, when another window stops obscuring this window, or at other
times when paint events are generated, you simply copy (bitblt) the contents of the QPixmap to
the screen.

Advanced KDE Widgets and UI Design Techniques

PART II
216

12 8911 CH09 10/16/00 1:47 PM Page 216

LISTING 9.2 kquickdraw.cpp: Class Definition for KQuickDraw

1: #include <qpainter.h>
2: #include <qpixmap.h>
3:
4: #include <kapp.h>
5:
6: #include “kquickdraw.h”
7:
8:
9: KQuickDraw::KQuickDraw (QWidget *parent, const char *name=0) :
10: QWidget (parent, name)
11: {
12: bneedrecreate=true;
13: qpixmap=0;
14:
15: for (int i=0; i<NEllipses; i++)
16: {
17: x[i]=(kapp->random()%100)/100.;
18: y[i]=(kapp->random()%100)/100.;
19: }
20:
21: setBackgroundMode (NoBackground);
22:
23: }
24:
25: void
26: KQuickDraw::paintEvent (QPaintEvent *)
27: {
28:
29: if (bneedrecreate)
30: {
31: if (qpixmap!=0)
32: delete qpixmap;
33: qpixmap = new QPixmap (width(), height());
34:
35: QPainter qpainter;
36: qpainter.begin (qpixmap, this);
37: qpainter.fillRect (qpixmap->rect(), white);
38: qpainter.setBrush (blue);
39: int w = width()/10;
40: int h = height()/10;
41: for (int i=0; i<NEllipses; i++)
42: qpainter.drawEllipse (x[i]*width(), y[i]*height(), w, h);
43:
44: bneedrecreate=false;

Constructing A Responsive User Interface

CHAPTER 9

9

C
O

N
STR

U
C

TIN
G

A
R

ESPO
N

SIV
E

U
SER

IN
TER

FA
C

E

217

12 8911 CH09 10/16/00 1:47 PM Page 217

LISTING 9.2 Continued

45: }
46:
47: bitBlt (this, 0, 0, qpixmap);
48:
49: }
50:
51: void
52: KQuickDraw::resizeEvent (QResizeEvent *)
53: {
54: bneedrecreate = true;
55: }

Let’s look at paintEvent(); this is where the double-buffering is implemented. Line 29 tests to
see whether the pixmap contents need to be re-created and carries out the task if necessary.

Here you have used a QPainter differently than before. Line 36 calls painter.begin() with
two arguments. The first is the QPixmap on which you wish to draw, and the second is a pointer
to the KQuickDraw widget. Using this form of the begin() method tells the object painter
to use the default properties of the window when drawing on the pixmap. These default
properties are

• The current pen color

• The background color

• The default font

Previously, when you have used QPainter, you have not called the begin() method at all.
Instead, you passed a pointer to the current window to the QPainter constructor, and the
begin() method was called automatically.

Finally, the offscreen pixmap is copied to the screen with the Qt function bitBlt() in line 47.

The main() function in Listing 9.3 can be used to try out this widget. You can see it running in
Figure 9.1

LISTING 9.3 main.cpp: A main() Function Suitable for Testing KQuickDraw

1: #include <kapp.h>
2:
3: #include “kquickdraw.h”
4:
5: int
6: main (int argc, char *argv[])
7: {
8: KApplication kapplication (argc, argv, “kquickdrawtest”);

Advanced KDE Widgets and UI Design Techniques

PART II
218

12 8911 CH09 10/16/00 1:47 PM Page 218

LISTING 9.3 Continued

9: KQuickDraw *kquickdraw = new KQuickDraw (0);
10:
11: kapplication.setMainWidget (kquickdraw);
12:
13: kquickdraw->show();
14: return kapplication.exec();
15: }

Constructing A Responsive User Interface

CHAPTER 9

9

C
O

N
STR

U
C

TIN
G

A
R

ESPO
N

SIV
E

U
SER

IN
TER

FA
C

E

219

FIGURE 9.1
kquickdraw updates its window quickly by storing its window contents in an offscreen buffer.

Experimenting with KQuickDraw
To get an idea of the difference double-buffering makes, comment out line 29 in Listing 9.2.

This will force KQuickDraw to re-create the pixmap every time the paintEvent() method is
called. Now turn on opaque moving in KWin using the KDE Control Center. This property
is listed under Windows, Properties and is called Display Content in Moving Windows.
(Note: while you’re at it, turn on Display Content in Resizing Windows, too; you’ll use that
in a minute.)

Now, start KQuickDraw and maximize the window. Then find another window—a konsole,
for example—and drag it around. Notice how the slow update gives a “ghosting” effect so
that a partial second copy of the konsole window is visible during the move operation.
(If you don’t see this—well, then your computer is too fast! Try the experiment again with
NEllipses set to 5000 or 10000. Just don’t get the impression that you’ll never need double-
buffering. First, your users’ computers might not be as fast as yours. Second, when you create
applications, you may find that you are drawing things that take much longer than drawing
ellipses.)

12 8911 CH09 10/16/00 1:47 PM Page 219

Remove the comment from line 29 and try the experiment again. Is it better this time?

Flicker-free Updates
A second advantage exists to using double-buffering. That is, you can avoid some of the
“flicker” that occurs when you draw multiple objects on a window. This flicker occurs because
the scene the user sees may change rapidly as new objects are added to the window.

Double-buffering won’t help with the other major source of flicker, however. Whenever the
QWidget::update() method is called, it clears the window, by default, to the background
color. So the user sees this sequence:

1. Window contents

2. Blank window

3. Window contents

You almost couldn’t design a flicker effect any better. If you are using double-buffering, you
are going to overwrite the entire window in one operation (the bitblt()), so there is no need
to clear the window first. You can prevent Qt from clearing the window by calling

setBackgroundMode (NoBackground);

as shown in line 21.

Performing Long Jobs
When performing long jobs, you want to

• Let the user know that the application is working and the job is progressing.

• Let the user access application functions that are still available.

To make either of these possible, you need to first work to keep the UI alive. This entails
chopping our long job into small pieces and reentering the event loop after computing each
small piece. The preferred way of accomplishing this is by responding to QTimer events.

Using QTimer to Perform Long Jobs
The QTimer class emits a signal every msec milliseconds in response to events it posts in the
event queue. If you do all the work required for a long job in response to QTimer signals (that
is, do our work in a slot connected to the QTimer::timeout() signal), this gives other events in
the event queue, such as paint events, mouse press events, and so on, a chance to be processed.
It is the processing of these events that will keep the UI alive.

Advanced KDE Widgets and UI Design Techniques

PART II
220

12 8911 CH09 10/16/00 1:47 PM Page 220

An unacceptable alternative to this is to do all the work in a single method at once. The
problem with this is that while the work is being performed, no events would be processed,
and so the application’s UI would “hang.” The window would not update, mouse clicks would
be ignored, and so on.

The code presented in Listings 9.4 and 9.5 show a widget called KlongJob, which
demonstrates how to use QTimer to perform a long job. KLongJob flips a coin one million
times, counts the number of times the coin comes up heads, and computes the percentage
deviation from the ideal “50% heads.” That is, the coin is expected to come up heads about
half the time, but you know that it’ll always be a little different than 50 percent until you’ve
flipped the coin an infinite number of times. This calculation is ideal for this demonstration
because it takes a long time but requires very little code.

LISTING 9.4 klongjob.h: Class Definition for KLongJob, a Main Widget That
Demonstrates How to Use QTimer to Perform a Long Job

1: #ifndef __KLONGJOB_H__
2: #define __KLONGJOB_H__
3:
4: #include <ktmainwindow.h>
5:
6: class QTimer;
7: class QLabel;
8: class QPopupMenu;
9:
10: /**
11: * KLongJob
12: * Handle a long job while keeping the UI alive.
13: **/
14:
15: class KLongJob : public KTMainWindow
16: {
17: Q_OBJECT
18:
19: public:
20: KLongJob (const char *name=0);
21:
22: private:
23: int count, total;
24: int idstart, idstop;
25: QTimer *qtimer;
26: QLabel *qlabel;
27: QPopupMenu *file;
28:

Constructing A Responsive User Interface

CHAPTER 9

9

C
O

N
STR

U
C

TIN
G

A
R

ESPO
N

SIV
E

U
SER

IN
TER

FA
C

E

221

12 8911 CH09 10/16/00 1:47 PM Page 221

LISTING 9.4 Continued

29: private slots:
30:
31: void slotStartComputation ();
32: void slotStopComputation ();
33:
34: /**
35: * Do some of the calculation.
36: **/
37: void slotComputeSome ();
38:
39: };
40:
41: #endif

KLongJob is derived from KTMainWindow so that you can add a user interface to the program.
You will see when you execute KLongJob how the user interface keeps working, even while the
long calculation is being performed.

LISTING 9.5 klongjob.cpp: Class Declaration for KLongJob

1: #include <qtimer.h>
2:
3: #include <kapp.h>
4: #include <kaction.h>
5: #include <kstdaction.h>
6:
7: #include “klongjob.moc”
8:
9: KLongJob::KLongJob (const char *name=0) :
10: KTMainWindow (name)
11: {
12: start =
13: new KAction (“&Start”, 0, this, SLOT(slotStartComputation()),
14: actionCollection(), “start”);
15: stop =
16: new KAction (“Sto&p”, 0, this, SLOT(slotStopComputation()),
17: actionCollection(), “stop”);
18: KStdAction::quit (kapp, SLOT (closeAllWindows()),
19: actionCollection());
20: stop->setEnabled (false);
21:
22: createGUI();
23:

Advanced KDE Widgets and UI Design Techniques

PART II
222

12 8911 CH09 10/16/00 1:47 PM Page 222

LISTING 9.5 Continued

24: qlabel = new QLabel (this);
25: qlabel->setAlignment (QLabel::AlignCenter);
26: setView (qlabel);
27:
28: qtimer = new QTimer (this);
29: connect (qtimer, SIGNAL (timeout()),
30: this, SLOT (slotComputeSome()));
31:
32: }
33:
34: void
35: KLongJob::slotStartComputation ()
36: {
37: start->setEnabled (false);
38: stop->setEnabled (true);
39:
40: qtimer->start (0);
41:
42: count=total=0;
43: }
44:
45: void
46: KLongJob::slotStopComputation ()
47: {
48: start->setEnabled (true);
49: stop->setEnabled (false);
50:
51: qtimer->stop();
52: }
53:
54: void
55: KLongJob::slotComputeSome()
56: {
57: const int NumberOfFlips = 10;
58: double deviation;
59: int i;
60:
61: for (i=0; i<NumberOfFlips; i++)
62: if (kapp->random()%2==1)
63: count++;
64: total+=NumberOfFlips;
65:
66: if (!(total%5000))
67: {
68: deviation = (count - total/2.)/(double)total;
69: QString qstring;

Constructing A Responsive User Interface

CHAPTER 9

9

C
O

N
STR

U
C

TIN
G

A
R

ESPO
N

SIV
E

U
SER

IN
TER

FA
C

E

223

12 8911 CH09 10/16/00 1:47 PM Page 223

LISTING 9.5 Continued

70: qstring.sprintf (“Total flips: %10d\nDeviation from 50%% heads:
➥%10.5f”,
71: total, deviation);
72: qlabel->setText (qstring);
73: }
74:
75: if (total>=1000000)
76: slotStopComputation();
77: }

In the KLongJob constructor, shown in Listing 9.5, you create a QTimer and connect its
timeout signal to our slot slotComputeSome() (lines 28–30). The slot performs some of the
computation every time the QTimer times out.

The File menu entry, Start, is connected to the slot slotStartComputation() (lines 12–14).
In this slot you begin the computation by calling

qtimer->start(0)

This statement starts the QTimer with a timeout of 0 milliseconds. Using a value of zero here
means that the timeout() signal will be emitted as soon as all events in the queue have been
processed. In other words, a timeout event is appended to the event queue and processed in
turn by Qt. If nothing is happening with our UI—that is, no events are being posted—when
slotcomputeSome() exits, it is reentered right away with little time lost.

The slot slotcomputeSome() executes 10 coin flips (more precisely, it chooses randomly
between 0 and 1 10 times) in lines 61–63. The classwide variables, total and count, are used
to save the state of the computation between calls to slotcomputeSome(). After every 5,000
flips (50 calls to slotcomputeSome()) the display is updated. I chose not to update the display
after every call to slotcomputeSome() because updates are slow and can add a lot of time to
the computation. It is important to update the display often enough to keep the user informed
that things are proceeding as planned, but not so often as to add significant time to the task
being performed.

It is important to realize that the user would never see the progress indicator you have
created—the “Total flips” and “Deviation from 50% heads” messages—if you didn’t return
to the event queue to allow the paint events to be processed. (Whenever you change the text
of a QLabel, it sends itself a paint event.)

Advanced KDE Widgets and UI Design Techniques

PART II
224

12 8911 CH09 10/16/00 1:47 PM Page 224

Finally, after flipping the coin one million times, line 76 calls stopComputation(). In this
method, you call

qtimer->stop()

which stops qtimer from posting any more timeout events.

You should give KLongJob a try. Start the computation by choosing File, Start, and notice that
you can resize the window, drag other windows over it, and even close the window while the
computation is being performed.

The following main() function in Listing 9.6 can be used to create an execute KLongJob. You
will also need to place the file klongjobui.rc (available on this book’s Web site) in the directory
$KDEDIR/share/klongjob. You can see a screen shot of KLongJob in Figure 9.2.

LISTING 9.6 main.cpp: A main() Function Suitable for Testing KLongJob

1: #include <kapp.h>
2:
3: #include “klongjob.h”
4:
5: int
6: main (int argc, char *argv[])
7: {
8: KApplication kapplication (argc, argv, “klongjobtest”);
9: KLongJob *klongjob = new KLongJob (0);
10:
11: kapplication.setMainWidget (klongjob);
12:
13: klongjob->show();
14: return kapplication.exec();
15: }

Enabling/Disabling Application Functions
While trying out Klongjob you may have noticed that the Start menu entry is grayed out when
the program is flipping the coin (see line 37).

It is important to disable the UI controls that give the user access to the long job if it does not
make sense to start the job again. An electronic mail client, for example, should disable its
Check for New Mail buttons and menu entries while it is checking for new mail (but keep the
rest of its UI alive so that the user can read messages), but a Web browser does not need to
disable any hyperlinks while it is attempting to connect to a remote site to download a page.
If the user clicks another hyperlink while waiting, a browser, generally, cancels the pending
request and starts fulfilling the new one.

Constructing A Responsive User Interface

CHAPTER 9

9

C
O

N
STR

U
C

TIN
G

A
R

ESPO
N

SIV
E

U
SER

IN
TER

FA
C

E

225

12 8911 CH09 10/16/00 1:47 PM Page 225

FIGURE 9.2
Klongjob performs a long calculation while still allowing user interaction.

On line 38, in the method startComputation(), you have enabled the File menu entry Stop.
This enables the user to cancel the long job.

This is an important function to offer the user. The user may have accidentally chosen to start
the job or simply decided the results weren’t worth waiting for. In any event, the user should
decide what the CPU cycles are being spent on.

Speed Issues
Clearly, performing a long computational task in the way just presented takes longer than
performing it all in one method without checking the event queue, but the extra time should be
considered well spent for the various reasons given previously.

When deciding how much work to do in the computeSome() method, consider two competing
factors:

• Efficiency

• Smoothness of user interaction

Efficiency requires more work to be done in each call to computeSome(), which means that a
higher percentage of the overall time is spent working on the job, and thus, overall time is
decreased. Smoothness of user interaction requires less time to be spent working on the job,
and thus, overall time is increased. You set the amount of work small enough so that user
interaction did not suffer noticeably.

Advanced KDE Widgets and UI Design Techniques

PART II
226

12 8911 CH09 10/16/00 1:47 PM Page 226

An Alternative to QTimer
There is another way to process events while performing a long job. A method in the class
QApplication (from which KApplication is derived), called processEvents(), processes all
the pending events and then returns.

Using this method, write the code for the long job in one big loop and call processEvents()
occasionally. See Listing 9.7 for a second version of klongjob, which uses processEvents().

LISTING 9.7 Modified Version of KlongJob, Which Uses QApplication::processEvents()

1: #include <kapp.h>
2: #include <kaction.h>
3: #include <kstdaction.h>
4:
5: #include “klongjob.moc”
6:
7: KLongJob::KLongJob (const char *name=0) :
8: KTMainWindow (name)
9: {
10: start =
11: new KAction (“&Start”, 0, this, SLOT(slotCompute()),
12: actionCollection(), “start”);
13: stop =
14: new KAction (“Sto&p”, 0, this, SLOT(slotStopComputation()),
15: actionCollection(), “stop”);
16:
17: KStdAction::quit (kapp, SLOT(closeAllWindows()),
18: actionCollection());
19:
20: createGUI();
21:
22: stop->setEnabled (false);
23:
24: qlabel = new QLabel (this);
25: qlabel->setAlignment (QLabel::AlignCenter);
26: setView (qlabel);
27: }
28:
29: void
30: KLongJob::slotStopComputation()
31: {
32: bcontinuecomputation=false;
33: }
34:
35: void

Constructing A Responsive User Interface

CHAPTER 9

9

C
O

N
STR

U
C

TIN
G

A
R

ESPO
N

SIV
E

U
SER

IN
TER

FA
C

E

227

12 8911 CH09 10/16/00 1:47 PM Page 227

LISTING 9.7 Continued

36: KLongJob::slotCompute()
37: {
38: double deviation;
39: int i;
40: count=total=0;
41:
42: bcontinuecomputation=true;
43:
44: start->setEnabled (false);
45: stop->setEnabled (true);
46:
47: kapp->processEvents();
48:
49: for (i=0; i<1000000 && bcontinuecomputation; i++)
50: {
51: if (kapp->random()%2==1)
52: count++;
53: total++;
54:
55: if (!(total%100))
56: kapp->processEvents();
57:
58:
59: if (!(total%5000))
60: {
61: deviation = (count - total/2.)/(double)total;
62: QString qstring;
63: qstring.
64: sprintf (“Total flips: %10d\nDeviation from 50%% heads: %10.5f”,
65: total, deviation);
66: qlabel->setText (qstring);
67: }
68: }
69:
70: start->setEnabled (true);
71: stop->setEnabled (false);
72:
73: }

This version of KLongJob looks essentially the same to the user as the previous version, but the
programming style is quite different. The slot slotCompute() does all the work in one loop.

Advanced KDE Widgets and UI Design Techniques

PART II
228

12 8911 CH09 10/16/00 1:47 PM Page 228

Every so often (after flipping the coin 100 times) in slotCompute(), you call (line 56)

kapp->processEvents();

which allows the paint event that is generated by qlabel when you change its text (line 66)
to be processed, as well as any user input or other events that have been posted.

I don’t recommend using processEvents() for long jobs, although you will find it used this
way occasionally. The problem with it is that some events can’t properly be processed if they
need to eventually return control to the method that called processEvents(). As an example,
run klongjob, choose File, Start, and then press Ctrl+Q before the calculation finishes. You
should get this message

Segmentation fault (core dumped)

(or something similar). This has happened because your request to terminate the program—
which included deleting the current instance of KLongJob—was processed, and then an attempt
to return control to the method slotCompute(), part of the deleted instance of KLongJob,
was made. This problem could be circumvented, but the possibility still exists that, in a more
complex program, you could run into other, similar problems. A safer and more elegant design
uses the QTimer method described previously.

You can use the main() function given in Listing 9.6 to try this program. Its UI looks the same
as Figure 9.2.

Summary
Constructing a responsive user interface is not all that difficult if you know the techniques.
It is important to remember, when writing a GUI application, that your code needs to divide its
time between performing work and interacting with the user. One should not be sacrificed for
the other. In particular, it is important to stop thinking in a linear way when coding a long
task—the rest of your application cannot wait for the long task. You should ask yourself the
following questions:

• Where is a good place to stop working on the long job and return control to the event
loop?

• How long should the long job continue before returning control to the event loop?

• What information do I need to save so that I can pick up where I left off when control is
returned from the event loop to the method carrying out the long job?

Answering these questions will help you effectively use QTimer to perform long jobs.

Constructing A Responsive User Interface

CHAPTER 9

9

C
O

N
STR

U
C

TIN
G

A
R

ESPO
N

SIV
E

U
SER

IN
TER

FA
C

E

229

12 8911 CH09 10/16/00 1:47 PM Page 229

You can speed up window updates by using the double-buffer technique. This can keep you
from having to unnecessarily re-create your window’s contents. This technique can also help
reduce flicker by updating the entire window at once rather than drawing multiple objects on
the window.

Exercises
See Appendix C, “Answers,” for the exercise answers.

1. What if the process of creating your window contents is a long job? Combine the QTimer
method for long jobs with double-buffering to efficiently paint a complex scene without
hanging the GUI. Your program’s GUI should still respond to input while the application
is painting the window. (You can easily check this by attempting to close the window
while the program is painting.) See Appendix C, “Answers,” for the exercise answers.

Advanced KDE Widgets and UI Design Techniques

PART II
230

12 8911 CH09 10/16/00 1:47 PM Page 230

CHAPTER

10
Complex-Function KDE
Widgets
by David Sweet

IN THIS CHAPTER
• Rendering HTML Files 232

• Manipulating Images 235

• Checking Spelling 241

• Accessing the Address Book 246

13 8911 ch10 10/16/00 1:46 PM Page 231

Advanced KDE Widgets and UI Design Techniques

PART II
232

Among the KDE/Qt libraries are classes that support complex functions. Using these classes
can help reduce the development time of your application and can make your application func-
tion in a way more consistent with other KDE applications.

In this chapter we will discuss the following complex functions that are provided by the
KDE/Qt libraries:

• HTML page rendering and browsing

• Image file loading, manipulation, and saving of image files in various formats

• Spell checking in many languages

• KDE system-wide address book access

Rendering HTML Files
Both konqueror and khelpcenter need to display HTML pages. konqueror generates HTML
and acts as a Web browser, displaying HTML pages fetched from remote machines or stored
locally. The KDE Help files displayed by khelpcenter are in HTML format (see Chapter 15,
“Creating Documentation”) and need to be rendered to be viewed.

Long ago, it was realized that a single HTML-rendering class could do the job for both appli-
cations, and KHTMLWidget was born. It has since been completely rewritten and now supports
HTML 4.0, Java applets, JavaScript, and cascading style sheets (CSS1 and some of CSS2) by
the time KDE 2.0 is released.

Currently, KHTMLWidget is used by KMail and KRN for rendering HTML emails and USENET
news articles.

A Simple Web Browser
To show how KHTMLWidget can be used in an application, let’s construct a simple Web browser.
When the application—which we’ll call (consistently unimaginatively) KSimpleBrowser—
starts, it displays a short HTML page of instructions telling how to use the application. Then
the user can enter the URL of a Web page, such as http://www.kde.org, and press Enter to
view the page.

LISTING 10.1 ksimplebrowser.h: Class Declaration for KSimpleBrowser, a Simple Web
Browser

1: #ifndef __KSIMPLEBROWSER_H__
2: #define __KSIMPLEBROWSER_H__
3:
4: #include <ktmainwindow.h>
5:

13 8911 ch10 10/16/00 1:46 PM Page 232

6: class KHTMLPart;
7:
8: /**
9: * KSimpleBrowser
10: * A feature-limited Web browser.
11: **/
12: class KSimpleBrowser : public KTMainWindow
13: {
14: Q_OBJECT
15: public:
16: KSimpleBrowser (const char *name=0);
17:
18: public slots:
19: void slotNewURL ();
20:
21: protected:
22: KHTMLPart *khtmlpart;
23: };
24:
25: #endif

KSimpleBrowser is derived from KTMainWindow. This allows us to add a toolbar containing a
line editor for entering a URL (see Listing 10.2, lines 10–13) and place an instance of
KHTMLPart in our content area (see Listing 10.2, lines 16–24) and have it all managed by
KTMainWindow.

LISTING 10.2 ksimplebrowser.cpp: Class Definition for KSimpleBrowser

1: #include <khtmlview.h>
2: #include <khtml_part.h>
3:
4: #include “ksimplebrowser.moc”
5:
6: const int URLLined = 1;
7: KSimpleBrowser::KSimpleBrowser (const char *name=0) :
8: KTMainWindow (name)
9: {
10:
11: toolBar()->insertLined (“”, URLLined,
12: SIGNAL (returnPressed ()),
13: this, SLOT (slotNewURL ()));
14: toolBar()->setItemAutoSized (URLLined);

Complex-Function KDE Widgets

CHAPTER 10

10

C
O

M
PLEX-

F
U

N
C

TIO
N

K
D

E
W

ID
G

ETS

233

LISTING 10.1 Continued

13 8911 ch10 10/16/00 1:46 PM Page 233

15:
16:
17: khtmlpart = new KHTMLPart (this);
18: khtmlpart->begin();
19: khtmlpart->write(“<HTML><BODY><H1>KSimpleBrowser</H1>”
20: “<P>To load a web page, type its URL in the line “
21: “edit box and press enter.</P>”
22: “</BODY></HTML>”);
23: khtmlpart->end();
24:
25: setView (khtmlpart->view());
26: }
27:
28: void
29: KSimpleBrowser::slotNewURL ()
30: {
31: khtmlpart->openURL (toolBar()->getLinedText (URLLined));
32: }

Short isn’t it? If you compile and execute this code (using the main() function given in Listing
10.3) you’ll find that you can view fully rendered HTML pages (including images, tables, and
frames) and follow links.

In KSimpleBrowser, you use two methods of HTML rendering. The first is to create our
HTML on-the-fly. The sequence of statements in lines 17–23 of Listing 10.2 tells khtmlpart
(an instance of KHTMLPart) to render the HTML page specified by HTML-marked text. You
may call write() multiple times before calling end(), but the fewer calls you make, the faster
the rendering process will be. The second way to get HTML pages rendered is to instruct
khtmlwpart to open a URL. The URL may be of type file://, http://, ftp://, or any type
that points to a valid HTML page. This means that you can load local or remote files using the
same techniques. The method KHTMLPart::openURL(), used in line 30 of Listing 10.2, loads
the Web page. This method returns immediately while the rendering continues in the back-
ground.

When compiling Listings 10.1–10.3, you need to pass the option -lkhtml to g++. This tells
g++ to link the program against libkhtml, the library that contains KHTMLPart. Figure 10.1
shows KSimpleBrowser displaying the initial instructions page.

Advanced KDE Widgets and UI Design Techniques

PART II
234

LISTING 10.2 Continued

13 8911 ch10 10/16/00 1:46 PM Page 234

LISTING 10.3 main.cpp: A main() Function that Creates and Executes KSimpleBrowser

1: #include <kapp.h>
2:
3: #include “ksimplebrowser.h”
4:
5: int
6: main (int argc, char *argv[])
7: {
8: KApplication kapplication (argc, argv, “ksimplebrowser”);
9:
10: KSimpleBrowser *ksimplebrowser = new KSimpleBrowser;
11:
12: ksimplebrowser->show();
13:
14: return kapplication.exec();
15: }

Complex-Function KDE Widgets

CHAPTER 10

10

C
O

M
PLEX-

F
U

N
C

TIO
N

K
D

E
W

ID
G

ETS

235

FIGURE 10.1
KSimpleBrowser displaying the initial instructions page.

Manipulating Images
You can load image files in common formats such as PNG and JPEG (see Tables 10.1a and
10.1b for a complete list of supported formats) into buffers accessed by QPixmap or QImage
classes using image-loading routines built into Qt or added by the KDE library libksycoca.
You can also save arbitrary QImage or QPixmap buffers in various formats.

13 8911 ch10 10/16/00 1:46 PM Page 235

TABLE 10.1A Image Formats Supported by Qt

PNG Portable Network Graphics

BMP Windows Bitmap

XBM X Bitmap

XPM X Pixmap

PNM Portable Anymap format

GIF* Graphics Interchange Format

TABLE 10.1B Additional Image Formats Supported by libksycoca

JPEG Joint Photographic Experts Group

XV XView Graphics Format

EPS Encapsulated Postscript

PCX IBM PC Paintbrush

IFF Sun TAAC Image File Format

TGA Targa Image File

TIFF Tagged-Image File Format (read only)

KRL Kellogg Radiation Laboratory (read only)

*GIF support is included in Qt only if Qt is appropriately configured before its source is com-
piled. To see whether your installed version of Qt was compiled with GIF support, change to
the directory containing Qt include files (/usr/local/qt/include, /usr/include/qt, or another direc-
tory) and type

grep BUILTIN_GIF qgif.h

If the last line displayed reads

#define QT_BUILTIN_GIF_READER 1

then Qt was compiled with GIF support. Otherwise, the line will read

#define QT_BUILTIN_GIF_READER 0

Comparison of QImage and QPixmap
QImage and QPixmap serve different purposes. QImage stores image data in a simple buffer, and
QPixmap stores image data on the X server. This difference means that images will load and
save to or from a QImage more quickly than to or from a QPixmap. It also means that you will
be able to directly manipulate pixel data in a QImage more quickly, but use drawing functions

Advanced KDE Widgets and UI Design Techniques

PART II
236

13 8911 ch10 10/16/00 1:46 PM Page 236

(through QPainter) only on QPixmap. (Drawing functions are carried out by the X server, so
they can operate only on data owned by the X server—that is, a QPixmap, but not a QImage.)

Because a QPixmap is stored on the X server, it can store only images that have “depths”
allowed by the X server, and these depths are usually constrained by the specifications of the
computer’s video card. (An image’s depth is the number of bits used to tell the color of one
pixel. For example, pseudocolor (256 color) images have a depth of 8 bits, and truecolor (16
million color) images have a depth of 24 bits).

Furthermore, you can bitblt() to and from a QPixmap, but not to and from a QImage (see
Chapter 9, “Constructing a Responsive User Interface” for more information about bitblt()).

An Image Viewer/Converter
To see how some of the image-manipulation functions work, let’s write a widget that loads an
image (in any of the acceptable formats listed in Table 10.1), draws an ugly green frame
around it, saves it as a PNG file, and then displays it on the widget’s window. This widget is
shown in Listings 10.4 and 10.5.

LISTING 10.4 kimageview.h: Class Definition for KImageView, a Widget that Loads,
Modifies, Saves, and Displays an Image

1: #ifndef __KIMAGEVIEW_H__
2: #define __KIMAGEVIEW_H__
3:
4: #include <qwidget.h>
5:
6: /**
7: * KImageView
8: * Display an image.
9: **/
10: class KImageView : public QWidget
11: {
12: public:
13: KImageView (const QString &filename, QWidget *parent, const char
➥*name=0);
14:
15: protected:
16: QPixmap *qpixmap;
17: QString filename;
18: void paintEvent (QPaintEvent *);
19:
20: };
21:
22: #endif

Complex-Function KDE Widgets

CHAPTER 10

10

C
O

M
PLEX-

F
U

N
C

TIO
N

K
D

E
W

ID
G

ETS

237

13 8911 ch10 10/16/00 1:46 PM Page 237

In this widget, most of the work is done in the constructor, but paintEvent() handles drawing
the image onscreen. You store the image in a QPixmap so that you can draw on it with a
QPainter.

LISTING 10.5 kimageview.cpp: Class Declaration for KImageView

1: #include <qpixmap.h>
2: #include <qpainter.h>
3: #include <qfileinfo.h>
4:
5: #include <kimgio.h>
6:
7: #include “kimageview.h”
8:
9: KImageView::KImageView (const QString &_filename,
10: QWidget *parent, const char *name=0) :
11: QWidget (parent, name)
12: {
13: filename = _filename;
14:
15: KImageIO::registerFormats();
16:
17: qpixmap = new QPixmap;
18: qpixmap->load (filename);
19:
20: QPainter qpainter (qpixmap);
21: qpainter.setPen (QPen (Qt::green, 10));
22: qpainter.drawRect (qpixmap->rect());
23:
24: QFileInfo qfileinfo (filename);
25: qpixmap->save (qfileinfo.baseName() + “.png”, “PNG”);
26: }
27:
28: void
29: KImageView::paintEvent (QPaintEvent *)
30: {
31: QPainter qpainter (this);
32:
33: qpainter.drawPixmap (0, 0, *qpixmap);
34: }

Advanced KDE Widgets and UI Design Techniques

PART II
238

13 8911 ch10 10/16/00 1:46 PM Page 238

To load the image formats that are part of libksycoca, you need to call the static method

KImageIO::registerFormats();

as shown on line 15. Conveniently enough, this is all you have to do! This call registers the
reading and writing routines for all the libksycoca formats with Qt and makes further use of
them transparent. For example, on line 18 you make a call to the method QPixmap::load() to
load the image. This method automatically determines the image format of the file and uses the
appropriate reading routine, whether it resides in the Qt or KDE libraries (for example, libksy-
coca).

Next, you draw a frame around the image using a green QPen of width 10 (lines 20–22). At this
point you could draw anything on the pixmap that QPainter allows. You can’t read in pixel
color values, however, so you are limited simply to drawing on the image.

Complex-Function KDE Widgets

CHAPTER 10

10

C
O

M
PLEX-

F
U

N
C

TIO
N

K
D

E
W

ID
G

ETS

239

If you want to perform an image transformation that requires reading in pixel color
values (such as changing the image’s brightness or contrast), you need to load the
image into a QImage rather than a QPixmap.

NOTE

To save the file (lines 24 and 25), you use QPixmap::save(). The first argument to this method
is the name of the file and the second is the file type, given as a string. The file type strings are
given in Tables 10.1a and 10.1b.

The file type string must be all capitals. For example, use PNG, not png or Png.

NOTE

We’ve made use here of a Qt class called QFileInfo. This class lets you find a file’s name and
extension, among other things. We’ve created a string with

qfileinfo.baseName() + “.png”

in line 25 that contains the name of the loaded file, with the extension changed to png. See the
Qt reference documentation for details on QFileInfo.

13 8911 ch10 10/16/00 1:46 PM Page 239

You can use the following main() function to try out KImageView on an image file. You pass
the image file’s name to the program on the command line. If you compile the program to an
executable with the name kimageviewtest and type

./kimageview $KDEDIR/share/wallpapers/Marble01.jpg

you will see something similar to Figure 10.2. (The file Marble01.jpg is included with
KDE 2.0.)

LISTING 10.6 main.cpp: A main() Function that Instantiates KImageView and Passes a
Filename to It from the Command Line

1: #include <kapp.h>/
2:
3: #include “kimageview.h”
4:
5: int
6: main (int argc, char *argv[])
7: {
8: KApplication kapplication (argc, argv, “kimageviewtest”);
9:
10: if (! (argc>1))
11: exit (1);
12: KImageView *kimageview = new KImageView (argv[1], 0);
13:
14: kapplication.setMainWidget (kimageview);
15: kimageview->show();
16:
17: return kapplication.exec();
18: }

Advanced KDE Widgets and UI Design Techniques

PART II
240

FIGURE 10.2
KImageView displaying the KDE wallpaper Marble01.jpg.

13 8911 ch10 10/16/00 1:46 PM Page 240

Checking Spelling
KDE contains a spell-checking class called KSpell, which has four spell checking methods:

• modalCheck()—Spell checks a plain text buffer using a modal spell checker dialog.

• check()—Spell checks a plain text buffer using a nonmodal spell checker dialog.

• checkList()—Spell checks a list of words. Useful for checking non-plain text formats,
such as HTML, SGML, or internal formats.

• checkWord()—Spell checks a single word. Useful for implementing “online” (or check-
as-you-type) spell checking.

KSpell can use International Ispell (http://fmg-www.cs.ucla.edu/geoff/ispell.html) or
ASpell (http://metalab.unc.edu/kevina/aspell/) as a “back end” to check the spelling of
words. Dictionaries are available for these programs in 19 languages at http://fmg-
www.cs.ucla.edu/geoff/ispell-dictionaries.html.

Using KSpell in an Application
We’ll use modalCheck() in this section because it’s the simplest method. If you want to
include features such as highlighting misspelled words in the user’s document as the spell
checking proceeds, then you will need to use check(). KEdit, KWrite, and the KMail/KRN
composer all use check() so that they can highlight misspelled words.

When using KSpell in an application, you need to offer the user a menu entry to configure the
spell checker and one to start it. These menu entries have standard places. The spell checker
configuration entry goes in the Options menu, and the entry to start the spell checker goes in
Tools and is called “Spelling….”

The following code, Listings 10.7 and 10.8, demonstrates the use of KSpell in an application.
This application, KSpellDemo, puts some text in its content area and offers you the option to
check the spelling of the text. After the spell check is complete, the corrected text is shown
(see Figure 10.3).

LISTING 10.7 kspelldemo.h: Class Declaration for KSpellDemo, a Simple Application that
Uses KSpell

1: #ifndef __KSPELLDEMO_H__
2: #define __KSPELLDEMO_H__
3:
4: #include <ktmainwindow.h>
5:
6: class QLabel;

Complex-Function KDE Widgets

CHAPTER 10

10

C
O

M
PLEX-

F
U

N
C

TIO
N

K
D

E
W

ID
G

ETS

241

13 8911 ch10 10/16/00 1:46 PM Page 241

7:
8: /**
9: * KSpellDemo
10: * Spell check some text with KSpell.
11: **/
12: class KSpellDemo : public KTMainWindow
13: {
14: Q_OBJECT
15: public:
16: KSpellDemo (const char *name=0);
17:
18: public slots:
19: void slotSpellCheck();
20: void slotConfigure();
21:
22: protected:
23: QLabel *label;
24: };
25:
26: #endif

We derive from KTMainWindow here so that you can add the menubar and toolbar (see Figure
10.3). The two slots, slotSpellCheck() and slotConfigure(), start the spell checker and
configure it, respectively.

LISTING 10.8 kspelldemo.cpp: Class Definition for KSpellDemo

1: #include <stdio.h>
2:
3: #include <qtabdialog.h>
4:
5: #include <kspell.h>
6: #include <ktmainwindow.h>
7: #include <ksconfig.h>
8: #include <kstdaction.h>
9: #include <kaction.h>
10:
11: #include “kspelldemo.moc”
12:
13: KSpellDemo::KSpellDemo (const char *name=0) :
14: KTMainWindow (name)
15: {
16:
17: KAction *spelling = KStdAction::spelling (this, SLOT(slotSpellCheck()),
18: actionCollection());
19:
20: new KAction (“&Configure spellchecker...”, 0,

Advanced KDE Widgets and UI Design Techniques

PART II
242

LISTING 10.7 Continued

13 8911 ch10 10/16/00 1:46 PM Page 242

21: this, SLOT (slotConfigure()), actionCollection(),
22: “configure_spellchecker”);
23:
24: createGUI();
25:
26:
27: label = new QLabel (“Som words are mispelled!”, this);
28: setView (label);
29: }
30:
31: void
32: KSpellDemo::slotSpellCheck()
33: {
34: QString text (label->text());
35:
36: KSpell::modalCheck (text);
37: label->setText (text);
38: }
39:
40: void
41: KSpellDemo::slotConfigure()
42: {
43: QTabDialog qtabdialog (0, 0, true);
44: qtabdialog.setCancelButton();
45: KSpellConfig ksconfig (&qtabdialog);
46: qtabdialog.addTab (&ksconfig, “&Spellchecker”);
47: if (qtabdialog.exec())
48: ksconfig.writeGlobalSettings();
49: }

Complex-Function KDE Widgets

CHAPTER 10

10

C
O

M
PLEX-

F
U

N
C

TIO
N

K
D

E
W

ID
G

ETS

243

FIGURE 10.3
KSpellDemo shows some misspelled text.

LISTING 10.8 Continued

13 8911 ch10 10/16/00 1:46 PM Page 243

In the constructor, you put the Spelling… and Configure spellchecker… entries in their appro-
priate places and also put a spell checker button on the toolbar (see lines 17–24 The layout of
the user interface is described in the XML GUI file kspelldemoui.rc included on the web site.
Be sure to copy this file to its appropriate directory before running KSpellDemo:
$KDEDIR/share/apps/kspelldemo/.

Modal Spell Checking
In slotSpellCheck(), you use the method modalCheck(). Checking spelling this way is espe-
cially simple because the method is static. You fill a QString, called text here, with the text
that needs checking and call

KSpell::modalCheck (text);

When the method returns, text contains the spell checked text. Interactive word replacement is
handled by KSpell. Figure 10.4 shows the KSpell dialog offering suggested replacements for
the misspelled word to the user. This dialog is created and maintained by KSpell.

Advanced KDE Widgets and UI Design Techniques

PART II
244

FIGURE 10.4
The KSpell dialog box shows the misspelled word and offers suggestions for replacement.

While the spell check proceeds, the user will be able to interact only with the KSpell
dialog, but the rest of your GUI will still repaint itself when necessary.

NOTE

13 8911 ch10 10/16/00 1:46 PM Page 244

Configuring KSpell
A standard configuration dialog called KSpellConfig is available for use in applications that
use KSpell. The dialog lets the user choose which dictionary will be used and which back end
client will be used, among other things. Standard code to use KSpellConfig is shown on lines
43–48. A screen shot of the KSpellConfig dialog box is shown in Figure 10.5.

Complex-Function KDE Widgets

CHAPTER 10

10

C
O

M
PLEX-

F
U

N
C

TIO
N

K
D

E
W

ID
G

ETS

245

FIGURE 10.5
The KSpellConfig dialog box lets the user configure KSpell.

If you want to save the KSpell settings, you should call writeGlobalSettings() when the
user clicks OK (that is, if qtabdialog.exec() returns true). If not, you will need to pass the
instance of KSpellConfig that you just created to a new instance of KSpell so that KSpell
knows the new configuration, and then use a method other than modalCheck(). See the KSpell
reference documentation for details.

You can use the main() function given in Listing 10.9 to try KSpellDemo. Be sure to link to
the library libkspell by passing the option -lkspell to g++.

LISTING 10.9 main.cpp: A main() Function Suitable for Testing KSpellDemo

1: #include <kapp.h>
2:
3: #include “kspelldemo.h”
4:
5: int
6: main (int argc, char *argv[])
7: {

13 8911 ch10 10/16/00 1:46 PM Page 245

8: KApplication kapplication (argc, argv, “kspelldemo”);
9:
10: KSpellDemo *kspelldemo = new KSpellDemo;
11:
12: kspelldemo->show();
13:
14: return kapplication.exec();
15: }

Accessing the Address Book
The KDE user is provided with an address book that may be accessed by all KDE applications.
This means that, ideally, the user will need to type in (or otherwise collect) contact information
only once for someone they know, and then use it to send an email, dial the telephone, send a
fax, and so on, depending on what applications become available. You can access the address-
book with the program ABBrowser, part of KDE, or KMail, the KDE mail client.

The address book provides several pieces of information about each entry—with each entry
corresponding to one contact—in a class of type AddressBook::Entry defined in address-
book.h Most members of Entry are public variables. For example, the contact’s email
addresses are stored in a QStringList called Entry::emails. See addressbook.h for a full list
of fields.

In the next section, you learn how to select a contact and read its AddressBook::Entry fields.

Selecting a Contact
In the most likely scenario, you will want to access information on a contact that has been cho-
sen by the user of your application. The KDE address book library, libkab, provides a dialog
box for this purpose called KabAPI. The following code Listings 10.10–10.12 constructs a class
called KabDemo, executes the dialog and displays the name and first email address of the con-
tact chosen.

LISTING 10.10 kabdemo.h: Class Declaration for KabDemo, a Demonstration of the KDE
Address Book

1: #ifndef __KABDEMO_H__
2: #define __KABDEMO_H__
3:
4: #include <qlabel.h>
5:

Advanced KDE Widgets and UI Design Techniques

PART II
246

LISTING 10.9 Continued

13 8911 ch10 10/16/00 1:46 PM Page 246

6: class KabDemo : public QLabel
7: {
8: public:
9: KabDemo (QWidget *parent, const char *name=0);
10: };
11:
12: #endif

LISTING 10.11 kabdemo.cpp: Class Definition for KabDemo

1: #include <stdio.h>
2:
3: #include <qlabel.h>
4:
5: #include <kabapi.h>
6:
7: #include “kabdemo.h”
8:
9:
10: KabDemo::KabDemo (QWidget *parent, const char *name=0) :
11: QLabel (“Text”, parent, name)
12: {
13:
14: KabAPI kabapi (this);
15: if (kabapi.init()!=AddressBook::NoError)
16: {
17: printf (“Error\n”);
18: exit (0);
19: }
20:
21: AddressBook::Entry entry;
22: KabKey key;
23: if (kabapi.exec())
24: {
25: switch (kabapi.getEntry(entry, key))
26: {
27: case AddressBook::NoEntry:
28: printf (“Nothing selected.\n”);
29: break;
30: case AddressBook::NoError:
31: {
32: QString name;
33: kabapi.addressbook()->literalName(entry, name);
34: setText (“Name: “+name +”\nEmail: “+entry.emails[0]);

Complex-Function KDE Widgets

CHAPTER 10

10

C
O

M
PLEX-

F
U

N
C

TIO
N

K
D

E
W

ID
G

ETS

247

LISTING 10.10 Continued

13 8911 ch10 10/16/00 1:46 PM Page 247

35: }
36: break;
37: default:
38: printf (“Internal error.\n”);
39: }
40: }
41: }

The two most important lines in Listing 10.11 are 15 and 23. Line 15 calls kabapi.init(),
which opens and loads the address book, and thus needs to be called before kabapi can be
used. Next is line 23, which calls (kabapi.exec()). This executes the KabAPI dialog. When it
completes, kabapi will hold the user’s selection.

Lines 25–39 show how to process the user’s selection (of course, you’d want to process the
various cases more elegantly in your application). The method kabapi.getEnty(entry, key)
fills in entry and key with the instance AddressBook::Entry describing the user’s selection
and an associated KabKey (see addressbook.h for the declaration of KabKey). Figure 10.6 shows
the KabAPI dialog and Figure 10.7 shows KabDemo displaying the results of the user’s selec-
tion.

Advanced KDE Widgets and UI Design Techniques

PART II
248

LISTING 10.11 Continued

FIGURE 10.6
The KabAPI dialog box lets the user choose an entry from the address book.

13 8911 ch10 10/16/00 1:46 PM Page 248

FIGURE 10.7
KabDemo displays the results of the user’s selection.

You can use the main() function provided in Listing 10.12 to complete KabDemo. You will
need to link to libkab by passing the option -lkab to g++.

LISTING 10.12 main.cpp: A main() Function Suitable for Testing KabDemo

1: #include <kapp.h>
2:
3: #include “kabdemo.h”
4:
5: int
6: main (int argc, char *argv[])
7: {
8: KApplication kapplication (argc, argv, “kabdemo”);
9:
10: KabDemo *kabdemo = new KabDemo (0);
11:
12: kabdemo->show();
13:
14: return kapplication.exec();
15: }

Complex-Function KDE Widgets

CHAPTER 10

10

C
O

M
PLEX-

F
U

N
C

TIO
N

K
D

E
W

ID
G

ETS

249

13 8911 ch10 10/16/00 1:46 PM Page 249

Summary
The KDE libraries offer useful services that go beyond simple widgets. Some of these services
were discussed here: HTML page rendering; image loading, manipulation, and saving; spell
checking; and access to a systemwide address book.

Taking advantage of these services can dramatically reduce the time required to develop your
application. These classes represent many programmer-hours of work that need not be dupli-
cated to add these features to your application.

When compiling applications for these libraries, you will need to link to the appropriate
libraries; these classes are not included in libkdecode or libkdeui. The required libraries are
summarized in Table 10.2.

TABLE 10.2 Libraries Required for Complex-Function Classes

Function Library

HTML rendering/browsing libkhtml

Image loading/saving libksycoca

Spell checking libkspell

KDE address book libkab

Exercises
See Appendix C, “Answers,” for the exercise answers.

1. Examine the KHTMLWidget reference documentation. Modify KSimpleBrowser to turn on
Java applet and JavaScript support. Try it out.

2. Load an image file into a QImage instance and perform the following image transforma-
tion on an 8-bit color image (try one of the images in $KDEDIR/share/wallpapers):
Replace each color in the color table (accessed via QImage::color()), with

qRgb (qGray (color), qGray (color), qGray (color));
Display the image.

Advanced KDE Widgets and UI Design Techniques

PART II
250

13 8911 ch10 10/16/00 1:46 PM Page 250

CHAPTER

11
Alternative Application Types
by David Sweet

IN THIS CHAPTER
• Dialog-Based Applications 252

• Single-Instance Applications 255

• Panel Applets 257

14 8911 CH11 10/16/00 1:46 PM Page 251

Advanced KDE Widgets and UI Design Techniques

PART II
252

Not every application fits neatly into the document-centric model described in Chapter 2, “A
Simple KDE Application,” and Chapter 5, “KDE User Interface Compliance.” For example,
short-lived, single-task applications (such as KPPP or KFind) use a dialog box for their main
window. For some applications it only makes sense for one instance of an application to be
running (for example, Kicker, KPPP). Still other applications, called applets, run in a small
space on the panel and usually serve as status indicators or perform limited functions.

Dialog-Based Applications
Short-lived, single-task applications can be implemented in dialog boxes. Think of KFind, for
example. This application searches for files on your local hard disk and then, typically, the user
exits the application. A find operation is commonly included in a dialog box in document-
centric applications, and so the appearance of a system-level find operation in a dialog box is
not unfamiliar to the user.

Other utilities also use dialog boxes: KFontManager and KPPP. The motivation for writing
KFontManager into a dialog is the same as that for KFind: It performs a common application
function (usually implemented in a dialog box), but at the system level. KPPP is appropriately
placed in a dialog box because the user interaction (in normal use) is limited. The user chooses
only which connection to try and, when connected, wants to get back to work.

Creating the Dialog-Based Application
Creating a dialog-based application is different from creating a document-centric application,
but not more difficult. No standard "KDialogApplication" base class exists from which all
such applications are derived (as KTMainWindow analogously provides a common base for all
document-centric applications), but there are generally fewer UI elements to worry about, and
thus, such a base class is not necessary. In fact, in Listings 11.1 and 11.2, you see how to
derive from KDialogBase a base class dialog box and this serves you well.

Listings 11.1–11.3 show how to construct a dialog-based application.

LISTING 11.1 kdialogapp.h: Class Declaration for KDialogApp, a Dialog-Based
Application

1: #ifndef __KDIALOG_H__
2: #define __KDIALOG_H__
3:
4: #include <kdialogbase.h>
5:
6: class KDialogApp : public KDialogBase
7: {
8: public:

14 8911 CH11 10/16/00 1:46 PM Page 252

9: KDialogApp (QWidget *parent = 0, const char *name = 0);
10:
11: protected slots:
12: /**
13: * The Start button was pressed.
14: **/
15: void slotUser2(void);
16: /**
17: * The Quit button was pressed.
18: **/
19: void slotUser1(void);
20:
21: };
22:
23: #endif

It is necessary for the main application widget to be (ultimately) derived from QDialog because
QDialog provides its own event loop for processing window system events. KDialogApp is
derived from KDialogBase for simplicity, but KDialog or QDialog would work as well.
KDialogBase offers virtual methods that can be overloaded (here, slotUser1(), line 19 and
slotUser2(), line 15) to provide responses to button clicks.

LISTING 11.2 kdialogapp.cpp: Class Definition for KDialogApp

1: #include <qlabel.h>
2:
3: #include <kapp.h>
4: #include <kmessagebox.h>
5:
6: #include "kdialogapp.h"
7:
8: KDialogApp::KDialogApp (QWidget *parent, const char *name) :
9: KDialogBase (parent, name, true, "kdialogapp", User1 | User2,
10: User2, true, "&Quit", "&Start")
11: {
12: QLabel *qlabel = new QLabel ("Content area.", this);
13: setMainWidget (qlabel);
14: }
15:
16: void
17: KDialogApp::slotUser2(void)
18: {
19: KMessageBox::sorry (this, "No functions implemented!");
20: }
21:

Alternative Application Types

CHAPTER 11

11

A
LTER

N
A

TIV
E

A
PPLIC

A
TIO

N
T

Y
PES

253

LISTING 11.1 Continued

14 8911 CH11 10/16/00 1:46 PM Page 253

22: void
23: KDialogApp::slotUser1(void)
24: {
25: close();
26: }

KDialogBase, as it is used here, creates a dialog box that displays a custom widget with two
control buttons below it. The arguments—beyond the first two—passed to the KDialogBase
constructor (line 9) configure the dialog (see Chapter 8, “Using Dialog Boxes,” for more
information about KDialogBase). Arguments three through nine do the following:

• true—Create a modal dialog. Passing true lets you make use of QDialog's (from which
KDialogBase is derived) local event loop.

• User1 [verbar] User2—Create two user-defined buttons. The virtual methods
slotUser1() and slotUser2() will be called when the buttons are clicked. The buttons
are displayed right to left (see Figure 11.1).

• User2—Make the button User2 the default button. If the user presses Enter, the default
button is clicked.

• true—Draw a horizontal line between the content area and the control buttons.

• Quit—The text for button User1.

• Start—The text for button User2.

Advanced KDE Widgets and UI Design Techniques

PART II
254

LISTING 11.2 Continued

FIGURE 11.1
Screenshot of KDialogApp.

You place a label in the content area in lines 12 and 13. Note that the setMainWidget() method
is a member of KDialogBase. You should place your dialog application's main widget in here.

LISTING 11.3 main.cpp: The main() Function Needed to Start KDialogApp

1: #include <kapp.h>
2:
3: #include "kdialogapp.h"

14 8911 CH11 10/16/00 1:46 PM Page 254

4:
5: void main (int argc, char *argv[])
6: {
7: KApplication *kapplication = new KApplication (argc, argv, "kdialogapp");
8:
9: KDialogApp * kdialogapp = new KDialogApp;
10: kdialogapp->exec();
11: }

You need to create a KApplication object to provide initialization of the Qt toolkit, but you do
not need to make any calls to KApplication methods. The event loop provided by QDialog is
started with

kdialogapp->exec();

The program exits after this call completes. kdialogapp->exec() exits when the dialog is fin-
ished, which happens when the user closes the window, presses the Quit button, or presses Esc.

Single-Instance Applications
Sometimes it only makes sense to run one instance of an application. Examples include Kicker,
the KDE panel, KWin the KDE window manager, and KPPP, the Internet dial-up tool.

To allow developers to create single-instance applications with minimal effort, KDE offers
KUniqueApplication. It is a subclass of KApplication and thus offers all of KApplication's
functionality and ensures that only one instance of the application is running. To use
KUniqueApplication, you need to modify your usual main() function a bit; see Listing 11.4.

LISTING 11.4 main.cpp: A main() Function Suitable for Starting a Single-Instance
Application

1: #include "kunique.h"
2:
3: void
4: main (int argc, char *argv[])
5: {
6: if (KUnique::start(argc, argv, "kunique"))
7: {
8: KUnique *kunique = new KUnique (argc, argv, "kunique");
9: kunique->exec();
10: }
11: }

Alternative Application Types

CHAPTER 11

11

A
LTER

N
A

TIV
E

A
PPLIC

A
TIO

N
T

Y
PES

255

LISTING 11.3 Continued

14 8911 CH11 10/16/00 1:46 PM Page 255

KUniqueapplication accomplishes the feat of starting only one application using DCOP, an
interprocess communication system (see Chapter 13, “DCOP—Desktop Communication
Protocol” for a discussion). When KUnique::start() is called, KUniqueApplication tries to
register itself with DCOP under your application's name (kunique in this case). If that name is
already in use, KUnique::start() returns false and your application exits. Otherwise, your
application is registered under its name. In either case, a DCOP call is sent off, which calls the
virtual method KUnique::newInstance() (see Listing 11.5).

LISTING 11.5 kunique.cpp: Class Definition for KUnique, a Single-Instance Application

1: #include <kwin.h>
2:
3: #include "kunique.h"
4: #include "ksimpleapp.h"
5:
6: KUnique::KUnique (int& argc, char** argv,
7: const QCString& rAppName = 0) :
8: KUniqueApplication (argc, argv, rAppName)
9: {
10: ksimpleapp=0;
11: }
12:
13: int
14: KUnique::newInstance (QValueList<QCString> params)
15: {
16: if (ksimpleapp==0)
17: {
18: ksimpleapp = new KSimpleApp;
19: ksimpleapp->show();
20: }
21: else
22: {
23: ksimpleapp->slotRepositionText();
24: KWin::setActiveWindow (ksimpleapp->winId());
25: }
26: }

In the method newInstance() (lines 13-26), you either create a new instance of the main appli-
cation widget (usually a subclass of KTMainWindow; here KSimpleApp is used—a main widget
presented in Chapter 2) or, if it already exists, respond to the user's attempt to restart the appli-
cation. Your application's response to a restart attempt might be the following:

• To issue a “sorry” message with KMessageBox::sorry(), saying that the application is
already running

Advanced KDE Widgets and UI Design Techniques

PART II
256

14 8911 CH11 10/16/00 1:46 PM Page 256

• To open the document requested, as a command-line parameter, in addition to or instead
of the currently opened document

In any case, the response should indicate to the user that you are aware of the user's attempt to
start the application. At a minimum, you should set the currently running window as the active
window using the static method KWin::setActiveWindow(). This method is demonstrated on
line 24. KUnique interprets a request to start the application again as a request to perform the
only action it knows: to reposition the text (see Chapter 2 for an explanation of this action).

The final bit of code needed to compile KUnique, the header file, is given in Listing 11.6.

LISTING 11.6 kunique.h: Class Declaration for KUnique

1: #ifndef __KUNIQUE_H__
2: #define __KUNIQUE_H__
3:
4: #include <kuniqueapp.h>
5:
6: class KSimpleApp;
7:
8: class KUnique : public KUniqueApplication
9: {
10: public:
11: KUnique (int& argc, char** argv,
12: const QCString& rAppName = 0);
13:
14: int newInstance (QValueList<QCString> params);
15:
16: private:
17: KSimpleApp *ksimpleapp;
18: };
19:
20: #endif

Panel Applets
Panel applets are small applications with minimal user interfaces that run in the KDE panel,
Kicker. They generally indicate the status of some part of the system, such as CPU load, net-
work activity, the system time, or provide easy access to functions that are not directly related
to the work being performed by the user, such as a desktop pager, a CD player controller, or an
instant-messaging client. For creating your own panel applet, the KDE libraries provide the
class KPanelApplet. It is derived from QWidget (and DCOPObject) and takes the place of
KTMainWindow in the design of your application. Listing 11.7 shows our usual main() function
modified to create an applet.

Alternative Application Types

CHAPTER 11

11

A
LTER

N
A

TIV
E

A
PPLIC

A
TIO

N
T

Y
PES

257

14 8911 CH11 10/16/00 1:46 PM Page 257

LISTING 11.7 main.cpp: A main() Function Suitable for Starting a Panel applet

1: #include <kapp.h>
2:
3: #include "kweather.h"
4:
5: int
6: main(int argc, char *argv[])
7: {
8: KApplication kapplication (argc, argv, "kweather");
9:
10: KWeather *kweather = new KWeather;
11:
12: return kapplication.exec();
13: }

This applet, the subclass of KPanelApplet, is called KWeather. KWeather is a mock-up of an
applet that displays the outside weather, say, to a graduate student trapped in a windowless
office. A complete implementation of KWeather might query a weather service via HTTP (using
KIONetAccess) to determine the actual weather. In this implementation the weather is always
rainy and 48°F so that the graduate student won't feel that he is missing out on a nice day.

Listing 11.8 shows how the KWeather class is implemented.

LISTING 11.8 kweather.cpp: Class Definition for KWeather, a Panel Applet

1: #include <stdio.h>
2:
3: #include <qlabel.h>
4:
5: #include <kiconloader.h>
6: #include <kpopupmenu.h>
7:
8: #include "kweather.h"
9:
10: KWeather::KWeather (QWidget* parent, const char* name)
11: : KPanelApplet (parent, name)
12: {
13: setPalette(QPalette(Qt::gray));
14: QLabel *qlabel = new QLabel ("Rainy\n 48F", this);
15: qlabel->setAlignment (Qt::AlignVCenter);
16: setMinimumSize (qlabel->sizeHint());
17:
18: setActions (Preferences);
19:

Advanced KDE Widgets and UI Design Techniques

PART II
258

14 8911 CH11 10/16/00 1:46 PM Page 258

20: dock("kweather");
21: }
22:
23: void
24: KWeather::preferences()
25: {
26: printf ("Here we let the user configure the panel applet.\n");
27: }

In the constructor, you create your content area, a QLabel. Be sure when you design your con-
tent area that it will fit comfortably in the small area given to it by Kicker, the KDE panel. The
content area here consists of two lines of text on a colored background. It fits nicely. Generally,
a well-designed icon can convey more information in the small space—or at least convey it in a
more appealing way.

The call on line 16 to setMinimumSize() keeps Kicker from shrinking the widget so that the
text is too small to read. Kicker is trying to minimize usage of the valuable panel space, so be
sure to set a minimum size for your widget.

KPanelApplet provides a context menu (a pop-up menu that appears when the user clicks the
applet with the right mouse button, also known as an “RMB menu”). This menu provides the
minimum of choices to the user: Move and Remove, which allow the user to, respectively,
move the applet along the panel or remove from the panel, thus exiting the applet.You may add
other menu entries—About, Help, and Preferences—using the method setActions(), as on
line 18. The enum constants About, Help and Preferences may be combined with the bitwis-or
operator (i.e., &) and passed to setActions() to add any combination of these menu entries. To
respond to the user's selection of one of these menu entries, you should reimplement the corre-
sponding virtual method: about(), help(), or preferences(). The latter is reimplemented, as
an example, on lines 23-27.

The final bit of code needed for KWeather is given in Listing 11.9.

LISTING 11.9 kweather.h: Class Declaration for KWeather

1: #ifndef __KWEATHER_H__
2: #define __KWEATHER_H__
3:
4: #include <kapplet.h>
5:
6: class KWeather : public KApplet
7: {
8:
9: public:

Alternative Application Types

CHAPTER 11

11

A
LTER

N
A

TIV
E

A
PPLIC

A
TIO

N
T

Y
PES

259

LISTING 11.8 Continued

14 8911 CH11 10/16/00 1:46 PM Page 259

10: KWeather (QWidget * parent=0, const char *name=0);
11:
12: protected:
13: void mousePressEvent (QMouseEvent *);
14:
15: };
16:
17: #endif

Summary
This chapter presented alternative application styles to complement the document-centric
model discussed throughout the previous chapters. Your application might be based in a dialog
box if it is a short-lived, single-task application or on the panel as an applet (using KApplet) if
it is a long-lived, single-task application. Additionally, you can ensure that only one instance of
your application runs by deriving from KUniqueApplication. You should think carefully about
which (if any) of these application types are appropriate before coding an application (and con-
sider the possibility of multiple modes, similar to KPPP).

Exercises
See Appendix C, “Answers,” for the exercise answers.

1. Suppose you would like to have only one instance of your panel applet running at a time.
(Who would want, for example, two pagers in their panel?) Combine KWeather and
KUnique into one application that runs only once and displays a “sorry” message if the
user tries to start it a second time.

Advanced KDE Widgets and UI Design Techniques

PART II
260

LISTING 11.9 Continued

14 8911 CH11 10/16/00 1:46 PM Page 260

IN THIS PART
12 Creating and Using Components (KParts) 263

13 DCOP—Desktop Communication Protocol 285

14 Multimedia 323

Application Interaction and
Integration

PART

III

15 8911 Part03 10/16/00 1:43 PM Page 261

15 8911 Part03 10/16/00 1:43 PM Page 262

CHAPTER

12
Creating and Using
Components (KParts)
by David Faure

IN THIS CHAPTER
• The Difference Between Components and

Widgets 264

• The KDE Component Framework 265

• Describing User Interface in XML 266

• Read-Only and Read/Write Parts 268

• Creating a Part 269

• Making a Part Available Using Shared
Libraries 273

• Creating a KParts Application 277

• Embedding More Than One Part in the Same
Window 280

• Creating a KParts Plug-in 282

16 8911 CH12 10/16/00 1:44 PM Page 263

Application Interaction and Integration

PART III
264

The main idea behind components is reusability. Often, an application wants to use a function-
ality that another application provides. Of course, the way to do that is simply to create a
shared library that both applications use. But without a standard framework for this, it means
both applications are very much coupled to the library's API and will need to be changed if the
applications decide to use another library instead. Furthermore, integrating the shared function-
ality has to be done manually by every application.

A framework for components enables an application to use a component it never heard of—
and wasn’t specifically adapted for—because both the application and the component comply
to the framework and know what to expect from each other. An existing component can be
replaced with a new implementation of the same functionality, without changing a single line
of code in the application, because the interface remains the same.

The framework presented here concerns elaborate graphical components, such as an image
viewer, a text editor, a mail composer, and so on. Simpler graphical components are usually
widgets; I refine this distinction in the next section. Nongraphical components, such as a parser
or a string manipulation class, are usually libraries with a specific Application Programming
Interface (API).

Similar frameworks for graphical components exist for a different environment, such as IBM
and Apple’s OpenDoc, Microsoft’s OLE, Gnome’s Bonobo, and KDE’s previous OpenParts.

The Difference Between Components and Widgets
A KDE component is called a part, and it encapsulates three things: a widget, the functionality
that comes with it, and the user interface for this functionality.

The usual example is a text editor component. Its widget is a multiline text widget; its func-
tionality might include Search And Replace, Copy, Cut, Paste, Undo, Redo, Spell Checking. To
make it possible for the user to access this functionality, the component also provides the user
interface for it: menu items and toolbar buttons.

An application using this component will get the widget embedded into a parent widget it
provides, as well as the component’s user interface merged into its own menubar and toolbars.
This is like embedding a MS Excel document into MS Word, an example everybody knows, or
when embedding a KSpread document into KWord, an example that will hopefully become
very well known as well.

Another example of very useful component is an image viewer. When using KDE’s file
manager (Konqueror), clicking an image file opens the image viewer component from KDE’s
image viewer (KView) and shows it inside Konqueror’s window. The part provides actions for
zoom in, zoom out, rotate, reset to original size, and orientation.

16 8911 CH12 10/16/00 1:44 PM Page 264

So, when do you use a part and when do you use a widget?

Use a widget when all the functionality is in the widget itself and doesn’t need additional user
interface (menu items or toolbar buttons). A button is a widget, a multiline edit is a widget, but
a text editor with all the functionality previously mentioned is a part. As you can see there is
no problem choosing which one to use.

The KDE Component Framework
KParts is the framework for KDE parts, based on standard KDE/Qt objects, such as QWidget
and KTMainWindow. It defines a very simple set of classes: part, plugin, mainwindow, and part
manager.

A part, as previously described, is the name for a KDE component. To define a new part,
you need to provide the widget, of course, but also the actions that give access to the
part’s functionality and an XML file that describes the layout of those actions in the user
interface.

A plugin is a small piece of functionality that is not implemented by an embedded
widget, but that defines some actions to be merged in the application’s user interface,
such as the calculator plugin for KSpread. It can be graphical, however, like a dialog box
or a separate window popping up, or it can be an application-specific plugin and act on
the application itself—a spell checker for a word processor, for example.

A KParts mainwindow is a special KTMainWindow whose user interface is described in
XML and with actions so that it is able to embed parts. The reason it has to use XML is
because merging user interfaces is implemented by merging XML documents.

A part manager is a more abstract object whose task is to handle the activation and the
deactivation of the parts. Of course, this is useful only for mainwindows that embed
more than one part, such as KOffice documents (where the main document is also a
part), or Konqueror (where each view is a part). KWrite, which embeds only its own
part, doesn’t need a part manager.

Creating and Using Components (KParts)

CHAPTER 12

12

C
REATIN

G
A

N
D

U
SIN

G
C

O
M

PO
N

EN
TS

(K
PA

RTS)

265

NOTE

Note that KOffice parts are a bit different because they don’t embed as a full window,
but as a frame into the parent’s view, which can be moved, resized, and even
rotated—a functionality only KOffice has. This and the document/view architecture of
KOffice applications mean that the framework for KOffice parts, although based on
KParts, is much more elaborate and out of topic here.

16 8911 CH12 10/16/00 1:44 PM Page 265

In the following sections, you create a part for a simple text editor, a main window able to
embed an existing PostScript-viewer part, a part manager to embed more than one part, and
even a plug-in; thus, you will know everything about KParts.

Describing User Interface in XML
The XML file used by a part or a mainwindow provides only the layout of the actions in the
user interface. The actions themselves are still implemented in the code, with slots, as usual.

More precisely, the XML file describes the layout of the menus and submenus in the menubar
(only one menubar is always present) and the menu items within those menus, as well as the
toolbars and the toolbar buttons. The menubar, menus, and toolbars are containers; menu items
and toolbar buttons are the actions.

A sample XML file for a mainwindow looks like the one shown in Listing 12.1.

LISTING 12.1 Excerpt of konqueror.rc: A User Interface Described in XML

<!DOCTYPE kpartgui SYSTEM “kpartgui.dtd”>
<kpartgui name="Konqueror" version="1">
<MenuBar>
<Menu name="file"><Text>&File</Text>
<Action name="find"/>
<Separator/>
<Action name="print"/>
<Separator/>
<Action name="close"/>
</Menu>
<Menu name="edit"><Text>&Edit</Text>
<Action name="cut"/>
<Action name="copy"/>
<Action name="paste"/>
<Action name="trash"/>
<Action name="del"/>
<Separator/>
<Merge/>
<Separator/>
</Menu>
<Merge/>
</MenuBar>
<ToolBar fullWidth="true" name="mainToolBar"><Text>Main</Text>
<Action name="cut"/>
<Action name="copy"/>

Application Interaction and Integration

PART III
266

16 8911 CH12 10/16/00 1:44 PM Page 266

LISTING 12.1 Continued

<Action name="paste"/>
<Action name="print"/>
<Separator/>
<Merge/>
<Separator/>
<Action name="animated_logo"/>
</ToolBar>
<ToolBar name="locationToolBar"><Text>Location</Text>
<Action name="toolbar_url_combo"/>
</ToolBar>

</kpartgui>

The DOCTYPE tag contains the name of the main element, which should be set to kpartgui. The
top-level elements are MenuBar and ToolBar, as expected. In the MenuBar, the menus are
described. Note that they have a name, used for merging later on, and a text, which is dis-
played in the user interface, possibly translated. Because this is XML, & has to be encoded as
&. Inside a Menu tag, the actions, some separators, and possibly submenus are laid out. The
action names are very important because they are used to match the actions created in the
code.

The toolbars are then described. Note that the main toolbar has to be called mainToolBar
because its settings can be different. KToolBar takes care of adding text under icons for this
particular toolbar, if the user wants them. Actions are laid out in the toolbars the usual way.
The text for a toolbar is used where the name of the toolbar is to be displayed to the user,
possibly translated, such as the toolbar editor.

Another important tag is the Merge tag. This tag tells the framework where the actions of the
active part—and the plug-ins—should be merged in a given container. As you can see, this XML
file inserts the part’s actions before a separator in the Edit menu, whereas it doesn’t specify a
position for items in the File menu. This means that if the part defines actions for the File menu,
they will be appended to the File menu of the mainwindow.

The merging happens when a part simply uses the same menu name or toolbar name as the
mainwindow.

If a Merge tag is specified as a child of the MenuBar tag, the merging happens at that position;
otherwise, it takes place on the right of the existing menus. The toolbar allows merging of the
part’s actions as well, based on the same principle.

The Merge tag can also appear in a part’s XML. It will be used for merging plug-ins or for
more advanced uses; the merging engine can merge any number of “inputs” and it is possible
to define specific inputs, such as the one Konqueror defines for its View menu.

Creating and Using Components (KParts)

CHAPTER 12

12

C
REATIN

G
A

N
D

U
SIN

G
C

O
M

PO
N

EN
TS

(K
PA

RTS)

267

16 8911 CH12 10/16/00 1:44 PM Page 267

Another advanced use of the Merge tag is to set a name attribute for it. For instance, if another
XML file wants to embed a part and any other parts or plug-ins at different positions in a given
menu, it can use two merge tags:

<Merge name="MyPart"/>
.
.
.
<Merge />

Using the name attribute for the Merge tag allows you to control at which position each XML
fragment is merged, but it is usually unnecessary.

Read-Only and Read/Write Parts
The framework defines different kinds of parts. The generic class is Part and is the one that
provides the basic functionality for a part: widget, XML, and actions.

Read-Only Parts
The class ReadOnlyPart provides a common framework for all parts that implement any kind
of viewer. A text viewer, an image viewer, a PostScript viewer, and a Web browser are all
viewers. What they have in common is that they all act on a URL, and in a read-only way. It
has always been a design decision in KDE to provide network transparency wherever possible,
which is why most KDE applications use URLs, not only filenames. The framework defines
methods for opening a URL, closing a URL, and above all provides network transparency—by
downloading the file, if remote, and emitting signals (started, progression, completed). The part
itself has to provide only openFile(), which opens a local file.

This common framework for read-only parts enables applications to embed all viewers the
same way and to better control those parts. For instance, when Konqueror uses a read-only part
to display a file, it can make it open the file using openURL() and get all the progress informa-
tion from the part. All this is not available in the generic Part class.

Read-Write Parts
Another kind of part is the ReadWritePart, which is an extension of the read-only one, to
which it obviously adds the possibility to modify and save the document. This is the one used
by a text editor part such as KWrite’s, as well as all KOffice parts.

For read/write parts, the framework provides the other half of the network transparency—
re-uploading the document when saving, for remote files. A read/write part must also know
how to act read-only, in case it is used as a read-only part. This is what happens when embed-
ding KWrite or KOffice into Konqueror to view a text file, without being allowed to edit the
file. More generally, any editor can be and must know how to be a viewer, as well.

Application Interaction and Integration

PART III
268

16 8911 CH12 10/16/00 1:44 PM Page 268

Creating a Part
In this section, you create a very simple part for a text editor. If you have closely followed the
previous section, you know that the part should inherit KParts::ReadWritePart.

At this point, it is a very good idea to read kparts/part.h, directly or preferably after running
kdoc on it (see Chapter 15, “Creating Documentation,” for information about kdoc). This tells
you that a read/write part implementation has to provide the methods openFile() and
saveFile().

The task of openFile() is obviously to open a local file, which the framework has previously
downloaded for us in case the URL that the user wants to open is a remote one. In this case,
the file you open is a temporary local file.

In saveFile(), the part saves to the local file, and in case it’s a temporary file, the framework
takes care of uploading the new file.

You can now sketch the header file for your part, which is called NotepadPart (see Listing 12.2).

LISTING 12.2 notepad_part.h: Header of the NotepadPart Class

1: #ifndef __notepad_h__
2: #define __notepad_h__
3:
4: #include <kparts/part.h>
5:
6: class QMultiLineEdit;
7:
8: class NotepadPart : public KParts::ReadWritePart
9: {
10: Q_OBJECT
11: public:
12: NotepadPart(QWidget * parent, const char * name = 0L);
13: virtual ~NotepadPart() {}
14:
15: virtual void setReadWrite(bool rw);
16:
17: protected:
18: virtual bool openFile();
19: virtual bool saveFile();
20:
21: protected slots:
22: void slotSelectAll();
23:
24: protected:

Creating and Using Components (KParts)

CHAPTER 12

12

C
REATIN

G
A

N
D

U
SIN

G
C

O
M

PO
N

EN
TS

(K
PA

RTS)

269

16 8911 CH12 10/16/00 1:44 PM Page 269

25: QMultiLineEdit * m_edit;
26: KInstance *m_instance;
27: };
28:
29: #endif

The parent passed to the constructor is both the parent of the widget and the parent of the part
itself, so that both get destroyed if the parent is destroyed. Note that having the same parent is
not mandatory. If they have different parents, the framework deletes the widget if the part is
destroyed and deletes the part if the widget is destroyed.

The class members are a QMultiLineEdit (the multiline widget from Qt), and a KInstance. An
instance enables access to global KDE objects, which can be different from the ones of the
application. The application’s configuration file and the one of any other instance is different,
as well as the search paths for locate(), and so on. In KParts, this is used to locate the XML
file describing the part, which is usually installed into share/apps/instancename/.

In addition, you define a slot, slotSelectAll(), to be connected to the action your part
provides.

The corresponding XML file for the part NotepadPart is listed in Listing 12.3 and defines its
GUI by an action named selectall, to be inserted into the menu Edit in the menubar. Note
that the text for the Edit menu is specified, which is mandatory even if mainwindows usually
specify it, because it has to work even if a mainwindow doesn’t have an Edit menu on its own.
So the rule is simple: always provide a text for all menus.

LISTING 12.3 notepadpart.rc: XML Description of the Notepad Part’s User Interface

<!DOCTYPE kpartgui SYSTEM “kpartgui.dtd”>
<kpartgui name="NotepadPart" version="1">
<MenuBar>
<Menu name="Edit"><Text>&Edit</Text>
<Action name="selectall"/>
</Menu>
</MenuBar>
<StatusBar/>
</kpartgui>

An important task in the definition of a part is its constructor. It must at least define the
instance, the widget, the actions, and the XML File. The constructor for this example could be
as shown in Listing 12.4.

Application Interaction and Integration

PART III
270

LISTING 12.2 Continued

16 8911 CH12 10/16/00 1:44 PM Page 270

LISTING 12.4 notepad_part.cpp part 1: Constructor

1: NotepadPart::NotepadPart(QWidget * parent, const char * name)
2: : KParts::ReadWritePart(parent, name)
3: {
4: KInstance * instance = new KInstance("notepadpart");
5: setInstance(instance);
6:
7: m_edit = new QMultiLineEdit(parent, "multilineedit");
8: m_edit->setFocus();
9: setWidget(m_edit);
10:
11: (void)new KAction(i18n("Select All"), 0, this,
12: SLOT(slotSelectAll()), actionCollection(), "selectall");
13: setXMLFile("notepadpart.rc");
14:
15: setReadWrite(true);
16: }

After calling the parent constructor with parent and name, you create an instance, named
notepadpart, and declare it to the framework using setInstance(). This is a temporary solu-
tion; you’ll see later how to use a library-factory’s instance. Then you create the multiline edit
widget, give it the focus, and declare it as well, using setWidget().

The next step is to create the actions that your part provides. The "selectall" action is given a
translated label, is connected to slotSelectAll(), and is created as a child of the action col-
lection that the framework provides. This is important, because it’s the only way to make it
find the action later on, when parsing the XML file. This is why you don’t even need to store
the action in a variable, unless you want to be able to enable or disable it later.

You also need to give the framework the name of the XML file describing the part’s GUI. As
mentioned previously, it is usually installed into share/apps/instancename/, and in this case,
you simply pass the filename with no path. It is also possible, but not recommended, to install
the XML file anywhere else and provide a full path in setXMLFile().

Finally, the part is set to read/write mode. Read/write parts feature the setReadWrite() call,
which enables you to set the read/write mode on or off. Most parts should reimplement this
method to enable or disable anything that modifies the part, KActions as well as any direct
modification provided by the widget itself. The reimplementation of setReadWrite() for the
NotepadPart is shown in Listing 12.5.

Creating and Using Components (KParts)

CHAPTER 12

12

C
REATIN

G
A

N
D

U
SIN

G
C

O
M

PO
N

EN
TS

(K
PA

RTS)

271

16 8911 CH12 10/16/00 1:44 PM Page 271

LISTING 12.5 notepad_part.cpp part 2: Implementation of setReadWrite

void NotepadPart::setReadWrite(bool rw)
{
m_edit->setReadOnly(!rw);
if (rw)
connect(m_edit, SIGNAL(textChanged()), this, SLOT(setModified()));

else
disconnect(m_edit, SIGNAL(textChanged()), this, SLOT(setModified()));

ReadWritePart::setReadWrite(rw); // always call the parent implementation
}

In the example, there are no actions to disable, but the multiline widget has to be set to its
read-only mode.

The connection to setModified(), done in read/write mode only, enables the framework to
keep track of the state of the document. When closing a document that has been modified, the
framework automatically asks whether it should save it and allow you to cancel the close. Note
that to make all this work, you just needed to connect a signal when the part is in read/write
mode and disconnect it when it’s in read-only mode. This avoids warnings when a loading a
file, which changes the text.

It might seem a bit painful to have to handle both read/write and read-only mode, but doing
this gives for free the possibility to embed the part as a viewer, in Konqueror, for instance, so
it’s usually worth doing.

Your part is created; you need to make it useful. The method that all read-only parts—and by
inheritance, all read/write parts as well—must reimplement is the openFile() method. This is
where a part opens and displays the local file, whose full path is provided in the member vari-
able m_file, and which the framework downloaded from a remote location first, if necessary.
Because your part is a text viewer, all it has to do is read the file into a QString and set the
multiline widget’s text from it, as shown in Listing 12.6.

LISTING 12.6 notepad_part.cpp part 3: Implementation of openFile

1: bool NotepadPart::openFile()
2: {
3: QFile f(m_file);
4: QString s;
5: if (f.open(IO_ReadOnly))
6: {
7: QTextStream t(&f);
8: while (!t.eof()) {
9: s += t.readLine() + "\n";
10: }
11: f.close();

Application Interaction and Integration

PART III
272

16 8911 CH12 10/16/00 1:44 PM Page 272

LISTING 12.6 Continued

12: }
13: m_edit->setText(s);
14:
15: return true;
16: }

The last thing you need to do is, of course, to provide saving; otherwise, the user will not like
it! All read/write parts have to reimplement saveFile() to save the document to m_file, as
shown in Listing 12.7. Note that the framework takes care of Save As (changing the URL to
Save To), as well as uploading the saved file, if necessary.

LISTING 12.7 notepad_part.cpp part 4: Implementation of saveFile

1: bool NotepadPart::saveFile()
2: {
3: if (!isReadWrite())
4: return false;
5: QFile f(m_file);
6: QString s;
7: if (f.open(IO_WriteOnly)) {
8: QTextStream t(&f);
9: t << m_edit->text();
10: f.close();
11: return true ;
12: } else
13: return false;
14: }

Making a Part Available Using Shared Libraries
You know how to create a part now. But currently, it can be used only by linking directly to its
code. Although this is enough in some cases, such as KWrite’s part embedded by KWrite
itself, it is much more flexible to provide dynamic linking to the library containing the part.
This is not directly related to KParts, but it is necessary to make it possible for any application
to use the part.

The first step is to compile the part in a shared library, which is really simple using automake.
The relevant portion of Makefile.am is shown in Listing 12.8

LISTING 12.8 Extract from Makefile.am

lib_LTLIBRARIES = libnotepad.la
libnotepad_la_SOURCES = notepad_part.cpp notepad_factory.cpp
libnotepad_la_LIBADD = $(LIB_KFILE) $(LIB_KPARTS)
libnotepad_la_LDFLAGS = $(all_libraries) $(KDE_PLUGIN)
METASOURCES = AUTO

Creating and Using Components (KParts)

CHAPTER 12

12

C
REATIN

G
A

N
D

U
SIN

G
C

O
M

PO
N

EN
TS

(K
PA

RTS)

273

16 8911 CH12 10/16/00 1:44 PM Page 273

Your part is now available in a shared library, but this is not enough. You must provide a way
for anybody opening that library dynamically to create a part. This is done using a factory,
derived from KLibFactory, which you’ll do in the class NotepadFactory. An application
willing to open a shared library dynamically uses the class KLibLoader, which takes care of
locating the library, opening it, and calling an initialization function—here init_libnotepad().
This function creates a NotepadFactory and returns it to KLibLoader, which can then call the
create method on the factory. This means that all you need to do in the library itself is define
init_libnotepad() and the NotepadFactory.

The header for the factory is the one shown in Listing 12.9.

LISTING 12.9 notepad_factory.h: Header File for NotepadFactory

1: #include <klibloader.h>
2: class KInstance;
3: class KAboutData;
4: class NotepadFactory: public KLibFactory
5: {
6: Q_OBJECT
7: public:
8: NotepadFactory(QObject * parent = 0, const char * name = 0);
9: ~NotepadFactory();
10:
11: // reimplemented from KLibFactory
12: virtual QObject * create(QObject * parent = 0, const char * name = 0,
13: const char * classname = "QObject",
14: const QStringList &args = QStringList());
15:
16: static KInstance * instance();
17:
18: private:
19: static KInstance * s_instance;
20: static KAboutData * s_about;
21: };

As required by KLibFactory, your factory implements the create method, which creates a
Notepad part and sets it to read/write mode or read-only mode, depending on whether the
classname is KParts::ReadWritePart or KParts::ReadOnlyPart.

It also features a static instance, which is used in the part, instead of creating your own
instance for each part. It is static because usually there is only one instance per library.

This means the code of notepad_part.cpp should be modified to call setInstance(
NotepadFactory::instance()); instead of creating its own instance.

The implementation for the NotepadFactory is shown in Listing 12.10.

Application Interaction and Integration

PART III
274

16 8911 CH12 10/16/00 1:44 PM Page 274

LISTING 12.10 notepad_factory.cpp: NotepadFactory Implementation

1: #include "notepad_factory.h"
2:
3: #include <klocale.h>
4: #include <kstddirs.h>
5: #include <kinstance.h>
6: #include <kaboutdata.h>
7:
8: #include "notepad_part.h"
9:
10: extern "C"
11: {
12: void* init_libnotepad()
13: {
14: return new NotepadFactory;
15: }
16: };
17:
18: KInstance* NotepadFactory::s_instance = 0L;
19: KAboutData* NotepadFactory::s_about = 0L;
20:
21: NotepadFactory::NotepadFactory(QObject* parent, const char* name)
22: : KLibFactory(parent, name)
23: {
24: }
25:
26: NotepadFactory::~NotepadFactory()
27: {
28: delete s_instance;
29: s_instance = 0L;
30: delete s_about;
31: }
32:
33: QObject* NotepadFactory::create(QObject* parent, const char* name,
34: const char* classname, const QStringList &)
35: {
36: if (parent && !parent->inherits("QWidget"))
37: {
38: kdError() << "NotepadFactory: parent does not inherit QWidget" << endl;
39: return 0L;
40: }
41:
42: NotepadPart* part = new NotepadPart((QWidget*) parent, name);
43: // readonly ?

Creating and Using Components (KParts)

CHAPTER 12

12

C
REATIN

G
A

N
D

U
SIN

G
C

O
M

PO
N

EN
TS

(K
PA

RTS)

275

16 8911 CH12 10/16/00 1:44 PM Page 275

44: if (QCString(classname) == "KParts::ReadOnlyPart")
45: part->setReadWrite(false);
46:
47: // otherwise, it has to be readwrite
48: else if (QCString(classname) != "KParts::ReadWritePart")
49: {
50: kdError() << "classname isn’t ReadOnlyPart nor ReadWritePart !" <<
➥endl;
51: return 0L;
52: }
53:
54: emit objectCreated(part);
55: return part;
56: }
57:
58: KInstance* NotepadFactory::instance()
59: {
60: if(!s_instance)
61: {
62: s_about = new KAboutData("notepadpart",
63: I18N_NOOP("Notepad"), "2.0pre");
64: s_instance = new KInstance(s_about);
65: }
66: return s_instance;
67: }
68:
69: #include "notepad_factory.moc"

The implementation is a bit long but contains nothing complex. Basically, you define the
function that is the entry point of the library, init_libnotepad(). It needs to be linked as a
C function to avoid C++ name mangling. C linkage means that the symbol in the library will
match the function name.

Then you define the NotepadFactory. The create method checks that the parent is a widget
because this is needed for your part (remember, you create your widget with the parent widget
given as an argument to the constructor). After creating the part, it has to emit objectCreated
so that the library loader can do a proper reference counting; it automatically unloads the
library after all objects created from it have been destroyed.

The instance() method returns the static instance, creating it first, if necessary. To create an
instance, I recommend that you give it a KAboutData pointer. This gives some information
about the instance representing the library (here an instance name, a translatable description of
it, and a version number). You can add a lot more information in the KAboutData object, such
as authors, home page, and bug-report address. See the documentation for details.

Application Interaction and Integration

PART III
276

LISTING 12.10 Continued

16 8911 CH12 10/16/00 1:44 PM Page 276

The standard KDE dialogs such as the Bug Report Dialog and the About Dialog use the data
stored in KAboutData to show information about the current program, but in the future they
will probably be improved to show information about the active part as well, which can have
completely different About data from the application.

Creating and Using Components (KParts)

CHAPTER 12

12

C
REATIN

G
A

N
D

U
SIN

G
C

O
M

PO
N

EN
TS

(K
PA

RTS)

277

NOTE

KParts provides a factory base class, KParts::Factory, which enhances KlibFactory by
making it possible to have a parent for the widget different from the parent for the
part. It also takes care of loading the translation message catalog for the newly cre-
ated part. Look in kparts/factory.h for more on this.

Creating a KParts Application
If an application wants to use parts and the GUI merging feature, its own GUI needs to be defined
in XML. The top level windows of the application will then use the class KParts::MainWindow.

Note that it’s also possible to use a part in a standard application, using KTMainWindow, but
then no GUI merging happens. In this case, only the functionality provided by the widget and
by the part API are available, so the application has to create the GUI for part’s functionality
itself, or the part has to provide it through context menus. In any case, it is much less flexible.

As an example of a window based on KParts::MainWindow, you are going to create a PostScript
viewer very easily, by embedding the part provided by KDE’s PostScript viewer, KGhostView.

NOTE

You need to install the package kdegraphics if you want to test this example.

The first thing to look at is the mainwindow’s GUI; an example is given in Listing 12.11.

LISTING 12.11 ghostviewtest_shell.rc: The Mainwindow’s GUI

<!DOCTYPE kpartgui SYSTEM “kpartgui.dtd”>
<kpartgui name="KGVShell" version="1">
<MenuBar>
<Menu name="file"><text>&File</text>
<Action name="file_open"/>
<Merge/>
<Action name="file_quit"/>

16 8911 CH12 10/16/00 1:44 PM Page 277

</Menu>
</MenuBar>
<ToolBar name="KGV-ToolBar"><text>KGhostView</text>
<Action name="file_open"/>
<Action name="file_quit"/>
</ToolBar>
</kpartgui>

By analogy with a command line’s shell, a main window is often called a shell. In its GUI you
define the actions that will always be shown, whichever part is active. The listing for a simple
KParts mainwindow is shown in Listing 12.12

LISTING 12.12 ghostviewtest.h: Header for a Simple KParts Mainwindow

1: #include <kparts/mainwindow.h>
2:
3: class Shell : public KParts::MainWindow
4: {
5: Q_OBJECT
6: public:
7: Shell();
8: virtual ~Shell();
9:
10: void openURL(const KURL & url);
11:
12: protected slots:
13: void slotFileOpen();
14:
15: private:
16: KParts::ReadOnlyPart *m_gvpart;
17: };

The mainwindow inherits KParts::MainWindow instead of KTMainWindow. Nothing else is
required; the openURL() here is just so that main() can call openURL() on the window. The
URL could be passed to the constructor instead.

The code for the mainwindow embedding the KGhostView part is part of the KParts examples,
which can be found under kdelibs/kparts/tests/ghostview*, so Listing 12.13 only shows the
relevant lines of ghostview.cpp.

Application Interaction and Integration

PART III
278

LISTING 12.11 Continued

16 8911 CH12 10/16/00 1:44 PM Page 278

LISTING 12.13 Excerpt of ghostviewtest.cpp: Implementation of the Simple KParts
Mainwindow

1: Shell::Shell()
2: {
3: setXMLFile("ghostviewtest_shell.rc");
4:
5: KAction * paOpen = new KAction(i18n("&Open file"), "fileopen", 0,
6: this, SLOT(slotFileOpen()), actionCollection(), "file_open");
7:
8: KAction * paQuit = new KAction(i18n("&Quit"), "exit", 0,
9: this, SLOT(close()), actionCollection(), "file_quit");
10:
11: // Try to find libkghostview
12: KLibFactory *factory = KLibLoader::self()->factory("libkghostview");
13: if (factory)
14: {
15: // Create the part
16: m_gvpart = (KParts::ReadOnlyPart *)factory->create(this, "kgvpart",
17: "KParts::ReadOnlyPart");
18: // Set the main widget
19: setView(m_gvpart->widget());
20: // Integrate its GUI
21: createGUI(m_gvpart);
22: }
23: else
24: kdFatal() << "No libkghostview found !" << endl;
25: }
26:
27: Shell::~Shell()
28: {
29: delete m_gvpart;
30: }
31:
32: void Shell::openURL(const KURL & url)
33: {
34: m_gvpart->openURL(url);
35: }

A mainwindow is created much like a part, with an XML file and actions. To find a part, it uses
KLibLoader to get the KLibFactory for the library. A flexible application would use .desktop files
for this and KIO’s trader for selecting the user’s preferred component, but for the sake of simplic-
ity, open the library by its name here. After the factory has been created, the mainwindow makes
it create a ReadOnlyPart, and because here you have only one part in the window, the part’s
widget is set as the main widget of the window with setView. Then a mainwindow needs to call
createGUI() to make the framework create the GUI, merging the actions of the mainwindow
with those of the active part. A mainwindow with no part will simply call createGUI(0L).

Creating and Using Components (KParts)

CHAPTER 12

12

C
REATIN

G
A

N
D

U
SIN

G
C

O
M

PO
N

EN
TS

(K
PA

RTS)

279

16 8911 CH12 10/16/00 1:44 PM Page 279

Using this mainwindow, for instance from main(), is as simple as

Shell *shell = new Shell;
shell->openURL(url);
shell->show();

Compile kdelibs/kparts/tests/ghostviewtest to test this simple example of how to embed a part.

Embedding More Than One Part in the Same
Window
The previous example showed how to embed a part as the single widget of a window. KParts
also makes it possible to embed more than one part in the same window, and it handles the
activation of a part when the user clicks it (or uses Tab to give it the focus). This is the task of
the PartManager.

To display more than one part in a window, the solution is usually to use a splitter, or even
nested splitters, such as in Konqueror. KOffice has another way of embedding several parts—
by using frames for the child parts—but it still uses PartManager.

Now modify the example to make it display, in addition to the PostScript document, the
PostScript code for it. To display the text, the application uses the Notepad part in read-only
mode. The two widgets will be hosted by a splitter.

Displaying raw PostScript is not very useful, but this example could, for instance, be turned
into an application showing the LaTeX source and the PostScript result side by side.

ghostviewtest.h needs to be modified slightly to add the following private members:

KParts::ReadOnlyPart *m_notepadpart;
KParts::PartManager *m_manager;
QSplitter *m_splitter;

ghostviewtest.cpp needs to be more modified. To include the PartManager definition, use the
following:

#include <kparts/partmanager.h>

In the constructor, create the part manager and connect its main signal, activePartChanged, to
your createGUI slot. This means you don’t need to call createGUI directly; it is called every
time the active part changes.

m_manager = new KParts::PartManager(this);
// When the manager says the active part changes,
// the builder updates (recreates) the GUI
connect(m_manager, SIGNAL(activePartChanged(KParts::Part *)),

this, SLOT(createGUI(KParts::Part *)));

Application Interaction and Integration

PART III
280

16 8911 CH12 10/16/00 1:44 PM Page 280

Then create the splitter and transform the setView statement into the following:

m_splitter = new QSplitter(this);
setView(m_splitter);

so that the main widget is now the splitter. Both parts need to be created with the splitter as a
parent (instead of the window):

KLibFactory *factory = KLibLoader::self()->factory("libkghostview");
if (factory)
{
m_gvpart = (KParts::ReadOnlyPart *)factory->create(m_splitter,

"kgvpart", "KParts::ReadOnlyPart");
}
else

kdFatal() << "No libkghostview found !" << endl;

factory = KLibLoader::self()->factory("libnotepad");
if (factory)
m_notepadpart = (KParts::ReadOnlyPart *)factory->create(m_splitter,

"knotepadpart", "KParts::ReadOnlyPart");
else

kdFatal() << "No libnotepad found !" << endl;

After the parts are created, they should be added to the part manager. At the same time, you
can specify which one should initially be active:

m_manager->addPart(m_gvpart, true); // sets as the active part
m_manager->addPart(m_notepadpart, false);

Then the splitter can be set to a minimum size, as shown:

m_splitter->setMinimumSize(400, 300);
m_splitter->show();

Finally, add the following line to openURL() to open the same URL in both parts:

m_notepadpart->openURL(url);

As you can see, the main idea is that the mainwindow creates a main widget (here, the split-
ter), creates all parts inside it, and registers the part to a part manager. Try clicking one part
and then the other; each time the active part changes, the GUI is updated (both menus and
toolbars) to show the GUI of the active part.

Note also the change in the window caption. This is handled by the Part class, which receives
the GUIActivateEvent from the mainwindow when the part is activated or deactivated. To set
a different caption for a part, you need to emit setWindowCaption both in openFile() and in
guiActivateEvent().

Creating and Using Components (KParts)

CHAPTER 12

12

C
REATIN

G
A

N
D

U
SIN

G
C

O
M

PO
N

EN
TS

(K
PA

RTS)

281

16 8911 CH12 10/16/00 1:44 PM Page 281

Creating a KParts Plug-in
A plug-in is the way to implement some functionality out of a part but still in a shared library,
with actions defined by the plug-in to access this functionality. Those actions, whose layout is
described in XML as usual, can be merged in a part’s user interface or in a mainwindow’s,
depending on whether it applies to a part or to an application.

Several reasons exist for using plug-ins. One is saving memory, because the plug-in is not
loaded until one of its actions is called, but the main reason is reusability—the same plug-in
can apply to several parts or applications. For instance, a spell-checker plug-in can apply to all
kinds of text editors, mail composers, word processors, and even presenters.

A plug-in can have a user interface, such as the dialog box for the spell checker, but not
necessarily. Plug-ins can also act directly on the part or the application or anything else.

The XML for a spell-checker plug-in is shown below:

<!DOCTYPE kpartgui SYSTEM “kpartgui.dtd”>
<kpartplugin library="libspellcheck">
<MenuBar>
<Menu name="edit"><Text>&Edit</Text>
<Action name="spellcheck"/>
</Menu>
</MenuBar>
</kpartgui>

Note the additional attribute in the main tag: library defines the name of the library to open to
find the plug-in. This is because no .desktop file exists for plug-ins. Installing the preceding
XML file in partplugins/, under share/apps/notepadpart, automatically inserts the plug-
in’s action in the NotepadPart user interface.

You know how the plug-in’s library will be opened; now you need only to create a factory in
the library, as usual, and let it create an instance of the plug-in. Writing the factory, which
doesn’t even need an instance in the simple case, and the init_libspellcheck() function will
be left as an exercise to the reader.

To define a plug-in, simply inherit KParts::Plugin and add slots for its actions:

#include <kparts/plugin.h>

class PluginSpellCheck : public KParts::Plugin
{

Q_OBJECT

Application Interaction and Integration

PART III
282

16 8911 CH12 10/16/00 1:44 PM Page 282

public:
PluginSpellCheck(QObject* parent = 0, const char* name = 0);
virtual ~PluginSpellCheck() {}

public slots:
void slotSpellCheck();

};

In the implementation, you have to create the plug-in actions; no setXMLFile is here because it
has been found by the part already.

Because in this example you are not going to create a real spell checker—a libkspell exists
for that— call the action “select current line’’ and implement that in the slot.

#include "plugin_spellcheck.h"
#include "notepad.h" // this plugin applies to a notepad part
#include <qmultilineedit.h>
#include <kaction.h>

PluginSpellCheck::PluginSpellCheck(QObject* parent, const char* name)
: Plugin(parent, name)

{
(void) new KAction(i18n("&Select current line (plug-in)"), 0, this,

SLOT(slotSpellCheck()), actionCollection(), "spellcheck");
}

void PluginSpellCheck::slotSpellCheck()
{

// Check that the parent is a NotepadPart
if (!parent()->inherits("NotepadPart"))

kdFatal() << "Spell-check plug-in for wrong part (not NotepadPart)" <<
➥endl;

else
{

NotepadPart * part = (NotepadPart *) parent();
QMultiLineEdit * widget = (QMultiLineEdit *) part->widget();
widget->selectAll(); //selects current line !

}
}

Note that to access the part’s widget, the plug-in has to assume—and check—that it has been
installed for a NotepadPart. This means that you should not install it under another part’s
directory. But selecting the current line in an image viewer wouldn’t mean much anyway.

A more flexible plug-in would instead check and cast the parent to ReadWritePart and then
check the type of its widget to be QMultiLineEdit.

Creating and Using Components (KParts)

CHAPTER 12

12

C
REATIN

G
A

N
D

U
SIN

G
C

O
M

PO
N

EN
TS

(K
PA

RTS)

283

16 8911 CH12 10/16/00 1:44 PM Page 283

Summary
After the presentation of component technology and how to lay out actions using XML, you
have seen most of what KParts can do: three types of parts, part mainwindows, part manager,
plug-ins, as well as how dynamic loading works—library factories and library loader.

You can do other interesting things with parts. Having a part embed itself in Konqueror is
very simple; it’s just a matter of providing a .desktop file for it, stating that it is a service that
implements some servicetypes, which are the mimetypes that the part allows to view, plus the
servicetype KParts::ReadOnlyPart. That’s it. Konqueror will use the part to view the files of
those mimetypes if no other service is set as more preferred in Configure File Types.

To provide better integration with Konqueror, you can also provide a
KParts::BrowserExtension for the part, as defined in kparts/browserextension.h. This is what
makes it possible to save and restore a view in Konqueror’s history and for the part to use
Konqueror’s “standard actions.’’ Examples of parts using the browser extension can be found in
KView, KDVI, KGhostView, KWrite and all built-in Konqueror views.

Application Interaction and Integration

PART III
284

16 8911 CH12 10/16/00 1:44 PM Page 284

CHAPTER

13
DCOP—Desktop
Communication Protocol
by Cristian Tibirna

• Motivation 286

• History 288

• Underlying Technologies 290

• Architecture 292

• Description of DCOP’s Programming
Interface 293

• Developer Concerns and Tools in DCOP 310

• DCOP Use in KDE 2.0—A Few Examples 316

17 8911 Ch13 10/16/00 1:46 PM Page 285

Application Interaction and Integration

PART III
286

One major reason for the rampant dependence upon computers is their capability to greatly
simplify the work and life of users. This capability is largely a consequence of the computers’
“education”; that is, their programs. The educators (that happy bunch we love to call the hack-
ers) discovered that sociology applies to computer programs as well as people. In order to
behave as worthy citizens of a computer, the programs need to know how to communicate.

A long time ago, the UNIX fathers noticed the hunger of programs for communication.
Therefore, they invented the genial pipes. Arguably, most of the force of UNIX comes from
offering its users the ability to build combinations of small tools. These combinations can
reach a potentially infinite complexity. These “metatools” help the user easily accomplish com-
plex tasks. Pipes are an essential ingredient in these combinations. You have probably used, at
least once, commands such as

]~> find . -name “*.cc” | xargs wc -l

]~> cat /etc/passwd | awk -F: ‘print $4’ > /tmp/users-realnames

]~> echo “What a happy world!” | mail -s “Oh yeah!” buddy@paradise.org

Today, we want to develop programs with nicer faces and better capabilities, and we rediscover
that communication between applications is essential. Yet, in the time of graphical interfaces,
point and click, and what you see is what you get, it is less convenient to use traditional pipes.
More advanced communication means are needed.

Thus appeared DCOP, the Desktop Communication Protocol. This name designates the set of
tools that KDE programs use to pass information between them.

This chapter describes the programming interface that DCOP defines and gives a few direc-
tions and examples.

Motivation
The K Desktop Environment was designed from the very beginning as a collection of programs,
each targeted at resolving a strictly delimited category of tasks. However, the main goal of a
desktop environment is to offer the user a unified way of functioning that preserves or even
enhances his productivity in a heuristic way, despite the diversity of tasks the user has to accom-
plish. The validity of this goal is proven by the wealth of integration tools that proliferated
around and inside the traditional UNIX window managers (from the times that preceded KDE).

Those window managers had scripting support and other kinds of programming interfaces.
They offered hooks for programs willing to take advantage of the specific windowing informa-
tion accessible to the window manager or to implement integration with the underlying operat-
ing system. There also were connections through which programs could manipulate the
window manager.

17 8911 Ch13 10/16/00 1:46 PM Page 286

It was not unusual for most window managers to come bundled with helper tools such as task
lists, icon managers, or event handlers that took advantage of special communication functions
in order to offer a better experience to the user of the graphical interface.

In running KDE, the need for communication between applications stands out. Here are a few
examples of interprocess communication needs:

• The desktop has to offer feedback about applications’ startup dynamics.

• Today’s applications will often need to point the desktop browser to a URL or offer
means for composing mail using the desktop’s default mailer agent.

• Applications need to be informed about changes operated by the user in the external con-
figuration modules hosted by KDE’s Control Center.

• Users require a unified interface to the online help offered by applications.

• The window manager (KWin) informs the panel (Kicker) about changes in the collection
of managed windows.

• Part of the changes occurring in a window’s status are propagated by the window man-
ager to the event notifier (KNotifier) for proper notification of the user. Also, the central-
ized notification resources are helpful for all applications, not only for the window
manager.

• The panel can manage special applications (panel applets) and needs to exchange with
them the bits of information related to their status and activities, such as adding and
removing applets, required geometry, special menu items to be added to the main menu
of the panel, and so on.

• Last, but not least, generic desktop control through scripting is in high demand.

Communication is essential even between distinct instances of the same application. Starting
with version 2.0 of KDE, the concept of unique application is available. This concept, very
simple in essence, stipulates that an application can choose to never have more that one fully
running instance. A user can try, of course, to spawn a second instance. It is up to this new
process to discover if previous copies are already running. If an older instance exists, the new
one should be capable of communicating with its predecessor. Through communication, it
would be able to trigger the display of an information dialog box or to pass over the parame-
ters provided by the user, such as the name of a file to open or a special command-line option.

When a given number of applications are in charge of similar tasks—for example, the process-
ing of users’ mail—collaboration between such applications is very useful. Imagine, for exam-
ple, a tiny mail monitor that sits in the background and checks for new messages in multiple
mailboxes. In the event of a new incoming message, the monitor should be able to send event
information to the system’s notification handler (KNotify), check whether there is any running
mail agent, and if there is, try to communicate to the mail agent information that will promptly
modify its status.

DCOP—Desktop Communication Protocol

CHAPTER 13

13

D
C

O
P—

D
ESK

TO
P

C
O

M
M

U
N

IC
A

TIO
N

P
R

O
TO

C
O

L

287

17 8911 Ch13 10/16/00 1:46 PM Page 287

As you can see, building reliable means of communication in the backbone of KDE is neces-
sary. Doing this in such a way that the resulting programming interface is simple, easy to use,
and efficient is also highly important. DCOP offers all these and more.

History
The UNIX programmer doesn’t lack choices when there’s need for interprocess communica-
tion. KDE made (and still makes) use of many of the possible technologies: pipes, sockets, X
Atoms, temporary files, shared memory, CORBA, and RPC.

From a historic point of view, however, in the beginning the developers were less preoccupied
by building communication means into the burgeoning code base. When information (data or
commands) were to be passed around, UNIX pipes or even common temporary files were used.

With the KDE window manager—named kwm in its first iteration—becoming more mature, a
more consistent need appeared for collaboration between applications. A mechanism based on
X Atoms was thus introduced by kwm’s author, Matthias Ettrich. This was used until the 1.1.2
version of KDE. The X Atoms are C language structures, defined and implemented in the X
library. They are used by X Window as a convenient and rapid means of passing data between
X clients (applications) and the X server, as well as between different X clients. Given their
rather simple nature—that is, designed to answer specific needs that the X technology encoun-
ters—X Atoms have intrinsic limitations in terms of the size of data they can transfer as well as
in the flexibility and complexity of the information passed through.

These limitations convinced the developers, even in early stages of the code, to search for bet-
ter communication solutions. The CORBA journey and then DCOP came as a result of this
search. Yet the X Atoms are still used in the second version of the KDE API, in conjunction
with X ClientMessages, in the form of KIPC (see kdelibs/kdecore/kipc.h in the code base).
This is a very simple and thus very efficient communication mechanism created by Geert
Jansen. KIPC allows sending messages such as “just changed” messages related to most com-
mon desktop settings that have to be sent to all the KDE-enabled applications. A good example
is the “color palette just changed” message that the Control Center sends to all KDE applica-
tions when the user chooses a new color scheme.

Application Interaction and Integration

PART III
288

For a rapid but complete understanding of KIPC, you can study the approximately 150
lines of effective code that constitute the inner details of this simple communications
mechanism.

NOTE

17 8911 Ch13 10/16/00 1:46 PM Page 288

Since 1997, when work started on KOffice and other complex KDE applications, developers
have started to create a fairly functional implementation of CORBA (see www.omg.org).
CORBA (Common Object Request Broker Architecture) is a complete, complex communica-
tion structure built to become an industry standard, capable of networked, cross-platform, reli-
able communication between any applications that subscribe to the standard.

• Functionality

• Completeness

• Availability

• Robust C++ bindings

Any combination of these is also why other implementations (such as the oft-proposed Orbit)
were ruled out.

The satisfactory results generated by the more than year-long CORBA experience of the
KOffice developers were used, in late 1998, to merge this technology in the central KDE
libraries. Alas, CORBA brought other limitations—and with these last evolutions to completely
embrace KDE, these limitations became obvious:

• CORBA was too complex for the requirements of the desktop paradigm.

• The dynamic character of a desktop became hindered by the static nature of CORBA.

• It was difficult to convince developers of small applications that they had to read and
understand thousand-page manuals before they could enable interprocess communication
in their projects.

• Compilation of the CORBA-enabled code base was very time-consuming and resource
demanding.

• MICO had performance problems including high CPU usage and large memory con-
sumption.

• The stability of the resulting applications wasn’t satisfactory.

A discussion started in the developer community that continued long after the final “let’s for-
get CORBA” decision. This discussion resulted in the conclusion that this communications
technology came with too much hassle compared to the gained benefits. One more element has
to be added to the picture of the KDE inter-application communication situation as depicted
shortly before the creation of DCOP: all the described technologies were present and used in
the KDE code base simultaneously. Also, developers often found limitations or large develop-
ment difficulties that were forcing them to create workarounds to fit their needs. For example,
MICO was making use of STL (the Standard Templates Library), which was not portable
enough for KDE and also had important performance problems. In order to solve these prob-
lems, a large amount of effort was invested by Simon Hausmann, Torben Weis, Steffen
Hansen, and many others to replace STL with QTL (the Qt Templates Library) in KDE’s
CORBA. At a given moment, the heterogeneity of the communication solutions and the grow-
ing pains of keeping all issues properly handled became obvious.

DCOP—Desktop Communication Protocol

CHAPTER 13

13

D
C

O
P—

D
ESK

TO
P

C
O

M
M

U
N

IC
A

TIO
N

P
R

O
TO

C
O

L

289

17 8911 Ch13 10/16/00 1:46 PM Page 289

In this landscape, KDE developers Matthias Ettrich and Preston Brown engaged in a high-
pitched development effort and created DCOP. This event coincided with the big KDE-TWO
reunion, held in Erlangen, Germany, in October 1999. A new, better era thus began. An impor-
tant step forward in the accomplishment of the protocol and its advanced functionalities was
achieved during the third coding reunion of KDE developers, during the month of July 2000, in
Trysil, Norway.

DCOP is released as free software. Based on largely available technology (ICE, the Inter-
Client Exchange mechanism, available with X Window) and reasonably separate from the
KDE technology, DCOP is intended as a generic interprocess communication technology. The
authors keep faith that, given its qualities and the feeble resource usage, DCOP will soon
become a widely spread commodity protocol.

Underlying Technologies
Before describing the programming interface and the usage details for the current implementa-
tion of DCOP, it might be of interest to get acquainted with the underlying technologies and
ideas. This section is optional for a developer interested in rapidly gaining the necessary skills
for KDE programming. However, even a brief look at issues related to the employed technolo-
gies will sometimes help with a better understanding of the DCOP technology itself. This sec-
tion will be of great interest to the developers proceeding at creating bindings between KDE
and other technologies or entities through the use of DCOP.

ICE—The Inter-Client Exchange Mechanism
The KDE developers consider the principle of technology reuse as being of central importance.
Whenever possible, existing specifications, standards, and algorithms are adopted and used. As
a direct consequence of this way of thinking, the waste of effort in duplication work is dimin-
ished. Another consequence is the improved possibility for cooperation with other program-
ming projects.

The authors of DCOP have chosen the ICE mechanism for the communication needs. The
main reasons for this choice, as indicated by the main authors, are as follows:

• The ICE library comes as a standard part of X11R6, thus it is available on all platforms
on which X11R6 (and KDE for that matter) exists.

• ICE is a well-established technology, used in the session management mechanism
defined by X11R6.

• The ICE library doesn’t need a running X server to function, but benefits from other use-
ful tools and technologies that the X Window System offers, such as providing authenti-
cation or reporting errors.

Application Interaction and Integration

PART III
290

17 8911 Ch13 10/16/00 1:46 PM Page 290

Detailed documentation concerning the ICE technology and the ICE library are available from
public Internet resources. The X Window System Programmer’s Guide, part of the large X
Consortium Standard, contains a chapter (the eleventh) dedicated to ICE. This document is
available at http://www.rzg.mpg.de/rzg/batch/NEC/sx4a_doc/g1ae04e/contents.html or,
in a hardcopy format, at ftp://ftp.x.org/pub/R6.4/xc/doc/hardcopy/ICE/.

Learning more about ICE and its API is useful for developers who can’t or don’t want to use
KDE’s DCOP infrastructure, yet want to add to their application capabilities of communication
with KDE applications that use DCOP. As an example, during the development of the notifica-
tion system that KDE uses for application launchers, KDE developers used code based on pure
ICE in order to connect to the DCOP server for broadcasting application startup notification.

A practical example of using ICE directly (other than in the DCOP engine itself) is Rik
Hemsley’s C wrapper API, contained in the KDE 2 libraries (kdelibs/dcop/dcopc.h and
kdelibs/dcop/dcopc.c).

Data Streaming
Applications use DCOP to pass data between them. The nature and the structure of data are
characterized by diversity. The DCOP transport mechanism has to ignore these characteristics
of manipulated data. Thus, data has to be serialized. Serialization is the operation through
which a collection of typed data items is transformed into an atypic, program-independent (and
eventually even platform-independent) stream of information. Serialization has to respect a set
of conversion rules that are then used accordingly in the de-serialization process.

For serialization/de-serialization, KDE uses QDataStream objects as defined by the Qt library.
Reference documentation for QDataStream is available at http://doc.trolltech.com/
qdatastream.html. The serialization format is described in http://doc.trolltech.com/
datastreamformat.html. QDataStream assures binary data encoding independent of operating
system, hardware platform, and byte order. Writing to and reading from a generic device
through QDataStream serialization is simple (see Listings 13.1 and 13.2).

LISTING 13.1 Writing Through a QDataStream

1: #include <qbitarray.h>
2: #include <qdatastream.h>
3:
4: QByteArray message;
5: QDataStream stream(message, IO_WriteOnly);
6: int data = 10;
7: stream << data; // put the data in the stream in usual way

DCOP—Desktop Communication Protocol

CHAPTER 13

13

D
C

O
P—

D
ESK

TO
P

C
O

M
M

U
N

IC
A

TIO
N

P
R

O
TO

C
O

L

291

17 8911 Ch13 10/16/00 1:46 PM Page 291

LISTING 13.2 Reading from a Raw “Device” Using a QDataStream

1: #include <qbitarray.h>
2: #include <qdatastream.h>
3:
4: QByteArray message;
5: QDataStream rstream(message, IO_ReadOnly);
6: int rdata;
7: rstream >> rdata; // get the data

You must imagine the QByteArray object as a piece of paper on which a message is written.
The QDataStream object could then be the bottle in which the message can travel safely.

The data stream class implemented and used by the Qt library has many supplementary fea-
tures, such as a means for setting the byte order manually, a tool for putting data in a printable
form, and capabilities to operate on raw bytes collections. This technology is fast and conve-
nient.

KDE’s core libraries contain a few enhancements to QDataStream in the form of many new
streaming operators that deal with supplementary data types that KDE classes need in DCOP
(bool, unsigned long, and long). If you need to use these, you have to replace line 2 in the
preceding listings with

#include <kdatastream.h>

Architecture
The main actor in the DCOP world is the client. Every program needing to communicate has
only to become a DCOP client. A DCOP server (an executable named, surprisingly enough,
dcopserver), runs permanently on the desktop and acts as a dispatcher for messages all clients
are passing. The dispatching is completely transparent to the clients. Hence, from their strict
point of view, clients are peers of each other.

The protocol supports both “send and forget” (like a mail message) and “call then listen” (like
a telephone call) functionalities. The DCOP server provides a means for client registration.
Only clients that are implementing data processing need to register with the server (that is,
clients that will receive and process messages have to make themselves known to the DCOP
server). The calling-only clients can use the messaging mechanisms anonymously.

All communications are performed using data serialized by means of the QDataStream technol-
ogy just described.

Messages can be

• Method Calls—In this case, the name of the object in the receptor client that implements
the called method.

• Signal Emissions—This allows Qt-style signal/slot communications over DCOP.

Application Interaction and Integration

PART III
292

17 8911 Ch13 10/16/00 1:46 PM Page 292

Knowing the receptor client for an issued message isn’t mandatory because message broad-
casts are allowed. Usually, however, the receptor client is specified.

Figure 13.1 offers a graphical presentation of the DCOP client/server architecture.

DCOP—Desktop Communication Protocol

CHAPTER 13

13

D
C

O
P—

D
ESK

TO
P

C
O

M
M

U
N

IC
A

TIO
N

P
R

O
TO

C
O

L

293

DCOP
Server

DCOP Client B
DCOPObject

::process()

DCOP Client C
DCOPObject

::send()

DCOP Client A
DCOPObject

::call()

FIGURE 13.1
The client/server architecture of DCOP.

Description of DCOP’s Programming Interface
At its first implementation, the DCOP protocol offered only a handful of methods necessary for
the proper functioning of interprocess communication. To date, it is possible to manually
implement the DCOP mechanism in a program using only primordial DCOP methods: send(),
call() and process(). An application has to make use of the default DCOPClient object
offered by the base KDE class KApplication and then use the send() and/or call() methods.
Also, part of the objects of an application can inherit the DCOPObject class and then overload
the virtual process() method.

In order to make the use of DCOP even simpler, a compiler is provided for the DCOP IDL
(Interface Description Language). This compiler, named dcopidl, while fulfilling a job similar
to CORBA’s integrated IDL compiler, remains simpler to use. This is because dcopidl’s func-
tioning principle is similar to Qt’s moc pre-compiler. Special preprocessor specifiers placed in a
header (.h) file are enough for dcopidl to automatically generate _skel.cpp and _stub.cpp
files for the future DCOP client.

17 8911 Ch13 10/16/00 1:46 PM Page 293

Starting it All
Every application that complies with KDE’s API can be easily invested with DCOP client
functionality. A call to the KApplication::dcopClient() method determines an instantiation
of a DCOPClient object inside the current KApplication. The programmer is provided with a
pointer to this instance:

DCOPClient *client = kapp->dcopClient();

Up to here, the provided tools are inert. In order to actually enable DCOP, the client has to be
“attached” to the server. A code line such as

bool done = client->attach();

will accomplish this. At this moment, if the answer from the attaching call is true, the client is
capable of communications because the dcopserver accepted an anonymous registration from
it. For a few reasons (the most common of which is that the server is not available), the value
returned by the attach() call can be false, in which case the KApplication object will pop up
an error dialog box.

If the current client needs to send and also receive messages, and then process data extracted
from these messages, a proper registration with the server is needed:

QCString realAppId = client->registerAs(kapp->name());

The parameter to registerAs() only suggests a registration identifier (id) for the current appli-
cation. The returned value actually indicates the real application id, as decided by the server. In
fact, a second parameter to registerAs(), which has an implicit value of true, imposes that the
operating system process identifier (the PID) be attached to the application name. Application
identifiers have to be allowed to differ from the requested id because an application can exist in
multiple instances on the desktop at a given moment. But each instance needs a unique identi-
fier in order for the communication to remain possible.

This chapter discusses in more detail later a special case of DCOPClient: a
KUniqueApplication. It is important to mention that for clients based on
KUniqueApplication, no attaching or registration to the dcopserver is needed, because in such
a case these are both performed automatically.

A brief statement is required here about efficiency issues of the DCOP client implementation.
If the KApplication:dcopClient() method never gets called or if its call is unsuccessful, a
DCOPClient instance is not created, and hence no memory allocation occurs.

Using send(), call(), process(), and Friends
If you are a programmer who needs a better understanding of how DCOP functions, you’ll
want to carefully read this section. Manual usage of the desktop protocol is explained here and

Application Interaction and Integration

PART III
294

17 8911 Ch13 10/16/00 1:46 PM Page 294

the syntaxes and use of the send(), call(), and process() methods are described. If you
believe that you would be better served by an automatic mechanism, you can safely skip this
section. An automatic mechanism that builds DCOP capabilities in KDE applications is
described later in the chapter.

Send and Forget
Client “A” sends a message to client “B”. The communication occurs only in one sense. The
originator of the message doesn’t want to know whether the recipient takes action as a conse-
quence. This is the simplest method of communication provided by DCOP. Client “B” doesn’t
need to be different from “A” and doesn’t need to be unique. Details of broadcast communica-
tion are covered later in this chapter. A client uses DCOPClient::send() as illustrated in
Listing 13.3.

LISTING 13.3 Typical Use of DCOPClient::send()

1: QByteArray data; // “raw support” for data
2: QDataStream arg(data, IO_WriteOnly); // “container” provides

// easy access to data
3: int a_number = 3;
4: arg << a_number; // put information on the

// “support” in the “container”
5: if (!client->send(“otherClientId”, // identify the recipient
6: “anObject/aChildOject”, //hierarchically designate

// the targeted object
7: “readAnInt(int)”, // signature of the method

// that will handle sent data
8: data)); // the data
9: kdDebug << “Sending data over DCOP failed” << endl;

First, the sender client needs to indicate the complete hierarchy of the object providing the
method designated to process the sent data (line 6). Second, the method’s signature, as marked
in line 7, indicates the types of parameters the method accepts. It doesn’t provide the type
returned because the C++ standard distinguishes overloaded methods by number and types of
parameters and neglects the return type.

A second form of the method DCOPClient::send() (see Listing 13.4), provided for conve-
nience, uses QString (compare line 8 of Listing 13.3 with line 5 of Listing 13.4) instead of
QDataStream as a data carrier. This kind of usage occurs frequently.

LISTING 13.4 DCOPClient::send() with QString Data

1: bool send_fast = true;
2: client->send(“travelingInTheAlps”,
3: “happyMan/hmWithBigVoice”,
4: “countTheEchos(QString)”, // *example*

DCOP—Desktop Communication Protocol

CHAPTER 13

13

D
C

O
P—

D
ESK

TO
P

C
O

M
M

U
N

IC
A

TIO
N

P
R

O
TO

C
O

L

295

17 8911 Ch13 10/16/00 1:46 PM Page 295

5: QString(“Hello World”), // shouting off a cliff :-)
6: send_fast)); // use “fast” IPC mechanisms

Line 6 in Listing 13.4 describes the feature of DCOP that allows a client to recommend use of
a faster mechanism of communication. Such a mechanism isn’t guaranteed to always be avail-
able. It will work only during communications between clients existing on the same local
machine.

As already indicated, the sender client issues the message and continues his normal functions
without waiting for communication acknowledgments. This is a very common need in the
desktop environment. Often, such a send-and-forget message has to be issued to many clients
at once. In a hypothetical situation, a configuration module notifies all existing konsole
instances about a configuration change, using “konsole_*” as the first parameter of
DCOPClient::send().

Theoretically, a global broadcast (that is, using “*” as a first parameter of the
DCOPClient::send() method) is also possible. Yet, because DCOPClient::send() doesn’t
check for acknowledgments, no guarantee is offered that even one client processed the mes-
sage. Wildcards are also allowed in the second parameter (the objects hierarchy). Using many
wildcards in DCOP communications is a bad idea, though, because it generates large amounts
of IPC traffic.

Application Interaction and Integration

PART III
296

LISTING 13.4 Continued

A special mention is necessary: Use of wildcards assumes special support on the side
of recipient clients. Their DCOPObject::process() method (see the section “Analyze
and Take Action” later in this chapter) has to offer special code for handling wild-
cards. This is usually available with clients built using dcopidl (explained further later
in this chapter) but seldomly so with manually written clients.

Call and Listen
Client “A” calls the peer client “B” and waits for an answer. This two-way communication is
achieved through the use of the DCOPClient::call() method (see Listing 13.5).

LISTING 13.5 Typical Use of DCOPClient::call()

1: QByteArray data, reply_data; // also prepare a byte array
// for the reply

2: QCString reply_type; // will contain the type of the reply

NOTE

17 8911 Ch13 10/16/00 1:46 PM Page 296

3: QDataStream arg(data, IO_WriteOnly);
4: int a_number = 3;
5: arg << a_number;
6: if (!client->call(“otherClientId”,
7: “anObject/aChildOject”,
8: “readAnIntAndAnswer(int)”,

// signature of method to handle data and answer
9: data, // sent data
10: reply_type,

// type of data contained in the answer
11: reply_data); // the answer
12: kdDebug << “Calling over DCOP failed!” << endl;
13: else {
14: QDataStream answer(reply_data, IO_ReadOnly);
15: if (reply_type == “QString”) {
16: QString result;
17: answer >> result;
18: this->doSomething(result);
19: } else
20: kdDebug << “Calling over DCOP succeeded,\

but the answer had wrong type!” << endl;

Use of wildcards(broadcasting) isn’t allowed with the DCOPClient::call() method because
the communication is established from peer to peer. In other words, the originator client waits
for exactly one answer. Of course, this can be a problem when peer clients are registered with
the server by identifiers different from their name (for example, clients registered with the
form appname-pid). Yet, the server gains heuristic capabilities that allow use of generic identi-
fiers. This way, DCOPClient::call() can use a generic but sensible name (for example,
“konqueror”). The server will pick up and establish connection with the first available
instance from the group of clients whose identifiers are matching the generic name (for
example, “konqueror-NNN”, where “NNN” are operating system’s process identifiers, or PIDs).

Analyze and Take Action
The previous two sections described how a DCOP client can generate DCOP messages. These
messages are sent over communication channels that the client establishes with the DCOP
server during the initial phases (attach(), registerAs()). The server is only expected to pass
the message over to the designated recipient—only this client knows how to process the trans-
mitted data.

A client gains reception abilities through the inheritance of a special class provided by the
DCOP mechanism. This usually means that a receiving client uses multiple inheritance:

DCOP—Desktop Communication Protocol

CHAPTER 13

13

D
C

O
P—

D
ESK

TO
P

C
O

M
M

U
N

IC
A

TIO
N

P
R

O
TO

C
O

L

297

LISTING 13.5 Continued

17 8911 Ch13 10/16/00 1:46 PM Page 297

• It inherits its normal parent; for example, a QWidget, a KCModule, or a KApplication
class.

• It inherits the DCOPObject class available in the DCOP API.

A sample implementation is shown in Listing 13.6.

LISTING 13.6 Simple Object that Implements DCOP Processing

File asmartwidget.h
--
1: #include <qwidget.h>
2: #include <qlabel.h>
3: #include <qlayout.h>
4: #include <dcopobject.h>
5:
6: class ASmartWidget : public QWidget, public DCOPObject {
7:
8: protected:
9: QLabel *l_front;
10:
11: public:
12: ASmartWidget(const char* name);
13:
14: bool setFront(QString&);
15: QString& front() { return l_front->text();};
16:
17: protected:
18: bool process(const QCString &fun, // the function to be called
19: const QByteArray &data,

// data passed to the function
20: QCString &reply_type, // indicate what type has

// the reply data
21: QByteArray &reply_data);// the answer (reply data)
22:
23: };

File asmartwidget.cpp
--
1: #include <qbitarray.h>
2: #include <qdatastream.h>
3:
4: ASmartWidget::ASmartWidget(const char* name):
5: QWidget(name),
6: DCOPObject() {
7:
8: QVBoxLayout *lay = new QVBoxLayout (this, 10, 10);
9: l_front = new QLabel(this, “Hello, I’m a smart widget);

Application Interaction and Integration

PART III
298

17 8911 Ch13 10/16/00 1:46 PM Page 298

10: lay->addWidget (front);
11:
12: }
13:
14: bool ASmartWidget::setFront(QString& l) {
15: // a bit of data processing - eventually filter contents of l
16: if (l.find(“smart”) != -1) {
17: l_front->setText(l);
18: return true;
19: } else
20: return false;
21: }
22:
23: bool ASmartWidget::process(const QCString &fun,

const QByteArray &data,
24: QCString &reply_type,

QByteArray &reply_data) {
25:
26: if (fun == “setFront(QString&)”) {
27: QDataStream arg(data, IO_ReadOnly);
28: QString& atext;
29: arg >> atext;
30: bool result = setFront(atext);
31:
32: QDataStream answer(reply_data, IO_WriteOnly);
33: answer << result;
34: reply_type = “bool”;
35: return true;
36: } else {
37: kdDebug << “Processing DCOP call failed. Function unknown!”

<< endl;
38: return false;
39: }
40: }

The preceding code is very easy to understand and even easier to use, in combination with
what you learned already about DCOPClient::send() and DCOPClient::call(). It is straight-
forward to make the preceding class a member of a proper KDE application, start this applica-
tion, and then from another DCOP client, issue a send() of the form

client->send(“someApplication”,
“ASmartWidget”,
“setFront(QString&)”,
QString(“To be smart is not enough”));

DCOP—Desktop Communication Protocol

CHAPTER 13

13

D
C

O
P—

D
ESK

TO
P

C
O

M
M

U
N

IC
A

TIO
N

P
R

O
TO

C
O

L

299

LISTING 13.6 Continued

17 8911 Ch13 10/16/00 1:46 PM Page 299

This action will make your small widget acknowledge its human-like limitations.

As previously mentioned, a DCOPObject::process() method becomes part of an object’s inter-
face through inheritance of the DCOPObject class. The programmer needs to ensure inheritance
and implementation for each and every object of his application that has to offer DCOP recep-
tion capabilities. Yet, it is possible to build DCOP call processing mechanisms directly at an
application-wide level. Two ways of achieving this are explained here.

The setDefaultObject() method accepts one unique parameter, a QCString that denominates
the object that receives and processes all application-wide DCOP calls. Its pair method,
DCOPClient::defaultObject(), returns a QCString with the name of this special object mem-
ber of the application.

The API of the class DCOPClient also offers a DCOPClient::process() method. In the initial
phases of the development of the DCOP technology, the process() capabilities were achieved
by an application through inheritance from the DCOPClient class. The
DCOPClient::process() method has the same definition as the DCOPObject::process()
method. It offers a second method of implementation for application-wide DCOP call process-
ing. Developers should prefer the use of DCOPObject or DCOPObjectProxy classes for this pur-
pose, however.

Longer Calls Become Transactions
Time is an important component of communications processes. This affirmation is obviously
valid in the real world (information about a large storm heading to Bill’s house has no value
for Bill if it arrives after the storm has already calmed). And it remains valid, while gaining
strong connotations, in the programming world. There are two aspects in the involvement of
time in process communication:

• Conjuncture—Events have to occur at the right moment (proper handling of erratic
events is mandatory).

• Duration—Events have to behave in a smart way in relation to the time needed for them
to be transmitted and/or processed.

The first aspect is less important at this point in the discussion. In relation to the duration of
events, the DCOP mechanism needs some explanation. As presented in the previous sections,
the DCOPClient::call() is a blocking method. Its use implies awareness of GUI refresh issues
and effective event loop treatments, as well as concerns related to the continuous processing of
DCOP calls.

Fortunately, things are made easy by methods provided by the DCOPClient class. The family of
transaction methods enlists the following:

Application Interaction and Integration

PART III
300

17 8911 Ch13 10/16/00 1:46 PM Page 300

DCOPClientTransaction* DCOPClient::beginTransaction()

Q_INT32 DCOPClient::transactionId()

void
DCOPClient::endTransaction(DCOPClientTransaction* newTr,

//a handle of the negociated transaction
QCString& reply_type,

// data type and data stream that were not
QDataStream& reply_data)

// not available as an immediate answer to a call

The signatures shown in the code are implying that a transaction lives like an object of type
class DCOPClientTransaction (defined and implemented in the DCOP API). The transaction
identifier is an integer declared with the platform-independent type macros offered by the Qt
library.

Understanding the functionality offered by these methods is straightforward, as exemplified by
the following code. Assume that the method of our humanly smart widget, which changed the
text on the front label, executes a time-consuming filtering operation instead of simply detect-
ing the word “smart” in the input. The implementation of our class needs to be changed as
shown in Listing 13.7

LISTING 13.7 DCOP Processing with Transactions

File asmartwidget.h
--
1: #include <qwidget.h>
2: #include <qlabel.h>
3: #include <qlayout.h>
4: #include <dcopclient.h>
5: #include <dcopobject.h>
6:
7: class ASmartWidget : public QWidget, public DCOPObject {
8: Q_OBJECT
9:
10: protected:
11: QLabel *l_front;
12:
13: public:
14: ASmartWidget(const char* name);
15:
16: void changeFront(DCOPClientTransaction*, QString&);
17: QString& front() { return l_front->text();};
18:

DCOP—Desktop Communication Protocol

CHAPTER 13

13

D
C

O
P—

D
ESK

TO
P

C
O

M
M

U
N

IC
A

TIO
N

P
R

O
TO

C
O

L

301

17 8911 Ch13 10/16/00 1:46 PM Page 301

19: public slots:
20: void frontIsChanged(DCOPClientTransaction* ,

QByteArray&, QDataStream &);
21:
22:
23: protected:
24: bool process(const QCString &fun, // the function to be called
25: const QByteArray &data,

// data passed to the function
26: QCString &reply_type, // indicate what type has

// the reply data
27: QByteArray &reply_data);// the answer (reply data)
28:
29: };

File asmartwidget.cpp
--
1: #include <qbitarray.h>
2: #include <qdatastream.h>
3:
4: ASmartWidget::ASmartWidget(const char* name):
5: QWidget(name),
6: DCOPObject() {
7:
8: QVBoxLayout *lay = new QVBoxLayout (this, 10, 10);
9: l_front = new QLabel(this, “Hello, I’m a smart widget);
10: lay->addWidget (front);
11:
12: }
13:
14: void ASmartWidget::changeFront(DCOPClientTransaction* aTransaction,

DCOPQString& l) {
15:
16: bool succeeded = false;
17:
18: // time consuming data processing -
19: // complex filter and cruncher for the contents of l
20: // for (...) {
21: // ...
22: // }
23:
24: if (l.find(‘smart’) != -1) { // or other interesting condition
25: l_front->setText(l);
26: succeeded = true;
27: } else

Application Interaction and Integration

PART III
302

LISTING 13.7 Continued

17 8911 Ch13 10/16/00 1:46 PM Page 302

28: succeeded = false;
29:
30: frontIsChanged(aTransaction, succeeded);
31: }
32:
33: bool ASmartWidget::process(const QCString &fun,

const QByteArray &data,
34: QCString &reply_type,

QByteArray &reply_data) {
35:
36: if (fun == “setFront(QString&)”) {
37:
38: DCOPClientTransaction *myTransaction;
39: newTransaction = kapp->dcopClient()->beginTransaction();
40:
41: QDataStream arg(data, IO_ReadOnly);
42: QString& atext;
43: arg >> atext;
44:
45: Q_INT32 trId = kapp->dcopClient()->transactionId();

// trId == 0 if no transaction
46: if (trId) {
47: changeFront(newTransaction, atext);
48: kdDebug << “Transaction “ << trId << “ established!” << endl;
49: return true;
50 } else {
51: kdDebug << “Processing DCOP call failed.\

No transaction accepted!” << endl;
52: return false;
53:
54: } else {
55: kdDebug << “Processing DCOP call failed. Function unknown!”

<< endl;
56: return false;
57: }
58:
59: void ASmartWidget::frontIsChanged(DCOPClientTransaction* aTransaction,
60: bool data) {
61: QByteArray reply_data;
62: QDataStream answer(reply_data, IO_WriteOnly);
63: answer << data;
64: QCString reply_type = “bool”;
65: kapp->dcopClient()->endTransaction(aTransaction,

reply_type, reply_data);
66:
67: }

DCOP—Desktop Communication Protocol

CHAPTER 13

13

D
C

O
P—

D
ESK

TO
P

C
O

M
M

U
N

IC
A

TIO
N

P
R

O
TO

C
O

L

303

LISTING 13.7 Continued

17 8911 Ch13 10/16/00 1:46 PM Page 303

This example makes clear that the transaction methods have a proper usage only inside the
implementation of the DCOPObject::process() method. Using transactions is obviously more
complex and a bit heavier, both in terms of programming and resource usage (more DCOP
communication traffic). Of course, transactions can also generate complex puzzles of applica-
tion functionality and usability. When a call() can be answered with a transaction, all
assumptions about the linearity of caller’s functioning are wrong. On the other side, the main
reason for the existence of transaction methods is to allow implementations of non-blocking
DCOP calls. Consequently, attention and consideration in the use of transactions is advised.

Application Interaction and Integration

PART III
304

Another tool referring to blocking calls is the signal
DCOPClient::blockUserInput(bool). This signal is automatically used by
KApplication to block (parameter is true) or release (parameter is false) the graphi-
cal interface while the client waits for an answer to a DCOP call. The programmer
doesn’t normally have a use for manually emitting this signal.

TIP

Handling the Connection
An attached client can cut all communication with the DCOP server by detaching itself. This
operation is achieved through a call to the DCOPClient::detach() method. Such a call is auto-
matically performed during the client’s normal stop (during the call of client’s main destruc-
tor). A manual call is also allowed.

Situations may occur in which the connection with the DCOP server has to be deactivated tem-
porarily. For example, when the user is prompted to decide upon a DCOP related situation, the
program can halt communication for a while using the method DCOPClient::suspend(). If the
user’s decision allows for continuing, the program calls DCOPClient::resume() to reestablish
the communication. The developer has to pay attention to the fact that suspending the connec-
tion for a relatively long time might be a bad idea. If other clients are attempting to perform
call() connections to the currently suspended application, they will hang (see the section
“Using send(), call(), process(), and Friends,” earlier in the chapter).

Automated Elegance—dcopIDL
The preceding section discussed how to proceed for a manual implementation of DCOP capa-
bilities in a KDE application. As already mentioned, an automated way of developing DCOP
support exists. To this purpose, the DCOP authors created a set of IDL compiling tools:
dcopidl and dcopidl2cpp. These compilers make use of a special syntax of header files to
generate standard encapsulation methods for the DCOP messaging. A new iteration of part of
the smart widget code will help illustrate this (see Listing 13.8).

17 8911 Ch13 10/16/00 1:46 PM Page 304

LISTING 13.8 Using dcopidl

File asmartwidget.h
--
1: #include <qwidget.h>
2: #include <qlabel.h>
3: #include <qlayout.h>
4: #include <dcopobject.h>
5:
6: class ASmartWidget : public QWidget, public DCOPObject {
7: K_DCOP
8: Q_OBJECT
9:
10: protected:
11: QLabel *l_front;
12:
13: public:
14: ASmartWidget(const char* name);
15
16: QString& front() { return l_front->text();};
17:
18: k_dcop:
19: bool changeFront(QString& l);
20:
21: };
File: asmartwidget,cpp

1: #include <qbitarray.h>
2: #include <qdatastream.h>
3: #include “asmartwidget.h”
4:
5: ASmartWidget::ASmartWidget(const char* name)
6: : QWidget(0, name),
7: DCOPObject()
8: {
9: QVBoxLayout *lay = new QVBoxLayout (this, 10, 10);
10: l_front = new QLabel(this, “Hello, I’m a smart widget”);
11: lay->addWidget (l_front);
12: }
13:
14: bool ASmartWidget::changeFront(const QString& l) {
15:
16: bool succeeded = false;
17:
18: if (l.find(“smart”) != -1) { // or other interesting condition
19: l_front->setText(l);

DCOP—Desktop Communication Protocol

CHAPTER 13

13

D
C

O
P—

D
ESK

TO
P

C
O

M
M

U
N

IC
A

TIO
N

P
R

O
TO

C
O

L

305

17 8911 Ch13 10/16/00 1:46 PM Page 305

20: succeeded = true;
21: } else
22: succeeded = false;
23:
24: return succeeded;
25: }

When comparing Listing 13.8 with the code shown in Listing 13.7, the simplifications of using
DCOP provided by the dcopidl mechanism become evident. The asmartwidget.cpp file is sim-
plified accordingly (no need to implement the ::process() method). New elements to pay
attention to in this last code example appear in lines 7, 18, and 19.

K_DCOP (line 7) is a preprocessor macro that helps the dcopidl compiler to decide that the
ASmartWidget class has to be processed with respect to DCOP functionalities.

The construct k_dcop: present on line 18 is similar to standard C++ scope delimiters (public,
private, protected) and helps the dcopidl compiler to detect the methods that will gain
DCOP messaging envelopes. All methods entailed between a k_dcop: label and any other valid
C++ or Qt delimiters will be included in the DCOP interface of the current object.

Finally, it’s important to note that the QString parameter (line 19) of the changeFront()
method has assigned an explicit name. A rule of use for the dcopidl compiler is that, while the
C++ standard allows anonymous method parameters, all parameters in DCOP-enabled meth-
ods need explicit names.

Suppose you create a KDE application having ASmartWidget as its main widget(see Listing
13.9).

LISTING 13.9 A Typical Application that Uses DCOP

File myapp.cpp

1: #include <kapp.h>
2: #include <dcopclient.h>
3: #include “asmartwidget.h”
4:
5: int main(int nargs, char** argv) {
6:
7: KApplication* a = new KApplication(nargs, argv, “myapp”);
8: ASmartWidget* asw = new ASmartWidget(“smart”);
9: a->setMainWidget(asw);
10:
11: client = a.dcopClient();

Application Interaction and Integration

PART III
306

LISTING 13.8 Continued

17 8911 Ch13 10/16/00 1:46 PM Page 306

12: client.attach();
13: client.registerAs(“myapp”);
14:
15: return a.exec();
16: }

Line 13 shows that your application (as all applications built to receive and process DCOP
messages) needs a non-anonymous registration with the dcopserver.

With the help of a little Makefile magic (described in the following section) and with heavy
use of the dcopidl tools, the application will be compiled with built-in DCOP functionality.
The tools will automatically generate a few files:

• asmartwidget.kidl is a helper file containing XML code generated by the dcopidl tool.

• asmartwidget_skel.cpp is a skeleton file, in which the dcopidl2cpp tool writes the auto-
generated ::process() method needed to envelop the DCOP enabled methods picked up
by processing of the header file.

• asmartwidget_stub.h is an autogenerated header file that will be installed with the KDE
system and then included in DCOP clients willing to use the DCOP interface that myapp
offers.

A stub file can be also written by hand. Listing 13.10 is a live example, extracted from the
KDE 2 desktop panel, Kicker:

LISTING 13.10 Example of a Handmade Stub File

1: #ifndef KICKER_INTERFACE_H
2: #define KICKER_INTERFACE_H
3:
4: #include <dcopobject.h>
5:
6: class KickerInterface : virtual public DCOPObject
7: {
8: K_DCOP
9:
10: k_dcop:
11:
12: virtual void configure() = 0;
13: };
14:
15: #endif // Included this file.

DCOP—Desktop Communication Protocol

CHAPTER 13

13

D
C

O
P—

D
ESK

TO
P

C
O

M
M

U
N

IC
A

TIO
N

P
R

O
TO

C
O

L

307

LISTING 13.9 Continued

17 8911 Ch13 10/16/00 1:46 PM Page 307

A DCOP client that wants to communicate via DCOP with the new smarter widget has only to
include the published interface file (asmartwidget_stub.h). An example of the implementation
of such a client is shown in Listing 13.11.

LISTING 13.11 DCOP Client Using the Automatically Generated Interface of Another
DCOP Client

File aclient.cpp

1: #include <kapp.h>
2: #include <dcopclient.h>
3: #include “asmartwidget_stub.h”
4:
5: int main(int argc, char** argv)
6: {
7: // client doesn’t need GUI hence set fourth parameter to false
8: KApplication app(argc, argv, “autoclient”, false);
9:
10: app.dcopClient()->attach();
11:
12: ASmartWidget_stub iface(“myapp”, “ASmartWidget”);

// automatically generated class
13: iface.changeFront(QString(“Now this is really smart!”));
14: }

Line 12 in Listing 13.11 exemplifies the use of the automatically generated “stub” interface.
This type of usage is visibly more convenient than the manual definitions of send(), call(),
and process() on both developed clients. The advantages become especially evident with
large programming projects. Using the dcopidl compiler proved to be compelling enough that
most KDE applications—which initially used manual DCOP interface implementations—were
recently rewritten to employ this easier and better programming technique.

Looking at how things are prepared for the use of the dcopidl tools might raise the question of
how does the compiler realize the difference between a method to be treated as a send() and
one that will be a call(). The specification of the dcopidl tools provides the developer with
the ASYNC pseudotype. ASYNC is a precompiler macro that translates to the valid C++ type
void. The developer writes ASYNC in the header file defining the DCOP interface, in front of
the definition of methods that are expected to be treated as send() methods. The dcopidl tools
will interpret this marker at precompilation and invest the marked method with proper non-
blocking implementations.

Makefile Magic
In order for the automated DCOP support to be built in to an application, use of proper make
rules is needed. A few specific additions will aid the compilation of the preceding examples
when using the dcopidl tools:

Application Interaction and Integration

PART III
308

17 8911 Ch13 10/16/00 1:46 PM Page 308

• A rule is needed to generate the .kidl file.

• Another rule will help create the _skel.cpp, _stub.h, and _stub.cpp files.

• The generated _skel.cpp (and eventually _stub.cpp) source needs to be compiled.

Of course, the usual details related to normal project management have to be taken care of. A
Makefile example is shown in Listing 13.12.

LISTING 13.12 Specific Makefile Rules Needed for the DCOP Mechanism

1: QTDIR = /home/ctibirna/kde/2_0/qt-copy
2: CXXFLAGS = -I${QTDIR}/include -I${KDEDIR}/include -I.
3: LDFLAGS = -L${QTDIR}/lib -L${KDEDIR}/lib -L/usr/X11R6/lib
4: LDADD = -ldl -lqt -lICE
5:
6: all: autoclient myapp
7:
8: autoclient : asmartwidget_stub.o aclient.o
9: g++ asmartwidget_stub.o aclient.o $(LDFLAGS) $(LDADD) -o

➥autoclient
10:
11: myapp : aswmartwidget.o asmartwidget_skel.o asmartwidget_moc.o
➥myapp.o
12: g++ myapp.o asmartwidget.o asmartwidget_skel.o asmartwidget_moc.o\
13: $(LDFLAGS) $(LDADD) -o myapp
14:
15: .cpp.o:
16: g++ $(CXXFLAGS) -c $<
17:
18: asmartwidget.kidl: asmartwidget.h
19: dcopidl asmartwidget.h > asmartwidget.kidl || rm -f
➥asmartwidget.kidl
20: asmartwidget_moc.cpp: asmartwidget.h
21: ${QTDIR}/bin/moc asmartwidget.h -o asmartwidget_moc.cpp
22: asmartwidget_skel.cpp: asmartwidget.kidl
23: dcopidl2cpp asmartwidget.kidl
24: asmartwidget_stub.cpp: asmartwidget.kidl
25:
26: clean :
27: rm -f *.o *_moc.cpp *_skel.* *_stub.* *.kidl myapp autoclient

The use of the standard KDE development environment makes the issue of the Makefile rules
much simpler thanks to the autodetection and autogeneration of makefiles used there. Simply
adding the name of the _skel.cpp file to be generated and compiled to the list of the other com-
pilable source files is enough.

DCOP—Desktop Communication Protocol

CHAPTER 13

13

D
C

O
P—

D
ESK

TO
P

C
O

M
M

U
N

IC
A

TIO
N

P
R

O
TO

C
O

L

309

17 8911 Ch13 10/16/00 1:46 PM Page 309

Developer Concerns and Tools in DCOP
At this point in the journey of learning DCOP, most of the necessary notions and principles
have been presented. You should be able to add DCOP functionality to your existing KDE
code. The appropriation of the information presented in the preceding sections hopefully offers
a good foundation. A wealth of concrete DCOP usage examples are provided in the standard
KDE code.

The remaining sections attempt to provide a fast reference to deeper technical details related to
DCOP.

Stay Informed
The team of developers focusing on the KDE’s communication protocol technology has made
a number of additions to the standard DCOP API designed to make the protocol more informa-
tive and even easier to use.

Because DCOP makes use of a server that has to run permanently, willing DCOP clients can
be enabled to access an important amount of information about their peers running at a given
moment on the desktop. The functionalities offered by the peers are also made publicly avail-
able. Following is a list of DCOP API tools that will extract and report this kind of informa-
tion. The presentation offered here for each of the tools is brief. For a complete description of
their programming interface, the API documentation available at http://developer.kde.org
is the authoritative resource.

• isRegistered()—Returns a boolean value stating whether the current client is already
registered with the DCOP server. This method is particularly useful when using DCOP in
KPart applications. More details are provided near the end of this section.

• isApplicationRegistered()—Accepts a QCString parameter containing the identifier
of a remote DCOP client. Returns a true boolean value if an application with the given
identifier is registered with the DCOP server.

• registeredApplications()—Returns a list of identifiers for all applications registered
with the DCOP server.

• remoteObjects()—Given the identifier of a remote DCOP client as a parameter, returns
a list of all DCOP-enabled objects in that client.

• remoteInterfaces()—Returns the list of DCOP interfaces that a client implements. The
clients that use automatic DCOP interface generation (the dcopidl tools) have at least a
DCOPObject interface declared. The data provided by this method has no functional role,
but only an informative one.

• remoteFunctions()—Requires an application identifier and an object signature as parame-
ters and returns the list of methods accessible through DCOP for the designated hierarchy.

Application Interaction and Integration

PART III
310

17 8911 Ch13 10/16/00 1:46 PM Page 310

• findObject()—This method is a complex tool that was particularly useful before the
heuristic mechanisms were added to the DCOPClient::call() method. It takes as para-
meters a trial client identifier, a trial object signature, and a few other optional parame-
ters. The real identifier and the signature of the DCOP hierarchy
(application/object1/object2/...) that answered the request properly are returned as refer-
ences. The method returns a false boolean value if no matching client is found. This is a
potentially blocking method (in other words, its execution time could be long enough to
hinder the user interface activity). It is possible to counter the effects of blocking by set-
ting a true boolean value to the useEventLoop parameter that the method accepts.

• senderId()—Returns the DCOP identifier of the last peer with which the current client
had communication. This is potentially particularly powerful and useful information.

• socket()—Returns a number that identifies the ICEConnection socket over which com-
munication is established with the DCOP server.

Referencing DCOP Objects
Another powerful functionality added recently to the DCOP API is represented by the message
redirection technology (also called referencing). A normal DCOP client can create and use
DCOPRef objects. The role of this type of objects is to provide a reference to an object made
public over DCOP by a remote client. The identifier of the remote client as well as the signa-
ture of the receptor object can be indicated at the creation or at any other moment in the life of
the DCOPRef object. It might not be immediately obvious what role the DCOP object references
in the general desktop communication landscape are playing. An example will help for a better
understanding. KDesktop is an application that offers the KDE user control over the back-
ground of the computer screen, usually referred to as the desktop. KDesktop manages the fol-
lowing:

• The desktop icons and icon operations (for example, Alignment)

• Drag-and-drop operations on the desktop

• The “Trash”

• The “AutoStart” functionality

• The desktop’s contextual menus

• Wallpapers

• Screensavers

Apart from this set of obvious responsibilities, KDesktop is also charged with the hidden capa-
bility of providing the user with the necessary means for remote control of these desktop
resources. As a consequence, KDesktop became one of the most important beneficiaries of the
DCOP technology. In accordance with the object-oriented programming philosophy, the stretch
of functionalities KDesktop controls required modularization. Thus, the control over wallpa-
pers and the handling of screensavers is passed on to modules. Yet, it is logical to have DCOP

DCOP—Desktop Communication Protocol

CHAPTER 13

13

D
C

O
P—

D
ESK

TO
P

C
O

M
M

U
N

IC
A

TIO
N

P
R

O
TO

C
O

L

311

17 8911 Ch13 10/16/00 1:46 PM Page 311

control over all KDesktop functionalities published to the DCOP “community” of applications
from KDesktop. Because the wallpaper handling module (named KBackground) and the screen
locking engine have their own DCOP interfaces, the general DCOP interface of KDesktop is
designed as shown in Listing 13.13.

LISTING 13.13 Example of DCOPRef Usage

File KDesktopIface.h (from the real KDE-2.0 code base)
--
1: #ifndef __KDesktopIface_h__
2: #define __KDesktopIface_h__
3:
4: #include <qstringlist.h>
5: #include <dcopobject.h>
6: #include <dcopref.h>
7:
8: class KDesktopIface : virtual public DCOPObject
9: {
10: K_DCOP
11: public:
12:
13: k_dcop:
14: virtual void rearrangeIcons() = 0;
15: virtual void rearrangeIcons(bool bAsk) = 0;
16: virtual void lineupIcons() = 0;
17: virtual void selectIconsInRect(int x, int y, int dx, int dy) = 0;
18: virtual void selectAll() = 0;
19: virtual void unselectAll() = 0;
20: virtual QStringList selectedURLs() = 0;
21: virtual void configure() = 0;
22: virtual void popupExecuteCommand() = 0;
23: virtual DCOPRef background() = 0;
24: virtual DCOPRef screenSaver() = 0;
25: };
26:
26: #endif

File desktop.h (from the real KDE-2.0 code base)
--
.
96: virtual DCOPRef background()

{ return DCOPRef(“kdesktop”, “KBackgroundIface”); }
97: virtual DCOPRef screenSaver()

{ return DCOPRef(“kdesktop”, “KScreensaverIface”); }
.
.
.

Application Interaction and Integration

PART III
312

17 8911 Ch13 10/16/00 1:46 PM Page 312

The relevant lines are, of course, 23 and 24 in KDesktopIface.h and the clipped lines from
desktop.h. At the level of the client’s DCOPObject representation, this results in the addition of
objects named “KBackgroundIface” and “KScreensaverIface” to the rest of the (normally built)
DCOP interface of KDesktop. These objects allow, as expected, remote control over function-
alities of the background engine and the screen locking engine. The automatically generated
DCOP interfaces of these modules are defined independently. For a thorough understanding of
the topic of DCOP object referencing, you may prefer to peruse the source code of the
KDesktop application.

Signals and Slots Through the DCOP Server
KDE developers are very familiar with the concepts of signals and slots intensively used by
the Qt library, the basement on which KDE is built. Very powerful and particularly useful con-
cepts, the signals and slots play an important role in the elegance and the ease of use of the Qt
toolkit. The DCOP API contains the implementation of a similar mechanism. In addition to the
“strong” bindings offered by the DCOPClient::send() and DCOPClient::call() methods,
DCOPSignals provide what can be depicted as “weak” or “flexible” bindings. The mildly
experienced Qt programmer will be able to appropriate the principle of DCOPsignals easily.
The equivalents of Qt’s QObject::connect(), QObject::disconnect(), and QObject::emit()
methods are conveniently named DCOPClient::connectDCOPSignal(),
DCOPClient::disconnectDCOPSignal(), and DCOPClient::emitDCOPSignal(). They use
roughly similar functioning principles too. There are two noticeable differences between the
implementation of Qt’s signals and slots and the implementation of KDE’s over-DCOP signals
and slots:

• Data has to be encapsulated into a proper QByteArray/QDataStream envelope when
passed over a DCOP signal-slot connection from a DCOPClient::emitDCOPSignal()
method call.

• In order to have proper control over-DCOP signal/slot connections, a supplementary
method from the DCOPClient API has to be invoked before actually using them. This
method is DCOPClient::setNotifications() and has to be called after establishing all
wanted connections, but before issuing the first DCOP signal emit.

• There are a few predefined, convenient signals, built in to the DCOPClient class:

• The signal DCOPClient::applicationRegistered() is emitted automatically at
the moment a client uses the attach() method.

• Its counterpart, DCOPClient::applicationRemoved(), is emitted when a detach()
call is performed (this usually happens when the client quits functioning).

DCOP—Desktop Communication Protocol

CHAPTER 13

13

D
C

O
P—

D
ESK

TO
P

C
O

M
M

U
N

IC
A

TIO
N

P
R

O
TO

C
O

L

313

17 8911 Ch13 10/16/00 1:46 PM Page 313

DCOP with an Embedded KPart
DCOP and KParts are the technologies KDE is using to comply with the modern requirements
of software modularization. Both technologies are convenient for building reusable objects and,
when used together, they open large opportunities for creatively minded developers. This sec-
tion attempts to draw attention to the somewhat delicate aspect of programming modules using
both the embedding and the communication technologies at once.

There is nothing that prevents an embeddable KPart from gaining DCOP functionality. The
developer needs to write in his KPart the usual code meant to create the DCOP client object, to
attach it to the server, and then to register it so that the duplex communication can be enabled.
Yet, it is important to note that the embedding application, which will host the DCOP client
KPart, may also be a DCOP client before the embedding occurs. In consequence, caution is
required. Listing 13.14 is a small example of proper DCOP client registration code as provided
in the KWrite editor KPart.

LISTING 13.14 DCOP within a KPart

File kwview.cpp (from the real KDE-2.0 code base)
--
.
.
1527: DCOPClient *client = kapp->dcopClient();
1528: if (!client->isRegistered()) // just in case we’re embedded
1529: {
1530: client->attach();
1531: client->registerAs(“kwrite”);
1532: }
.
.

The need for such code comes from the fact that attempting to register an embedded KPart
instance while the embedding application is already registered with the DCOP server will mod-
ify (with unpredictable consequences) the identity of the embedding application on the DCOP
client names pool.

The solution to this problem is based on a simple but brilliant idea:

• The DCOP client object is created using the normal instantiation method.

• Prior to all attaching and registering attempts, a check with the DCOP server is per-
formed in order to learn whether a legitimate registration is already available.

• If the embedding application is already registered, then the embedded KPart instance
learns that proper registration exists, hence it doesn’t need to register itself anymore.

Application Interaction and Integration

PART III
314

17 8911 Ch13 10/16/00 1:46 PM Page 314

• If the embedding application doesn’t exhibit DCOP functionality, then the KPart instance
needs to register properly.

A question becomes evident: How does the embedded KPart instance acquire proper visibility
in the DCOP “community” when the embedding application is already registered? Indeed, the
embedded KPart instance needs a working registration with the server so that it can receive
DCOP calls from the peer clients. The little secret resides in proper usage of DCOPRef objects
previously presented. At embedding time, the embedding application creates DCOPRef objects
for the DCOP objects that an embedded KPart instance makes public. For example, as a result
of this behavior, a Konqueror DCOP client with an embedded KWrite view part, observed
from the exterior, will appear to provide a reunion of Konqueror-specific and KWrite-specific
DCOP object interfaces.

Performance and Overhead
DCOP presently plays a central role in the KDE desktop. Also, the history of the KDE project
recorded rather painful CORBA experiences, therefore the concerns about performance,
resource usage, and overhead related to the intensive usage of the protocol are legitimate.
Fortunately, KDE team members performed a few instrumental tests. Also, many hundreds of
developers and alpha/beta testers assured rather intensive normal usage testing during many
months. This section enlists a collection of significant results, courtesy of KDE developers
Preston Brown, Matthias Ettrich, David Faure, Waldo Bastian, and Kurt Granroth.

Concerning performance, numbers regarding the useful message exchanges between peers are
of interest. Consider, for example, two clients only, passing messages between them by the
mediation of the DCOP server.

Usual desktop computers (popular processors running at frequencies of around 300 MHz) are
credited with allowing 1500 to 2000 usual DCOP messages per second. Usual DCOP mes-
sages consist of rather small amounts of data (1 to 5 Kbytes). The two clients aren’t able to
saturate the capabilities of the server. Adding two more clients determines the augmentation of
the maximal counts with about 40%.

In order to put these numbers in context, we have to observe that the MICO implementation of
CORBA provides results of about 900 hits on a same type of computer. Also note that usual
IPC/RPC implementations are credited with a maximum of 3000 hits per second. As a conclu-
sion, DCOP is fast enough for the practical needs of modern desktop environment software.

The disadvantages associated with DCOP appear evident, though, when trying to transfer large
amounts of data between clients. The explication resides in the fact that the operation of data
copying always has to be performed twice (first from the sender client to the DCOP server,
then from the server to the receptor). This issue is known to the KDE developers. The pro-

DCOP—Desktop Communication Protocol

CHAPTER 13

13

D
C

O
P—

D
ESK

TO
P

C
O

M
M

U
N

IC
A

TIO
N

P
R

O
TO

C
O

L

315

17 8911 Ch13 10/16/00 1:46 PM Page 315

posed solution consists of implementing shared memory backend usage for such large data
transfers. The design of the current DCOP implementation would easily allow for such an
enhancement. It is worth mentioning that Stefan Westerfeld, member of the KDE Multimedia
team, designed and implemented a communication protocol adapted to the needs of multimedia
applications. His protocol (named MCOP, as you will learn about in Chapter 14,
“Multimedia”) is similar in functionality to DCOP but allows for asynchronous, fast transfers
of the large amounts of data specific to this particular field (video and audio streams, for exam-
ple). This technology is also actively used in the current version of KDE (2.0) under the form
of the network-transparent, composition-capable, KDE audio technology and server (named
aRts and artsd respectively).

DCOP, as all other computer technologies, will need to use memory and processing power in
order to do something useful. For the case in discussion, the memory usage is required by the
operation of equipping a normal KDE KApplication object with a functional DCOP client
data and live code structures. According to preliminary measurements performed by KDE
developers, this memory overhead amounts to about 100 Kbytes per application. When mea-
suring startup time delays that might be introduced by using DCOP in a usual KDE applica-
tion, these delays are too small for the observer to detect them from the statistical variation.

It is thus obvious that performance and overhead aren’t hindering issues with DCOP. Yet, the
developers are carefully observing these and are striving to keep DCOP’s impact on normal use
of the KDE software as small as possible.

DCOP Use in KDE 2.0—A Few Examples
Perhaps that the most exciting thing about the DCOP technology is the amazingly effective
way in which its use speeds up the KDE development by many orders of magnitude. The team
of KDE developers made insistent attempts to use a traditional CORBA implementation as a
technological basis for the accomplishment of a project’s interprocess communication needs. It
is now generally accepted that this was a conceptual error. One of the central reasons of this
humble acceptance is exactly the outcome of the greatly successful DCOP/KParts experiment.

DCOP was introduced in general use in KDE’s development only days after its inception. This
was possible thanks to its brilliant technological simplicity and to the sound conceptual princi-
ples employed. The authors acknowledged to have been surprised by the extent to which the
members of the development team currently use DCOP in all categories of KDE code.
Following are a few examples of such usage.

KUniqueApplication
One visibly weak point of the KDE 1 API was the lack of an easy-to-use programming tech-
nique that would have allowed the creation of unique applications. The term unique applica-
tions designates a special category of programs that don’t need to—or must not—exist in more

Application Interaction and Integration

PART III
316

17 8911 Ch13 10/16/00 1:46 PM Page 316

than one running instance at a time in a distinct active desktop environment session. This prob-
lem is solved in the current iteration of KDE. A special class named KUniqueApplication
exists now. This inherits the central KApplication class. The unique application concept
defines special requirements:

• Detecting whether previously running instances of the same application exists.

• Communication with the previously running instance.

• Limited control of the previously running instance.

These are all achieved by proper use of the DCOP technology.

A simplified description of the way a KUniqueApplication functions follows:

• At construction, a DCOP client is automatically created and then attached to the DCOP
server.

• The current instance of the application tries to detect whether a previously running
instance of itself exists:

• If no previous instance exists, a proper registration with DCOP server is automati-
cally performed and the application proceeds with its normal functioning.

• If a previous instance exists, command-line parameters (and eventually pro-
grammed messages) are passed to a special method of the object and then this
instance immediately quits.

Typical usage of this class is simple. There are two aspects that require attention.

First, the existence of a previously running instance is checked by the use of the
KUniqueApplication::start() method, which is statically defined. It is recommended that
you take advantage of the static definition of this method; that is, call it before the proper con-
struction of the main object (of type KUniqueApplication). This way, fewer resources are used
during startup if a previous instance already exists. Startup times are reduced by 40% in such a
case. These ideas are exemplified in many places in the real KDE 2.0 code base (many appli-
cations are built as KUniqueApplications). Listing 13.15 offers such an exemplification as
extracted from the International Keyboard application.

LISTING 13.15 A KUniqueApplication has a Special Way of Starting

File: kikbd/main.cpp (from real KDE-2.0 base code)
--
.
.
16: KAboutData about(“kikbd”, I18N_NOOP(“International Keyboard Selector”),
17: “2.0”, I18N_NOOP(“Run time selector for keyboard layout”
18: “on the desktop or on individual windows”),

DCOP—Desktop Communication Protocol

CHAPTER 13

13

D
C

O
P—

D
ESK

TO
P

C
O

M
M

U
N

IC
A

TIO
N

P
R

O
TO

C
O

L

317

17 8911 Ch13 10/16/00 1:46 PM Page 317

19: 0, “ 1998-2000 Alexander Budnik, Cristian Tibirna”,
20: “”,”http://devel-home.kde.org/~kikbd”);
21: about.addAuthor(“Cristian Tibirna”, I18N_NOOP(“Current maintainer”),
22: “tibirna@kde.org”);
23: about.addAuthor(“Alexander Budnik”, I18N_NOOP(“Original author”));
24: about.addCredit(“Dimitrios Bouras”, I18N_NOOP(“Bug fixing”));
25:
26: KCmdineArgs::init(argc, argv, &about);
27:
28: static KCmdLineOptions opts[] =
29: {
30: {“rotate”, “change the keyboard layout programmatically”, 0};
31: {“reconfig”, “read again the configuration,

probably on kcmkikbd’s demand”, 0};
32: };
33:
34: KCmdLineArgs::addCmdLineOptions(opts);
35:
36: KiKbdApplication::addCmdLineOptions();
37: if (!KiKbdApplication::start())
38: exit(0);
39: KiKbdApplication appl();
40: appl.exec();
.
.

Second, when you want to pass command-line arguments to a previously running instance of
the application, you must reimplement the KUniqueApplication::newInstance() method.
The automatically created DCOP client passes the parameters over the desktop communication
protocol from the new instance to the previously existing one (the master). The
DCOPObject::process() method of the master implicitly calls the special newInstance()
method and passes to it a string list containing the said command-line arguments, as exempli-
fied in the Listing 13.16.

LISTING 13.16 A KuniqueApplication has a Special Way of Passing Command-Line
Parameters to Predecessors

File: kikbd/kikbd.cpp (from real KDE-2.0 base code)
--
.
.
151: int KiKbdApplication::newInstance () {
152:

Application Interaction and Integration

PART III
318

LISTING 13.15 Continued

17 8911 Ch13 10/16/00 1:46 PM Page 318

153: kdDebug(1420) << “Parse cmdline args” << endl;
154: KCmdLineArgs *params = KCmdLineArgs::parsedArgs();
155: if(params->isSet(“reconfig”)) {
156: kdDebug(1420) << “Remotely trigger loadConfig” << endl;
157: QTimer::singleShot(configDelay, this, SLOT(askReloadConfig()));
158: ::exit(0);
159: }
160: if(params->isSet(“rotate”)) {
161: kdDebug(1420) << “Remotely trigger rotateKeymap” << endl;
162: QTimer::singleShot(configDelay, this, SLOT(askRotateKeyMap()));
163: ::exit(0);
164: }
165:
166: params->clear();
167:
167: //CT if it comes up to here, it’s either that the params are wrong or
168: // that there weren’t params. Either is wrong.
169: kdDebug(1420) << “Warn for bad use” << endl;
170: KMessageBox::sorry(0,
171: i18n(“Only one instance of the international keyboard “
172: “configuration\ncan run at a given moment.”),
173: i18n(“Already running”));
174: ::exit(0);
175:
176: }
.
.

Important components of the typical KDE desktop session are making use of the
KUniqueApplication paradigm:

• KDesktop

• Kicker (the KDE desktop panel)

• KMenuEdit (the menu editor used for Kicker)

• Klipper (KDE’s enhanced clipboard manager)

• KMail

These are all excellent examples for a proper use of the KUniqueApplication technology.

KNotify
Another important improvement brought by KDE 2 code base over what KDE 1 offered is the
new system notifications mechanism. In a very simplified presentation, KNotify (the KDE sys-

DCOP—Desktop Communication Protocol

CHAPTER 13

13

D
C

O
P—

D
ESK

TO
P

C
O

M
M

U
N

IC
A

TIO
N

P
R

O
TO

C
O

L

319

LISTING 13.16 Continued

17 8911 Ch13 10/16/00 1:46 PM Page 319

tem notifications mechanism) is constituted from a client API and an events server (running on
the desktop under the name knotify). Every application that wants to use the system notifica-
tions needs simply to import the KNotifyClient namespace provided in the KDE libraries.
Configuring events is noticeably easy (a control center module is available). There are a few
types of notifications associated with an event: sounds, dialog boxes, and log file entries. The
actual contents of these notifications is also configurable.

The notifications server remains permanently active on the desktop and is in close relation with
KDE’s multimedia server (artsd). The communication between clients using the KNotify
mechanisms and the notifications server is once again greatly facilitated by DCOP.

For an easy understanding of how to implement event notifications in a KDE application, it
might be useful to examine the source code of KDE’s window manager, kwin (especially the
files kwin/events.cpp and kwin/eventsrc).

Little Jewels: dcop and kdcop
dcop and kdcop are perhaps some of the most surprising examples of powerful usage of the
desktop communications protocol. These two little tools were born during the prolific coding
session that took place in Trysil, Norway, around the middle of 2000. They are amazingly
capable and make use of the latest functionalities added to the DCOP API: the information
mining methods (see the section “Stay Informed” earlier in this chapter).

These two tools enable the user to browse in real time the composition of the DCOP object
pool, and even invoke functions provided in the public DCOP interfaces.

dcop, or the DCOP shell client, is a command-line tool. Listing 13.17 is a short session using
dcop.

LISTING 13.17 A Desktop at the Fingertip

]:~> dcop —help
Usage: dcop [application [object [function [arg1] [arg2] [arg3] ...]]]
]:~> dcop
]:~> dcop kdesktop
]:~> dcop kdesktop KScreensaverIface
]:~> dcop kdesktop KScreensaverIface save

Enjoy!

kdcop is the counterpart of dcop but with a graphical interface. The DCOP objects hierarchy is
equally easy to explore or to exploit from kdcop’s graphic console (see Figure 13.2).

Application Interaction and Integration

PART III
320

17 8911 Ch13 10/16/00 1:46 PM Page 320

FIGURE 13.2
The kdcop tool.

Neighbors in Visit—dcopc, XMLRPC, and Bindings
DCOP benefits from an open-minded design that avoids to a large extent the use of specific
KDE technologies. Yet, DCOP itself is inherently a KDE technology. Its authors are hoping,
though, that DCOP will be equally well adopted outside KDE’s code base. Reasons for such
hopes are the elegance of the basic principles used, as well as the great convenience and per-
formance gains that DCOP provides.

Along these lines, members of the KDE developer team created a fairly large collection of
bindings around the DCOP programming interface.

dcopc is a fully functional interface to DCOP written in the C language by Simon Hausmann
and Rik Hemsley. It is available from the KDE project’s code base and is intended for pro-
grammers willing to write applications with DCOP enhancements in plain C. This effort was at
the time of this writing in a development phase, but very near completion.

KXMLRPC is written by Kurt Granroth and is an interfacing solution between DCOP and the
popular XML-based remote procedure call technology. XML-RPC gained a lot of attention in
the past few years from developers of computing solutions for heterogeneous platforms.

The greatest benefit that derives from having a bridge from DCOP to XML-RPC is the flexi-
bility in scripting KDE. Almost all important programming languages of modern times
(Python, Java, Perl) are offering an XML-RPC implementation.

DCOP—Desktop Communication Protocol

CHAPTER 13

13

D
C

O
P—

D
ESK

TO
P

C
O

M
M

U
N

IC
A

TIO
N

P
R

O
TO

C
O

L

321

17 8911 Ch13 10/16/00 1:46 PM Page 321

One of the most interesting successes of binding DCOP with XML-RPC is the gained capabil-
ity of controlling a KDE desktop remotely, even from a Macintosh computer or from a hand-
held computer (during the tests, a functional Python implementation was used on the
Macintosh as a source of XML-RPC commands).

This is made possible by the fact that the described binding mechanism provides a lightweight
server for XML-RPC on each KDE desktop—very similar to a simple http server. This server
is capable of receiving XML-RPC messages and acts as a DCOP client in the meantime.
Proper security and authentication mechanisms are implemented in this server.

More details about XML-RPC are available at http://helma.org/lists/listinfo/xmlrpc.

DCOP bindings for Python were also developed recently by Torben Weis. They are currently
available as a proof of concept but they already show a strong potential.

Summary
DCOP is a young technology born from the necessity of providing modern interprocess com-
munication tools to KDE.

Although introduced recently, the technology became popular among KDE developers very
fast. Presently DCOP is largely used in many parts of the main KDE code base.

DCOP provides flexibility and power, yet the resource usage remains very limited. New devel-
opers that start using DCOP in their applications will need only a minimal learning effort
investment.

Together with KParts, DCOP provides the key to a proper modularization of the standard
UNIX desktop applications.

Application Interaction and Integration

PART III
322

17 8911 Ch13 10/16/00 1:46 PM Page 322

CHAPTER

14
Multimedia
by Stefan Westerfeld

IN THIS CHAPTER
• Introducing aRts/MCOP 324

• A First Glance at Writing Modules 328

• MCOP 334

• Standard Interfaces 345

• Implementing a SteroEffect 350

• KDE Multimedia Besides MCOP 354

• The Future of MCOP 356

18 8911 ch14 10/16/00 1:46 PM Page 323

Application Interaction and Integration

PART III
324

What has traditionally been the domain of other systems is slowly coming to Linux (and
UNIX) desktops. Images, sound effects, music, and video are a fascinating way to make appli-
cations more lively and to enable whole new uses. When I was showing a KDE 2.0 preview at
the CeBIT 2000, I often presented some of the multimedia stuff—nice sound effects, flashing
lights, and great music. Many people who were passing by stopped and could not take their
eyes off the screen. Multimedia programs capture much more attention from a user than sim-
ple, “boring” applications that just run in a rectangular space and remain silent and unmoving.

However, those technologies will become widespread in KDE applications only if they are eas-
ily accessible for developers. Take audio as an example. KDE is supposed to run on a variety
of UNIX platforms, and not all of them support sound. Among those systems that do, there are
very different ways of accessing the sound driver. Writing a proper (portable) application isn’t
really easy.

KDE 1.0 started providing support for playing sound effects easily with the KAudioServer.
Thus, a game such as KReversi could support sound without caring about portability. Using
one KAudio class, all problems regarding different platforms, and how exactly to load, decode,
and play such a file, were gone.

The idea of KDE 2.0 multimedia support remains the same: make multimedia technologies
easily accessible to developers. It is the dimension that changed. For KDE 1.0, playing a wave
file was about all the multimedia support you could get from the libraries. For KDE 2.0 and
beyond, the idea is to really care about multimedia.

KDE 2.0 takes into consideration all audio applications—not only those that casually play a
file, but everything from the heavy real-time-oriented game to the sequencer. KDE 2.0 also
supports plug-ins and small modules that can easily be recombined, as well as MIDI support
and video support.

The challenge of delivering multimedia in all forms to the KDE desktop is big. Thus, the KDE
multimedia support should work like a glue between the applications so that the puzzle pieces
already solved by various programmers will be usable in any of the applications, and the image
will slowly grow complete.

Introducing aRts/MCOP
The road for KDE 2.0 (and later versions) is integration through one consistent streaming-
media technology. The idea is that you can write any multimedia task as little pieces, which
pass multimedia streams.

Quite some time before KDE 2.0, I first heard of the plans of KAudioServer2 (from Christian
Esken), which was an attempt to improve and rewrite the audioserver to support streaming
media to a certain degree. On the other hand, I had been working on aRts (analog, real-time

18 8911 ch14 10/16/00 1:46 PM Page 324

synthesis) software for quite a while and had already implemented some nice streaming sup-
port. In fact, aRts was a modular software synthesizer that worked through little plug-ins and
streams between them. And, most important of all, aRts was already working great.

So, after some considerations, we decided at the KDE 2.0 Developer meeting to make aRts the
base for all streaming multimedia under KDE. Many things would have to be changed to come
from one synthesizer to a base for all multimedia tasks, but it was the much better approach
than trying to do something completely new and different, because aRts was already proven to
work.

As I see it, the important parts of streaming multimedia support are

• An easy way to write small modules, which can be used for streaming (plug-ins).

• A way to define how these modules communicate (what types of data they accept, what
properties they have, what functions they support).

• A scheduler that decides what module gets executed when—this is necessary because
you usually have lots of small modules running in one task.

• A transfer layer, which ensures that modules running in different processes/applications
or on different computers can communicate.

How these things work is probably illustrated best with a small example. Assume you want to
listen to a beep while the left speaker should be playing a 440Hz frequency and the right
speaker is playing a 880Hz frequency. That would look something like the following:

Multimedia

CHAPTER 14

14

M
U

LTIM
ED

IA
325

Synth_FREQUENCY
440 Hz

Synth_WAVE_SIN

Synth_FREQUENCY
880 Hz

Synth_WAVE_SIN

Synth_PLAY

FIGURE 14.1
The flow graph of a stereo beep.

As you see, the task has been divided into very small components, each of which do only a
part of the whole. The frequency generators only generate the frequency (they can also be used
for other wave forms), nothing more. The sine wave objects only calculate the sinus of the val-
ues they get. The play object only takes care that these things really reach your sound card. To
get a first impression, the source code for this example is shown in Listing 14.1:

18 8911 ch14 10/16/00 1:46 PM Page 325

LISTING 14.1 Listening to a Stereo Beep

1: // first_example.cc
2:
3: #include “artsflow.h”
4: #include “connect.h”
5:
6: using namespace Arts;
7:
8: int main()
9: {
10: Dispatcher dispatcher;
11:
12: Synth_FREQUENCY freq1,freq2; // object creation
13: Synth_WAVE_SIN sin1,sin2;
14: Synth_PLAY play;
15:
16: setValue(freq1, 440.0); // set frequencies
17: setValue(freq2, 880.0);
18:
19: connect(freq1, sin1); // object connection
20: connect(freq2, sin2);
21: connect(sin1, play, “invalue_left”);
22: connect(sin2, play, “invalue_right”);
23:
24: freq1.start(); freq2.start(); // start & go
25: sin1.start(); sin2.start();
26: play.start();
27: dispatcher.run();
28: }

Now, while you’re thinking of that simplistic example, consider Figure 14.2:

Figure 14.2 illustrates a real-life example. I’ve simply composed three tasks done at the same
time.

First, consider the MIDI player. The MIDI-player component is probably reading a file and
sending out MIDI events. These are sent through a software synthesizer, which takes the
incoming MIDI events and converts them to an audio stream. This is not about your hardware
wave table on the sound card; all things that we are talking about here are happening before
the data is sent to the sound card.

On the other hand, there is the game. Games often have very specific requirements for how
they calculate their sound, so they might have a complete engine that does this task. One exam-
ple is Quake. It calculates sound effects according to the player’s position, so you can orient
yourself by listening closely to what you hear. In that case, the game generates a complete
audio stream itself, which only will be sent to the mixer.

Application Interaction and Integration

PART III
326

18 8911 ch14 10/16/00 1:46 PM Page 326

FIGURE 14.2
A flow graph of some real-life applications running.

The next chain is the one with the microphone attached. The microphone output is sent
through a pitch-shifting effect in this example. Then the output goes through the mixer, the
same as everything else. Through the pitch shifting, your voice sounds higher (or lower)
because the frequency changes give this a funny cartoon-character effect. If you like, you can
also imagine a more “serious” application, such as speech recognition or Internet telephony at
this place.

Finally, everything is mixed in the mixer component, and then, after sending it through a last
effect (which adds the reverb effect), played over your sound card.

This example shows a bit more of what the multimedia support does here. You, for instance,
see that not all components that are involved are in the same process. You wouldn’t want to run
your Quake game inside the audioserver, which also does the other tasks. Maybe your MIDI
player is also external; maybe it is a component that runs inside the audioserver. Thus, the sig-
nal flow is distributed between the processes. The components that are responsible for certain
tasks run where it fits best.

You also see that different kinds of streams are involved. The first is normal audio streams,
which are managed nicely by the aRts/MCOP combination (and the most convenient method).
The second is the MIDI stream. These differ a lot. An audio stream always carries data. In one
second, 44,100 values are passed across the stream. In contrast, a MIDI stream transmits some-
thing only when it is needed. When a note is played, a small event is sent over the stream;
when nothing happens, nothing is sent.

Multimedia

CHAPTER 14

14

M
U

LTIM
ED

IA
327

MIDI Player Game
Microphone

Input

Soft Synthesizer
Pitch-Shifting

Effect

Audio Mixer

Reverb Effect

Soundcard
Output

byte audio

audio audio

audio

audio

audiomidi

18 8911 ch14 10/16/00 1:46 PM Page 327

The third type is byte audio, which refers to the way the game in that case could produce
audio. Byte stream is the same format that would normally be replayed through the sound card
(16 bit, little endian, 44kHz, stereo). To process such data with the mixer, it needs to go
through a converter because the mixer only mixes “real” audio streams.

Overview of This Chapter
For two reasons, most of this chapter is about aRts/MCOP: One is that I know it very well
because I wrote most of the code. The other is that I think it is the most essential part of the
KDE 2.0 multimedia strategy and will provide a way to get to one unified standard for all mul-
timedia tasks.

I start with a practical example: how to write a small module, as I mentioned in the section
“Introducing aRts/MCOP,” and how to use it. You’ll get an impression of how it works.

Then I give more background about MCOP, the CORBA-like middleware that is the base for
all multimedia tasks. In the section “MCOP,” I write specifically about how MCOP enables
objects to do streaming in a very natural way.

But MCOP is nothing when there are no interfaces to talk to. In the sections “Standard
Interfaces” and “Implementing a StereoEffect,” you see the standard interfaces that come
with KDE 2.0 and why they exist. Then you’ll transform the simple example into a stereo
effect.

After that, I explain a few things about other multimedia facilities that KDE offers, which are
not MCOP based. For those of you who don’t want to get deep into multimedia, but just have
your mail application play a “pling” when mail arrives, this may be the thing that interests you
most.

Finally, this chapter ends with a view about the future. Where are we going? What are the pos-
sibilities that should be available in further versions of KDE? What can you work on when you
are interested in actually improving KDE multimedia support?

A First Glance at Writing Modules
The way you work when writing MCOP-aware objects is normally the following:

1. Write an interface definition in the IDL language; for instance, example_add.idl.

2. Pass that definition through mcopidl. You get example_add.cc and example_add.h files.

3. Write an implementation for the interfaces you’ve declared, as C++ class deriving from
the _skel classes.

Application Interaction and Integration

PART III
328

18 8911 ch14 10/16/00 1:46 PM Page 328

4. Register that implementation with REGISTER_IMPLEMENTATION.

5. Maybe write a .mcopclass file.

After that, everybody can use the things you do.

Step 1—Write an Interface Definition in the IDL Language
One important concept in MCOP is that classes are not important, interfaces are. To show a
simple example, when you write a small module that simply adds two audio streams, it could
have the following interface:

// example_add.idl

#include <artsflow.idl>

interface Example_ADD : Arts::SynthModule {
in audio stream invalue1, invalue2;
out audio stream result;

};

You describe interfaces like that in the MCOP IDL files. These lines mean: there is an inter-
face in which two audio streams are flowing in, and one audio stream is flowing out.

Multimedia

CHAPTER 14

14

M
U

LTIM
ED

IA
329

Example_ADD

invalue1:
audio stream

invalue2:
audio stream

outvalue:
audio stream

FIGURE 14.3
The Example_ADD interface.

For people who use this interface, this is all they need to know. They don’t need to know how
addition takes place. They don’t need to know what language this was implemented in. They
don’t need to know anything except the definitions in the interface.

Let’s do a line-by-line walk-through to see what is happening here:

#include <artsflow.idl>

18 8911 ch14 10/16/00 1:46 PM Page 329

Because the SynthModule interface (which you use later) is declared in artsflow.idl, you need
to include it. All aRts components are declared inside the Arts namespace, so you have to pre-
fix it with Arts::. I’ll never explicitly mention this prefix in the text when discussing inter-
faces.

interface Example_ADD : Arts::SynthModule

This tells the MCOP IDL compiler to create an interface that implements everything that
SynthModule does, as well as its own methods, attributes, and streams. (So it derives from
SynthModule.) MCOP supports multiple inheritance as well as single inheritance. Interfaces
that don’t specify anything automatically derive from Object. Interfaces that have streams (like
our interface) should always inherit SynthModule (or a derived class).

in audio stream invalue1, invalue2;
out audio stream outvalue;

Here you add streams to the interface. These streams are the normal type of audio stream sup-
ported by MCOP. They are synchronous, which means that every time our Example_ADD mod-
ule gets 200 samples (or any other amount), all streams are involved. The scheduler takes care
that the 200 samples are available for both input ports, invalue1 and invalue2. It then calls
the calculateBlock method and tells it to calculate 200 samples and expects that it will gener-
ate exactly 200 samples of outvalue output. Synchronous streaming is the fastest and most
easy-to-use variant of streaming, and it makes sense for most modules.

If, on the other hand, you think of a MIDI stream (that comes from a keyboard), things are dif-
ferent. The module wouldn’t be able to guarantee that exactly the number of requested samples
can be generated by calculateBlock; if the scheduler requests, “Please give me 40 events,”
how could it do that when the person playing the keyboard isn’t playing fast enough? For now,
you have our synchronous streams; I’ll talk more about the alternative model later.

Step 2—Pass That Definition Through mcopidl
If you have put all that into a file called example_add.idl, you can invoke mcopidl:

$ mcopidl -I$KDEDIR/include/arts example_add.idl

The -I flag adds a path to look for includes. If you don’t have KDEDIR set to the position
where KDE 2.0 is installed, you may have to use something explicit like the following, instead:

-I/usr/local/kde-2.0/include/arts

The IDL compiler now creates example_add.cc and example_add.h, which will be used later to
implement and access the new Example_ADD module.

Application Interaction and Integration

PART III
330

18 8911 ch14 10/16/00 1:46 PM Page 330

Step 3—Write an Implementation for the Interfaces
You’ve Declared
Listing 14.2 shows how to implement adding the sound.

LISTING 14.2 Implementing the Example_ADD Interface

1: // example_add_impl.cc
2:
3: #include “example_add.h”
4: #include “stdsynthmodule.h”
5:
6: class Example_ADD_impl
7: :public Example_ADD_skel, Arts::StdSynthModule
8: {
9: public:
10: void calculateBlock(unsigned long samples)
11: {
12: unsigned long i;
13: for(i=0;i < samples;i++)
14: result[i] = invalue1[i] + invalue2[i];
15: }
16: };
17:
18: REGISTER_IMPLEMENTATION(Example_ADD_impl);

As you can see, you derive from the skeleton class for the interface (which was generated by
the mcopidl compiler). You also include the corresponding example_add.h (line 3). The other
class you derive from is StdSynthModule because this contains some empty implementations
of SynthModule methods that you often don’t need to override.

Finally, consider the calculateBlock method (line 10). This gets called whenever the module
should process a block of audio data. The samples parameter tells the function how many sam-
ples to process. It is guaranteed that they are available at the corresponding pointers.

Invisible to you (generated from the mcopidl compiler), the streams have become the follow-
ing declarations in the Example_ADD_skel class (you inherit from that):

// variables for streams
float *invalue1; // incoming stream
float *invalue2; // incoming stream
float *result; // outgoing stream

Multimedia

CHAPTER 14

14

M
U

LTIM
ED

IA
331

18 8911 ch14 10/16/00 1:46 PM Page 331

So the task of calculateBlock is easy:

• Take the data at the incoming streams and process them (use exactly samples values).

• Write the output to the outgoing streams (also exactly samples). You must fill them; if
you don’t have anything to write (for instance, because you are getting that data from the
Internet, and the Internet isn’t fast enough to give you enough data), write 0.0 at least.

• Do not modify the pointer itself. You may see this occasionally in some sources, but it
isn’t allowed any longer.

As you see, the code is really easy to read.

Step 4—Register That Implementation with
REGISTER_IMPLEMENTATION
Finally, REGISTER_IMPLEMENTATION is used to tell the MCOP object system that you have
implemented an interface (you see this in the source under step 3). This has the following
background: the objects you implement should be usable from programs that don’t even know
that such objects exists. For instance, artsbuilder will be a program that visually connects
objects to larger graphs. Of course, it makes sense that your Example_ADD implementation can
be used from artsbuilder, without artsbuilder knowing much about it.

Thus, artsbuilder can’t simply call a constructor (because you would need to link
artsbuilder to the class you just wrote and have a .h-file with the class definition, and so on).
Instead, the REGISTER_IMPLEMENTATION macro defines a class that knows how to create one of
your Example_ADD objects. If you then put only this in a shared library, the component can be
used as a plug-in by applications that don’t know anything about it.

This also means that you shouldn’t need to have a header file in most cases, because MCOP
provides ways to create an Example_ADD implementation without knowing that an
Example_ADD_impl class exists.

Step 5—Maybe Write a .mcopclass File
I’ll talk about this in the section “Using the Effect.” If you compile this in a libtool shared
library libexample_add.la, you could write something like this in a file
$KDEDIR/lib/Example_ADD.mcopclass:

That way, the MCOP dynamic library-loading mechanism would know that whenever you want
to create an Example_ADD implementation, it could load the library. You’ll do this later.

How to Use the New Module
So you’ve written a module (Listing 14.3). Now, how do you use it?

Application Interaction and Integration

PART III
332

18 8911 ch14 10/16/00 1:46 PM Page 332

LISTING 14.3 Using an Example_ADD Module

1: // example_add_test.cc
2:
3: #include “connect.h”
4: #include “example_add.h”
5: #include “artsflow.h”
6:
7: using namespace Arts;
8:
9: void main()
10: {
11: // create a MCOP dispatcher (always do this)
12: Dispatcher dispatcher;
13:
14: Synth_FREQUENCY freq1, freq2; // some objects
15: Synth_WAVE_SIN sin1, sin2;
16: Synth_MUL mul;
17: Example_ADD add;
18: Synth_PLAY play;
19:
20: // setup a 440Hz sin and connect it to the add
21: setValue(freq1,440.0);
22: connect(freq1,sin1);
23: connect(sin1,add,”invalue1”);
24:
25: // setup a 880Hz sin and connect it to the add
26: setValue(freq2,880.0);
27: connect(freq2,sin2);
28: connect(sin2,add,”invalue2”);
29:
30: // multiply everything with 0.5 (=> no clipping)
31: connect(add,”result”,mul,”invalue1”);
32: setValue(mul,”invalue2”,0.5);
33:
34: // connect the output to the play module
35: connect(mul,play,”invalue_left”);
36: connect(mul,play,”invalue_right”);
37:
38: // start all modules
39: freq1.start(); freq2.start(); sin1.start();
40: sin2.start(); mul.start(); add.start(); play.start();
41:
42: dispatcher.run();
43: }

Multimedia

CHAPTER 14

14

M
U

LTIM
ED

IA
333

18 8911 ch14 10/16/00 1:46 PM Page 333

You can compile it (with some tweaking if you have no KDEDIR set) with the following:

$ gcc -o example_add_test example_add_test.cc example_add.cc
example_add_impl.cc -I$KDEDIR/include/arts
-L$KDEDIR/lib -lmcop -lartsflow_idl -lartsflow -ldl

As you’ll hear, it adds the sound just nicely. The resulting graph used here looks like
Figure 14.4:

Application Interaction and Integration

PART III
334

Synth_FREQUENCY
440 Hz

Synth_WAVE_SIN

Synth_FREQUENCY
880 Hz

Synth_WAVE_SIN

Example_ADD

Synth_MUL

Synth_PLAY

FIGURE 14.4
Flow graph for Listing 14.3.

MCOP
MCOP does a number of things for you. What probably impacts the way you work with multi-
media objects most is the network transparency every MCOP object gets. You can interact in
the same way with MCOP objects whether they are executed in the same process, in a different
process on the same computer, or on a different computer.

In any case, MCOP objects are more than just C++ objects. So now I’ll describe the details
you need to know when using MCOP.

18 8911 ch14 10/16/00 1:46 PM Page 334

The IDL Language
The interface definition language (IDL) serves one purpose: defining which interfaces certain
objects offer. In contrast to “normal” C++ classes you define when programming C++ applica-
tions, all interfaces you define in MCOP IDL are supposed to be network transparent.

For that reason, it is not possible, for example, to simply make a function in an interface that
returns a void-pointer. The same is valid for parameters. Also, you can’t simply say, “Well, this
function takes a block of data of 1024 bytes,” because depending on what you put into that
block, the different byte order on different machines would make your interface not work cor-
rectly across the network.

So what definitions can you actually put into your IDL files?

• #include statements that include other .idl files

• Custom data types that are either

• Enumerations—Such as enum in C/C++

• Structs—Such as struct in C/C++

• Interfaces, which may inherit other interfaces and contain the following:

• Methods that work with some well-known types

• Streams, such as audio streams, event streams, or byte streams

• Attributes

Let’s start with includes. They look like

#include <artsflow.idl>

and will be searched in all paths you gave to mcopidl with the -I option. Their purpose is to
ensure that mcopidl knows each type (and can decide if, for instance, User is an interface, a
structure, or an enumeration value). Including files will generate a corresponding #include in
the generated C++ source. That means if example_add.idl includes artsflow.idl, example_add.h
will also include artsflow.h.

Then, there are the capabilities to define custom data types. The easiest are enumeration values
(with the same syntax as in C++), for instance (taken from core.idl):

enum MethodType { methodOneway = 1, methodTwoway = 2 };

Multimedia

CHAPTER 14

14

M
U

LTIM
ED

IA
335

18 8911 ch14 10/16/00 1:46 PM Page 335

Also, very similar to the C++ syntax are structs, such as

struct User {
string name, password;
long uid;
sequence<string> nicknames; // variable size of nicks

};

The simple types you can use are long, string, float, byte, boolean, and it is also possible
to write sequence<sometype> to get a variable size sequence (which roughly corresponds to
arrays/pointers in C++).

All type concepts are there only to make defining interfaces with methods and attributes possi-
ble in a reasonable way. As I said earlier, because any MCOP interface should be network
transparent, MCOP must know what types you pass around and how to deal with them.

So here is how you do interfaces, first of all, with simple methods:

interface HelloWorld /* : here you could inherit */ {
void hello(User toWhichUser, boolean friendly);

};

As you see, you can pass structures to methods, the same as you can pass normal values. The
same is true for the return code. It is also possible to pass object references (simply by specify-
ing the name of an interface as return code or parameter). You can also have oneway methods,
which provide send-and-forget behavior. However, note that calling a oneway method returns
immediately, so you can’t rely on the fact that the method is done when your code goes on.
Here is a oneway method:

oneway void play(string filename); // send-and-forget

Finally, there are attributes, which are declared as follows:

interface Window {
attribute long width, height, x, y;
readonly attribute handle;

};

Here you see that there are two types of attributes: those that can be read and written and those
that are read-only. It makes sense that for an X11 window, for instance, the window handle can
only be read, whereas the position and size could be modified by writing the attribute. Here is
a look at the C++ code necessary to read/write attributes:

Window w;
w.x(10); // writing (that »means« w.x = 10)
w.y(10);

// reading
cout << “moved window “ << w.handle() << “ to “

<< “ pos “ << w.x() << “, “ << w.y() << endl;

Application Interaction and Integration

PART III
336

18 8911 ch14 10/16/00 1:46 PM Page 336

Now to the last part—the most important part, streams. The syntax for defining streams is

[async] in/out [multi] type stream name [, name ...];

Table 14.1 explains the stream’s syntax.

TABLE 14.1 Defining Streams in the .idl File

Element Description

[async] Used to make a stream asynchronous. Asynchronous
streams are those that transfer data only sometimes—not
continuously—or that can’t always produce data when you
ask them to. More about that in the section “Synchronous
versus Asynchronous Streams.”

in/out This gives the direction of the stream: incoming or
outgoing

[multi] Used to say that this stream can accept multiple connec-
tions. For instance, if you have a mixer that can mix any
number of audio signals, it would have a multi-input
stream. There are no multi-out streams.

type The data type that gets streamed. Audio is a way to say
float, because all audio data will really be passed around
as floats. Not all data types are allowed for streaming

stream This means that you want to declare a stream.

name The name of the stream. You can define many streams at
once (if they have the same parameters) by giving more
than one name here.

The normal streaming type you’ll mostly use is audio (and this is a synchronous stream).
Internally, this audio data is represented as float. Mostly, you’ll define streams as shown next:

interface Synth_MUL : SynthModule {
in audio stream invalue1,invalue2;
out audio stream outvalue;

};

If you inherit from an interface that already has streams, it may even happen that you don’t
need to add anything at all; for instance:

interface StereoFFTScope : StereoEffect {
readonly attribute sequence<float> scope;

};

In this example, appropriate streams are inherited from StereoEffect.

Multimedia

CHAPTER 14

14

M
U

LTIM
ED

IA
337

18 8911 ch14 10/16/00 1:46 PM Page 337

Invoking the IDL Compiler
The IDL compiler is easy to use. It is called as shown next:

mcopidl flags file.idl

flags specify the flags used when processing the IDL file. The IDL compiler then creates
file.cc and file.h, which contain the necessary classes to enable network transparency, schedul-
ing, and other gimmicks. With the -I flag, you can add include paths to search. If you want to
add multiple paths, use -I more than once.

If you want to integrate an mcopidl call into the make process, the following (which can be
used to build the example mentioned previously) could be some inspiration:

MCOPIDL=mcopidl
MCOPINC=-I$(KDEDIR)/include/arts
MCOPLIB=-L$(KDEDIR)/lib -lartsflow -lartsflow_idl -lmcop -ldl
SRCS=example_add.cc example_add_test.cc example_add_impl.cc

all: example_add_test

example_add_test: $(SRCS)
gcc -o example_add_test $(MCOPINC) $(SRCS) $(MCOPLIB)

example_add.cc: example_add.idl
$(MCOPIDL) $(MCOPINC) example_add.idl

example_add.h: example_add.cc

Of course, you’ll need to adapt that a bit. For Automake, for instance, it’s a good idea to put
example_add.cc/example_add.h in the metasources section.

Reference Counting
When you write

Synth_PLAY p;

in your source code, you create a reference to a Synth_PLAY object, not a Synth_PLAY object
itself. What happens is that as soon as you actually try to use p, an implementation is created
for you. That happens, for instance, as soon as you write

p.start();

Because this is only a reference, writing things such as

Synth_PLAY q = p;

Application Interaction and Integration

PART III
338

18 8911 ch14 10/16/00 1:46 PM Page 338

doesn’t create a second Synth_PLAY object, but only makes q point to the same object as p.
MCOP keeps track of how many references point to a certain object. If this count goes to zero,
the object is freed.

Thus, you never need to care about pointers when using MCOP objects, and you also don’t
need the new or delete operators.

One of the nice things is that this reference counting works even in the distributed case. If you
have a server process that hands out an object reference to a client process (for instance, as
return code), the object on the server will not be freed, unless the client no longer holds refer-
ences to the object.

MCOP is so smart that it recognizes client crashes. That means if you (as server) create an
object specifically for one client and that client doesn’t need it anymore (or crashes), the object
will be removed.

Of course, this works only if you don’t hold any references to the object yourself inside the
server.

Initial Object References
When you have everything—interface definitions, implementations, and a server (for instance a
soundserver), how does the client start talking to the interface?

For this problem, the MCOP object manager (which you can access with
ObjectManager::the()) provides these functions:

class ObjectManager { // from objectmanager.h
[...]
bool addGlobalReference(Object *object,

std::string name);
std::string getGlobalReference(std::string name);
void removeGlobalReferences();

};

With addGlobalReference, you can say, “I have implemented an object, and everybody can
use it under the name….” For instance, the aRts soundserver artsd makes a
SimpleSoundServer interface available under the name Arts_SimpleSoundServer.

With getGlobalReference, you can get a string that you can convert into an object reference
again. And finally, removeGlobalReferences can be used to remove all global references you
have added.

These global references are shared among all MCOP-aware processes. There are currently two
strategies of doing so. Either in the /tmp/mcop-username directory or on the X11 server.
Whichever one is used depends on the user’s configuration.

Multimedia

CHAPTER 14

14

M
U

LTIM
ED

IA
339

18 8911 ch14 10/16/00 1:46 PM Page 339

The following is a very useful shortcut to getting global references:

SimpleSoundServer server(
Reference(“global:Arts_SimpleSoundServer”));

if(server.isNull()) { /* error handling */ }

After these lines, you can use the SimpleSoundServer as if it were a local object. For instance,
call

server.play(“/usr/local/share/pling.wav”);

and your requests will be sent to the artsd soundserver.

Accessing Streams
Most of the time when you’re dealing with streams, you’ll write calculateBlock implementa-
tions. And most of the time when you write those, they’ll access only synchronous audio
streams. In that case, the only thing you need to do is to process all samples you read from the
streams—for instance, in one for loop like the following (from our Example_ADD from the
beginning):

void calculateBlock(unsigned long samples)
{

unsigned long i;
for(i=0;i != cycles;i++)

outvalue[i] = invalue1[i] + invalue2[i];
}

As you see, the streams have been mapped to simple float * pointers by the mcopidl com-
piler. In your calculateBlock function

• The scheduler will supply you with samples input values.

• You must fill all output streams exactly with samples values (if you have nothing to
write, write 0.0 values instead).

• You may not modify the pointer itself.

For multiple input streams (which are declared with the multi keyword in the IDL), the map-
ping isn’t float *, but float **. When calculateBlock is called, the float ** will point to
an array of float * buffers, and the end is marked by a null pointer. So you can use a code
fragment like that to process multi-input streams:

void calculateBlock(unsigned long samples)
{

float *inp;
for(int sig=0;(inp = invalue[sig]) != 0;sig++)

Application Interaction and Integration

PART III
340

18 8911 ch14 10/16/00 1:46 PM Page 340

{
/* process input from inp here */

}
}

Here, the same rules as those for single streams apply, with the addition that

• Your code should handle the case in which no input at all is connected to the multi-input
stream properly, as well.

Module Initialization
Module initialization and deinitialization happens through a number of ways. They are chrono-
logically listed here. As most modules don’t need all the initialization facilities provided by the
SynthModule interface, a small class has been written that implements all of them as empty
methods. Thus, you can rewrite only the parts you need while leaving, for instance,
streamStart() untouched/empty. It is called StdSynthModule, and it gets used through inheri-
tance, such as the following (example from synth_add_impl.cc):

#include “stdsynthmodule.h”
using namespace Arts;
class Synth_ADD_impl :public Synth_ADD_skel, StdSynthModule
[...]

C++ Constructor
First, there is the traditional C++ constructor. You can use this as always—to allocate
resources that your module will need in any case, to initialize members with certain values,
and so on.

Attributes
Later on, the user of the module (or some automatic mechanism, such as the flowgraph based
initialization artsbuilder will do) will set the attributes. You should accept all changes there
in any order. For instance, if your module relies on a filename attribute and a format attribute,
it is a valid usage of your module, first to set the filename, then the format, and then choose
another filename again. Also, querying your attributes at that phase should return sensible val-
ues. artsbuilder will provide some RAD-like component development, so your modules
should be configurable gracefully and fully over the attributes (and not over special initializa-
tion functions).

Setting and getting attributes is valid at any point in time between the constructor and destruc-
tor, especially while the module is running.

Multimedia

CHAPTER 14

14

M
U

LTIM
ED

IA
341

18 8911 ch14 10/16/00 1:46 PM Page 341

streamInit
After all attributes have been set completely, the streamInit() function is called (before your
module is started). In that function, you should do all that is necessary before actually starting.
For some modules, a difference exists between that initialization phase and actually starting.
For example, consider the sound card I/O. In the streamInit() function, it opens the sound
card, sets the parameters, allocates the buffers, and prepares anything.

streamStart
Finally, in streamStart() only the last bit is done. In the case of our sounddriver, only the
IOManager registration is done, which actually causes writing. The idea is that initialize should
do all operations that may take longer (for instance, allocating and filling a 16KB buffer may,
under ugly circumstances, take longer because it needs to get swapped in first). On the other
hand, registering an I/O watch should be fast. After streamStart() has been called, the mod-
ule will be ready to go. The calculateBlock function gets called as soon as the scheduler
thinks it is necessary.

streamEnd
Finally, when your module gets stopped, streamEnd() is called. That function should undo all
effects caused by streamStart() and streamInit(). Note that the scheduler may decide not
to free your module immediately, but to fill it with new attributes and use it again for some
other task. Therefore, don’t do things in the constructor/destructor that really belong to
streamInit()/streamEnd().

C++ Destructor
Eventually, when everything is done, the C++ destructor gets called, where you can free things
you have set up in the constructor.

Synchronous Versus Asynchronous Streams
Synchronous streams are used whenever samples are happening at periodic time intervals and
your module can, when given a certain amount of input, guarantee producing the same amount
of output. For most modules, such as those that add signals or process them with other calcula-
tions, this should be no problem. However, modules that depend on external resources, such as
the piano player that generates the MIDI events or the network connection that supplies the
data, can’t make such guarantees.

The same can be true for consuming data as well. Modules that depend on the external network
connection to receive everything they send can make only limited guarantees that the data you
feed into them really disappears.

Application Interaction and Integration

PART III
342

18 8911 ch14 10/16/00 1:46 PM Page 342

Thus, asynchronous streams offer a greater amount of control. They send around the data in
packets. The basic idea is this: the sender sends packets, and the receiver receives packets and
acknowledges when they have been processed completely (see Figure 14.5).

Multimedia

CHAPTER 14

14

M
U

LTIM
ED

IA
343

FIGURE 14.5
How asynchronous streaming works.

There are now two basic forms of behavior for a sender: push delivery and pull delivery.

Push delivery occurs when the sender only casually generates a data packet. This is true, for
instance, for a MIDI receiver connected to an external MIDI keyboard. Events are generated
only when the human player plays some notes. The MIDI sender can assume that in this case
it can simply put things into packets and the receiver should be able to process what it gets in
time.

The API for doing so is simple: suppose the stream is called outdata, and the datatype that is
being sent is byte:

DataPacket<mcopbyte> *packet;
packet = outdata.allocPacket(15); // alloc 15 bytes
strcpy((char *)packet->contents,”Hello World”);
packet->size = strlen(“Hello World”);
packet->send();

As you can see, you can shrink the size of the data sent after allocating the packet. The pur-
pose of this is that you can use system functions such as read() or write(), for instance,
directly on the buffer inside the data packet and, after that, decide how many of these bytes
should be sent. Sending data packets with zero length frees them immediately.

Now to the other case, that happens if you want to send a sample stream of bytes asynchro-
nously from inside an application (such as the game Quake) to the soundserver. There you
want synchronization with the receiver; that is, you want to send packets only as fast as the
receiver processes them.

Push delivery works like that: you get calls from the scheduler when you should produce
packets. To initialize the process, you ask the scheduler to prepoll x packets with the size y.

Sender Receiver

Packets with data

Notifications when
packets have

been processed.

18 8911 ch14 10/16/00 1:46 PM Page 343

Then it will ask you x times to fill such a packet. They are sent to the receiver(s). When they
have processed them, they will come back, and you will be asked to refill the packets.

Starting the process happens with something like the following:

outdata.setPull(8, 1024);

After that call, you’ll be asked eight times to refill a packet of 1024 bytes. These packets will
be sent to the receiver(s). After they have processed the packets, you’ll get new requests to
refill packets. Thus, the only thing you need to get this working is a refill routine:

void request_outdata(DataPacket<mcopbyte> *packet)
{

packet->size = 1024;
for(int i = 0;i < 1024; i++)

packet->contents[i] = (mcopbyte)’A’;
packet->send();

}

and that is it.

For the receiver, things are even simpler. As soon as it gets packets, the process_streamname
function is called, and it should call packet->process as soon as it is really done processing a
packet. A process function for a byte stream that prints everything to stdout would be:

void process_indata(DataPacket<mcopbyte> *inpacket)
{

char *instring = (char *)inpacket->contents;
for(int i=0;i<inpacket->size;i++)

putchar(instring[i]);
inpacket->processed();

}

The receiver may delay the process called and do it some time after the process_streamname
function, as well, if that is when the packet is really processed.

Connecting Objects
Objects can be connected with the connect() function, which is declared in connect.h. The
concept of default ports plays a certain role here. The standard syntax for connect is

connect(from_object, from_port, to_object, to_port);

However, this can be simplified when the objects have suitable default ports. For instance, all
objects with only one incoming/outgoing stream default to using them in connect, so that the
following connect operations are the same:

Synth_FREQUENCY freq;
Synth_WAVE_SIN wave;
connect(freq,”pos”,wave,”pos”);
connect(freq,wave);

Application Interaction and Integration

PART III
344

18 8911 ch14 10/16/00 1:46 PM Page 344

For modules with more than one port, default ports usually work as well (for example,
Synth_PLAY with invalue_left and invalue_right defaults to using both as default ports).
You can find exactly which modules they are for with the help of the IDL files.

Under the node()/_node() accessor of every SynthModule is a more complete API for mod-
ules. There, the connect/disconnect/start/stop functions are defined. At the time of this
writing, MCOP is still a work in progress. Probably, disconnect and stop will be available soon
under stop() like start() and disconnect() similar to connect() with default ports and
anything else.

Standard Interfaces
The whole point of a middleware such as MCOP is to make objects talk to each other to fulfill
their task. The following are some of the interfaces that are the most important to get started.

The SimpleSoundServer Interface
The SimpleSoundServer interface is the interface that the KDE soundserver artsd provides
when running. To connect to it, you can simply use the following lines:

SimpleSoundServer server(
Reference(“global:Arts_SimpleSoundServer”));

if(server.isNull()) { /* error handling */ }

Make sure not to access functions of the server after you find out isNull() is true. So what
does it offer? First, it offers the most basic command, playing some file (which may be .wav or
any other format aRts can understand), with the simple method:

long play(string filename);

Therefore, in a few lines, you can write a client that plays wave files. If you already have a
SimpleSoundServer called server, its just

server.play(“/var/share/sounds/asound.wav”);

Multimedia

CHAPTER 14

14

M
U

LTIM
ED

IA
345

It is necessary here to pass a full path, because it is very likely that your program
doesn’t have the same working directory as artsd. Thus, calling play with an unquali-
fied name will mostly fail. For instance, if you are in /var/share/sounds and artsd is in
/home/kde2, if you write play(“asound.wav”), the server would try to play
/home/kde2/asound.wav.

NOTE

18 8911 ch14 10/16/00 1:46 PM Page 345

The play method returns a long value with an ID. If playing succeeded, you can use this to
stop the sound again with

void stop(long ID);

if not, the ID is 0.

Then, there is another set of methods to attach or detach streaming-sound sources, such as
games that do their own sound mixing (Quake, for instance). They are called

void attach(ByteSoundProducer producer);
void detach(ByteSoundProducer producer);

If you want to use these, the way to go is to implement a ByteSoundProducer object. This has
an outgoing asynchronous byte stream, which can be used to send the data as signed 16-bit lit-
tle endian stereo. Then, simply create such an object inside your process. For adapting Quake,
the ByteSoundProducer object should be created inside the Quake process, and all audio out-
put should be put into the data packets sent via the asynchronous streaming mechanism.
Finally, a call to attach() with the object is enough to start streaming.

When you’re done, call detach(). An example showing how to implement a
ByteSoundProducer is in the kdelibs/arts/examples directory. But in most cases, a simpler way
is possible. For porting games such as Quake, there is also the C API, which encapsulates the
aRts functionality. Thus, there are routines similar to those needed to access the operating sys-
tem audio drivers, like OSS (open sound system, the Linux sound drivers). These are called
arts_open(), arts_write(), arts_close(), and so on, which, in turn, call the things that
ought to happen in the background.

Whether a layer will be written to simplify the usage of the streaming API for KDE 2.0 apps
remains to be seen. If there is time to do a KAudioStream, which handles all attach/detach and
packet production, it will go into some KDE library.

Finally, two functions are left. One is

object createObject(string name);

It can be used to create an arbitrary object on the soundserver. Therefore, if you need an
Example_ADD for some reason—and it shouldn’t be running inside your process, but inside the
soundserver process—a call looking like this:

Example_ADD e = DynamicCast(server.createObject(“Example_ADD”));
if(e.isNull()) { /* fail */ }

should do the trick. As you see, you can easily cast Object to Example_ADD using
DynamicCast.

Application Interaction and Integration

PART III
346

18 8911 ch14 10/16/00 1:46 PM Page 346

Just a few words explaining why you may want to create something on the server. Imagine that
you want to develop a 3D game, but you are missing 3D capabilities inside aRts, such as creat-
ing moving sound sources and things like that. Of course, you can render all that locally
(inside the game process) and transfer the result via streaming to the soundserver. However, a
latency penalty and a performance penalty are associated with that.

The latency penalty is this: you need to do streaming in packets, which have a certain size. If
you want to have no dropouts when your game doesn’t get the CPU for a few milliseconds,
you need to dimension these like four packets with 2048 bytes each, or something like that.
Although the resulting total time needed to replay all packets of 47 milliseconds protects you
from dropouts, it also means that after a player shoots, you’ll have a 47-millisecond delay until
the 3D sound system reacts. On the other hand, if your 3D sound system runs inside the server,
the time to tell it “player shoots now” would normally be around 1 millisecond (because it is
one oneway remote invocation). Thus, you can reduce the latency by 47 milliseconds by creat-
ing things server side.

The performance penalty, on the other hand, is clear. Putting all that stuff into packets and tak-
ing it out again takes CPU time. With very small latencies (small packets), you need more
packets per second, and thus, the performance penalty increases. So for real-time applications
such as games, running things server side is the most important.

Last but not least, let’s take a look at effects. The server allows inserting effects between the
downmixed signal of all clients and the output. That is possible with the attribute

readonly attribute StereoEffectStack outstack;

As you see, you get a StereoEffectStack, for which the interface will be described soon. It
can be used to add effects to the chain.

The KMedia2 Interfaces
KMedia2 is nothing but a big remote control. It allows you to create objects that play some
kind of media (such as .wavs, MP3s, but—at least from what the interfaces allow—also CDs
or streams from URLs). This is achieved through one interface, called PlayObject, and it
looks like the following:

interface PlayObject : PlayObject_private {
attribute string description;
attribute poTime currentTime;
readonly attribute poTime overallTime;
readonly attribute poCapabilities capabilities;
readonly attribute string mediaName;
readonly attribute poState state;

Multimedia

CHAPTER 14

14

M
U

LTIM
ED

IA
347

18 8911 ch14 10/16/00 1:46 PM Page 347

void play();
void seek(poTime newTime);
void pause();

};

As you can see, this is enough for telling the object to play, pause, and seek anytime. After you
have a PlayObject, you should have no difficulties dealing with it. There is something to be
said about the poTime type, which is used to represent custom times. For instance, a mod
player could count in patterns internally, while also doing calculations in seconds (which is
more appropriate for the user to read). Thus, poTime allows you to define custom times, like
this:

struct poTime {
long ms, seconds; // -1 if undefined
float custom; // some custom time unit

// -1 if undefined
string customUnit; // for instance “pattern”

};

PlayObjects are allowed to define either the “normal” time, the “custom” time, or both, just as
they please. Also, seeking can be done only on the time type the PlayObject understands. (For
example, if a mod player understands only patterns, you can seek only with patterns). Then
there are capabilities, which can be used for the PlayObject to say, “Well, I am a stream from
an URL; you can’t seek me at all.” They look like this:

enum poCapabilities { capSeek = 1, capPause = 2 };

and finally the different states the PlayObject are:

enum poState { posPlaying, posFinished, posPaused };

Still, some part is missing. You not only need to know how to talk to PlayObjects, you need to
know how to create them in the first place. For that, there is PlayObjectFactory, which looks
like the following:

interface PlayObjectFactory {
PlayObject createPlayObject(string filename);

};

That’s it. You have a factory for creating PlayObjects, and you know that they will disappear
automatically, as soon as you no longer reference them. And the last missing piece, “Where do
I get that PlayObjectFactory from?” is simple: it’s a global reference, and it is called
Arts_PlayObjectFactory, so it works the same as with the SimpleSoundServer interface.

Application Interaction and Integration

PART III
348

18 8911 ch14 10/16/00 1:46 PM Page 348

Stereo Effects/Effectstacks
Let’s take a closer look at another interface that is used to put effects in a chain. Basically, a
StereoEffectStack looks like Figure 14.6:

Multimedia

CHAPTER 14

14

M
U

LTIM
ED

IA
349

StereoEffect 1

StereoEffect 2

StereoEffect 3

input ports

output ports

Stereo-
Effect-
Stack

FIGURE 14.6
How a StereoEffectStack works.

Each of the inserted effects should have the following interface:

interface StereoEffect : SynthModule {
default in audio stream inleft, inright;
default out audio stream outleft, outright;

};

and all normal StereoEffects derive from that. For example, two of them are
StereoVolumeControl and StereoFFTScope. However, there is the StereoEffectStack inter-
face itself, which looks like this:

interface StereoEffectStack : StereoEffect {
long insertTop(StereoEffect effect, string name);
long insertBottom(StereoEffect effect, string name);

void remove(long ID);
};

18 8911 ch14 10/16/00 1:46 PM Page 349

As you can see, the StereoEffectStack is a StereoEffect itself, which means it has the same
inleft, inright, outleft, and outright streams. Thus, you can set the inputs and outputs by con-
necting these. You can also insert effects at the top or at the bottom. If you have no effects, the
inputs and outputs will simply get connected. Finally, you can remove effects again by ID.

SimpleSoundServer provides you with a StereoEffectStack that is between the sound mixing
and the output. Initially, it’s empty. If you want effects, you can insert them into the stack, and
if you want to remove them, that’s also no issue.

And that is what you’re going to do next.

Implementing a StereoEffect
After you know how server-side object creation works, what stereo effects are, and how you
can get them running, it would be a nice idea to actually do this in an example. Next, let’s
write something similar to Example_ADD that works like a StereoEffect.

First, what should it do? I thought it may be useful to emulate the standard options you have
for balance at every amplifier: keep stereo as it is, keep left channel only, keep right channel
only, reverse channels, and downmix stereo.

IDL Again
First, you need a representation for these states. That is done best using an enumeration value.
So you get the following:

#include <artsflow.idl>
enum StereoBalanceState { sbThrough, sbLeftOnly,

sbRightOnly, sbReverse, sbDownMix };

Then, you need to make the interface derive from StereoEffect. Thus, no streams need to be
declared at all because StereoEffect already does this. The interface looks as simple as this:

interface StereoBalanceControl : Arts::StereoEffect {
attribute StereoBalanceState balance;

};

That’s all. Put it into a file balance.idl and invoke mcopidl:

$ mcopidl -I$KDEDIR/include/arts balance.idl

The Code
Now to the implementation. First to the attribute stuff; these are mapped, as I mentioned previ-
ously, to two functions: one that changes the value and one that queries it. They are both called
balance. One gets a parameter to set a new value, and one returns the old value. You should

Application Interaction and Integration

PART III
350

18 8911 ch14 10/16/00 1:46 PM Page 350

also have an internal variable to store the current state (it’s called _balance here), and initialize
this properly in the C++ constructor. Up to now, you have the following:

#include “balance.h”
#include <stdsynthmodule.h>

using namespace Arts;

class StereoBalanceControl_impl : public
StereoBalanceControl_skel, StdSynthModule

{
private:

StereoBalanceState _balance;
public:

StereoBalanceControl_impl() : _balance(sbThrough) {}
StereoBalanceState balance() { return _balance; }
void balance(StereoBalanceState b) { _balance = b; }

The method that is still missing is calculateBlock. The most important thing to watch here is
that the volume doesn’t change through our balance control. That means, for downmix (mixing
the left and right stereo channels to mono output), you shouldn’t simply add everything, but
divide by two. The other cases shouldn’t be hard to handle. Here is the rest of the code, then,
while you are left with some cases to write, too:

void calculateBlock(unsigned long samples)
{

unsigned long i;
switch (_balance) {

case sbThrough:
for(i=0;i<samples;i++)
{

outleft[i] = inleft[i];
outright[i] = inright[i];

}
break;

case sbDownMix:
for(i=0;i<samples;i++)
{

float mix = (inleft[i]+inright[i])/2;
outleft[i] = mix;
outright[i] = mix;

}
break;

/* exercise : implement the other cases */
};

}
};

REGISTER_IMPLEMENTATION(StereoBalanceControl_impl);

Multimedia

CHAPTER 14

14

M
U

LTIM
ED

IA
351

18 8911 ch14 10/16/00 1:46 PM Page 351

Using the Effect
Because you want to be able to load and use the effect inside the server, put it into a library
that can be dynamically loaded. To do so, you’ll also create a class definition called
StereoBalanceControl.mcopclass, with the following content:

Library=libstereobalancecontrol.la

Because making is a bit difficult, the following is a makefile again, for making the whole mod-
ule:

LIBDIR=$(KDEDIR)/lib
CXX=libtool --mode=compile g++
CXXFLAGS=-I$(KDEDIR)/include/arts
LD=libtool --mode=link g++
LDFLAGS=-module -rpath $(LIBDIR) -L$(LIBDIR) -lartsflow \

-lartsflow_idl -lmcop -ldl
CP=libtool --mode=install cp
TARGET=libstereobalancecontrol.la
OBJS=balance.lo balance_impl.lo

all: $(TARGET)

install: $(TARGET)
$(CP) $(TARGET) $(LIBDIR)
$(CP) StereoBalanceControl.mcopclass $(LIBDIR)

libstereobalancecontrol.la: $(OBJS)
$(LD) -o $(TARGET) $(LDFLAGS) $(OBJS)

balance_impl.lo: balance_impl.cc
$(CXX) $(CXXFLAGS) -c balance_impl.cc

balance.lo: balance.cc
$(CXX) $(CXXFLAGS) -c balance.cc

balance.cc: balance.idl
mcopidl $(CXXFLAGS) balance.idl

Thus, compilation and installation are simply done with

$ make
$ make install

although you may need to do the last as root (that is, su root -c ‘make install’). Okay,
now you have installed an effect, which should be dynamically loadable into the server. To try
it out, Listing 14.4 is a test program:

Application Interaction and Integration

PART III
352

18 8911 ch14 10/16/00 1:46 PM Page 352

LISTING 14.4 Running StereoBalanceControl on the Server

1: #include “balance.h”
2: #include <soundserver.h>
3: #include <stdio.h>
4:
5: using namespace Arts;
6:
7: void fail(char *why) { printf(“%s\n”,why); exit(1); }
8:
9: int main(int argc, char **argv)
10: {
11: if(argc != 2) fail(“use two arguments”);
12:
13: Dispatcher dispatcher;
14: SimpleSoundServer server(Reference(“global:Arts_SimpleSoundServer”));
15: if(server.isNull()) fail(“can’t connect server”);
16:
17: StereoBalanceControl bcontrol;
18: bcontrol = DynamicCast(server.createObject(“StereoBalanceControl”));
19: if(bcontrol.isNull()) fail(“can’t create object”);
20:
21: if(strcmp(argv[1],”downmix”) == 0)
22: bcontrol.balance(sbDownMix);
23: if(strcmp(argv[1],”through”) == 0)
24: bcontrol.balance(sbThrough);
25: /* add the others possibilities, if you like */
26: bcontrol.start();
27:
28: StereoEffectStack effectstack = server.outstack();
29: long id=effectstack.insertBottom(bcontrol,”Balance”);
30: printf(“type return to quit\n”); getchar();
31: effectstack.remove(id);
32: return 0;
33: }

Finally, to get that running, do the following: First compile

$ g++ -o setbalance setbalance.cc -I$KDEDIR/include/arts
-L$KDEDIR/lib -lsoundserver_idl -lartsflow -lartsflow_idl
-lstereobalancecontrol -lmcop -ldl

That is everything in one line. Then call ldconfig as root (to get your freshly installed library
registered):

$ su root -c ‘ldconfig’

Multimedia

CHAPTER 14

14

M
U

LTIM
ED

IA
353

18 8911 ch14 10/16/00 1:46 PM Page 353

Make sure that something is running on the soundserver (for instance, listen to an MP3 or
.wav), and then type

$ setbalance downmix

That should downmix the stuff that is played. As you can see, running objects server side is
really easy through MCOP. Imagine what the overhead would be like if you needed to transfer
all data from the server to the setbalance program, which would do the calculations, and you
had to transfer everything back again.

KDE Multimedia Besides MCOP
As you have seen in the previous sections, MCOP is the basis of many multimedia things, and
it allows you many freedoms. However, in the very common situation in which you just want
to notify the user by playing a sample, there are simpler interfaces. Also, not all media types
have been integrated so far; I’ll try to briefly address the other possibilities that are available.

KNotify API and KAudioPlayer
There are two very simple ways to get a sound played in a KDE application. Of course, they
use the aRts soundserver. However, they are available in the kdecore library and require no
extra libraries. Thus, they are the most convenient forms of doing audio.

First is the KAudioPlayer class (declared in kaudioplayer.h). It is supposed to play a sound file
once, and without feedback. It works like this:

KAudioPlayer::play(“/var/share/foo.wav”);

You see, it’s simple. It also has the capability to use signals and slots to play files. That looks
like the following:

KAudioPlayer player(“/var/share/foo.wav”);
connect(&btn,SIGNAL(clicked()),&player,SLOT(play()));

However, for some applications, configurable sound events would be nicer for the user. For
instance, how can you know which sound somebody prefers when getting new mail? How can
you know whether the user prefers a sound at all, and not simply a message onscreen?

Of course, every application could write the configuration for that itself. There is a better solu-
tion, however. Using the KNotify API, you create an eventsrc, where you describe your events.
The user can reconfigure them later. The following is a sample eventsrc file (which needs to be
installed in $KDEDIR/share/apps/keventtest/eventsrc):

Application Interaction and Integration

PART III
354

18 8911 ch14 10/16/00 1:46 PM Page 354

[!Global!]
Name=keventtest
Comment=Event Test Program
[newmail]
Name=New Mail
Comment=Occurs when you’ve got new mail
default_sound=/var/samples/samples/011.WAV
default_presentation=1

And here is how to use it:

KNotifyClient::event(“newmail”);

The user now can disable this event, specify another sound file, or make it a message box
instead of a sound file in the KDE control center. This is why you should prefer events to sim-
ply playing files in most cases.

LibKMid
If you want to have background MIDI music for games and similar things, there is LibKMid. It
comes with the capability to read and play MIDI files. It also does fork itself, so you don’t
have to care that it keeps running while you do longer calculations.

I think that the following example will show the most essential things you need to know:

KMidSimpleAPI::kMidInit();
KMidSimpleAPI::kMidLoad(“fancymusic.mid”);
KMidSimpleAPI::kMidPlay();

sleep(30); /* of course, you can do anything here */

KMidSimpleAPI::kMidStop();
KmidSimpleAPI::kMidDestruct();

The initialization and loading are done with one function call each. After you have triggered
playing (kMidPlay), you can do anything you like (for instance, for a visual application, return
into the event loop). LibKMid will care that the MIDI file keeps running in the background.

aKtion
Finally, a hint about aKtion. Video isn’t integrated in MCOP yet. It probably will be someday.
However, that doesn’t mean that there is no way to play videos. Based on the xanim decoders,
aKtion is able to play most common video formats. It can, of course, be used as standalone
application.

Multimedia

CHAPTER 14

14

M
U

LTIM
ED

IA
355

18 8911 ch14 10/16/00 1:46 PM Page 355

However, it is also available as an embeddable part via the KParts technology. That makes it
suitable for using it inside Konqueror, but also inside your application.

The Future of MCOP
MCOP is new. This means that not every feature that should be available is available already.
Here I’ll try to outline the most important plans and show you where implementations are cur-
rently missing, so that you get an orientation of how the big picture will look when it is com-
pleted.

Composition/RAD
artsbuilder, which existed already for arts-0.3.4, needs to be ported to the KDE 2.0
aRts/MCOP technology still. It will allow building more complex objects out of simpler ones
visually. For instance, if you have a delay module, you can easily built a reverb filter by using
a few delay modules and adding them together (with some feedback). All this should be avail-
able in an easy-to-use visual builder (just like the arts-0.3.4 artsbuilder).

This needs some internal tweaking in MCOP so that you can implement complex modules in
terms of easy modules transparently.

GUIs
As you have seen, writing plug-ins for the soundserver is easy. Using them in other software as
wave editors, hard disk recorders, and sequencing software such as Brahms (which is a CuBase
clone for KDE) should be no problem, as well. What is missing is the capability to make GUIs
for those plug-ins easily. Maybe, if you are reading this, this is already fixed.

It would be nice to have the StereoBalanceControl object you wrote available in artscontrol,
KWave, Brahms, and other software, with a nice control panel to configure the balance to be
actually used.

With the modularity I mentioned previously, the GUI building should be as flexible. It should
be possible for somebody without any programming skills to create a reverb effect out of some
delays and give it a nice GUI. Maybe GUIs should also be toolkit independent, as a side effect
of that.

Scripting
Programming signal flow in C++ is nice. But you may not always want to wait for your com-
piler to achieve a small task. If components could be scripted by JavaScript and/or KScript,
another powerful tool would be added to the multimedia capabilities. You could do whole pre-
sentations with amazing video and audio combinations just as scripts. You could implement

Application Interaction and Integration

PART III
356

18 8911 ch14 10/16/00 1:46 PM Page 356

even more complex modules than with artsbuilder, without knowing C++ at all, or needing
your compiler, or anything else.

More Media Types
Finally, the most important point right now is that sound is what you can currently do reason-
ably with aRts/MCOP technology. The possibilities would be greatly enhanced if MIDI and
video were modular, just like sound. Video codecs and effects, modular MIDI processing, and
modular sound would give users and developers the ultimate unified multimedia API for solv-
ing complex problems easily.

It will happen; and if I know KDE development, it won’t take too long.

Summary
What KDE 2.0 offers in the multimedia section is more than a few convenient classes. It is
way of doing things. After reading this chapter, you should have an impression of how the
parts interact and how MCOP helps in solving multimedia tasks.

Next, I’ll summarize, in four levels, the key features that were mentioned in this chapter.

The highest level is the theoretical point of view. All multimedia tasks are somehow flow
graphs using small modules.

Then, you can look at it from an application level. I am writing an application. What do I need
to know? Talking to interfaces, creating and connecting modules, connecting to the sound-
server, and similar things are relevant here.

One level below, interfaces themselves become interesting. One side is which standard inter-
faces does aRts/MCOP provide, and how are they useful? Some important interfaces are the
SimpleSoundServer interface, the StereoEffect/StereoEffectStack, and KMedia2 with the
PlayObjects.

The other side is the interface definition language itself, IDL, and its interaction with mcopidl.
Interfaces in MCOP are oriented toward multimedia. Specifying streams directly in the inter-
face, and thus allowing MCOP to deal with them, is one of the important ways to get the flow
graph concept really done nicely.

Finally, the lowest level is implementing the interfaces. After writing the
StereoBalanceControl implementation, you should have an impression of how writing the
small modules that implement the interfaces in C++ works. The relevant aspects of streaming
here are the initialization, the calculateBlock function when you do synchronous streaming,
or their equivalents in the case of asynchronous streaming.

Multimedia

CHAPTER 14

14

M
U

LTIM
ED

IA
357

18 8911 ch14 10/16/00 1:46 PM Page 357

Exercises
1. Implement a beep sound similar to the stereo beep at the beginning, but with a variable

frequency. Make the frequency change very slowly between 220.0 and 660.0 to achieve a
siren effect. If you want to keep the source simple, don’t do different things for the left
and right channels.

2. Complete the missing cases in the StereoBalanceControl module above.

3. If you want a challenge now—something really tricky—I’ve got something for you.
Otherwise, you can safely ignore this. Here it is: Rewrite the stereo beep example in a
way that the beeps are spinning in circles from the left channel to the right channel and
back to the left channel. Have fun!

Application Interaction and Integration

PART III
358

18 8911 ch14 10/16/00 1:46 PM Page 358

IN THIS PART
15 Creating Documentation 361

16 Packaging and Distributing Code 379

17 Managing Source Code with CVS 391

18 The KDevelop IDE: The Integrated Development
Environment for KDE 401

19 Licensing Issues 427

Developer Tools and Support
PART

IV

19 8911 Part04 10/16/00 1:48 PM Page 359

19 8911 Part04 10/16/00 1:48 PM Page 360

CHAPTER

15
Creating Documentation
by David Sweet

IN THIS CHAPTER
• Documenting Source Code 362

• Documenting Applications 367

20 8911 ch15 10/16/00 1:45 PM Page 361

Developer Tools and Support

PART IV
362

Much effort is put into making the process of creating documentation simpler for other devel-
opers and end users. Standards exist for writing such documentation, as do software tools to
help you turn your documentation into attractive, accessible formats. In this chapter you learn
about two such standards: the KDE source-code documentation style and DocBook and their
related software tools.

Documenting Source Code
As mentioned in earlier chapters, it is important to document source code so that you and oth-
ers can read and understand it later on. When you are attempting to manage a large collection
of classes and functions, you will undoubtedly forget precisely how some of them work.
Comments in the class declarations (in the header files), for example, can serve as a handy ref-
erence when this happens. Of course, if others want to use or change one of your classes, they
will appreciate all the help they can get. If you are writing open source code, you will probably
appreciate it when other developers send you patches, and again, it is easier for others to create
patches if your code is documented.

In a large project, such as the KDE project, in which hundreds of developers are writing and
hacking at hundreds of thousands of lines of source code, documentation becomes invaluable.
The utility of such documentation was realized early on and a documentation standard was
created.

KDE developers put special comments in their header files before each class and method
name. These comments can be processed by a set of Perl scripts called KDOC. (This documen-
tation style is similar to that used by JavaDoc, a Java language documentation preparation pro-
gram.) KDOC can create output in HTML, DocBook, LaTeX, TeXInfo, and UNIX man page
formats. The default format, HTML, is the one most commonly used in the KDE project. You
can see samples of KDOC output on the KDE developers’ Web site at
http://developer.kde.org/documentation/library/2.0-api/classref/index.html. This
page contains links to documentation of the KDE 2.0 API documentation.

Obtaining and Installing KDOC
The KDOC source code is available from http://www.ph.unimelb.edu.au/~ssk/kde/kdoc or
from the KDE CVS source code repository in the module kdoc (see Chapter 17, “Managing
Source Code with CVS” for information on retrieving modules from the source code reposi-
tory).

KDE 2.0 uses KDOC 2, so if you visit the Web site (where both KDOC 1 and KDOC 2 are
available), be sure to get KDOC 2.

20 8911 ch15 10/16/00 1:45 PM Page 362

Be sure you have Perl 5.005 (or later, see http://www.cpan.org) installed before you attempt
to install KDOC 2.

If you downloaded the file (a compressed tar archive) kdoc-snapshot.tar.gz from the Web site
mentioned earlier, you should unpack it with

gzip -d kdoc-shapshot.tar.gz
tar -xvf kdoc-snapshot.tar

The archive unpacks to a directory called kdoc. Change to this directory with

cd kdoc

If you downloaded the CVS modules, you won’t need to do any unpacking, but you will need
to type

cd kdoc
make -f Makefile.cvs

to prepare the directory for use.

In either case—whether you downloaded the archive from the Web site or the module from
CVS—you are ready to compile and install kdoc. Log in as root and type

./configure
make install

KDOC is installed and ready to use. (Before continuing, you should log out and log in as a
nonroot user.)

Using KDOC
Using KDOC is simple. You add a comment before each class declaration and inside class dec-
larations before each method or enum declarations. These comments are C-style, like this:

/**
* This is a KDOC comment.
*/

Notice that the first line begins with /**. The double asterisk is the signal to KDOC that it
should process this comment. Comments without the double asterisk are ignored. Each subse-
quent line should begin with an asterisk. Note that these comments appear in header files.
KDOC is not designed to process comments in source-code files.

The comments should describe the element—class, method, or enum—that they precede. Look
at Listing 15.1 as an example. One large comment describes the class by telling what it does,
who wrote it, what version it is, and so on. The comments preceding the methods tell what
function the methods perform, what their arguments mean, and so on.

Creating Documentation

CHAPTER 15

15

C
R

EA
TIN

G
D

O
C

U
M

EN
TA

TIO
N

363

20 8911 ch15 10/16/00 1:45 PM Page 363

LISTING 15.1 kdocsample.h: A Class Declaration Commented for Processing by KDOC

1: #ifndef __KDOCSAMPLE_H__
2: #define __KDOCSAMPLE_H__
3:
4: /**
5: * @libdoc A single-class library.
6: *
7: * This comment is the overall documentation for entire library.
8: * It could appear in any one header file.
9: * The single class in this library is called @ref KDocSample.
10: **/
11:
12:
13: /**
14: * This header file is documented in kdoc format.
15: *
16: * This is a new paragraph of documentation because it is preceeded
17: * by a blank line. The string “/**” above marks this comment as
18: * documentation.
19: *
20: * If this class created a widget, we might put a small screenshot
21: * here:
22: * @image /home/dsweet/KDE/HEAD/kde/share/icons/large/hicolor/apps/go.png
23: * @short Sample documented header file
24: * @author Joe Developer <jdevel@kde.org>
25: * @version 1.0
26: */
27: class KDocSample
28: {
29: public:
30: /**
31: * @sect Important stuff
32: *
33: * Instantiate this class.
34: *
35: * Notes
36: * @li Don’t forget to ...
37: * @li Be sure to ...
38: * @param goodstuff Some good stuff to document.
39: * @see getStuff
40: **/
41: KDocSample (QString goodstuff);
42:
43: /**
44: * Retrieve the good stuff.
45: *

Developer Tools and Support

PART IV
364

20 8911 ch15 10/16/00 1:45 PM Page 364

46: * @since one two three
47: * @returns The good stuff.
48: * @exception some_exception some_other_exception
49: **/
50: virtual QString getStuff () const;
51: };
52:
53:
54: #endif

You can create HTML output with the following command:

kdoc -d KDocSampleOutput -n KDocSample kdocsample.h

This command instructs KDOC to create its HTML output—a collection of .html files—in the
directory MyLibraryOutput (via the option -d) and to name the collection of files (within the
documentation files) KDocSample (via the option -n). kdoc can take multiple filenames as
input. For example,

kdoc -d MyLibraryOutput -n MyLibrary *.h

processes all header files with the extension .h in this directory into a collection of HTML files
in the directory MyLibraryOutput and titles it MyLibrary. Figure 15.1 shows some of the
HTML output as viewed by Konqueror.

Creating Documentation

CHAPTER 15

15

C
R

EA
TIN

G
D

O
C

U
M

EN
TA

TIO
N

365

FIGURE 15.1
Screen shot of Konqueror viewing the HTML output of kdoc given kdocsample.h as input.

LISTING 15.1 Continued

20 8911 ch15 10/16/00 1:45 PM Page 365

Each KDOC-formatted comment can include the following elements:

• Unformatted text—Each paragraph is separated by an empty line (that is, an asterisk fol-
lowed only by whitespace).

• <pre>...</pre> tags—These tags mark preformatted text, such as code segments (the
same as in HTML).

• Tags beginning with the @ character—One such tag, @author name, tells who the author
of the code is. Other possible KDOC tags are described in the next section.

The next sections detail tags that can be used when formatting comments for KDOC.

Library Documentation
• @libdoc—This tag marks this entire comment as library documentation. That means that

it will appear on the page that indexes the library and thus should describe the functions
available in the library. See
http://www.ph.unimelb.edu.au/~ssk/kde/srcdoc/kio/index.html for an example.

Class Documentation
• @short Short description—Offers a short description of the class.

• @author authorName—Specifies the name of the author of the class.

• @version version—Specifies the version of the class.

• @internal—Indicates that a class is used only internally by a library.

• @deprecated—Indicates that a class is deprecated.

Method Documentation
• @param parameterName description—Describes one of the parameters (arguments)

that is passed to this function.

• @returns description—Describes the value returned by this method.

• @since version—Says that this method was added in version version of the class.

• @exception ref1 ref2 ...—Tells what exceptions might be thrown from this function.

• @throws ref1 ref2 ...—Tells what exceptions might be thrown from this function.
(Same as @exception.)

• @raises ref1 ref2 ...—Tells what exceptions might be thrown from this function.
(Same as @exception.)

Developer Tools and Support

PART IV
366

20 8911 ch15 10/16/00 1:45 PM Page 366

Class and Method Documentation
• @see ref1 re2 ...—Provides cross-reference to one or multiple other classes or meth-

ods. The arguments ref1, ref2, and so on have the format Classname or
Classname::method. KDOC will turn these references into hyperlinks (when producing
HTML output) if it can. Note: Don’t include the parentheses or arguments when naming
methods. That is, use method, not method().

• @ref ref—This is an inline cross-reference. For example, the following text:

* Take a look at @ref KClass, it’s a good one!

includes a hyperlinked (if possible) reference to KClass.

• @image pathOrUrl—Includes an image that can be found at the path or URL
pathOrURL.

• @sect sectionName—Starts a new section of the documentation and calls it
sectionName.

• @li listItem—Includes a list item (in HTML) called listItem at this point in the
document.

The tags @see and @image need to be followed by a blank KDOC comment line. For example:

* @see KOtherClass
*
* @version 1.0

is allowed, whereas

* @see KOtherClass
* @version 1.0

is not. The blank line tells KDOC to stop processing the @see or @image tag.

Documenting Applications
For creating application documentation, the KDE project uses the DocBook Document Type
Definition (DTD), a specific instance of the Standard Generalized Markup Language (SGML).
DocBook was created by the Organization for the Advancement of Structured Information
Standards (OASIS), a nonprofit group, to be a standard suitable for writing technical documen-
tation. The DocBook DTD specifies how to mark up text files so that they can be processed
into good-looking technical documentation. The KDE team has created a custom DocBook
style sheet (which redefines the layout of the document a bit) that can be used to turn your
document into standard KDE documentation.

Creating Documentation

CHAPTER 15

15

C
R

EA
TIN

G
D

O
C

U
M

EN
TA

TIO
N

367

20 8911 ch15 10/16/00 1:45 PM Page 367

Your documentation should be included with your application distribution (see Chapter 16,
“Packaging and Distributing Code” for more information) and installed in
$KDEDIR/share/doc/HTML/lang/appname, where lang is a two-letter language code (for
example, en is the code for English) and appname is the (all lower-case) name of your applica-
tion (for example, ksimpleapp). When the user chooses the entry Contents from your applica-
tion’s Help menu, this documentation will be loaded (in particular, the file
$KDEDIR/share/doc/HTML/lang/appname/index.html will be loaded by the application
KHelpCenter).

Developer Tools and Support

PART IV
368

Prior to version 2.0, the KDE project used the LinuxDoc DTD for its documentation.
You may find documentation in this format, but you should write all your new docu-
mentation using DocBook.

NOTE

If you have ever written HTML, you should be fairly comfortable with DocBook. Like HTML,
DocBook documents contain mark-up tags that indicate what the various parts of the document
are. It is up to a formatting program to turn this document into presentable material. The struc-
ture of a DocBook (indeed, any SGML document) is free format, which means that extra
spaces (or other whitespace characters) between words or tags are ignored. The space serves
only to separate different elements of the document, such as to separate one word from
another. All formatting is done by the formatting program.

Consider the following document snippet:

<title>Technical Documentation</title>
<sect1 id=”Intro”>
<para>
Welcome to a technical subject. Have no fear, this documentation will

make it clear...or, at the least, it will be available in PostScript,
PDF, and HTML!
</para>
</sect1>

Technical Documentation is the document’s title, as you might have guessed. The string
<title> is an opening tag; it marks the beginning of a section containing the title. The string
</title> is a closing tag and marks the end of that section. All the information in a DocBook
document falls between some type of opening and closing tags.

In the section “Writing DocBook Documentation for KDE,” I discuss some of the tags that are
available and examine a sample document.

20 8911 ch15 10/16/00 1:45 PM Page 368

Obtaining and Installing KDE DocBook Tools
You can retrieve everything you to need start working with DocBook from the KDE FTP site
(ftp.kde.org) or one of its mirrors. In the directory pub/kde/devel/docbook/, you will find the
following DocBook packages:

• sgml-common

• jade

• docbook

• stylesheets

• psgml

• jadetex

The first four are required to use DocBook. psgml is an add-on for Emacs that makes creating
DocBook documents easier. jadetex is needed if you intend to create LaTeX versions of your
document and process them (into PostScript, for example). The KDE customizations are
included in the kdelib package.

The DocBook packages are available in RPM, SRPM, and .tgz formats. You should choose the
one that you prefer and that is appropriate for your system.

If you choose RPM format, you can install the packages with the command
rpm -ivh packagename. Install the packages in the order given in the preceding list.

Creating Documentation

CHAPTER 15

15

C
R

EA
TIN

G
D

O
C

U
M

EN
TA

TIO
N

369

You will need to uninstall any older versions of these packages.

NOTE

If you choose SRPM or .tgz format, you should follow the usual compiling and installation
procedures.

Processing DocBook Documentation
DocBook files are processed with the utility called jade. Access to jade is given through the
front end scripts jw.

You can use jw to convert your DocBook file to HTML, Rich Text Format (RTF), TeX,
Postscript, or other formats. You use this script to process your DocBook file in this way:

jw -o HTML -c /usr/share/sgml/docbook/sgml-dtd-3.1/catalog -c \
$KDEDIR/share/apps/ksgmltools/catalog -d \
$KDEDIR/share/apps/ksgmltools/stylesheets/kde.dsl#HTML docBookFileName

20 8911 ch15 10/16/00 1:45 PM Page 369

where docBookFileName is the name of the source file (for example, ksimpleapp.docbook, a
file that is discussed in the next section). Executing this command produces a directory called
HTML, which contains the HTML files produced from docBookFileName. These files will be
formatted in a standard KDE style.

The file kde.dsl, in describing the formatting of the resulting HTML file, requests that an
image called logotp3.png be displayed. To give your newly-created HTML files access to this
graphic, type

mkdir HTML/common
cp $KDEDIR/share/doc/HTML/default/common/logotp3.png HTML/common

A convenient script called makehtml that executes these three commands (jw, mkdir, and cp) is
included on the Web site. It is used this way:

makehtml outputDirectory docBookFileName

The first parameter, outputDirectory, is the name of a subdirectory to be created to hold the
ouput files. To reproduce the commands above, use HTML as the outputDirectory.

Writing DocBook Documentation for KDE
The best way to start learning DocBook is to look at an example. The basic structure and tags
are simple. Listing 15.2 shows a simple DocBook file called ksimpleapp.docbook, which docu-
ments KSimpleApp, the application created in Chapter 2, “A Simple KDE Application.”

Developer Tools and Support

PART IV
370

Since DocBook documents (see Listing 15.2) are plain text, you may use any text edi-
tor to create them.

NOTE

LISTING 15.2 ksimpleapp.docbook: DocBook Documentation for KSimpleApp

1: <!DOCTYPE book PUBLIC “-//KDE//DTD DocBook V3.1-Based Variant V1.0//EN”>
2:
3: <Book Id=”KSimpleApp” Lang=”en”>
4:
5: <BookInfo>
6:
7: <Title>KSimpleApp Documentation</Title>
8:
9: <AuthorGroup>
10: <Author>
11: <Firstname>Joe</Firstname>
12: <Surname>Developer</Surname>
13: </Author>

20 8911 ch15 10/16/00 1:45 PM Page 370

14: </AuthorGroup>
15:
16: <KeywordSet>
17: <Keyword>KDE</Keyword>
18: <Keyword>ksimpleapp</Keyword>
19: </KeywordSet>
20:
21: <Date>1/1/2000</Date>
22: <ReleaseInfo>1.0.0</ReleaseInfo>
23:
24:
25: <Abstract>
26: <Para>
27: This is a short example of how DocBook is used to document KDE
28: Applications. The basic DocBook tags are used here, but there are many
29: more!
30: </Para>
31: </Abstract>
32:
33: </BookInfo>
34:
35: <Chapter Id=”introduction”>
36: <Title>Introduction</Title>
37: <Para>
38: <Application>KSimpleApp</Application> says “Hello!” and allows
39: the user to reposition text.
40: </Para>
41:
42: <Sect1 Id=”ksimpleapp-revhistory”>
43: <Title>KSimpleApp Revision History</Title>
44: <Para>
45: <ItemizedList>
46: <ListItem><Para>1.1 - Added a combobox to the
47: toolbar in Exercise 2.1</Para></listitem>
48: <ListItem><Para>1.0 - First version</Para></listitem>
49: </ItemizedList>
50: </Para>
51: </Sect1>
52: </Chapter>
53:
54: <Chapter Id=”installation”>
55: <Title>Installation</Title>
56: <Para>
57: This Application does <Emphasis>not</Emphasis> want to be installed.
58: </Para>

Creating Documentation

CHAPTER 15

15

C
R

EA
TIN

G
D

O
C

U
M

EN
TA

TIO
N

371

LISTING 15.2 Continued

20 8911 ch15 10/16/00 1:45 PM Page 371

59: <Sect1 Id=”getting-ksimpleapp”>
60: <Title>Obtaining KSimpleApp</Title>
61: <Para>
62: <Application>KSimpleApp</Application> can be found in Chapter 2 and on
63: the Web site for this book.
64: </Para>
65: </Sect1>
66:
67: <Sect1 Id=”requirements”>
68: <Title>Requirements</Title>
69: <Para>
70: You will need KDE 2.0 to run this Application. Please visit
71: <ulink url=”http://www.kde.org”>
72: The KDE home page</ulink> to find out about KDE 2.0.
73: </Para>
74: </Sect1>
75:
76: <Sect1 Id=”compilation”>
77: <Title>Compilation and installation</Title>
78: <Para>
79: Compile <Application>KSimpleApp</Application> with g++.
80: </Para>
81: </Sect1>
82:
83: <Sect1 Id=”configuration”>
84: <Title>Configuration</Title>
85: <Para>
86: No configuration is needed.
87: </Para>
88:
89: </Sect1>
90:
91: </Chapter>
92:
93: <Chapter Id=”using-kapp”>
94: <Title>Using KSimpleApp</Title>
95:
96: <Para>
97: <Application>KSimpleApp</Application> is simple to use.
98: </Para>
99:
100: <Sect1 Id=”kapp-features”>
101: <Title>KSimpleApp features</Title>
102:

Developer Tools and Support

PART IV
372

LISTING 15.2 Continued

20 8911 ch15 10/16/00 1:45 PM Page 372

LISTING 15.2 Continued

103: <Para>
104: Well, if there were any, we’d present them here.
105: </Para>
106:
107: </Sect1>
108: </Chapter>
109:
110: <Chapter Id=”commands”>
111: <Title>Command Reference</Title>
112:
113: <Para>
114: Type <keycombo><keycap>Ctrl</keycap><keycap>q</keycap></keycombo>
115: to quit or <keycombo><keycap>Ctrl</keycap><keycap>r</keycap></keycombo>
116: to reposition the text.
117:
118: </Para>
119:
120: </Chapter>
121:
122:
123: <Chapter Id=”credits”>
124:
125: <Title>Credits and License</Title>
126: <Para>
127: <Application>KSimpleApp</Application> is Copyright 2000 by Joe Developer
128: <Email>jdevel@kde.org</Email> and
129: was written by Joe Developer and
130: is available under the <ULink Url=”common/gpl-license.html”>
131: GNU GPL</Ulink>.
132: </Para>
133:
134: </Chapter>
135:
136: </Book>

This document starts off with the line

<!DOCTYPE book PUBLIC “-//KDE//DTD DocBook V3.1-Based Variant V1.0//EN”>

which tells the processor, jade, that the document is a book (not an article, another DocBook
type not used in KDE application documentation and not discussed here) and that it should use
the DTD called -//KDE//DTD DocBook V3.1-Based Variant V1.0//EN. This DTD is an exten-
sion of the DocBook V3.1 DTD that adds support for PNG graphics. It is part of the cus-
tomization of the DocBook installation performed when you installed kdesdk/ksgmltools.

Creating Documentation

CHAPTER 15

15

C
R

EA
TIN

G
D

O
C

U
M

EN
TA

TIO
N

373

20 8911 ch15 10/16/00 1:45 PM Page 373

All the DocBook tags take the following form:

<tag propertyname=”property”>
...
</tag>

Some tags have multiple property names and some have none.

Developer Tools and Support

PART IV
374

PNG graphics are preferred over GIF for use in KDE documentation because no part
of PNG is patented.

NOTE

It is important to use the proper case for tags and to use closing tags even when not
strictly required by SGML. Doing so will make it easier to port your documentation to
the XML (Extended Markup Language) DTD that will eventually become the KDE
standard.

CAUTION

To process the document in Listing 15.2, use the command

makehtml HTML ksimpleapp.docbook

This will generate the HTML documentation in a directory called HTML. Figure 15.2 shows
the output as viewed by Konqueror.

The meanings of many of the tags in Listing 15.2 may seem obvious, but Tables 15.1-15.3 are
a complete summary of them divided into three categories: meta-information, structure and
formatting. These tags should be sufficient to write much of the documentation you will need
to write.

20 8911 ch15 10/16/00 1:45 PM Page 374

FIGURE 15.2
Screenshot of the HTML output created from ksimpleapp.docbook as viewed by Konqueror.

TABLE 15.1 DocBook Meta-Information Tags

Tag Contents of Tagged Region

BookInfo Information about the book (author, date written, and so on)

AuthorGroup Information about all authors

Author A single author

KeyWordSet A set of keywords relevant to the document’s contents

Keyword A single keyword

Date The date the document was created or revised

ReleaseInfo The version of the document

Abstract An abstract for this document

Creating Documentation

CHAPTER 15

15

C
R

EA
TIN

G
D

O
C

U
M

EN
TA

TIO
N

375

20 8911 ch15 10/16/00 1:45 PM Page 375

TABLE 15.2 DocBook Document Structure Tags

Tag Contents of Tagged Region

Book Id=”id” Lang= A book of documentation identified
“language” by id, written in the language

language

Chapter One chapter of the book

Title The title of a chapter, section, and so on

Sect1, Sect2..Sect5 A section, subsection, and so on of a chapter

Para A single paragraph

The property id is used when processing the document to identify the book. It may, for exam-
ple, be used to place a mark in an HTML document naming the section id: .

TABLE 15.3 DocBook Formatting Tags

Tag Contents of Tagged Region

Emphasis Emphasized Text

ItemizedList An unnumbered list

ListItem An element in a list

KeyCombo A combination of input actions (for example, Ctrl+Q)

KeyCap Something printed on a keyboard key (for example, Ctrl)

Application The name of an application

ULink Url=”url” An anchor for the URL, url

DocBook has many more tags than those presented. They allow you to create rich, structured
documents that can easily be processed by a computer. You can find out more about them from
the tutorial at http://i18n.kde.org/doc/crash-course/ or at the official DocBook home
page at http://www.oasis-open.org/docbook/.

Developer Tools and Support

PART IV
376

20 8911 ch15 10/16/00 1:45 PM Page 376

Summary
You document your source code and applications using the freely available tools KDOC, jade,
and the DocBook DTD.

Source-code documentation is written directly into C++ header files as specially marked com-
ments—that is, comments that begin with /**. You use the tool KDOC to process the header
files into HTML documentation, that can be referred to by programmers using the documented
classes.

Documentation for applications is written in text files formatted using SGML tags according to
the DocBook DTD. This documentation should be included with the application so that the
user may view it when they need assistance with your application.

Examples of well-written KDE DocBook documentation can be found in the KDE CVS source
code repository (see Chapter 17) along with the applications that they document. A fine exam-
ple of DocBook documentation is the KDevelop documentation by Ralf Nolden and the
KDevelop team in the CVS file kdevelop/doc/manual/index.docbook.

Creating Documentation

CHAPTER 15

15

C
R

EA
TIN

G
D

O
C

U
M

EN
TA

TIO
N

377

20 8911 ch15 10/16/00 1:45 PM Page 377

20 8911 ch15 10/16/00 1:45 PM Page 378

CHAPTER

16
Packaging and Distributing
Code
by David Sweet

IN THIS CHAPTER
• The Structure of a Package 380

• Administrative Files 381

• Distributing Your Application 388

21 8911 ch16 10/16/00 1:48 PM Page 379

Developer Tools and Support

PART IV
380

By now you have probably become familiar with the standard form in which KDE applications
and libraries are distributed. The source code is bound in a single directory in a gzipped tar
file, and the program is made and installed with the commands ./configure; make; make
install. In this chapter, you learn how to create packages like this for your own applications.

The advantages to using this standard packaging method include

• An easy and familiar compilation and installation procedure for end users.

• A simple way to construct makefiles and manage dependencies (including .moc files).

• A convenient way to adapt your source code to the system on which it is being compiled.
These advantages occur because of the use of Autoconf and Automake, as well as the
hard work of Stephan Kulow (who maintains the KDE packaging software) and other
contributors. To use this packaging system, you need Autoconf version 2.13 or better
and Automake version 1.4a or better. You will also need to have Perl installed.

You can find out about Autoconf, Automake and Perl at the following URLs:

http://sourceware.cygnus.com/autoconf/

http://sourceware.cygnus.com/automake/

http://www.perl.org

TIP

After you’ve created a working package for your application, you’ll want to distribute it and
get the word out to potential users. This chapter will show you how.

The Structure of a Package
A package contains several files in addition to your source code, such as makefiles, scripts, and
sources for the makefiles and scripts. A typical layout is shown in Figure 16.1.

This layout is taken from the package kexample.tar.gz. In this chapter, you will examine it and
develop it into a package for KSimpleApp, the application written in Chapter 2, “A Simple
KDE Application.”

The top-level directory of a package contains some administrative scripts, including the script
configure, and a makefile. The script configure runs several tests to learn about the system
before the software is compiled. These tests include checking for the appropriate versions of
KDE and Qt; checking for the locations of KDE, Qt, and X; checking for the presence of vari-
ous utility programs; and checking for various system-dependent behaviors of programs and
library functions. The file Makefile is used by the make utility to build and install the software,

21 8911 ch16 10/16/00 1:48 PM Page 380

to remove files not needed for distribution, and to regenerate automatically generated files
when they are needed. The script configure is generated automatically by the Autoconf from a
file called configure.in and Makefile is generated by configure from the file Makefile.in. You
will see how to create these files later in the section “Configuring the Top-Level Directory”.

Packaging and Distributing Code

CHAPTER 16

16

P
A

C
K

A
G

IN
G

A
N

D
D

ISTR
IB

U
TIN

G
C

O
D

E

381

FIGURE 16.1
The layout of a typical KDE source code package.

There are two important subdirectories. One is given the name of your application in all low-
ercase letters (the subdirectory for KSimpleApp, for example, is ksimpleapp), and the other is
called po. The first subdirectory contains all the application’s source code, and po holds trans-
lations of the string literals that are passed to the i18n() function.

Administrative Files
Before you starting building a package for KSimpleApp, you should be familiar with some of
the files used by the packaging system. Table 16.1 gives a summary of files and their pur-
poses.

TABLE 16.1 Administrative Files in a KDE Package

Filename Description

configure Configuration script used to configure the build environment.

configure.in Source for the script configure. This is prepared by the maintainer
(you!) and processed by Autoconf to create the script configure.

config.h Holds the results of the tests run by the script configure. These results
are specified by #define directives. You can include config.h in your
source code to use these directives (thus, the results of the tests).

config.status Script to remake the last successful build environment generated by
the script configure.

config.cache Stores results of tests run by the script configure so that the package
can be reconfigured quickly (without rerunning previously successful
tests).

config.log Contains debugging output from the script configure. You can consult
this file to figure out why a test has failed.

kexample-1.0

Makefile Makefile.in Makefile configure.in configure config.h ksimpleapp po

Makefile.am Makefile.in Makefile *.h *.cpp Makefile.am Makefile.in Makefile ksimpleapp.pot *.po

21 8911 ch16 10/16/00 1:48 PM Page 381

Configuring the Top-Level Directory
To convert the kexample package to a package for KSimpleApp, you first need to edit config-
ure.in and Makefile.am.

The file configure.in contains several macros, each of which corresponds to a set of tests run
by configure. Autoconf expands these macros when converting configure.in to the script con-
figure. You need to modify two macros called AM_INIT_AUTOMAKE and AC_OUTPUT.

The first of these specifies the name and version number of the package. Call the package
ksimpleapp and give it version number 1.0 by changing the line

AM_INIT_AUTOMAKE(kexample, 2.0pre) dnl searches for some needed programs

to read

AM_INIT_AUTOMAKE(ksimpleapp, 1.0) dnl searches for some needed programs

Next, tell Autoconf which directories to compile source code in. In this example, only one
directory exists, ksimpleapp, so change the lines

AC_OUTPUT(\

./Makefile \

kless/Makefile \

)

to read

AC_OUTPUT(\

./Makefile \

ksimpleapp/Makefile \

)

You also need to edit Makefile.am. This file is processed by Automake into Makefile.in, which
is processed, in turn, into Makefile by Autoconf. Thankfully, this is a mostly transparent
process. You will generally need to modify only one line in Makefile.am and then not worry
about the other two files. The line to modify is

SUBDIRS = kless

It should read

SUBDIRS = ksimpleapp

Developer Tools and Support

PART IV
382

21 8911 ch16 10/16/00 1:48 PM Page 382

The top-level directory is now configured. The changes you have made will be propagated
when you type make Makefile.dist, but don’t do that yet! You need to make some changes to
the subdirectory kless. First off, change its name:

mv kless ksimpleapp

The subdirectory kless, which you have renamed ksimpleapp, contains the source code,
Makefile, and some support files for an application called kless.

Configuring the Subdirectories
Now prepare the subdirectory ksimpleapp for KSimpleApp:

1. Delete the files kless.cpp, kless.h, and configure.in.in—you won’t be needing them.

2. Rename kless.desktop to ksimpleapp.desktop.

3. Copy the source code for KSimpleApp to this directory. The necessary files are ksim-
pleapp.h, ksimpleapp.cpp, and main.cpp. (These files are part of the source code from
Chapter 2.)

4. Rename the files lom-app-kless.png and los-app-kless.png to lom-app-ksimpleapp.png
and los-app-ksimpleapp.png, respectively. You can use the kless icon instead of drawing
your own just for this example. When you distribute your application, you should create
your own icons according to the KDE style guidelines in Chapter 6, “KDE Style
Reference.”

Now you need to configure the file Makefile.am. This file is read by automake when you run
make Makefile.dist. Automake produces the file Makefile.in from it (from which Autoconf pro-
duces Makefile, as discussed previously).

Makefile.am contains a list of variable assignments and standard make rules. The standard
make rules are copied directly to Makefile.in and then to Makefile. The assigned variables
have special names that tell Automake how to create Makefile.in. For example, value assigned
to the variable bin_PROGRAMS is the name of the application being created. Listing 16.1
shows an edited version of the Makefile.am found in the subdirectory kexample/kless. It has
been edited to build KSimpleApp. (The original file was well commented; these comments
have been removed here for brevity.)

LISTING 16.1 Makefile.am: An Automake Source File Used to Build KSimpleApp

1: INCLUDES= $(all_includes)
2:
3: bin_PROGRAMS = ksimpleapp
4:

Packaging and Distributing Code

CHAPTER 16

16

P
A

C
K

A
G

IN
G

A
N

D
D

ISTR
IB

U
TIN

G
C

O
D

E

383

21 8911 ch16 10/16/00 1:48 PM Page 383

5: ksimpleapp_SOURCES = ksimpleapp.cpp main.cpp
6:
7: ksimpleapp_METASOURCES = AUTO
8:
9: ksimpleapp_LDFLAGS = $(all_libraries) $(KDE_RPATH)
10: ksimpleapp_LDADD = $(LIB_KDEUI)
11:
12: noinst_HEADERS = ksimpleapp.h
13:
14: messages:
15: $(XGETTEXT) --c++ -ki18n -x $(includedir)/kde.pot \
16 $(ksimpleapp_SOURCES) && mv messages.po ../po/ksimpleapp.pot
17:
18: kdelnkdir = $(kde_appsdir)/Utilities
19: kdelnk_DATA = ksimpleapp.desktop
10:
21: KDE_ICON = ksimpleapp

The following variables should be assigned in Makefile.am.

INCLUDES—(Line 1) Include paths passed to the C++ compiler. Set this to $(all_includes) to
get the KDE, Qt, and X11 include paths. Add other paths as needed (for example, to locate
include files for a custom or other third-party library).

bin_PROGRAMS—(Line 3) The name of the binary to create. In this example, it is ksimpleapp.

ksimpleapp_SOURCES—(Line 5) The names of all the source files separated by spaces. Use the
name assigned to bin_PROGRAMS as the first part of this and other variables (see subsequent
items in this table). (Actually, the name assigned to bin_PROGRAMS needs to be converted a bit;
all characters except letters and numbers should be converted to underscores. For example, if
bin_PROGRAMS were set to my-program, the SOURCES variable would be my_program_SOURCES.)

ksimpleapp_METASOURCE—(Line 7) You should always set this to AUTO. Dependencies for
*.moc files are automatically set up in Makefile. For this to work, you should include *.moc
files in your C++ source code, the same as you’ve done throughout this book.

ksimpleapp_LDFLAGS—(Line 9) A list of paths to search for libraries. Set this to
$(all_libraries) to add the search paths for the necessary KDE, Qt, and X libraries.

Developer Tools and Support

PART IV
384

LISTING 16.1 Continued

21 8911 ch16 10/16/00 1:48 PM Page 384

ksimpleapp_LADD—(Line 10) A list of libraries to link to. Setting this to $(LIB_KDEUI) links
ksimpleapp to libkdeui, as well as to all the other libraries necessary to compile a basic KDE
application. If you need libkfile, libkimgo, libkio, or libkab, you should add the variables—
$(LIB_KFILE), $(LIB_KIMGIO), $(LIB_KIO), or $(LIB_KAB)—to this line. Be sure to separate
the variable names with a space and place libraries in reverse order of dependence. For exam-
ple, if library1 depends on library2, place library1 first in the list.

noinst_HEADERS—(Line 12) The header files listed here should not be installed along with the
application.

kdelnkdir—(Line 18) The directory in which to install the ksimpleapp.desktop file. (Recall
that the *.kdelnk files of KDE 1.x have been replaced with *.desktop files in KDE 2.0; this
explains the name of this variable.)

kdelnk_DATA—(Line 19) The name of the .desktop file to install.

KDE_ICON—(Line 21) The root of the icon names. The icon names are lo32-app-
ksimpleapp.png and lo16-app-ksimpleapp.png. The root is ksimpleapp. The prefixes are
app for application, lom for “low color, medium sized,” and los for “low color, small sized.”

The last part of Makefile.am, which I haven’t mentioned yet, is the target messages. This target
(lines 14 and 15) follows the standard makefile conventions and is carried through unchanged
by Automake and Autoconf to the final Makefile. When you run make messages, the string lit-
erals that have been passed to the function i18n() are extracted from all files listed in
$(ksimpleapp_SOURCES) to the file ../po/ksimpleapp.pot. This file serves as a template for
creating translations of the string literals. The option -x $(includedir)/kde.pot says to
ignore strings that have been previously translated for global use by KDE applications. See
Chapter 7, “Further KDE Compliance,” for information on how to create and use translation
(*.po) files.

Updating Administration Files
You may now update the administration files. First, make sure that the environment variables
KDEDIR and QTDIR are set appropriately to the root KDE and Qt directories. Change directories
to the top-level directory and type

make -f Makefile.dist
./configure

This performs the updates. You can now compile the application with make.

Packaging and Distributing Code

CHAPTER 16

16

P
A

C
K

A
G

IN
G

A
N

D
D

ISTR
IB

U
TIN

G
C

O
D

E

385

21 8911 ch16 10/16/00 1:48 PM Page 385

Creating Shared Libraries
The KDE package-management system you have been reading about makes the creation of
shared libraries quite simple. To do this, create a subdirectory and copy the library’s source
code into it. Next, copy the file Makefile.am from the kless directory and modify it the same as
you did for ksimpleapp, except for two things:

1. Instead of assigning a value to the variable bin_PROGRAMS, set the variable lib_
LTLIBRARIES. For example:

lib_LTLIBRARIES = libkplotw.la

tells automake that you are interested in creating a library called libkplotw.la.

2. Add some linker flags:

libkplotw_la_LDFLAGS = -version-info 0:2:0 $(all_libraries) -no-undefined

Notice that an underscore has been substituted for the period in libkplotw.la. The
option -version-info a:b:c says to create a library with the version number (a-c).c.b
For example, this library would be created as libkplotw.so.0.0.2. The option -no-
undefined says that no external symbols are needed by this library (it is needed to create
a shared library).

Using Test Results
You can use the results of the tests run by the script configure in a source-code file by includ-
ing the file config.h with the following statement:

#include <config.h>

Then do either of the following:

Examine the macros defined in this file with preprocessor directives.

Use the macros directly.

The file config.h is created automatically by the script configure after the tests are run.

Let’s examine the second method.

Add the statement #include <config.h> to the file ksimpleapp.cpp and change the following
line:

text = new QLabel (i18n(“Hello!”), this);

to the lines

Developer Tools and Support

PART IV
386

21 8911 ch16 10/16/00 1:48 PM Page 386

QString qs (i18n(“Hello from “));
qs = qs + VERSION +”!”;
text = new QLabel (qs, this);

The identifier VERSION is a macro defined in config.h by the statement

#define VERSION “1.0”

The string “1.0” comes, ultimately, from your declaration of the version in the call to
AM_INIT_AUTOMAKE() in the file configure.in.

Other macros are defined that tell about the build environment. The file config.h in well com-
mented and describes the purpose of each macro.

Make Targets
The makefiles that are generated by Automake/Autoconf contain several make targets that help
make the development cycle more efficient. Several commonly used targets are listed in Table
16.2.

TABLE 16.2 Commonly Used Targets Included in Autogenerated Makefiles

Target Description

all Build the entire package. This is the default target (that is, it is
assumed if no target is specified).

install Install the package. The target all is made if it hasn’t been already.

uninstall Remove the package.

clean Remove the build results (*.o files, executables, and so on) but not
configuration results (config.cache, and so on).

distclean Preparing the package for distribution removes both build results
and results of configuration. You can still rebuild the package with-
out having Automake, Perl, and Autoconf installed.

maintainer-clean Removes even more than distclean. You’ll need to have Automake,
Perl, and Autoconf to rebuild after making this target.

The targets all, install, and uninstall will be used by end users and generally, the others
will be used only by the maintainer(s) of the package.

Packaging and Distributing Code

CHAPTER 16

16

P
A

C
K

A
G

IN
G

A
N

D
D

ISTR
IB

U
TIN

G
C

O
D

E

387

21 8911 ch16 10/16/00 1:48 PM Page 387

Distributing Your Application
A few things remain to be done before you distribute your code. You should provide informa-
tion about the application in text files and clean up the directories.

Informative Text Files
The Linux Software Map is a project that keeps track of Linux software via small index files
(see http://www.execpc.com/lsm/). These index files are also used by the KDE project to
keep track of KDE software. When you upload your file, you should upload an LSM, as the
index file is called, along with your package.

Listing 16.2 presents an LSM file for the KSimpleApp package. You may copy and edit this
file to describe any packages you might create.

LISTING 16.2 ksimpleapp-1.0.lsm: An LSM File for the KSimpleApp Package

1: Begin3
2: Title: KSimpleApp
3: Version: 1.0.0
4: Entered-date: 19MAR2000
5: Description: A simple KDE application
6: Keywords: simple KDE Qt
7: Author: David Sweet <dsweet@kde.org>
8: Maintained-by: David Sweet <dsweet@kde.org>
9: Primary-site: ftp://ftp.kde.org/pub/kde/unstable/apps/
10: Home-Page: http://www.kde.org/~dsweet/KDE/KSimpleApp
11: Original-site: None
12: Platforms: KDE 2.0
13: Copying-policy: GPL
14: End

Most fields in this file are self-explanatory. The Primary-site: field (line 9) is often a direc-
tory on ftp.kde.org. You should look in pub/kde/unstable/apps for a subdirectory that is appro-
priate for your application. The Primary-site: may also be on your own server. (The URLs
listed here are for demonstration purposes only, and, so, are not active.) The Copying-policy:
field (line 13) is important to include. Common licenses are GPL, LGPL, BSD, and Artistic.

The LSM file should be included in the top-level directory of the package and uploaded as a
separate file to whichever site you choose to upload to. (See the section “Uploading and
Announcing Software” for more information.)

Developer Tools and Support

PART IV
388

21 8911 ch16 10/16/00 1:48 PM Page 388

In the top-level directory, you should also include files called README and INSTALL.
README should introduce the software and tell the user miscellaneous information that
doesn’t fit in other places. INSTALL gives the user instructions for installing the software. You
should modify the standard INSTALL file that is included in the kexample package.

Cleaning Up
Before distributing your application, you should copy the entire directory to a directory with a
name similar to ksimpleapp-1.0. That is, the name should be (application name)-(version num-
ber). It is good to make a copy so that you don’t break (or have to remake) your development
version.

Now, in the new directory, type

make maintainer-clean; make -f Makefile.dist dist.

This removes any file that the user does not need to build the software—including
Makefile.dist.

Next, tar and gzip the entire directory, like so:

cd ..
tar -cvf ksimpleapp-1.0.tar ksimpleapp-1.0
gzip ksimpleapp-1.0.tar

Again, the form of the name for the archive is important. Having a standard style makes it eas-
ier to figure out what is inside a package.

Before uploading the package, you should copy the tar.gz archive to a temporary directory and
try to unpack, compile, and install it with the following:

gzip -d ksimpleapp-1.0.tar.gz
tar -xvf ksimpleapp-1.0.tar
cd ksimpleapp-1.0
./configure
make
make install

Better yet, you should take it to a different computer and try it out.

Uploading and Announcing Software
If you are distributing GPL KDE software, you may upload it to
ftp://upload.kde.org/Incoming. Packages uploaded here are made available for download
on over one hundred KDE FTP mirror sites around the world (see http://www.kde.org/
mirrors.html for a list of these mirrors).

Packaging and Distributing Code

CHAPTER 16

16

P
A

C
K

A
G

IN
G

A
N

D
D

ISTR
IB

U
TIN

G
C

O
D

E

389

21 8911 ch16 10/16/00 1:48 PM Page 389

Be sure to upload both the .tar.gz file and a copy of the LSM file (don’t gzip or tar this copy of
the LSM file).

Now you are ready to announce the release of your software! One announcement will be made
automatically on the kde-announce mailing list. This is done automatically in response to your
upload to the Incoming directory and is based on your LSM.

Another good place to announce your software is at Freshmeat, http://www.freshmeat.net.
This is a popular place for posting and finding out about new, free software.

If your software works on Linux (which it should if you are writing with KDE), you can
announce its release on the USENET newsgroup comp.os.linux.announce. This is a moder-
ated newsgroup, so your post won’t appear immediately. Be sure to read
http://www.cs.helsinki.fi/u/mjrauhal/linux/cola-submit.html before posting. It gives
some rules and tips for posting to this list.

And now, back to work! You have to get the next version out.

Summary
End users and developers alike appreciate being able to easily install an application. End users
have downloaded the software intending to use it; they don’t want to spend lots of time compil-
ing. Developers probably won’t want to spend lots of time playing with your code until they’ve
seen it work and are convinced that it is interesting enough to hack at. Using the KDE packag-
ing system presented in this chapter simplifies the creation of software packages that are easy
to compile and install.

For more information about autoconf and automake, please see the GNU info pages included
with the distribution (you can browse info pages with KHelpCenter) or look at the following
Web sites:

http://sourceware.cygnus.com/autoconf/ and

http://sourceware.cygnus.com/automake/

Developer Tools and Support

PART IV
390

Please don’t upload this sample package to upload.kde.org or any other site for test-
ing purposes—or for any other reason. Thanks.

CAUTION

21 8911 ch16 10/16/00 1:48 PM Page 390

CHAPTER

17
Managing Source Code
with CVS
By David Sweet

IN THIS CHAPTER
• What is CVS? 392

• CVS Organization 393

• Accessing Source Code in CVS 394

• Installing and Using CVSup 396

• Installing and Using cvs 397

22 8911 CH17 10/16/00 1:48 PM Page 391

The open nature of the KDE project is reflected not only in the fact that the source code is
freely distributed, but in the way it is distributed. The project uses CVS, the Concurrent
Versions System, to maintain a source-code repository and keep the most up-to-date versions
of the development code continuously available for download by interested parties.

What Is CVS?
CVS, the Concurrent Versions System, is used by the KDE project to manage the KDE source
code—source code that is being developed by programmers around the world. The official ver-
sion of the code is kept on the CVS server. KDE developers can download the portions of code
that they are interested in, make changes, and upload the modified code to the server using the
cvs utility.

CVS is released under the GNU General Public License, the same license used by KDE appli-
cations. Information about CVS is available from http:/www.cyclic.com/. You may also find
links to source and binary distributions there, although the CVS client, cvs, is included in pop-
ular Linux distributions and may already be on your system.

The features offered by CVS are appropriate for distributed computing. When users wish to
make changes to files, the system saves only the changes the user has made rather than replac-
ing the original file. Every change to a file increments its version number. This means that
changes can be reversed. It also means that a virtual snapshot of the source code can be saved
with minimal effort; CVS needs to keep a record only of the current version numbers for the
files included in the snapshot. The snapshot can then be accessed by reverting all the files to
their recorded version numbers. CVS can also maintain more than one development “branch”
using this versioning system so that multiple versions of a piece of software can be developed
in parallel.

Because it makes the process of distributed development simpler, CVS is used by many free
software projects other than KDE. The list includes GIMP, Mozilla, XEmacs, Python, and DES
Cracker.

The Role of CVS in the KDE Project
The core KDE code is kept in CVS (note that the term “CVS” is used colloquially to refer to
the source-code repository as well as the software used to maintain it). This includes the KDE
libraries and applications distributed with KDE. Also in CVS are KOffice, an office suite,
KLyX, a GUI for the LaTeX typesetting system, and applications being developed for future
versions of KDE.

The KDE CVS is also used to maintain two KDE Web sites, http://www.kde.org, and
http://developer.kde.org. Keeping the Web site in CVS allows developers to add and

Developer Tools and Support

PART IV
392

22 8911 CH17 10/16/00 1:48 PM Page 392

update documentation. Having many maintainers means that the Web site can be kept larger
and more up-to-date.

This same philosophy applies to the source code (indeed, the primary function of CVS is to
maintain software). If you have many programmers downloading, examining, improving, and
debugging the most current source, the code improves and everyone benefits. This may lead to
some duplicated effort or occasional source-code conflicts because more than one developer
may have a piece of code checked out at one time. Experience has shown that these small
problems associated with having many developers are more than made up for by the large vol-
ume of high-quality code that is produced.

CVS Organization
CVS has two important organizational features: modules and branches. Modules divide the
repository into categories based on function; a module might contain an application, a library,
or even one of the KDE Web sites. Branches divide the repository into categories based on the
version allowing for concurrent development of multiple versions.

Module Names
Modules are given names that correspond to same-level nodes in a tree, like subdirectories all
residing in the same parent directory. In fact, each module contains files and directories and is
stored in a single directory on your local disk by the cvs client when it is downloaded. The
modules are described in Table 17.1.

TABLE 17.1 Current KDE CVS Modules

Module Name Description

kde-common Support files needed by most other modules.

kdesupport Libraries not created as part of KDE but needed to run it.

kdelibs The KDE class libraries.

kdebase Applications that form the desktop: kfm, kpanel, and so on.

kdeutils Utility programs such as KWrite, KCalc, and KFloppy.

kde-i18n Translations of KDE applications.

kdeadmin System-administration utilities.

kdegraphics File-viewing applications for ostscript, dvi, JPEG, and so on.

kdemultimedia Audio applications.

kdenetwork Internet-related utilities.

Managing Source Code with CVS

CHAPTER 17
393

17

M
A

N
A

G
IN

G
S

O
U

R
C

E
C

O
D

E
W

ITH
C

V
S

22 8911 CH17 10/16/00 1:48 PM Page 393

kdebindings Alpha code for Python-KDE bindings.

kdegames Games for KDE, such as kasteroids, kpat, and so on.

kdenonbeta Projects not yet ready for inclusion in KDE.

kdesdk The KDE Software Developer’s Kit.

kdetoys Fun KDE programs such as kmoon, which graphically indicates the phase
of the moon.

kdevelop An integrated development environment (IDE) for KDE.

kfte A programmer’s editor.

klyx A system for editing, viewing, and typesetting documents using LaTeX.

kmusic Music composition tools.

koffice An office suit including kword, kspread, and kimageshop.

korganizer A personal information manager.

Branches
Whenever a new version of KDE is released, a CVS branch is marked with a text string identi-
fier. These identifiers are used to keep track of multiple versions of KDE at one time. For
example, KDE 2.0 could be developed while bug fixes and feature additions were made to
KDE 1.0. The releases KDE 1.1, 1.1.1, and 1.1.2 were based on the KDE 1.1 branch (called
KDE_1_1_BRANCH) while KDE 2.0 continued in the main CVS branch (called HEAD).

Accessing Source Code in CVS
You may access source code in CVS by downloading it via FTP (snapshots), via the WWW, or
by using the cvsup or cvs utilities.

Snapshots
The easiest way to get code out of CVS is to download the snapshots from
ftp://ftp.kde.org or one of its mirrors. The snapshots are in the directory /pub/kde/unsta-
ble/CVS/snapshots. One file in this directory contains all the source code from one CVS mod-
ule. Files are named in the following way:

kdelibs990925.tar.bz2

Developer Tools and Support

PART IV
394

TABLE 17.1 Continued

Module Name Description

22 8911 CH17 10/16/00 1:48 PM Page 394

That is, the filename consists of the name of the module followed by the date the snapshot was
created, in YYYYMMDD format. New snapshots are created every day for the following mod-
ules:

• kdesupport

• kdelibs

• kdebase

• kdeutils

• kdenetwork

• kde-i18n

• kdeadmin

• kdegames

• kdegraphics

• kdemultimedia

• kdenonbeta

• kdesdk

• kdetoys

• klyx

• koffice

• korganizer

The WWW Interface to CVS
Henner Zeller maintains a WWW interface to CVS at http://kdecvs.stud.fh-heilbronn.de/
cvsweb. The interface allows you to browse through the modules and their subdirectories,
download files, view logs for files, and recover old versions of files for any CVS branch.
Figure 17.1 shows the WWW interface as viewed by kfm.

CVSup
CVSup is a utility for keeping a local copy of a CVS source code repository. It is faster than
getting snapshots because it downloads only the differences between your copy and the copy in
CVS. Another advantage is that it can be used without having a CVS account. If you want to
keep up-to-date with CVS and you are not responsible for maintaining code in it, CVSup is the
best choice.

Managing Source Code with CVS

CHAPTER 17
395

17

M
A

N
A

G
IN

G
S

O
U

R
C

E
C

O
D

E
W

ITH
C

V
S

22 8911 CH17 10/16/00 1:48 PM Page 395

FIGURE 17.1
The World Wide Web interface to the KDE CVS Repository.

CVS Accounts
CVS accounts, which enable you to read and write to CVS, are granted to developers who
are maintaining code in the KDE CVS. Currently, there are about 260 such account holders.
If you are maintaining code, you should consult the KDE Developer’s HOWTO at http://
developer.kde.org/documentation/tutorials/howto/develHOWTO.html for information
on obtaining a CVS account.

Developer Tools and Support

PART IV
396

You don’t need a CVS account to contribute to KDE. Software maintainers always
welcome patches for bug fixes and feature implementation.

TIP

Installing and Using CVSup
You can find the CVSup client for your system at ftp://postgresql.org/pub/CVSup and gen-
eral information at http://www.cs.wustl.edu/!nanbor/CVSUP/. Instructions detailing how to
configure CVSup to access the KDE CVS are available at http://www.kde.org/cvsup.html.

22 8911 CH17 10/16/00 1:48 PM Page 396

You will need to create a text file containing configuration information for CVSup. Listing
18.1 shows a sample.

LISTING 17.1 CVSup Configuration File

1: *default host=cvsup.kde.org
2: *default base=/usr/src/kde
3: *default prefix=/usr/src/kde
4: *default release=cvs
5: *default delete
6: *default compress
7: *default tag=.
8: *default use-rel-suffix
9: kdeall

The host entry tells the name of the cvsup server to connect to. The base directory is where
cvsup will place its bookkeeping files. prefix specifies the directory under which to place all
files retrieved from the CVS. prefix is usually the same as base. release is a relic from a
CVSup ancestor, sup. It should always be set to cvs. The delete keyword gives cvsup your
permission to delete files in your copy of the CVS repository that are no longer needed (for
example, the maintainer of that package has removed the file from CVS). compress instructs
the cvsup server to compress the information it sends to you; this generally speeds the transfer.
The tag is the name of the CVS branch to get. The . refers to the default branch (which is
HEAD). The use-rel-suffix keyword tells cvsup to append a suffix formed from the release
and tag to the filename of an index of file that it maintains. This helps you keep track of copies
of multiple CVS branches.

Basic usage of cvsup looks like the following:

cvsup configfile

where configfile is the path to the configuration file discussed in the previous paragraph. A
full description of cvsup options can be found in the cvsup man page; type man cvsup.

Installing and Using cvs
The cvs utility may already be installed on your system (you can check by typing cvs). If not,
you can download a source or binary package from http://www.cyclic.com.

Before using cvs, you need to set the environment variable CVSROOT to point to the KDE CVS
server. If your CVS login name is janedeveloper, for example, you should set CVSROOT to

:pserver:janedeveloper@cvs.kde.org:/home/kde

Managing Source Code with CVS

CHAPTER 17
397

17

M
A

N
A

G
IN

G
S

O
U

R
C

E
C

O
D

E
W

ITH
C

V
S

22 8911 CH17 10/16/00 1:48 PM Page 397

Frequently Used Commands
The cvs utility is flexible and thus offers many options. Common operations performed with
cvs are listed in the following paragraph. The option -z6 is included in all the commands. It
enables compression of the information to be transferred between the server and the client.
This can speed up transfers, especially over slow connections.

In the following list, modulename refers to one of the module names listed earlier in this chap-
ter (kdesupport, kdelibs, and so on) and BRANCH_NAME refers to one of the CVS branches (for
example, HEAD). Unless otherwise stated, the option -r BRANCH_NAME is optional. If it is
omitted, the default branch will be used. Within each module may be several applications or
libraries, with one stored per subdirectory. In the following, appname refers to one of these
subdirectory names. For example, the module kdeutils contains the subdirectories kjots, kedit,
and kwrite (among others) which contain the respective applications.

Unless otherwise noted, all commands given in this section assume that you want to use the
current working directory for your local copy of CVS source code.

Check Out a Module
cvs -z6 co -r BRANCH_NAME modulename

copies modulename to a local subdirectory of the same name (which cvs creates, if necessary).

Commit Changes
cvs -z6 commit

updates the CVS repository so that it matches your local code. In this case, the code in the cur-
rent directory and its subdirectories will be updated. To commit a specific file or subdirectory,
use

cvs -z6 commit filename

or

cvs -z6 commit subdirectory

You should be sure that your code compiles and runs before committing it to CVS. This way,
other developers will always have a running version of KDE to work with.

Update a Previously Checked-Out Module
cvs -z6 update modulename

or

cvs -z6 update modulename/appname

Developer Tools and Support

PART IV
398

22 8911 CH17 10/16/00 1:48 PM Page 398

updates your local code to match the CVS. If you use this regularly, you can keep up-to-date
with CVS with minimal file-transfer time because only the differences between your local code
and the CVS are transferred.

Check Out a Single Application from Within a Module
cvs -z6 co -l modulename
cvs -z6 co modulename/appname
cvs -z6 co -l admin
cd modulename; ln -s ../admin

The option -l tells cvs not to recurse the subdirectories. Thus, in the first line, only the mod-
ule-level Makefile, configure script and related files will be copied to the local disk. The sec-
ond line copies only the subdirectory containing the application we are interested in. The
admin module contains more configuration scripts and is used by all other modules. When a
module is retrieved in its entirety, the admin directory is included as a subdirectory of the mod-
ule. Here, it is placed instead at the same level as the module’s directory. Therefore, in the last
line, we make a symbolic link to admin in the module’s directory.

Add a File
cvs add mynewcode.cpp
cvs -z6 commit

adds the file mynewcode.cpp to CVS. Simply creating the file and running a commit is not
enough! Doing this will update all the files you have changed, but it will not include new files.
This means that, typically, the application will be broken in CVS. Be sure to add your new
files. (Don’t use -z6 when adding, because add makes only local changes; it marks the file as
“to be added.”)

Remove a File
rm oldcode.cpp
cvs remove oldcode.cpp
cvs -z6 commit

removes the file oldcode.cpp from the current directory and then from CVS.

Add a Directory
cvs add newdir
cvs add newdir/newsource.cpp
cvs -z6 commit

adds the directory newdir and its source file newsource.cpp to CVS. Note that you need to do
cvs add newdir/newsource.cpp for each source file before committing. You cannot add an
empty directory.

Managing Source Code with CVS

CHAPTER 17
399

17

M
A

N
A

G
IN

G
S

O
U

R
C

E
C

O
D

E
W

ITH
C

V
S

22 8911 CH17 10/16/00 1:48 PM Page 399

Remove a Directory
First, remove all files in the directory from CVS as described previously in “Remove a File.”
Then,

cd ..
cvs -P update

removes the directory from CVS and from your local disk.

List CVS modules
This cannot be done directly with cvs, but you can get a good approximation of a list of all the
modules by typing

cvs -z6 co -c

Summary
KDE makes the most current—the “bleeding edge”—source code available for anyone to
download and test. This is good for the project because exciting new code can entice develop-
ers into coding for the project, and the sooner code is available for testing, the sooner bugs can
be reported and fixed and feature requests can be made.

You can access the CVS source code via the WWW, cvsup, cvs, or by downloading snapshots
from an FTP site. Only cvs requires an account because this method can also allow you to
write to CVS. Each method has its advantages: the WWW interface is convenient for browsing
files and logs; cvsup lets you stay up-to-date with minimal download time; cvs also lets you
stay up-to-date with minimal download time, but lets you make changes to the CVS; and the
snapshots offer a convenient method for occasionally downloading the development version
of KDE.

Developer Tools and Support

PART IV
400

22 8911 CH17 10/16/00 1:48 PM Page 400

CHAPTER

18
The KDevelop IDE: The
Integrated Development
Environment for KDE
by Ralf Nolden

IN THIS CHAPTER
• General Issues 402

• Creating KDE 2.0 Applications 409

• Getting Started with the KDE 2.0 API 413

• The Classbrowser and Your Project 416

• The File Viewers—The Windows to Your
Project Files 419

• The KDevelop Debugger 421

• KDevelop 2.0—A Preview 425

23 8911 CH18 10/16/00 1:44 PM Page 401

Developer Tools and Support

PART IV
402

Although developing applications under UNIX systems can be a lot of fun, until now the pro-
grammer was lacking a comfortable environment that takes away the usual standard activities
that have to be done over and over in the process of programming. The KDevelop IDE closes
this gap and makes it a joy to work within a complete, integrated development environment,
combining the use of the GNU standard development tools such as the g++ compiler and the
gdb debugger with the advantages of a GUI-based environment that automates all standard
actions and allows the developer to concentrate on the work of writing software instead of
managing command-line tools. It also offers direct and quick access to source files and docu-
mentation. KDevelop primarily aims to provide the best means to rapidly set up and write
KDE software; it also supports extended features such as GUI designing and translation in con-
junction with other tools available especially for KDE development. The KDevelop IDE itself
is published under the GNU Public License (GPL), like KDE, and is therefore publicly avail-
able at no cost—including its source code—and it may be used both for free and for commer-
cial development.

General Issues
Before going into the details of the IDE, let’s first cover some issues that apply to development
using the C and C++ programming languages in UNIX environments in general.

As you have learned, C++ is commonly used to develop KDE software. This is necessary
because the Qt library on which KDE is based is also written in C++ and therefore offers inter-
faces to the library by C++ classes. KDE extends the Qt library by far and implements many
things that are either missing in Qt or that are useful for a UNIX desktop but not on a
Microsoft-based operating system. (Qt is a cross-platform toolkit, and applications written with
Qt can be directly used under MS-based operating systems, either by recompiling on that envi-
ronment or by compiling with a cross-compiler as a Win32 binary.)

You can, however, make use of other languages (especially scripting languages) that have a set
of bindings that translates the Qt/KDE C++ classes to the other programming languages such
as Python or Perl; therefore, KDE is not limited to using C++, although it is the preferred way
to write KDE software.

The second issue that applies to software development is project management. An application
usually consists of more than one source file, and compilation on different systems usually
requires different settings for things such as compilers, paths to header file locations, and
linker settings to bind all compiled object files to a binary. As you learned in Chapter 16,
“Packaging and Distributing Code,” the management of all this is done via make. Writing
Makefiles by hand is usually not a trivial task, and if they are specifically written for one
development environment, you can never be sure that the same rules apply to any other
system—not even another Linux distribution. Because of this, the GNU tools offer a

23 8911 CH18 10/16/00 1:44 PM Page 402

development framework that automates much of the project management but still requires
the developer to lay hands on the project-specific parts of the framework, which is again
non-trivial.

The tools that help here are the Automake and Autoconf packages, which sometimes make
things a bit simpler; however, sometimes they cause headaches because the developer wants to
use C++, not fuss with Makefile generation and configure scripts. At least they ensure that the
source distribution will compile automatically on almost all UNIX systems such as Linux,
SCO UNIXWare, HP-UX, and the like without much trouble. This is an issue because develop-
ers like their applications to work under as many systems as possible.

You should know that when you retrieve a source package of KDE and most other applications
that are available as source code for UNIX systems, you will have to compile it yourself. This
has two advantages: First, the binary is specifically built on your system, and when it is cleanly
built, it will run without any trouble. Second, it will install smoothly where you want it to.

Topackages:creating build a package, follow these steps: untar the package.tar.gz file and
change to the created directory containing the source files; then enter ./configure and make
on the console. After that, you can install the software package as root with entering make
install. This makes things so simple that even complete UNIX newbies who will probably
never be interested in writing applications themselves are able to compile and install a source
package. The developer, on the other hand, doesn’t have to provide so much support for the
installation process of the application on the user’s platform, but only for the functionality.

The magic behind this is that the developer has to provide the source package only as
Autoconf/Automake compatible. To write this framework, you need some knowledge that is
not necessarily the developer’s job—and this is where an IDE can help. It can provide pro-
grammers with the comfort of creating a complete framework and take care of the project man-
agement during the process of creating an application.

Another important issue is handling make and the compiler, as well as the linker, to produce the
executables or libraries. These are command-line tools that require the knowledge of the
according options, which are most often very cryptic and have to be learned and are easily for-
gotten. On the other hand, an IDE can “remember” these things for you. An example is the fol-
lowing scenario: while developing your application, you will most likely program an error, and
you will have to debug the binary to follow the code while executing to find exactly where that
mistake happens. This requires telling the compiler to include debugging information into the
binary. Then the debugger can translate the function calls in the binary to the according lines in
the source files. But you will also want to switch back to optimized compilation, even if it is
only to test whether everything works as expected at a reasonable performance. Here, a simple
menu that says debug/release within an IDE helps enormously—even more so if it allows you
to debug your program with setting breakpoints directly in the source-code editor and running
a debug session within the programming environment.

The KDevelop IDE: The Integrated Development Environment for KDE

CHAPTER 18

18

T
H

E
K

D
EV

ELO
P

ID
E

403

23 8911 CH18 10/16/00 1:44 PM Page 403

Accessing documentation is the third element where an IDE can help you as a developer.
Especially when using large C++ class libraries such as Qt and KDE, you will get lost without
a good access to the API documentation. Fortunately, the Qt has excellent documentation, and
the documentation for the KDE libraries can be created easily with the KDOC documentation
tool. KDOC also can be used to document your own project, as you learned in Chapter 15,
“Creating Documentation.”

Because the documentation as a whole is used as HTML files, a development environment
without an IDE will look like the following: an opened browser to read the documentation, a
shell to run the compiler, and one or more editor window to write the code.

After this horror scenario, which is what long-time UNIX developers have lived with for years,
let’s have a look at what you can expect when using KDevelop to create your applications.

Be User Friendly—Be Developer Friendly
Why should users have all the ease of use when working under a graphical environment like
KDE for production, such as KOffice and all the other KDE applications that make life easier,
but the developers who are writing this beautiful software suffer and look at the “normal” user
jealously? That’s why we made KDevelop—for programmers who dislike working under
UNIX the “old” way, who want to save time and be more productive, and who also like not
only the results of their work but also how it is done. Often, new developers coming from envi-
ronments that offer development systems based on a graphical user interface are afraid to
switch to UNIX because they don’t want to miss a comfortable environment. In the next sec-
tions, we’ll walk through the KDevelop IDE to see what it looks like and what functionality is
available.

When you first glance at KDevelop in Figure 18.1, you’ll notice that it looks much like other
KDE applications—the main window contains the usual user interface with a menubar, tool-
bars, a statusbar, and a central view area that is separated into three subwindows.

Figure 18.1 shows KDevelop 1.2, which is actually for running under KDE 1.1.x, but as you
can see, the desktop it runs on is KDE 2.0. You may wonder what a KDE 1.x application has to
do with this book covering KDE 2.0, but there is a simple answer: the 1.x series of KDevelop
has been developed to be the most stable development environment so far, and we put forth a
lot of effort to make it as usable as possible—even for KDE 2.0 development, which is directly
supported. After two years of development, testing, and successful usage in industrial environ-
ments, KDevelop has proved to be an excellent, stable, and very friendly IDE that is today the
developer’s choice when starting to program with C/C++ under UNIX. Meanwhile, the
KDevelop 2.0 IDE is under development by the KDevelop Team and will be made public when
it reaches the same amount of functionality and stability as the 1.2 version (see Figure 18.2).

Developer Tools and Support

PART IV
404

23 8911 CH18 10/16/00 1:44 PM Page 404

FIGURE 18.1
The KDevelop 1.2 main window.

The KDevelop IDE: The Integrated Development Environment for KDE

CHAPTER 18

18

T
H

E
K

D
EV

ELO
P

ID
E

405

FIGURE 18.2
KDevelop 1.2 editing a sample project’s options.

23 8911 CH18 10/16/00 1:44 PM Page 405

With KDevelop 2.0, our team will break with the traditional single-window philosophy com-
monly used by UNIX applications, and that is what developers have to expect: complete con-
figurability and visibility all over the user interface of the IDE. This will make KDevelop even
more attractive to users coming from other platforms and make the transition to UNIX much
easier, further reducing the learning curve for handling the programming environment.

Until the release of KDevelop 2.0, we recommend using version 1.2 for production. It offers
almost everything developers expect, especially stability and usability.

The KDevelop User Interface
As seen in Figure 18.1, the main window of KDevelop is separated into three subwindows.
Each has a certain purpose and can be resized, enabled or disabled, and automatically switched
on and off by a built-in autoswitch function.

The Tree View
The left pane contains one major part called the Tree View. It is created as a tabular window
containing several pages:

• The Class Viewer (CV)—Here, the C++ classes, C functions and structs, as well as
namespaces of your project are displayed as a tree, which allows you to dive directly into
the source files at the location of declaration and definition of attributes, functions,
classes, and namespaces. The tree is initially built when loading a project by an amaz-
ingly fast-scanning implementation and actualized during automatic and manual saving
to rematch location changes and added code to the displayed objects in the source files.

• The Logical File Viewer (LFV)—The LFV sorts all project files into groups dependent
on their MIME type; for example, all C++ source files are collected into a folder called
sources, and all C++ header files are found in a folder called headers. New groups can
easily be added via a context menu specifying the name of the folder and the file types to
be collected.

• The Real File Viewer (RFV)—Displays the project directories and files as they are
located on your system and displays all files along with their status within the project as
“registered” and “CVS” or “local.”

• The Documentation Tree View (DOC)—Offers easy access to all documentation avail-
able on your system: the KDevelop handbooks, the Qt library documentation as well as
the full KDE-API documentation, project documents, and self-configured additional doc-
umentation. The library documentations can be accessed down to the location of class-
member function automatically opening the right page in the Documentation-Browser.

• The Variable Viewer (VAR)—Active while debugging your application with the internal
debugger. Here the attribute values of your application’s class instances are displayed
during runtime in a debugging session.

Developer Tools and Support

PART IV
406

23 8911 CH18 10/16/00 1:44 PM Page 406

The Tree View is one of the most effective parts of the KDevelop user interface, offering
the logistics to your project, information, and localization of source code from the
“object-oriented” point of view.

The Output View
At the bottom of the KDevelop main window, you see the Output View. This is the second
helper window that you will make use of often. Like the Tree View, it contains several pages,
each for a certain purpose:

• Messages—Any output that comes to KDevelop when running tools such as make or the
KDOC documentation program will be displayed here. The messages window also
brings you to the location of errors by clicking the error line of the output.

• Stdout—When starting your application from within KDevelop, it sends all output you
would see normally on a console into that window. Thus, you can control the behavior in
a way most developers do when using the cout function to get status information at run-
time.

• Stderr—Here, the started application will put its information that is sent out via the cerr
function to monitor error messages.

• Breakpoint—Lists the breakpoints set in the source files and monitors how often the
application reached the breakpoint during a debugging session.

• Frame Stack—Lists the calling stack of the currently monitored application or function
together with addresses.

• Disassemble—A machine-instruction view that displays the currently executed code in
assembler language.

The Output View therefore offers you the most information about the status of other applica-
tions, including the application that you are programming. Additionally, you’re offered exact
debugging information as well as an error-locating mechanism that brings you to the right
place by a single click on the error line.

The Working Area
The window that contains the actual editor is called the working area and is placed at the right
of the Tree View and above the Output View. This window is again split into several pages:

• Resource/Header Files—The first editor window, displaying C++ header files and any
other file that is not a source file to be compiled like normal text files.

• C/C++ Files—The second editor window for opening and editing C/C++ source files
(*.cpp- files). Source files can be compiled separately without rebuilding the whole pro-
ject when the file to compile is loaded into this editor window.

The KDevelop IDE: The Integrated Development Environment for KDE

CHAPTER 18

18

T
H

E
K

D
EV

ELO
P

ID
E

407

23 8911 CH18 10/16/00 1:44 PM Page 407

• Documentation-Browser—This window is an HTML browser like KFM and is used
together with the documentation tree to open the documentation for you. Results from
search requests over the documentation will be displayed here for direct browsing, as
well.

• Tools—The Tools window is an embedding area for other applications that can be started
from within KDevelop, such as KIconEdit, KTranslator, Cervesia, and the like.

The Dialog Editor
Because KDevelop aims to focus on KDE/Qt developers, it contains a what-you-see-is-what-
you-get (WYSIWYG) Dialog Editor that integrates seamlessly into the IDE (see Figure 18.3).
The Dialog Editor can be accessed either automatically when opening or creating a dialog file
or via the menu item Dialog Editor.

Developer Tools and Support

PART IV
408

FIGURE 18.3
The KDevelop Dialog Editor with a sample dialog ready for editing.

The Dialog Editor has several advantages for a KDE/Qt developer: it lets you directly create,
edit, and build GUI components and includes a preview functionality. The user interfaces can
then be directly used within a project and adapted to further functionality needs. This is very
easy because you can set all available properties for a GUI component, such as a push button,
on the right in the Properties window. After creating a user interface, KDevelop creates the
according source files in C++ as a class derived from classes provided by Qt, such as QWidget
or QDialog. Thereafter, the developer implements the signals and slots into that class and adds

23 8911 CH18 10/16/00 1:44 PM Page 408

the instantiation for calling the dialog at the desired place within the application’s source code.
By that, developing user interfaces for your applications is as easy as it could be with the sim-
ple steps of visually designing them and generating the source code afterward.

The KDevelop IDE: The Integrated Development Environment for KDE

CHAPTER 18

18

T
H

E
K

D
EV

ELO
P

ID
E

409

It cannot be denied, however, that the current Dialog Editor has one weakness that
may require you to re-edit the source code output. Because it can handle the creation
of user interfaces only on the basis of fixed geometry measurements, your application
will have problems with translations if the texts are longer than your English origi-
nals. This will cut off the ending, for example, on buttons and labels if these are too
short to display the full translation. Thus, you need to make use of the geometry
management functions provided by the Qt library and implement a layout by your-
self, separated from the default output of the Dialog Editor.

NOTE

You will read more about the Dialog Editor later on when you’ll have a closer look at actually
developing a KDE application with KDevelop.

Creating KDE 2.0 Applications
Now you’ll start with a sample session of creating a first KDE application that is compliant
with the KDE 2.0 API and offers the already described Autoconf/Automake framework. As
usual, whenever you’re creating a new project with KDevelop, from the Project menu choose
New. Then the Application Wizard of KDevelop (see Figure 18.4) will help you define the
type, the name, and other properties of your new project:

After selecting the desired project type, you get a preview of the application as it will look
after generating and compiling the source code, and a brief description. The next page lets you
set the different project settings, such as the name, the initial version, the author name and
email, and the directory where the project will be generated. The lower section allows you to
select which additional features you need; API Documentation, User Documentation, icons,
linkfile, and even the source code itself can be deselected if you want to start your application
from scratch. The third page of this wizard allows you to enable CVS support on the initial
generation. You should notice that this is restricted to be used with a local CVS repository. If
you intend to use a dedicated nonlocal CVS server, you have to do the import of the generated
source tree separately with a tool such as Cervesia. After the source tree is on the CVS server’s
repository, you can then check out again to work on a local copy with KDevelop.

23 8911 CH18 10/16/00 1:44 PM Page 409

If you’re a developer who works alone on projects, local CVS is always a good option because
it gives you the full power of version control on your standalone machine.

The fourth and fifth pages of the wizard allow you to define the header for generated files. The
header of a file is usually a comment that includes the filename, the date of creation, the
author’s name, and a license notice for the file. The default is good enough for most developers
because it uses the GPL as a license, but you’re not restricted to that—you can change the
license notice either directly in the preview editing window or load an already existing tem-
plate for your file header.

Page six is the last page of the wizard. Here, you click the Create button to start the generation
of the project. If the button is not enabled (selectable), you’ve probably not filled in a setting,
such as the project name. The project will then be built as defined; you’ll get the output of the
processes in the upper window, and errors are displayed in the lower one. The Finish button

Developer Tools and Support

PART IV
410

FIGURE 18.4
The KDevelop Application Wizard.

Cervesia is included in the KDE Development Kit provided by the KDevelop Project.
The kit contains all the KDE tools needed to develop specific KDE applications.

TIP

23 8911 CH18 10/16/00 1:44 PM Page 410

will be available if the project has been built successfully, bringing you back to the KDevelop
project editor that automatically loads the generated project to let you get started with pro-
gramming your KDE 2.0 application (as shown in Figure 18.5).

The KDevelop IDE: The Integrated Development Environment for KDE

CHAPTER 18

18

T
H

E
K

D
EV

ELO
P

ID
E

411

FIGURE 18.5
The KDevelop project editor after generating a KDE 2.0 application with the Application Wizard.

You’ve seen how easily you can get started with developing your applications for KDE—fully
based on a graphical user interface that automatically solves beginners’ as well as experts’
problems—to set up a complete framework for a project that conforms with
Autoconf/Automake, includes pregenerated source files and running code, license, documenta-
tion, and even version control!

Available Templates for KDE 2.0 Projects
The KDevelop Application Wizard generates your project by application templates. These are
predefined packages that run “out of the box” after generating. For KDE 2.0, programmers can
choose from three types of application frameworks:

• KDE Mini application—This generates an application that has the usual
Autoconf/Automake framework with a single window (an instance of a QWidget inher-
ited class that the project contains). This type of project is used mostly by programmers
who want to start their application from a very basic code tree to create programs such as

23 8911 CH18 10/16/00 1:44 PM Page 411

a kcontrol module, a wizard, or an application that needs only one window as the main
GUI interface.

• KDE Normal application—The KDE Normal type of framework offers the predefined
automatic configuration files and a source tree that contains three classes that build up a
document-view interface. Therefore, these classes are

• projectnameApp—This is the base class for the application window, derived from
the KTMainWindow class of the kdeui library.

• projectnameDoc—This is the base class for the document instances. The Doc class
takes the part of loading and saving a document as a file, and it takes care of pro-
viding the interface to access the document data to other classes and instances.
This class is derived from QObject because it isn’t necessarily a window, but more
a general tool class that deals with data structures; it should be able to communi-
cate with other application instances via the Qt signal/slot mechanism.

• projectnameView—The view class, on the other hand, is directly derived from
QWidget because it represents the “view” in which the user of the application sees
the document data on the screen. Therefore, the instance of this class is directly
connected to the document instance that provides the data or at least a data area
into which the view class can write. The conclusion is that a Doc-instance could
live without a view, but a View-instance could never live without a Doc-instance;
otherwise, it would attempt to write into areas that don’t exist!

You should, however, notice that this kind of application type is designed to build a
Single Document Interface (SDI) framework. SDI means that one application main win-
dow can handle only one main view area that takes care of one document instance. That
raises the issue that a separate document class may not be needed that much, but it is
always a good style to create the classes of an application that take care of one special
task.

• KDE-MDI application—Because the Qt library provides a child window class
(QWorkspace) since version 2.1 (which is used by KDE 2.0), we implemented a fully
functional Multiple Document Interface (MDI) application framework that is also based
on the Document-View model. Nevertheless, the Qt library lacks classes that are specifi-
cally designed to take care of the document part of applications, so the document class is
again derived from QObject.

Now you’ve seen that KDevelop offers a variety of frameworks—even specialized for KDE
2.0. These frameworks are also provided as Qt-only based applications, which make it possible
to directly port commercial applications to operating systems using Qt in conjunction with
their professional license or to compile a version that runs with the new Qt/Embedded library
for embedded systems.

Developer Tools and Support

PART IV
412

23 8911 CH18 10/16/00 1:44 PM Page 412

Editing Your Project
After project generation, the usual development steps will take place within KDevelop. You’re
provided with the Classbrowser, the Classtools, the file viewers to navigate within your project
sources, and the internal KWrite editor to edit the sources. The New and Edit menus should
give you the most-needed editing commands, and you can configure the syntax highlighting of
the source code and other options, such as the printing configuration, in the Options menu.
Furthermore, one of the most useful tools for editing is the Search in Files dialog option avail-
able in the Edit menu, which lets you look up expressions all over your project tree. The
results are listed in a box within the dialog, allowing you to go directly to the location of the
matching file and line.

Maintaining your project is very easy. The New File dialog lets you create a whole set of pre-
defined file types, such as source files, desktop files, docbook documentation, pixmaps, and
the like. Classes can be created on-the-fly with the New Class dialog, including a file header;
inheriting a class automatically adds the needed include statement, as well. Source files that
you’ve created already can be added to the project directly with the Add Existing Files func-
tionality. After each time you’ve added a file to your project, the KDevelop project-
management system automatically updates the Makefile.ams and takes care of the configura-
tion process.

File properties make it easy to set the installation destination for resource files such as
pixmaps.

You see how easy project maintainance gets when you use KDevelop; you just have to take
care of the code you’re writing.

Getting Started with the KDE 2.0 API
The main issue for a programmer who wants to write an application using libraries such as Qt
and the extensions offered by KDE is where to get the information about the interfaces (the
classes of the libraries) and how to use them. This is a special area where KDevelop gives you
a great help, even if you choose to use a different programming environment for writing your
application. Long-term emacs users, for example, might prefer to stay with their editor and
write their framework themselves.

First let’s look at what KDevelop offers in documentation availability:

• KDevelop ships with five handbooks in HTML format that are available for online read-
ing and that can also be printed out using the sgmltools on the SGML files that come
with the source code of KDevelop. These handbooks contain a user manual describing
the whole IDE and its features, as well as an introduction to development in general, a

The KDevelop IDE: The Integrated Development Environment for KDE

CHAPTER 18

18

T
H

E
K

D
EV

ELO
P

ID
E

413

23 8911 CH18 10/16/00 1:44 PM Page 413

programming handbook for KDE development, and a tutorial handbook with a guide
showing how to create and run KDE/Qt applications with KDevelop (including a step-
by-step introduction to using the KDE API to create a sample project and the source
code of the sample program). Furthermore, the book The KDE Library Reference Guide
contains detailed explanations about the Qt signal/slot mechanism, an explanation of the
event loop of a GUI-based application, event-handling implementation and manipulation,
as well as a description of the commonly used KDE classes. Finally, the KDE 2.0
Developer’s Guide introduces the developer to some principles and guidelines toward
targeting KDE 2.0 application development. The IDE also contains a complete C/C++
reference that will assist the developer in certain questions about the C and C++ pro-
gramming languages.

• Within KDevelop, you can generate the complete KDE API with the help of KDOC via
the Setup (you may choose to generate it for KDE 1.x or KDE 2.0, whatever system you
want to develop for). This includes the KDE standard libraries, the KDE base libraries
(kcontrol and libkonq) for writing modules to extend Konqueror or the KDE Control
Center, as well as the KOffice libraries used to create KOffice applications. You can
regenerate the API documentation any time you want, especially if the API has changed
or has been extended. This is a good way to get the newest set of information available.
In addition, the documentation is cross-referenced with the Qt online API documentation
that comes with the distribution of the Qt library. Therefore, you have full access to the
inheritance structure and can easily look up relationships between KDE and Qt.

• KDevelop allows you to make search requests over the complete documentation on your
system. To enable this, the system needs to have a search engine installed (available are
htdig or glimpse for use with KDevelop). The search engines contain an indexing func-
tion to create a search database that it will use to look up your request and build up the
results that will then be displayed as an HTML page in the documentation browser. The
required indexing can be done easily via a graphical interface available in the KDevelop
setup.

• KDevelop contains a documentation browser that offers direct access to the API and that
works in conjunction with the documentation tree described previously. The documenta-
tion tree displays all libraries and user documentation as books containing chapters; for
libraries, these are the classes that again can be unfolded to list all methods of a class and
that will bring you directly where you need to go—the documentation to the exact
method you want to use. Retrieving the information you need is not a matter of browsing
through header files on the system, nor is it a matter of organizing bookmarks for each
library in your favorite browser. With KDevelop’s browsing facilities, you have the best
available access to the API that you need to have to successfully develop your applica-
tion within a reasonable timeframe (see Figure 18.6).

Developer Tools and Support

PART IV
414

23 8911 CH18 10/16/00 1:44 PM Page 414

FIGURE 18.6
The KDevelop Documentation-Browser with the Tree View displaying the KDE 2.0 API down to the member functions
of classes.

How to Search for Information
KDevelop provides several ways to look up information about keywords, classes, or generally
anything of interest to the developer that could be explained somewhere in the documentation.
At first, looking up used methods within the source code can be done by setting the cursor into
the method’s name and then pressing the right mouse button and selecting Search: expression.
The search engine will then look up the desired information, switch to the Documentation-
Browser, and display a results page containing a preview of the first result of each page. You
can then select which search result seems to have the information you want—just like search-
ing on the Internet with a search engine such as Yahoo!.

When you’re switching to one result, the found expression is automatically highlighted for
you. For looking up the next expression on the same page matching your search, you could use
the F3 shortcut or from the View menu of KDevelop, select Repeat Search.

Other possibilities to look up expressions are

• The Search for Help On dialog, available from the Help menu. This dialog allows you to
enter the search expression.

The KDevelop IDE: The Integrated Development Environment for KDE

CHAPTER 18

18

T
H

E
K

D
EV

ELO
P

ID
E

415

23 8911 CH18 10/16/00 1:44 PM Page 415

• Within the Documentation-Browser, you can mark text that can then be looked up with
the context menu, the same as described for the editor window.

• Selecting text and using the Help menu item Search Marked Text or the appropriate
shortcut to call this function.

You’ll surely like these features within KDevelop because the amount of documentation grows
with the extending of the KDE/Qt API, and it would be very hard to find the functions you
need if you don’t know exactly which one to use or whether that functionality is provided by
the libraries at all.

The Classbrowser and Your Project
Now have a closer look at the actual work of a developer and what will help you most while
implementing your classes and functions: the Classbrowser and the Classtools.

While implementing KDevelop, we have thought over how to make information about the
user’s project as transparent as possible with a reasonably fast viewer. Users who know other
IDEs are already used to the concept of a Classbrowser, but I know of at least some IDEs
where this feature either doesn’t work correctly or it slows down the machine so much that you
need to have some resources in the back to develop at a reasonable speed. KDevelop, on the
other hand, contains a Classparser that scans all files while loading a project—without affect-
ing performance. The Classtree then displays the results of this scan and automatically updates
itself either on saving by the autosave functionality or when running or compiling your appli-
cation. A manual refresh can be done as well to rescan all sources. The quality and stability of
the Classparser has proven so well that it is already used in various other GPL projects, such as
KUML (a development tool using the Unified Modeling Language) for similar purposes.

The Classparser takes all source files, reads them, and looks up all classes, their methods and
members according to their access scope (public, private, or protected, including signals or
slots), their inheritance, namespaces, and global functions and attributes. Then it builds a data-
base that stores this information and creates a Tree View that contains these classes, which can
be unfolded to display their members. As a result, you can use the Classbrowser to rapidly
browse your sources, keeping an overview of which names you have already used, and you can
navigate down into your project. Just selecting a class opens the right header file and sets the
cursor at the class declaration. Over members or C functions, it opens the right implementation
file—it doesn’t matter how many you like to use to implement a class—and sets the cursor at
the head of the implementation. (See Figure 18.7.)

Developer Tools and Support

PART IV
416

23 8911 CH18 10/16/00 1:44 PM Page 416

FIGURE 18.7
The KDevelop Classbrowser displaying the KDevelop source code, graphically structured with an opened class allow-
ing direct access to methods and attributes.

This results in a new habit of treating source files from the programmer’s view. Formerly, the
programmer had to take care to remember where things were declared and implemented to find
them again when they were needed. When working on large projects, this is a major undertak-
ing that often results in a time-consuming search for interfaces and their accompanying imple-
mentation. The way KDevelop treats your sources makes you totally independent of where you
put something. You have access to it at any time via the Classbrowser.

The Classbrowser displays a project’s objects as items collected in the following folder tree:

• Classes

• Globals

• Namespaces

• Structures

• Functions

• Variables

Easy to understand, isn’t it? Now, besides the basic functionality of simple mouse clicks over
these folders and their contents, the Classviewer offers even more by pop-up menus over the
items it displays.

The KDevelop IDE: The Integrated Development Environment for KDE

CHAPTER 18

18

T
H

E
K

D
EV

ELO
P

ID
E

417

23 8911 CH18 10/16/00 1:44 PM Page 417

Over the Classes folder, the menu offers

• New File—Opens the New File dialog to create a new source file. The same can be done
via the menu with File, New.

• New Class—Opens the New Class dialog to create a new class together with its sources,
including constructor and destructor implementation. The dialog can also be invoked by
selecting Project, New Class from the menubar.

• Add Folder—Adds a folder to the Classtree and creates a “real” folder in the project
directory when the first class or file is added to that subfolder with New File or New
Class.

• Options—Opens the Project Options dialog displaying the project options where you can
set compiler flags and warnings, linker flags to set the libraries to link the project
against, and make options to tell make certain settings, such as how many compilers to
start simultaneously.

• Graphical Classview—Shows the Classtree in a graphical Tree View, including the inher-
itance of the base classes.

Over a class, the pop-up menu allows the following options:

• Go to Declaration—Opens the file containing the class declaration and sets the cursor on
the declaration’s first line.

• Add Member Function—Opens the Add Member Function dialog to add a method to the
selected class (see Figure 18.8).

• Add Member Variable—Opens the Add Member Variable dialog to add a member vari-
able to the selected class.

• Parent Classes—Opens the Classtools dialog with the current class and displays a tree
showing all classes the selected class inherits.

• Child Classes—Opens the Classtools dialog with the current class and displays all
classes that inherit from the selected class.

• Classtool—Opens the Classtools dialog with the selected class.

Over a selected function in the Globals folder, the pop-up menu offers going to the declaration
and definition, as well.

You see how easily you can handle your project in a more object-oriented way than what usual
development has meant under UNIX when you’re supported by the Classbrowser. In my expe-
rience, the Classbrowser usually significantly reduces the time of development because you do
not have to look up and remember everything yourself, so it is a feature every developer will
like from the start of using KDevelop.

Developer Tools and Support

PART IV
418

23 8911 CH18 10/16/00 1:44 PM Page 418

FIGURE 18.8
The Add New Method dialog lets you easily add a method to a class, including its documentation, declaration, and an
implementation head, with support for signals and slots used by Qt/KDE.

The File Viewers—The Windows to Your Project
Files
Although the documentation Tree View and the Classviewer already provide what you, as a
developer, will make use of most of the time, you should certainly be given access to the actual
files of your project. This is provided by the File Viewers, separated into two trees. One is the
Logical File Viewer (LFV); the other is the Real File Viewer (RFV), which you’ll have a closer
look at now.

The Logical File Viewer (LFV)
The first page on the right of the Classbrowser tree is the Logical File Viewer (LFV). Its pur-
pose is generally to provide access to your project files, but in a more sophisticated way than a
simple Tree View. First, only the registered project files are shown, such as header files, imple-
mentation files, READMEs, and the like. These are collected into groups, which are shown as
folders. On creating a new project with the Application Wizard, a set of predefined folders is
already created for your project, which you can extend directly in the LFV by adding new
folders via a dialog or editing the given folder’s file filters.

The KDevelop IDE: The Integrated Development Environment for KDE

CHAPTER 18

18

T
H

E
K

D
EV

ELO
P

ID
E

419

23 8911 CH18 10/16/00 1:44 PM Page 419

Figure 18.9 shows a sample project with its files displayed in the LFV, as well as the dialog for
adding a new group:

Developer Tools and Support

PART IV
420

FIGURE 18.9
The Logical File Viewer shows your project files separated into groups, depending on the file filters set.

What else does the LFV offer? Clicking a file you want to open automatically opens the file
and the right application to display it. A good example is pixmap graphics, which are often
used in KDE applications as menubar and toolbar symbols. On selecting such a pixmap,
KIconEdit gets started inside KDevelop on the Tool page and lets you edit the pixmap directly.
The same functionality is provided for a number of common file formats appearing in projects,
such as dialog definition files for KDevelop’s dialog editor and po files containing translations
for a given language.

The Real File Viewer (RFV)
On the other hand, you may need to have access to the whole directory structure of your pro-
ject and all files therein. Therefore, the Real File Viewer (RFV), located next to the LFV, is the
right place to go for actions such as deleting files, adding files to the project, and even some
really cool things such as using CVS (Concurrent Version System) to manage your project—
and all that from within one graphical interface (see Figure 18.10).

23 8911 CH18 10/16/00 1:44 PM Page 420

In detail, the RFV offers

• Switching between project files and all file display modes

• Updating the Makefile.ams of selected folders or the whole project tree

• Creating and deleting files and folders

• Changing a subdirectory’s target to a shared or static library

• Using CVS commands on files and folders, such as adding, removing, updating, and
check in

The KDevelop IDE: The Integrated Development Environment for KDE

CHAPTER 18

18

T
H

E
K

D
EV

ELO
P

ID
E

421

FIGURE 18.10
The Real File Viewer of KDevelop offers you direct access to all project files and even CVS commands.

Of course, opening files works the same as with the LFV.

The KDevelop Debugger
In the set of tools available for developers under the GNU license, there is a debugger, the gdb.
gdb itself is a command-line tool like g++ and gcc and is used to monitor applications during
runtime. The application binary therefore has to include runtime information for the debugger,
which can be turned on during compilation. Then gdb will deliver as much information about
your application as available: addresses, method names, object values, location of methods in
your source files, and much more. However, to make the best use of it, a lot of freely available

23 8911 CH18 10/16/00 1:44 PM Page 421

GUI front ends are provided, such as ddd or kdbg, which let you run your application with gdb
and display the runtime information delivered by gdb. KDevelop, however, contains a new
internal debugging front end to gdb that lets you use all features within the same environment
so that you don’t have to switch between your coding editor and the debugger application. Its
integration is seamless and easy to use, and you are still provided the possibility to use an
external debugging front end as a tool in the Tools window.

Setting the Debugger Options
The debugger settings, like all other KDevelop configuration options, are located in KDevelop
Setup, which can be accessed via the Options menu. Select the debugger tabulator to change
the debugging settings.

There you can select between the default use of the internal KDevelop debugger or using an
external debugger with the debugger name you want to use (ddd or kdbg).

Next, three major settings for the internal debugger are worth a closer look. First is the option
to set Pending Breakpoints. A breakpoint is a mark in the source code at a certain line where
you want the debugger to stop your application—for example, when you’re searching for a
segmentation fault or you want to inspect how often your application will call the same method
to increase the performance when you know how to reduce the number of times a method gets
called. Now, applications often make use of libraries that they are linked to. Although static
libraries are included into the binary, dynamic libraries such as the KDE and Qt libraries are
loaded when an application calls a method that is in one of these libraries. That means as long
as a method that is placed in a library didn’t get called, the library won’t be loaded. When you
want to set a breakpoint exactly at a method call that is in a library, gdb can’t set it if the
library isn’t in the system’s memory. The Pending Breakpoint option helps here because it
deactivates the breakpoint as long as the library hasn’t been loaded, and it tries to activate it as
soon as the library is available in memory.

The second option that is very important is the floating toolbar. In debugging mode of
KDevelop, this brings up a separate little toolbar window that contains the debugging com-
mands as icons and that will stay on top. This is a nice feature that makes debugging easier,
and you can still monitor the source code in KDevelop behind your application window (see
Figure 18.11). There is also the option to use a separate I/O window for applications that make
use of command-line input calls, such as cin and fgets. In that case, checking the floating
toolbar is again a good option so that your input window doesn’t get obscured when activating
debugging commands.

Developer Tools and Support

PART IV
422

23 8911 CH18 10/16/00 1:44 PM Page 422

How to Enable Debugging Information
To debug your application, all you have to do is to tell the compiler to include debugging code
into the binary that serves as a reference from the object code to the original source code so
that breakpoints can be set and monitored.

For this, open the Project Options dialog available in the Project menu. Switch to the compiler
options tabulator and check the Generate Debugging Information option together with the
debugging level. By default, debugging is turned on at project creation, so you shouldn’t worry
if your application loads a bit slower when running a normal test. To see how it will perform
when compiled normally, deselect this option and enable optimization instead, which can be
done on the same page. A commonly used optimization level is -02, which will work in most
cases, but you’re on the safe side using -01.

The KDevelop IDE: The Integrated Development Environment for KDE

CHAPTER 18

18

T
H

E
K

D
EV

ELO
P

ID
E

423

FIGURE 18.11
The KDevelop debugger is your gateway to the CPU and memory usage of your application. It allows you to monitor
your program’s execution line by line along the source code.

Running a Debugging Session
To actually use the debugger, you have to run your application within gdb. For that, use the
Debug menu, which offers the normal Start operation and advanced selection of starting meth-
ods, such as appending arguments or attaching your application to another process. Notice that
you have to set a breakpoint before starting the debugger; otherwise, your program won’t stop!

23 8911 CH18 10/16/00 1:44 PM Page 423

Setting breakpoints is one of the easiest tasks. The editor windows have a gray pane on the
left; you just have to click the line on which you want to stop, and a breakpoint symbol is
placed. The context menu over this pane offers advanced options to the debugger as well as
switching between breakpoint and bookmark modes. Then the debugger will start your pro-
gram and the debugging options and windows will be available. These are

• Run—Executes or continues the program.

• Run to Cursor—Executes the program until the current cursor position in the source code
is reached.

• Step Over—Executes one line of code and will stop the application on the next line.

• Step Over Instruction—Executes exactly one machine instruction. The assembler code
that is executed and where the machine instructions can be monitored is the Disassemble
tab in the output window.

• Step In—Executes one line of code where you will step into the method call, if neces-
sary.

• Step In Instruction—Executes one machine instruction as described previously.

• Step Out—Runs to the end of the stack frame and out of the function the application is
currently processing.

• Viewers—Opens the debugging viewers dialog where you can inspect a variety of values
of the running application, such as the disassembled code, memory status, library status,
and CPU register states.

• Stop—Stops the application execution.

• Exit—Stops the application execution and exits the debugger.

With these options, you can control the processing of your application’s execution at runtime.
On the other hand, you certainly don’t want only to hop through the source code, but you
might also want to know which values your variables have during execution time. This is the
easiest way to find the cause of a segmentation fault. To those who aren’t experts with pro-
gramming yet, you may have encountered a program suddenly exiting without you wanting it
to exit. It is just gone and your work is lost. The cause of this is most often a segmentation
fault. That means that the computer tries to access an object the program refers to, but the
object doesn’t exist. The program will crash in that case because it violates the memory protec-
tion by wanting to access an address area that it isn’t allowed to. Development of C++ and C
applications often involve the use of pointers to objects that are the cause of most segmentation
faults; therefore, you surely want to watch if a pointer is valid during runtime. The KDevelop
debugger now offers the Watch functionality for variables. In the VAR tabulator, you get a Tree
View of all objects of the application and their status. There, you can select which variables

Developer Tools and Support

PART IV
424

23 8911 CH18 10/16/00 1:44 PM Page 424

you want to watch. This is often useful for local variables within a method call you’re monitor-
ing. Variables to be watched can be added to the Watch section by using the input field on the
bottom of the VAR window or by a context menu within the tree.

Now you should be able to successfully run and debug your application and make it as safe as
it can be. Keep in mind that users expect your application to be stable, and they certainly don’t
want to lose their work—the same as you don’t want your IDE to crash while you’re program-
ming!

KDevelop 2.0—A Preview
Coming near to the end of this chapter, you will certainly think about what is in store for
developers with the upcoming KDE 2.0 version of KDevelop. As I said earlier, it is currently
not the best option to make use of it for production; it is under constant development and it
will bear some major changes and improvements that will make programming even easier (see
Figure 18.12).

Most changes will take place in the areas of the user interface. The current development ver-
sion already contains an MDI structure that allows you to open several source-code windows at
the same time, whereas the 1.x series of KDevelop is single-window based. This improves
switching between source files, and you will be able to see more of your code at one time.
Furthermore, you’ll have the Documentation-Browser at your side while you’re editing, so you
don’t have to switch any more between the editor and the documentation windows. The MDI
interface we’re using also allows you to switch the child windows into top-level mode and
back, which will be of good use for all programmers who have more than one monitor. Now
you can spread out your coding windows all over the place.

Further, the Tree View and the Output View can be “docked” and “undocked” into the main
window of KDevelop. You can also separate each tabulator of these views into single windows.
With KDevelop 2.0, usability will reach a next level for programmers—so stay tuned.

Other features that will arise are a new Dialog Editor, an exchangeable editor interface to let
you choose your favorite coding editor, better project management, and improved classparsing.
We’ll also try to support more programming languages in the future, but this is currently still a
topic under discussion. Everyone’s invited to participate on the project, so there is an open
door for those that want to have new features. Feel free to implement them and help us to cre-
ate an even more competitive and developer-friendly development environment.

The KDevelop IDE: The Integrated Development Environment for KDE

CHAPTER 18

18

T
H

E
K

D
EV

ELO
P

ID
E

425

23 8911 CH18 10/16/00 1:44 PM Page 425

FIGURE 18.12
KDevelop 2.0 at its current state of development.

Developer Tools and Support

PART IV
426

Summary
With this chapter, I hope I have at least covered most of KDevelop’s features, although I have
only scratched the surface. KDevelop 1.2 generally provides everything a C/C++ programmer
needs for development of KDE 2.0 applications, and after a long development period of nearly
two years, it has proven to be stable and reliable. KDevelop can be your first step to getting on
the path to code a new, successful application for UNIX.

If you have any comments, feel free to contact us, and if you would like to join, support, or
sponsor the KDevelop project—you’re welcome!

Information about KDevelop, the team, and the project can be found on the Internet at
http://www.kdevelop.org. There you will find a list of contact addresses to the developers, as
well as addresses for our support mailing lists. I hope you will enjoy using KDevelop for your
own KDE 2.0 project as much as I will enjoy using your application if it’s GPL!

23 8911 CH18 10/16/00 1:44 PM Page 426

CHAPTER

19
Licensing Issues
by Kurt Gramroth

IN THIS CHAPTER
• What Are the “Issues?” 428

• License Usage by KDE 430

• The License Usage by Qt 433

• The KDE/Qt License History 434

24 8911 CH19 10/16/00 1:44 PM Page 427

Developer Tools and Support

PART IV
428

Perhaps the most common (and most commonly misunderstood) issue surrounding the KDE
project is the licensing issue. The combination of licenses between KDE and Qt make the issue
less than obvious, especially if you are using KDE/Qt to develop a closed-source or commer-
cial application. These issues, for all their complexity, are manageable. This chapter will arm
you with the information you need to sort through how the KDE licensing will affect your own
software.

This chapter starts by giving a quick overview of the licenses and how they interact. Then it
describes the individual KDE and Qt licenses in a little more detail. Finally, it provides a short
history of the Qt licenses to give the licensing discussion (and the “flame wars” that invariably
follow) a little context. The text of several of the licenses discussed (GPL, LGPL, QPL) may
be found in Appendix A, “KDE-Related Licenses.”

What Are the “Issues?”
In some cases the KDE project uses a different license than the one that Trolltech has chosen
for Qt. These licenses have different goals and purposes and apply to software projects in dif-
ferent ways. As a quick example, you may freely use the KDE libraries in any sort of project,
free or not. However, if your project is not free, you must pay for a Qt license.

What Licenses Are Involved?
The KDE project does not, as a policy, require code to conform to any specific license to be
included in the base packages. However, the code is required to have a license and the license
must be Open Source. That is the official policy.

The reality of the situation is that nearly all code in the KDE libraries is covered under the
Library GNU Public License (LGPL) as defined by the Free Software Foundation (FSF).
Nearly all code in the KDE applications is licensed under the GNU Public License (GPL), also
defined by the FSF. Those bits of code that are not licensed under the LGPL or GPL (like the
DCOP system, KWin, and Kicker) are usually licensed under a “public domain” style license
(for example, BSD, X11, or MIT), which states that you may use the code however
you like as long as you don't sue the author. The code that falls under those licenses is invari-
ably that which we encourage developers to incorporate into commercial products (to make
acceptance more universal, for instance).

The Qt library license varies depending on the version number. All versions prior to 2.0 are
covered under the FreeQt license. All versions including and after 2.0 are covered under the
Q Public License (QPL). Versions of Qt including and beyond 2.2 may also be covered under
the GPL. To be a little more precise, this only refers to the “free” version. In all cases, com-
mercial closed-source development requires a Qt “Commercial” license (explained later in the
section “The FreeQt License").

24 8911 CH19 10/16/00 1:44 PM Page 428

How Do the Licenses Affect Me?
The interaction between the KDE and Qt licenses and your own project varies based on your
project's licensing structure. This section lists various common setups. Find the one that
matches your situation and you will see how the licenses affect you.

“My project is completely covered by an Open Source license.”

This is the easiest (and most common) situation. In your case, you may use the KDE and
Qt libraries to develop your application without having to pay any money to anybody.
There are also no restrictions as to how you use the KDE libraries. Qt restrictions may
apply, dependent on which version of Qt you are using (Qt 1.x or Qt 2.x).

“My project is completely closed source.”

This is the second easiest (but much less common) situation. You may use and link to the
KDE libraries but may not modify them. You must also contact Trolltech for a Qt
Commercial license, and you will have to pay for that.

“My project is covered by an Open Source license, but I plan to sell it commercially.”

In some ways, this is similar to the situation of the Linux distributors in that they take
Open Source projects and package them up commercially. You may use and modify the
KDE libraries in the standard way. You may also use the Qt license without having to
buy the Commercial license.

“My project is not Open Source, but I give away the executables without charging for
them.”

This is similar to what Microsoft does with Internet Explorer. Unfortunately, just the fact
that you give away the result does not make the project free—and that is what is used to
determine the interaction between the KDE and Qt licenses. The end result is identical to
the earlier closed-source situation: you may use but not modify the KDE libraries, and
you must purchase a Commercial license from Troll Tech for the use of the Qt license.

“My project is for internal use only. My company does not plan to ever release the
finished product.”

At first glance, this situation seems ambiguous; it’s really not. When the various licenses
refer to distribution, they are not just talking about releases to “the outside world,” they
are also referring to releases within a closed system (for example, an internal company
or division-wide release). Evaluating the licenses in this case is nearly identical to all the
other cases examined.

Everything hinges on whether or not your company (and boss) allow you to license your
project under an Open Source license. If so, then you may treat it like any other Open
Source project, regardless of whether or not it is internal. Basically, if any user of your
project (in this case, a “user” is another employee of your company) has the right to

Licensing Issues

CHAPTER 19

19

L
IC

EN
SIN

G
ISSU

ES
429

24 8911 CH19 10/16/00 1:44 PM Page 429

demand the source, modify it, and redistribute it for free, then you may use Qt like any
other GPLed library. If doing so contradicts company policy, then you must contact
Trolltech for a Commercial license.

License Usage by KDE
As mentioned earlier, the KDE project does not mandate any single Open Source license as
long as the license is Open Source. By far, the most common license for the KDE libraries is
LGPL, and the most common for applications is GPL. Code that we may explicitly want
people to incorporate into (possibly closed-source) applications may use other licenses.

Library GNU Public License (LGPL)
The LGPL was designed by the FSF to ensure that the code, as written by the author, must
always remain free. However, the library that the code is contained in may be used and linked
by nonfree applications. You may sometimes see this referred to as a “copyleft” license.

Three questions often arise in regard to using libraries: “How may I use the library?”; "May I
use individual files from the library?”; and “May I modify the library?”

“How may I use the library?”

There are essentially no restrictions to using and linking to a LGPL library. Your project
may be Open Source or closed source—commercial or not. However, this assumes that
you are using the library as is, that you are not modifying it in any way, and that you are
linking to it as a shared library. If any of those conditions aren't met, you must refer to
the following questions.

“May I use individual files from the library?”

Yes, if you are careful. The files must be included in yet another shared library. You may
not compile them directly into your application unless your application is licensed under
the GPL. That is to say, all LGPL code that is removed from a library is automatically
re-licensed under the GPL. If you insert this file into another shared library, you must
ensure that this new library is licensed under the LGPL or GPL. In short, you may not
ever insert a LGPL file into a nonfree application or library.

“May I modify the library?”

Yes, as long as you redistribute your modified library under the LGPL or GPL. If you
make modifications but do not want to redistribute the entire library, or if you want to
use a different license, you should treat your modifications as individual files and refer to
the previous question.

Developer Tools and Support

PART IV
430

24 8911 CH19 10/16/00 1:44 PM Page 430

The GNU Public License (GPL)
Not only is the GPL the most popular license for KDE applications, but it is almost surely the
most popular Open Source license anywhere. Probably the biggest reason for its popularity is
that it is very effective in keeping your code free.

The GPL is another “copyleft” license (the original, in fact). Its design goal is to ensure that
your code will not only always be free but furthermore, that it will never be used with a non-
free product. It is in that last clause that it differs from the LGPL. LGPL code, you may
remember, does allow restricted usage by nonfree products.

You can use GPL code in a development sense in two major ways. Both options are briefly
discussed next.

“May I use already written GPL code in my application?”

Yes, if your application is licensed under a GPL-compatible license. Note that just being
an Open Source license isn't good enough—it must be “GPL compatible” as defined by
the FSF. The FSF Web site has more information on this. In general, though, if your
application is GPL, you shouldn't have problems including other GPL code (but see “The
GPL Versus Qt War” section that follows).

“May I use already written GPL code in my library?”

Yes, if the library is GPL. If the library is LGPL, you must re-license it under the GPL or
you may not include the GPL file. Note that if your library is GPL, it may not be used by
nonfree applications.

“May I modify GPL code?”

Yes. If you intend to redistribute this code in another application or library, see the
previous questions for help. If you redistribute the code in its own application, no
problems exist at all.

The GPL Versus Qt “War”
If you have followed the KDE Project for any length of time, you have likely encountered
“The GPL is not compatible with Qt” threads. The issues surrounding this are unfortunately
quite ambiguous and highly open to interpretation. There has never been a court case involving
the GPL, so all opinions have no solid legal basis. The argument is slightly different based on
what version of Qt is involved. Specifically, the arguments have largely gone away with the
release of Qt 2.2.

Qt 1.45 and earlier versions were covered under the FreeQt license. The FreeQt license was not
an Open Source license. On one point, the GPL is quite clear: you may not mix GPL and non-
free code. That meant that the KDE project could not mix Qt code inside of the KDE libraries.

Licensing Issues

CHAPTER 19

19

L
IC

EN
SIN

G
ISSU

ES
431

24 8911 CH19 10/16/00 1:44 PM Page 431

Because the FreeQt license prohibited redistributing individual files from Qt, this was never a
problem.

However, some free software advocates claimed that you could not link GPL code with non-
free libraries. They insisted that because KDE applications were GPL, they were in violation
by linking with the nonfree Qt library. The Debian project refused to ship KDE with its
distribution as a result. The KDE project has always maintained that those advocates have
misinterpreted the GPL.

Qt 2.0 and Qt 2.1 are covered by the QPL. The QPL is an Open Source license, so it was
expected that the problems would go away. Unfortunately, the FSF has indicated that although
the QPL is Open Source, it doesn't consider it to be “GPL Compatible.” The KDE project
insists that it is.

This all became a moot point with the release of Qt 2.2. This and later versions of the free Qt
are covered under a “dual” license. The author has a choice between using it as if it was cov-
ered under the QPL or under the GPL. This last clause was very important. All libraries and
applications in KDE are compatible with the GPL. Therefore, when Qt is also covered under
the GPL, all possible legal ambiguity drops away. From this point, all objections by the Free
Software Foundation and the Debian Project essentially just went away.

Here are the standard questions:

“Which license for Qt should I use?”

It depends on what license you are using for your application. If you are using the GPL,
then you will choose to license Qt under the GPL as well. If you are using Artistic, then
you will want to choose the QPL (the Artistic license is not compatible with the GPL). If
you are using BSD or MIT or similar, then it’s up to you. As always, if your application
is closed source, you must still purchase a Commercial license.

“May I use third-party GPL code in my application?”

Absolutely. There was some legal ambiguity with regards to this in the previous versions
of Qt, but all such ambiguity is now gone.

Developer Tools and Support

PART IV
432

NOTE

This is a good time to mention that you should probably ask the author for permis-
sion even if there is no question on licenses. Asking permission is a common courtesy
that Open Source developers usually grant each other. Legally, you may use or even
distribute modified versions without permission, but it's considered a hostile act and
it's almost never worth the grief that results from doing it.

24 8911 CH19 10/16/00 1:44 PM Page 432

The License Usage by Qt
The license used by Qt varies by version. The FreeQt license (used by Qt 1.45 and earlier) was
not Open Source. The Q Public License (used by Qt 2.0 and later) is. KDE 1.1.2 and earlier is
based on Qt 1.45, and KDE 2.0 is based on Qt 2.1.

The FreeQt License
There were actually two versions of the Qt library: a commercial version and a free version. If
the recipient's product was closed source (that is, it was distributed under a license that was not
a free software license), they were required to purchase the commercial version of Qt. This
version restricted further redistribution of either the original source or modified versions of it
and thus failed two of the three requirements of Open Source.

The free version of Qt fell under the FreeQt license. This version was available only if the
recipient's product was distributed under a free software license. It permitted the redistribution
of Qt and access to the source code. However, it did not allow modifications of Qt to be redis-
tributed. That final clause does not satisfy the requirements of the FSF definition and thus, it is
not a free software license.

It is interesting to note that even though the FreeQt license prohibited distribution of modified
versions, several modified versions were widely distributed with official permission from
Trolltech. The most common “alternate” distribution was used by the Korean speaking world in
order to use Kanji characters with KDE 1.x even before Unicode support was added. So while
technically it was impossible to modify Qt, the reality of the situation was that Trolltech rarely
refused patches and was very willing to allow exceptions on a case-by-case basis when needed.

The Q Public License (QPL)
The QPL was introduced with Qt 2.0. It was designed with the help of several Open Source
and free software notables to be an official Open Source license. The old FreeQt license
already met the redistribution and access to source code requirements of Open Source, and the
QPL added the “modification” capability.

The design goal of the QPL was different from the design goals of the GPL and LGPL in that
Trolltech wanted to protect the “good name” of the Qt library while still allowing free redistri-
bution and modification of the library. It accomplished this by requiring that all changes to the
Qt code must be distributed separately from the code itself. That is, the Qt library must always
be “pristine” before your changes are applied to it. This is intended to protect the
intellectual property of the Qt name.

The QPL had one final design goal: the patch clause was designed to make sure that all users
may use modified versions of Qt, including commercial users. If another Open Source license

Licensing Issues

CHAPTER 19

19

L
IC

EN
SIN

G
ISSU

ES
433

24 8911 CH19 10/16/00 1:44 PM Page 433

had been used, then closed-source companies would not have been able to use any changes to
Qt. Using patches, Trolltech could ensure that there was always one unique Qt library, not dif-
ferent libraries for different kinds of development.

The method in which you accomplish this varies, based on how you want to redistribute the
library. The most common way now is to put the Qt library in a public source repository such
as CVS. Because the CVS system stores all changes as incremental “patches,” the original Qt
is still there. The KDE project maintains a development version of Qt in its CVS repository in
this manner. Since nearly all large Open Source projects use CVS, this means that it is trivial
for them to use modified versions of Qt.

If, however, you want to distribute your modified version of Qt in a complete package (for
example, a tarball or a Zip file), you will commonly include your changes as patch files. You
may have scripts that automatically apply your changes to the library as soon as the user
unpacks them, but the original Qt must be available untouched to the user.

The recommended way to distribute a modified Qt is to use a packaging system such as the
Red Hat Packaging Manager (.rpm files) or Debian packager (.deb files). Both offer ways to
release source with patches applied automatically to an original. This makes distribution of a
modified Qt almost no different than distribution of any other part of your project.

Also note that this only applies to source modifications. The binary versions of a modified Qt
may be released as-is. That is, the end user doesn't have to worry about any of this. It is only a
concern for developers.

The KDE/Qt License History
Most KDE developers were satisfied with the FreeQt license, even though it was not officially
free software. This was mostly because KDE could use and distribute Qt at no charge, as well
as have access to the source code. Although KDE developers could not directly fix Qt bugs, in
practice this never was a problem. The engineers at Trolltech proved to be very responsive to
bug reports and feature requests. Put another way, even though the potential for problems
existed, none actually happened.

There was a legitimate concern that Trolltech could have changed the license at any time and
would have left KDE without a base library to use. In another scenario, another company that
did not want to distribute Qt under the FreeQt license could have acquired Trolltech. This
would have also severely hampered KDE development.

To alleviate this concern, several top KDE developers met with the Trolltech owners and formed
a legally binding foundation that had jurisdiction over the FreeQt license. The foundation has
four members on the board—two from the KDE project and two from Trolltech. They produced
an agreement on June 22, 1998 that ensured that Qt would always have a free version.

Developer Tools and Support

PART IV
434

24 8911 CH19 10/16/00 1:44 PM Page 434

The legally binding agreement required Trolltech to release a new free version of Qt at least
every 12 months. If Trolltech did not do so, the last free version of Qt would automatically be
re-licensed under the BSD free software license.

This meant, in effect, that even if a company hostile to KDE bought out Trolltech, a free ver-
sion of Qt would still be available.

The Genesis of the QPL
The FreeQt Foundation alleviated many of the Open Source community's fears, but not all of
them. There were still two perceived problems with the situation. First, the agreement did not
address the problem of distributing modifications of Qt. Second, the agreement did not address
what would happen if Trolltech deliberately changed Qt to be unusable to KDE while still
releasing a free version. In that latter scenario, Trolltech would not be in default of the agree-
ment. However, it would effectively cripple KDE for at least a few months.

Note that these concerns were not likely to come true. As stated before, the KDE project had
never had a problem with not being able to distribute modifications of Qt. The latter case
would be a huge inconvenience if it were to happen, but its likelihood is almost nil for at least
two reasons. First, the existence of KDE is almost perfect publicity for the Qt library. Trolltech
would be essentially shooting itself in the foot by alienating KDE. Second, Qt is a commercial
market. If Qt were to drastically change, it's likely that it would affect companies using Qt, and
they would not stand for it.

Furthermore, Trolltech had a very close relationship with the KDE Project. For instance, sev-
eral KDE core developers now work in very key positions in the company. This makes a hos-
tile act against KDE almost impossible. Also, Trolltech has allowed KDE to use Qt classes
such as KAction and QDOM (both of which are absolutely essential for KDE 2.0) before they
were officially released in Qt itself. All in all, Trolltech and KDE have been a model in how a
commercial company and an Open Source project can exist in a mutually beneficial (and
almost symbiotic) relationship.

Nevertheless, the people at Trolltech were aware of the opposition they had in the free-
software community and moved to correct the matter in a way acceptable to both the free-
software community and its own business interests. The result was the Q Public License
(QPL), an official Open Source license.

The Evolution of the QPL
With the release of the QPL, both the KDE Project and Trolltech assumed that all of the
license fury would go away. After all, KDE was fully Open Source and now Qt was too.
Unfortunately, it was not to be that simple.

Licensing Issues

CHAPTER 19

19

L
IC

EN
SIN

G
ISSU

ES
435

24 8911 CH19 10/16/00 1:44 PM Page 435

The FSF and Debian Project both insisted that even though the QPL was Open Source, it was
still incompatible with the GPL. Since nearly all KDE applications were written under the
GPL, this meant that all KDE applications were in violation of their own licenses (or so they
claimed).

The resulting “flame wars” were never fun and never resolved to anybody’s satisfaction.
Concepts like “exception clauses” and “implied exceptions” were tossed about frequently, but
still there was little agreement. If you wish to see in detail what the issues were, I recommend
searching various Linux related Web sites (like http://www.slashdot.org and
http://www.freshmeat.net) for references to the QPL and reading the actual arguments pre-
sented.

The KDE Project was sure that all KDE packages were fully legal and that the opponents were
simply interpreting the legal clauses incorrectly. But working on KDE was a labor of love for
most KDE developers and arguing about licenses wasn’t even remotely fun. By and large,
KDE developers just wanted the entire issue to go away.

Trolltech realized all of this and was in contact with both the FSF and Debian trying to resolve
this once and for all. In the end, it came out that the only way to resolve this issue for all par-
ties would be to release Qt under the LGPL or GPL.

With the release of Qt 2.2, Trolltech did just that.

Summary
The legal issues surrounding licensing in KDE may not be trivial, but they are manageable.
Hopefully, this chapter has given you the information you need to make informed decisions for
your own projects.

One important thing to keep in mind: when in doubt, always go straight to the source. Here are
some important links that you may find useful.

• The QPL homepage—http://www.trolltech.com/qpl/

• The FSF page describing several Open Source licenses and the FSF position on each—
http://www.fsf.org/philosophy/license-list.html

• The GPL homepage—http://www.fsf.org/copyleft/gpl.html

• The LGPL homepage—http://www.fsf.org/copyleft/lgpl.html

• The FreeQt Foundation homepage—http://www.trolltech.com/

kde-freeqt/index.html

• The Open Source Page—http://www.opensource.org

• License usage in KDE—http://developer.kde.org/documentation/licensing/

licensing.html

Developer Tools and Support

PART IV
436

24 8911 CH19 10/16/00 1:44 PM Page 436

IN THIS PART
A KDE-Related Licenses 439

B KDE Class Reference 457

C Answers 459

Appendixes
PART

V

25 8911 Part05 10/16/00 1:43 PM Page 437

25 8911 Part05 10/16/00 1:43 PM Page 438

CHAPTER

15
The Generic with Mono

IN THIS APPENDIX
• A list of the C Heads 0

• A list of the C Heads 0

• Some of the C Heads might be very,
very long 0

• These are C Heads only 0

• Some of the C Heads might be very,
very long 0

• A list of the C Heads 0

• A list of the C Heads 0

APPENDIX

AThe Professional Series

IN THIS APPENDIX
• GNU Library General Public License

(LGPL) 440

• GNU General Public License 449

APPENDIX

A
KDE-Related Licenses

26 8911 AppA 10/16/00 1:47 PM Page 439

These licenses affect the distribution of KDE and Qt and may also affect the sale and distribu-
tion of software based on KDE and Qt.

The KDE-specific licenses are the GNU Library General Public License and the GNU General
Public License. They can be found on the World Wide Web at

http://www.gnu.org/copyleft/lgpl.txt

and

http://www.gnu.org/copyleft/gpl.txt

Trolltech distributes the Qt Free Edition under the GNU General Public License. It can be
found on the World Wide Web at

http://www.trolltech.com/company/announce/gpl.html

GNU Library General Public License (LGPL)
GNU LIBRARY GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

[This is the first released version of the library GPL. It is numbered 2 because it goes with ver-
sion 2 of the ordinary GPL.]

Preamble

The licenses for most software are designed to take away your freedom to share and change it.
By contrast, the GNU General Public Licenses are intended to guarantee your freedom to share
and change free software—to make sure the software is free for all its users.

This license, the Library General Public License, applies to some specially designated Free
Software Foundation software, and to any other libraries whose authors decide to use it. You
can use it for your libraries, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free soft-
ware (and charge for this service if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new free programs; and that you
know you can do these things.

Appendixes

PART V
440

26 8911 AppA 10/16/00 1:47 PM Page 440

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights
or to ask you to surrender the rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give
the recipients all the rights that we gave you. You must make sure that they, too, receive or can
get the source code. If you link a program with the library, you must provide complete object
files to the recipients so that they can relink them with the library, after making changes to the
library and recompiling it. And you must show them these terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library, and (2) offer you
this license which gives you legal permission to copy, distribute and/or modify the library.

Also, for each distributor’s protection, we want to make certain that everyone understands that
there is no warranty for this free library. If the library is modified by someone else and passed
on, we want its recipients to know that what they have is not the original version, so that any
problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that companies distributing free software will individually obtain patent licenses, thus
in effect transforming the program into proprietary software. To prevent this, we have made it
clear that any patent must be licensed for everyone’s free use or not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public
License, which was designed for utility programs. This license, the GNU Library General
Public License, applies to certain designated libraries. This license is quite different from the
ordinary one; be sure to read it in full, and don’t assume that anything in it is the same as in
the ordinary license.

The reason we have a separate public license for some libraries is that they blur the distinction
we usually make between modifying or adding to a program and simply using it. Linking a
program with a library, without changing the library, is in some sense simply using the library,
and is analogous to running a utility program or application program. However, in a textual and
legal sense, the linked executable is a combined work, a derivative of the original library, and
the ordinary General Public License treats it as such.

Because of this blurred distinction, using the ordinary General Public License for libraries did
not effectively promote software sharing, because most developers did not use the libraries. We
concluded that weaker conditions might promote sharing better.

However, unrestricted linking of non-free programs would deprive the users of those programs
of all benefit from the free status of the libraries themselves. This Library General Public
License is intended to permit developers of non-free programs to use free libraries, while

KDE-Related Licenses

APPENDIX A
441

A

K
D

E-R
ELA

TED
L

IC
EN

SES

26 8911 AppA 10/16/00 1:47 PM Page 441

preserving your freedom as a user of such programs to change the free libraries that are incor-
porated in them. (We have not seen how to achieve this as regards changes in header files, but
we have achieved it as regards changes in the actual functions of the Library.) The hope is that
this will lead to faster development of free libraries.

The precise terms and conditions for copying, distribution, and modification follow. Pay close
attention to the difference between a “work based on the library” and a “work that uses the
library.” The former contains code derived from the library, while the latter only works
together with the library.

Note that it is possible for a library to be covered by the ordinary General Public License
rather than by this special one.

GNU LIBRARY GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION, AND MODIFICATION

0. This License Agreement applies to any software library which contains a notice placed
by the copyright holder or other authorized party saying it may be distributed under the
terms of this Library General Public License (also called “this License”). Each licensee
is addressed as “you.”

A “library” means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and
data) to form executables.

The “Library,” below, refers to any such software library or work which has been distrib-
uted under these terms. A “work based on the Library” means either the Library or any
derivative work under copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated straightforwardly
into another language. (Hereinafter, translation is included without limitation in the term
“modification.”)

“Source code” for a work means the preferred form of the work for making modifica-
tions to it. For a library, complete source code means all the source code for all modules
it contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the library.

Activities other than copying, distribution, and modification are not covered by this
License; they are outside its scope. The act of running a program using the Library is not
restricted, and output from such a program is covered only if its contents constitute a
work based on the Library (independent of the use of the Library in a tool for writing it).
Whether that is true depends on what the Library does and what the program that uses
the Library does.

Appendixes

PART V
442

26 8911 AppA 10/16/00 1:47 PM Page 442

1. You may copy and distribute verbatim copies of the Library’s complete source code as
you receive it, in any medium, provided that you conspicuously and appropriately pub-
lish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and distribute
a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a. The modified work must itself be a software library.

b. You must cause the files modified to carry prominent notices stating that you
changed the files and the date of any change.

c. You must cause the whole of the work to be licensed at no charge to all third par-
ties under the terms of this License.

d. If a facility in the modified Library refers to a function or a table of data to be sup-
plied by an application program that uses the facility, other than as an argument
passed when the facility is invoked, then you must make a good faith effort to
ensure that, in the event an application does not supply such function or table,
the facility still operates, and performs whatever part of its purpose remains
meaningful.

(For example, a function in a library to compute square roots has a purpose that is
entirely well-defined independent of the application. Therefore, Subsection 2d
requires that any application-supplied function or table used by this function must
be optional: if the application does not supply it, the square root function must still
compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Library, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do
not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the
Library, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Library.

KDE-Related Licenses

APPENDIX A
443

A

K
D

E-R
ELA

TED
L

IC
EN

SES

26 8911 AppA 10/16/00 1:47 PM Page 443

In addition, mere aggregation of another work not based on the Library with the
Library (or with a work based on the Library) on a volume of a storage or distribu-
tion medium does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of
this License to a given copy of the Library. To do this, you must alter all the notices that
refer to this License, so that they refer to the ordinary GNU General Public License, ver-
sion 2, instead of to this License. (If a newer version than version 2 of the ordinary GNU
General Public License has appeared, then you can specify that version instead if you
wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works made
from that copy.

This option is useful when you wish to copy part of the code of the Library into a pro-
gram that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium cus-
tomarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies the
requirement to distribute the source code, even though third parties are not compelled to
copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to
work with the Library by being compiled or linked with it, is called a “work that uses the
Library.” Such a work, in isolation, is not a derivative work of the Library, and therefore
falls outside the scope of this License.

However, linking a “work that uses the Library” with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather than
a “work that uses the library.” The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

When a “work that uses the Library” uses material from a header file that is part of the
Library, the object code for the work may be a derivative work of the Library even
though the source code is not. Whether this is true is especially significant if the work
can be linked without the Library, or if the work is itself a library. The threshold for this
to be true is not precisely defined by law.

Appendixes

PART V
444

26 8911 AppA 10/16/00 1:47 PM Page 444

If such an object file uses only numerical parameters, data structure layouts and acces-
sors, and small macros and small inline functions (ten lines or less in length), then the
use of the object file is unrestricted, regardless of whether it is legally a derivative work.
(Executables containing this object code plus portions of the Library will still fall under
Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also fall
under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also compile or link a “work that uses
the Library” with the Library to produce a work containing portions of the Library, and
distribute that work under terms of your choice, provided that the terms permit modifica-
tion of the work for the customer’s own use and reverse engineering for debugging such
modifications.

You must give prominent notice with each copy of the work that the Library is used in it
and that the Library and its use are covered by this License. You must supply a copy of
this License. If the work during execution displays copyright notices, you must include
the copyright notice for the Library among them, as well as a reference directing the user
to the copy of this License. Also, you must do one of these things:

a. Accompany the work with the complete corresponding machine-readable source
code for the Library including whatever changes were used in the work (which
must be distributed under Sections 1 and 2 above); and, if the work is an exe-
cutable linked with the Library, with the complete machine-readable “work that
uses the Library,” as object code and/or source code, so that the user can modify
the Library and then relink to produce a modified executable containing the modi-
fied Library. (It is understood that the user who changes the contents of definitions
files in the Library will not necessarily be able to recompile the application to use
the modified definitions.)

b. Accompany the work with a written offer, valid for at least three years, to give the
same user the materials specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.

c. If distribution of the work is made by offering access to copy from a designated
place, offer equivalent access to copy the above specified materials from the same
place.

d. Verify that the user has already received a copy of these materials or that you have
already sent this user a copy.

For an executable, the required form of the “work that uses the Library” must
include any data and utility programs needed for reproducing the executable from

KDE-Related Licenses

APPENDIX A
445

A

K
D

E-R
ELA

TED
L

IC
EN

SES

26 8911 AppA 10/16/00 1:47 PM Page 445

it. However, as a special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary form) with the
major components (compiler, kernel, and so on) of the operating system on which
the executable runs, unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other pro-
prietary libraries that do not normally accompany the operating system. Such a
contradiction means you cannot use both them and the Library together in an exe-
cutable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a
single library together with other library facilities not covered by this License, and dis-
tribute such a combined library, provided that the separate distribution of the work based
on the Library and of the other library facilities is otherwise permitted, and provided that
you do these two things:

a. Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed
under the terms of the Sections above.

b. Give prominent notice with the combined library of the fact that part of it is a work
based on the Library, and explaining where to find the accompanying uncombined
form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as
expressly provided under this License. Any attempt otherwise to copy, modify, subli-
cense, link with, or distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies, or rights, from you
under this License will not have their licenses terminated so long as such parties remain
in full compliance.

9. You are not required to accept this License, since you have not signed it. However, noth-
ing else grants you permission to modify or distribute the Library or its derivative works.
These actions are prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the Library), you indicate
your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient
automatically receives a license from the original licensor to copy, distribute, link with or
modify the Library subject to these terms and conditions. You may not impose any fur-
ther restrictions on the recipients’ exercise of the rights granted herein. You are not
responsible for enforcing compliance by third parties to this License.

Appendixes

PART V
446

26 8911 AppA 10/16/00 1:47 PM Page 446

11. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as to
satisfy simultaneously your obligations under this License and any other pertinent oblig-
ations, then as a consequence you may not distribute the Library at all. For example, if a
patent license would not permit royalty-free redistribution of the Library by all those
who receive copies directly or indirectly through you, then the only way you could sat-
isfy both it and this License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular cir-
cumstance, the balance of the section is intended to apply, and the section as a whole is
intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other prop-
erty right claims or to contest validity of any such claims; this section has the sole pur-
pose of protecting the integrity of the free software distribution system which is
implemented by public license practices. Many people have made generous contributions
to the wide range of software distributed through that system in reliance on consistent
application of that system; it is up to the author/donor to decide if he or she is willing to
distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Library
under this License may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if written in the body
of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Library
General Public License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and “any later version,” you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version num-
ber, you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribu-
tion conditions are incompatible with these, write to the author to ask for permission. For

KDE-Related Licenses

APPENDIX A
447

A

K
D

E-R
ELA

TED
L

IC
EN

SES

26 8911 AppA 10/16/00 1:47 PM Page 447

software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free soft-
ware and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY “AS IS” WITH-
OUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS
WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE
COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE,
BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED
BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE
WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the public,
we recommend making it free software that everyone can redistribute and change. You can do
so by permitting redistribution under these terms (or, alternatively, under the terms of the ordi-
nary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach them to
the start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

<one line to give the library’s name and a brief idea of what it does.>

Appendixes

PART V
448

26 8911 AppA 10/16/00 1:47 PM Page 448

Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or modify it under the terms of the
GNU Library General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE. See the GNU Library General Public License for more details.

You should have received a copy of the GNU Library General Public License along with this
library; if not, write to the Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any, to
sign a “copyright disclaimer” for the library, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the library `Frob’ (a library for
tweaking knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990

Ty Coon, President of Vice

GNU General Public License
GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it.
By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change free software—to make sure the software is free for all its users. This General
Public License applies to most of the Free Software Foundation’s software and to any other
program whose authors commit to using it. (Some other Free Software Foundation software is

KDE-Related Licenses

APPENDIX A
449

A

K
D

E-R
ELA

TED
L

IC
EN

SES

26 8911 AppA 10/16/00 1:47 PM Page 449

covered by the GNU Library General Public License instead.) You can apply it to your pro-
grams, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free soft-
ware (and charge for this service if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new free programs; and that you
know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights
or to ask you to surrender the rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or
can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone else and
passed on, we want its recipients to know that what they have is not the original, so that any
problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent must be
licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution, and modification follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION, AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public
License. The “Program,” below, refers to any such program or work, and a “work based
on the Program” means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language. (Hereinafter, translation is
included without limitation in the term “modification.”) Each licensee is addressed as
“you.’’

Appendixes

PART V
450

26 8911 AppA 10/16/00 1:47 PM Page 450

Activities other than copying, distribution, and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted, and
the output from the Program is covered only if its contents constitute a work based on
the Program (independent of having been made by running the Program). Whether that is
true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish on
each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty; and give any other
recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling the
user how to view a copy of this License. (Exception: if the Program itself is inter-
active but does not normally print such an announcement, your work based on the
Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Program.

KDE-Related Licenses

APPENDIX A
451

A

K
D

E-R
ELA

TED
L

IC
EN

SES

26 8911 AppA 10/16/00 1:47 PM Page 451

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided that
you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distrib-
ution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute corre-
sponding source code. (This alternative is allowed only for noncommercial distrib-
ution and only if you received the program in object code or executable form with
such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making mod-
ifications to it. For an executable work, complete source code means all the source
code for all modules it contains, plus any associated interface definition files, plus
the scripts used to control compilation and installation of the executable. However,
as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from
the same place counts as distribution of the source code, even though third parties
are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense or distribute
the Program is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will
not have their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, noth-
ing else grants you permission to modify or distribute the Program or its derivative

Appendixes

PART V
452

26 8911 AppA 10/16/00 1:47 PM Page 452

works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you indi-
cate your acceptance of this License to do so, and all its terms and conditions for copy-
ing, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipi-
ent automatically receives a license from the original licensor to copy, distribute or mod-
ify the Program subject to these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein. You are not responsi-
ble for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as to
satisfy simultaneously your obligations under this License and any other pertinent oblig-
ations, then as a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by all those
who receive copies directly or indirectly through you, then the only way you could sat-
isfy both it and this License would be to refrain entirely from distribution of the
Program.

If any portion of this section is held invalid or unenforceable under any particular cir-
cumstance, the balance of the section is intended to apply and the section as a whole is
intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other prop-
erty right claims or to contest validity of any such claims; this section has the sole pur-
pose of protecting the integrity of the free software distribution system, which is
implemented by public license practices. Many people have made generous contributions
to the wide range of software distributed through that system in reliance on consistent
application of that system; it is up to the author/donor to decide if he or she is willing to
distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries not
thus excluded. In such case, this License incorporates the limitation as if written in the
body of this License.

KDE-Related Licenses

APPENDIX A
453

A

K
D

E-R
ELA

TED
L

IC
EN

SES

26 8911 AppA 10/16/00 1:47 PM Page 453

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the pre-
sent version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version,” you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribu-
tion conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision will be guided by the
two goals of preserving the free status of all derivatives of our free software and of pro-
moting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICA-
BLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITH-
OUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIM-
ITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PRO-
GRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

Appendixes

PART V
454

26 8911 AppA 10/16/00 1:47 PM Page 454

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of
each source file to most effectively convey the exclusion of warranty; and each file should have
at least the “copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>

Copyright (C) 19yy <name of author>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interac-
tive mode:

Gnomovision version 69, Copyright (C) 19yy name of author Gnomovision comes with
ABSOLUTELY NO WARRANTY; for details type `show w’. This is free software, and you
are welcome to redistribute it under certain conditions; type `show c’ for details.

The hypothetical commands `show w’ and `show c’ should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other than
`show w’ and `show c’; they could even be mouse-clicks or menu items—whatever suits your
program.

You should also get your employer (if you work as a programmer) or your school, if any, to
sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision’ (which
makes passes at compilers) written by James Hacker.

KDE-Related Licenses

APPENDIX A
455

A

K
D

E-R
ELA

TED
L

IC
EN

SES

26 8911 AppA 10/16/00 1:47 PM Page 455

<signature of Ty Coon>, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary pro-
grams. If your program is a subroutine library, you may consider it more useful to permit link-
ing proprietary applications with the library. If this is what you want to do, use the GNU
Library General Public License instead of this License.

Appendixes

PART V
456

26 8911 AppA 10/16/00 1:47 PM Page 456

APPENDIX

B
KDE Class Reference

27 8911 AppB 10/16/00 2:09 PM Page 457

Appendixes

PART V
458

An abridged KDE API (Application Programmers Interface) reference is available at
http://www.samspublishing.com and http://kde20development.andamooka.com. It con-
tains documentation of the public interfaces to KDE widgets and utility classes that are in the
following libraries:

• libkdecore

• libkdeui

• libkhtml

• libkfile

• libkio

• libkparts

• libdcop

• libkspell

The API documentation was carefully reviewed, starting with work done by Air Michail on
code reuse (http://www.cs.washington.edu/homes/amir/phd), to select classes that were
used often throughout KDE 1.x applications and expected to be important for KDE 2.0 appli-
cation development. I hope this abridged reference will be sufficient for most KDE application
developers and more convenient and easier to navigate than the full version. (The full version
is automatically generated by KDOC and is available at http://developer.kde.org/
documentation/library/2.0-api/classref/index.html.

The API documentation was also professionally edited by Macmillan Publishing and by the
author. The edited version was returned to the KDE CVS (i.e., to the class header files) so that
all future versions—full or abridged—may benefit.

The formatted version of the abridged documentation was generated with a modified version of
KDOC.

27 8911 AppB 10/16/00 2:09 PM Page 458

APPENDIX

C
Answers

Chapter 1
There are no exercises in this chapter.

Chapter 2

Exercises
1. Referring to the KDE class documentation for

KToolBar, modify KSimpleApp to include a line editor
on the toolbar.

ksimpleapp.h and ksimpleapp.cpp were modified. You
may use main.cpp, given in Listing 2.4, to create a
complete application. Listings C.1 and C.2 display
these modifications.

LISTING C.1 Modified ksimpleapp.h

1: #include <ktmainwindow.h>
2:
3: /**
4: * This is a simple KDE application.
5: * @author David Sweet <dsweet@kde.org>
6: **/
7:
8: class QLabel;

28 8911 AppC 10/16/00 1:42 PM Page 459

Appendixes

PART V
460

9:
10: class KSimpleApp : public KTMainWindow
11: {
12: Q_OBJECT
13:
14: public:
15: /**
16: * Create the widget.
17: **/
18: KSimpleApp (const char *name=0);
19:
20: public slots:
21: /**
22: * Reposition the text in the context area. The user will
23: * cycle through: left, center, and right.
24: **/
25: void slotRepositionText();
26:
27: /**
28: * Close the window (thus quitting the application).
29: **/
30: void slotClose();
31:
32: /**
33: * Chapter 2, Exercise 1
34: * Respond to an Enter keypress.
35: **/
36: void slotEnterPressed();
37:
38: private:
39: QLabel *text;
40: int alignment [3], indexalignment;
41: };

LISTING C.2 Modified ksimpleapp.cpp

1: #include <qlabel.h>
2:
3: #include <kstdaccel.h>
4: #include <kiconloader.h>
5: #include <kmenubar.h>
6: #include <kapp.h>
7:
8: #include “ksimpleapp.moc”

LISTING C.1 Continued

28 8911 AppC 10/16/00 1:42 PM Page 460

9:
10: KSimpleApp::KSimpleApp (const char *name) :
11: KTMainWindow (name)
12: {
13: KStdAccel keys;
14:
15: QPopupMenu *filemenu = new QPopupMenu;
16: filemenu->insertItem (BarIcon (“idea”), “&Reposition Text”,
17: this, SLOT (slotRepositionText()),
18: CTRL+Key_R);
19: filemenu->insertSeparator();
20: filemenu->insertItem (“&Quit”, this, SLOT (slotClose()), keys.quit());
21:
22: menuBar()->insertItem (“&File”, filemenu);
23:
24: const int buttonid = 1;
25: toolBar()->insertButton (BarIcon(“idea”), buttonid,
26: SIGNAL(clicked()), this,
27: SLOT (slotRepositionText()), true,
28: “Reposition text”);
29:
30: //Chapter 2, Exercise 1
31: const int linedid = 2;
32: toolBar()->insertLined (“Initial text”, linedid,
33: SIGNAL(returnPressed()), this,
34: SLOT (slotEnterPressed()), true);
35:
36: statusBar()->message (“Ready!”);
37:
38: text = new QLabel (“Hello!”, this);
39: text->setBackgroundColor (Qt::white);
40: alignment [0] = QLabel::AlignLeft | QLabel::AlignVCenter;
41: alignment [1] = QLabel::AlignHCenter | QLabel::AlignVCenter;
42: alignment [2] = QLabel::AlignRight | QLabel::AlignVCenter;
43: indexalignment = 0;
44:
45: text->setAlignment (alignment [indexalignment]);
46: setView (text);
47:
48: }
49:
50: //Chapter 2, Exercise 1
51: void
52: KSimpleApp::slotEnterPressed()

Answers

APPENDIX C

C

A
N

SW
ER

S
461

LISTING C.2 Continued

28 8911 AppC 10/16/00 1:42 PM Page 461

53: {
54: //You would process the Enter keypress here.
55: }
56:
57: void
58: KSimpleApp::slotRepositionText ()
59: {
60: indexalignment = (indexalignment+1)%3;
61: text->setAlignment (alignment[indexalignment]);
62:
63: statusBar()->message (“Repositioned text in content area”, 1000);
64: }
65:
66: void
67: KSimpleApp::slotClose()
68: {
69: close();
70: }

2. Modify KSimpleApp to put a QMultiLineEdit widget in the content area instead of a
QLabel. Replace all the references to the Reposition Text function with a function that
clears the widget. You will need to refer to the Qt class documentation for
QMultiLineEdit.

ksimpleapp.h and ksimpleapp.cpp were modified. You may use main.cpp, given in
Listing 2.4, to create a complete application.

Modifications to Listings C.3 and C.4 are marked in comments.

LISTING C.3 Modified ksimpleapp.h

1: #include <ktmainwindow.h>
2:
3: /**
4: * This is a simple KDE application.
5: * @author David Sweet <dsweet@kde.org>
6: **/
7:
8: class QLabel;
9: class QMultiLineEdit;
10:
11: class KSimpleApp : public KTMainWindow
12: {
13: Q_OBJECT
14:

Appendixes

PART V
462

LISTING C.2 Continued

28 8911 AppC 10/16/00 1:42 PM Page 462

15: public:
16: /**
17: * Create the widget.
18: **/
19: KSimpleApp (const char *name=0);
20:
21: public slots:
22: /**
23: * Chapter 2, Exercise 2
24: * Clear the text in the content area.
25: **/
26: void slotClearText();
27:
28: /**
29: * Close the window (thus quitting the application).
30: **/
31: void slotClose();
32:
33: private:
34: QLabel *text;
35: int alignment [3], indexalignment;
36: //Chapter 2, Exercise 2
37: QMultiLineEdit *editor;
38: };

LISTING C.4 Modified ksimpleapp.cpp

1: #include <qlabel.h>
2: #include <qmultilineedit.h>
3:
4: #include <kstdaccel.h>
5: #include <kiconloader.h>
6: #include <kmenubar.h>
7: #include <kapp.h>
8:
9: #include “ksimpleapp.moc”
10:
11: KSimpleApp::KSimpleApp (const char *name) :
12: KTMainWindow (name)
13: {
14: KStdAccel keys;
15:
16: QPopupMenu *filemenu = new QPopupMenu;
17: //Chapter 2, Exercise 2

Answers

APPENDIX C

C

A
N

SW
ER

S
463

LISTING C.3 Continued

28 8911 AppC 10/16/00 1:42 PM Page 463

18: filemenu->insertItem (BarIcon (“idea”), “&Clear text”,
19: this, SLOT (slotClearText()),
20: CTRL+Key_C);
21: filemenu->insertSeparator();
22: filemenu->insertItem (“&Quit”, this, SLOT (slotClose()), keys.quit());
23:
24: menuBar()->insertItem (“&File”, filemenu);
25:
26: const int buttonid = 1;
27: //Chapter 2, Exercise 2
28: toolBar()->insertButton (BarIcon(“idea”), buttonid,
29: SIGNAL(clicked()), this,
30: SLOT (slotClearText()), true,
31: “Clear text”);
32:
33:
34: statusBar()->message (“Ready!”);
35:
36:
37: //Chapter 2, Exercise 2
38: editor = new QMultiLineEdit (this);
39: editor->setText (“Initial text.”);
40:
41: setView (editor);
42:
43: }
44:
45: void
46: KSimpleApp::slotClearText ()
47: {
48: //Chapter 2, Exercise 2
49: editor->setText (“”);
50: statusBar()->message (“Cleared text in content area”, 1000);
51: }
52:
53: void
54: KSimpleApp::slotClose()
55: {
56: close();
57: }

Appendixes

PART V
464

LISTING C.4 Continued

28 8911 AppC 10/16/00 1:42 PM Page 464

Chapter 3

Exercises
1. Write a program that shows an empty window. Listing C.5 shows the program.

LISTING C.5 Program Displaying an Empty Window

#include <qwidget.h>
#include <kapp.h>

int main(int argc, char **argv)
{
KApplication app(argc, argv);
QWidget window;

app.setMainWidget(&window);

window.setGeometry(100,100,200,100);
window.setCaption(“QWidget”);
window.show();

return app.exec();
}

2. Create a program that shows a window with a button in it. Listing C.6 provides you with
this program.

LISTING C.6 Program Displaying a Window with a Button

#include <qwidget.h>
#include <qpushbutton.h>
#include <kapp.h>

class MyWindow : public QWidget
{
public:
MyWindow();

};

MyWindow() : QWidget()
{
QPushButton *button = new QPushButton(“Button”, this);
button->setGeometry(10,20,100,30);

Answers

APPENDIX C

C

A
N

SW
ER

S
465

28 8911 AppC 10/16/00 1:42 PM Page 465

button->show();
}

int main(int argc, char **argv)
{
KApplication app(argc, argv);
MyWindow window;

app.setMainWidget(&window);

window.setGeometry(100,100,200,100);
window.setCaption(“MyWindow”);
window.show();

return app.exec();
}

Chapter 4

Exercises
1. Modify the method KTicTacToe::processClicks() so that the user is required to take

turns between X and O.

Listing C.7 highlights the modified ktictactoe.cpp file.

LISTING C.7 Modified ktictactoe.cpp File

#include <qlayout.h>
#include <qlabel.h>

#include “ktictactoe.moc”

KTicTacToe::KTicTacToe (QWidget *parent, const char *name) :
QWidget (parent, name)

{
int row, col;

QGridLayout *layout = new QGridLayout (this, 4, 3);

const int rowlabel0 = 0, rowlabel1 = 0, collabel0 = 0, collabel1 = 2,
rowsquares0 = 1, rowsquares1 = 4, colsquares0 = 0, colsquares1 = 3;

Appendixes

PART V
466

LISTING C.6 Continued

28 8911 AppC 10/16/00 1:42 PM Page 466

for (row=rowsquares0; row<rowsquares1; row++)
for (col=colsquares0; col<colsquares1; col++)
{
KXOSquare *kxosquare = new KXOSquare (this);
layout->addWidget (kxosquare, row, col);
connect (kxosquare,

SIGNAL (changeRequest (KXOSquare *, KXOSquare::State)),
SLOT (processClicks (KXOSquare *, KXOSquare::State)));

}

QLabel *label = new QLabel (“Tic-Tac-Toe”, this);
label->setAlignment (Qt::AlignCenter);
layout->addMultiCellWidget (label,

rowlabel0, rowlabel1,
collabel0, collabel1);

}

void
KTicTacToe::processClicks (KXOSquare *square, KXOSquare::State state)
{
//Chapter 4, Exercise 1
if (state!=previousstate)
{
square->newState (state);
previousstate=state;

}
}

2. Reimplement KXOSquare::sizeHint() and use this method appropriately in the con-
structor of KTicTacToe. Compare what happens now when you resize the window to
what happened before.

Listings C.8–C.10 demonstrate this.

LISTING C.8 Modified ktictactoe.h Method

#ifndef __KTICTACTOE_H__
#define __KTICTACTOE_H__

#include <qarray.h>
#include <qwidget.h>

#include “kxosquare.h”

Answers

APPENDIX C

C

A
N

SW
ER

S
467

LISTING C.7 Continued

28 8911 AppC 10/16/00 1:42 PM Page 467

/**
* KTicTacToe
* Draw and manage a Tic-Tac-Toe board using KXOSquare.
**/
class KTicTacToe : public QWidget
{
Q_OBJECT

public:
/**
* Create an empty game board.
**/
KTicTacToe (QWidget *parent, const char *name=0);

protected slots:
/**
* Process user input.
**/
void processClicks (KXOSquare *, KXOSquare::State);

};

#endif
Modified ktictactoe.cpp

#include <qlayout.h>
#include <qlabel.h>
#include “ktictactoe.moc”

KTicTacToe::KTicTacToe (QWidget *parent, const char *name) :
QWidget (parent, name)

{
int row, col;

QGridLayout *layout = new QGridLayout (this, 4, 3);

const int rowlabel0 = 0, rowlabel1 = 0, collabel0 = 0, collabel1 = 2,
rowsquares0 = 1, rowsquares1 = 4, colsquares0 = 0, colsquares1 = 3;

for (row=rowsquares0; row<rowsquares1; row++)
for (col=colsquares0; col<colsquares1; col++)
{

Appendixes

PART V
468

LISTING C.8 Continued

28 8911 AppC 10/16/00 1:42 PM Page 468

KXOSquare *kxosquare = new KXOSquare (this);
//Chapter 4, Exercise 2
kxosquare->setMinimumSize (kxosquare->sizeHint());

layout->addWidget (kxosquare, row, col);
connect (kxosquare,

SIGNAL (changeRequest (KXOSquare *, KXOSquare::State)),
SLOT (processClicks (KXOSquare *, KXOSquare::State)));

}

QLabel *label = new QLabel (“Tic-Tac-Toe”, this);
label->setAlignment (Qt::AlignCenter);
layout->addMultiCellWidget (label,

rowlabel0, rowlabel1,
collabel0, collabel1);

}

void
KTicTacToe::processClicks (KXOSquare *square, KXOSquare::State state)
{
//In this simple example, just pass along the click to the appropriate
// square.
square->newState (state);

}

LISTING C.9 Modified kxosquare.h Method

#ifndef __KXOSQUARE_H__
#define __KXOSQUARE_H__

#include <qwidget.h>
#include <qsize.h>

/**
* KXOSquare
* Draws a square in one of three states: empty, with an X inside,
* or with an O inside.
**/
class KXOSquare : public QWidget
{
Q_OBJECT

public:
enum State {None=0, X=1, O=2};

Answers

APPENDIX C

C

A
N

SW
ER

S
469

LISTING C.8 Continued

28 8911 AppC 10/16/00 1:42 PM Page 469

/**
* Create the widget.
**/
KXOSquare (QWidget *parent, const char *name=0);

/**
* Chapter 4, Exercise 2
* Return a recommended size for this widget.
**/
QSize sizeHint() const;

public slots:
/**
* Change the state of the widget to <i>state</i>.
**/
void newState (State state);

signals:
/**
* The user has requested that the state be changed to <i>state</i>
* by clicking on the square.
**/
void changeRequest (KXOSquare *, KXOSquare::State state);

protected:
/**
* Draw the widget.
**/
void paintEvent (QPaintEvent *);

/**
* Process mouse clicks.
**/
void mousePressEvent (QMouseEvent *);

private:
State thestate;

};

#endif

Appendixes

PART V
470

LISTING C.9 Continued

28 8911 AppC 10/16/00 1:42 PM Page 470

LISTING C.10 Modified kxosquare.cpp Method

#ifndef __KXOSQUARE_H__
#define __KXOSQUARE_H__

#include <qwidget.h>
#include <qsize.h>

/**
* KXOSquare
* Draws a square in one of three state: empty, with an X inside,
* or with an O inside.
**/
class KXOSquare : public QWidget
{
Q_OBJECT

public:
enum State {None=0, X=1, O=2};

/**
* Create the widget.
**/
KXOSquare (QWidget *parent, const char *name=0);

/**
* Chapter 4, Exercise 2
* Return a recommended size for this widget.
**/
QSize sizeHint() const;

public slots:
/**
* Change the state of the widget to <i>state</i>.
**/
void newState (State state);

signals:
/**
* The user has requested that the state be changed to <i>state</i>
* by clicking on the square.
**/
void changeRequest (KXOSquare *, KXOSquare::State state);

protected:

Answers

APPENDIX C

C

A
N

SW
ER

S
471

28 8911 AppC 10/16/00 1:42 PM Page 471

/**
* Draw the widget.
**/
void paintEvent (QPaintEvent *);

/**
* Process mouse clicks.
**/
void mousePressEvent (QMouseEvent *);

private:
State thestate;

};

#endif

3. What’s the difference between QPen and QBrush? Examine the KDisc code and consult
the Qt documentation.

QPen is passed to QPainter::setPen() to determine the color of points and outlines of
geometric figures that are drawn. A QBrush is passed to QPainter::setBrush() to
determine the color of the interiors of geometric figures.

4. Get to know QPainter. Construct different QPens and QBrushes in KDisc. Draw figures
other than a disc.

Listing C.11 lists the modified methods from kdisc.cpp.

LISTING C.11 Modified Methods from kdisc.cpp

void
KDisc::paintEvent (QPaintEvent *)
{
QPainter painter (this);

//Chapter 4, Exercise 4

painter.setPen (QPen (QColor (200, 100, 0), 1));
painter.setBrush (QBrush (Qt::green, Qt::SolidPattern));

painter.drawPie (discposition.x(), discposition.y(),
45, 45, 0, 4760);

}

Appendixes

PART V
472

LISTING C.10 Continued

28 8911 AppC 10/16/00 1:42 PM Page 472

void
KDisc::mouseMoveEvent (QMouseEvent *qmouseevent)
{

if (qmouseevent->state()==Qt::LeftButton)
{
//Chapter 4, Exercise 4
QPoint qpoint = qmouseevent->pos();
qpoint.setX(qpoint.x() - 45/2);
qpoint.setY(qpoint.y() - 45/2);
discposition = qpoint;
update();

}

}

5. Try using mousePressEvent() instead of mouseReleaseEvent() in KDisc. Can you tell
the difference? Which feels right?

Using mouseReleaseEvent() feels right, of course. (Would I have asked otherwise? ;) If
you use mousePressEvent(), the action happens as soon as you press the button.

Chapter 5

Exercises
1. Use KStatusBar::insertWidget() to insert the KDE widget of your choice into the sta-

tusbar. Is the widget appropriate for the statusbar? What information does it convey to
the user? (See Listings C.12–C.14.)

LISTING C.12 kstatwidget.h: Class Definition for KStatWidget

#ifndef __KSTATWIDGET_H__
#define __KSTATWIDGET_H__

class KProgress;
class QTimer;

#include <ktmainwindow.h>

/**
* KStatWidget

Answers

APPENDIX C

C

A
N

SW
ER

S
473

LISTING C.11 Continued

28 8911 AppC 10/16/00 1:42 PM Page 473

* Put a progress bar on the statusbar.
**/
class KStatWidget : public KTMainWindow
{
Q_OBJECT

public:
KStatWidget (const char *name=0);

public slots:
/**
* Advance the progress bar.
**/
void slotTimeout ();

private:
KProgress *kprogress;
QTimer *qtimer;

};

#endif

LISTING C.13 kstatwidget.cpp: Class Definition for KStatWidget

#include <qlabel.h>
#include <qpainter.h>
#include <qtimer.h>

#include <kprogress.h>

#include “kstatwidget.moc”

KStatWidget::KStatWidget (const char *name=0) :
KTMainWindow (name)

{
kprogress = new KProgress (0, 100, 0,

KProgress::Horizontal,
statusBar());

statusBar()->insertItem (“Progress: “,1);

//This widget is stretched to fit the window.
statusBar()->insertWidget (kprogress, 1, 2);

Appendixes

PART V
474

LISTING C.12 Continued

28 8911 AppC 10/16/00 1:42 PM Page 474

QTimer *qtimer = new QTimer;
connect (qtimer, SIGNAL (timeout()),

this, SLOT (slotTimeout()));
qtimer->start (500);

QLabel *qlabel = new QLabel (this);
setView (qlabel);

}

void
KStatWidget::slotTimeout()
{
kprogress->advance (10);

}

LISTING C.14 main.cpp: main() Function, Which Can Be Used to Try KStatWidget

#include <kapp.h>

#include “kstatwidget.h”

int main (int argc, char *argv[])
{
KApplication *kapplication = new KApplication (argc, argv,

➥“kstatwidgettest”);
KStatWidget *kstatwidget = new KStatWidget (0);

kapplication->setMainWidget (kstatwidget);

kstatwidget->show();
kapplication->exec();

}

2. Create a document-centric application that has QMultiLineEdit as its client area. Be
sure to use KMenuBar, KToolBar, and KStatusBar. Include New and Quit on the File
menu and New on the toolbar. Put the line number into the statusbar. (You will need to
refer to the Qt documentation for QMultiLineEdit for this exercise.) See Listings
C.15–C.17.

LISTING C.15 keditor.h: Class Declaration for KEditor

#ifndef __KEDITOR_H__
#define __KEDITOR_H__

Answers

APPENDIX C

C

A
N

SW
ER

S
475

LISTING C.13 Continued

28 8911 AppC 10/16/00 1:42 PM Page 475

#include <ktmainwindow.h>

class QMultiLineEdit;

class KEditor : public KTMainWindow
{
Q_OBJECT
public:
KEditor (const char *name=0);

protected slots:
/**
* Update the line number field in the statusbar.
**/
void slotUpdateStatusBar ();

private:
QMultiLineEdit *qmle;

};

#endif

LISTING C.16 keditor.cpp: Class Definition for KEditor

#include <qmultilineedit.h>

#include <kapp.h>
#include <kiconloader.h>
#include <kmenubar.h>
#include <kstdaction.h>
#include <kaction.h>

#include “keditor.moc”

//Status Bar id
const int SBLineNumber = 2;

KEditor::KEditor (const char *name) : KTMainWindow (name)
{
qmle = new QMultiLineEdit (this);

KStdAction::openNew (qmle, SLOT (clear()), actionCollection());
KStdAction::quit (kapp, SLOT (closeAllWindows()), actionCollection());

Appendixes

PART V
476

LISTING C.15 Continued

28 8911 AppC 10/16/00 1:42 PM Page 476

createGUI();

statusBar()->insertItem (“Line”, 1);
statusBar()->insertItem (“0000”, SBLineNumber);
slotUpdateStatusBar();

connect (qmle, SIGNAL (textChanged()),
this, SLOT (slotUpdateStatusBar()));

setView (qmle);
}

void
KEditor::slotUpdateStatusBar ()
{
QString linenumber;
int line, col;

qmle->getCursorPosition (&line, &col);
linenumber.sprintf (“%4d”, line);

statusBar()->changeItem (linenumber, SBLineNumber);
}

LISTING C.17 main.cpp: main() Function, Which Can Be Used to Test KEditor

#include <kapp.h>

#include “keditor.h”

int
main (int argc, char *argv[])
{
KApplication kapplication (argc, argv, “keditor”);
KEditor *keditor = new KEditor (0);

kapplication.setMainWidget (keditor);

keditor->show();
return kapplication.exec();

}

Answers

APPENDIX C

C

A
N

SW
ER

S
477

LISTING C.16 Continued

28 8911 AppC 10/16/00 1:42 PM Page 477

Chapter 6

Exercises
1. Improve the program you wrote for Exercise 2 from Chapter 5. Create a full-featured

Edit menu (with Copy, Paste, and Cut, Undo, and Redo), and support file saving and
opening, with KIO::NetAccess. (See Listing C.18.)

LISTING C.18 Creating a Full-Featured Edit Menu with KIO::NetAccess

keditor.h: Class Declaration for KEditor
#ifndef __KEDITOR_H__
#define __KEDITOR_H__

#include <ktmainwindow.h>
#include <kurl.h>

class QMultiLineEdit;

class KEditor : public KTMainWindow
{
Q_OBJECT
public:
KEditor (const char *name=0);

protected slots:
/**
* Update the line number field in the statusbar.
**/
void slotUpdateStatusBar ();
/**
* Open the “Save As” dialog.
**/
void slotSaveAs();
/**
* Save the file.
**/
void slotSave();
/**
* Open the “Open” dialog.
**/
void slotOpen();

private:
QMultiLineEdit *qmle;

Appendixes

PART V
478

28 8911 AppC 10/16/00 1:42 PM Page 478

KURL url;
QString file;

};

#endif
keditor.cpp: Class Definition for KEditor,
#include <qmultilineedit.h>

#include <kapp.h>
#include <kiconloader.h>
#include <kmenubar.h>
#include <kstdaction.h>
#include <kaction.h>

#include <netaccess.h>
#include <ktempfile.h>

#include “keditor.moc”

//Status Bar id
const int SBLineNumber = 2;

KEditor::KEditor (const char *name) : KTMainWindow (name)
{
qmle = new QMultiLineEdit (this);

KStdAction::openNew (qmle, SLOT (clear()), actionCollection());
KStdAction::quit (kapp, SLOT (closeAllWindows()), actionCollection());
KStdAction::copy (qmle, SLOT (copy()), actionCollection());
KStdAction::cut (qmle, SLOT (cut()), actionCollection());
KStdAction::paste (qmle, SLOT (paste()), actionCollection());
KStdAction::undo (qmle, SLOT (undo()), actionCollection());
KStdAction::redo (qmle, SLOT (redo()), actionCollection());

KStdAction::open(this, SLOT(slotOpen()), actionCollection());
KStdAction::save(this, SLOT(slotSave()), actionCollection());
KStdAction::saveAs(this, SLOT(slotSaveAs()), actionCollection());

createGUI();

statusBar()->insertItem (“Line”, 1);
statusBar()->insertItem (“0000”, SBLineNumber);
slotUpdateStatusBar();

Answers

APPENDIX C

C

A
N

SW
ER

S
479

LISTING C.18 Continued

28 8911 AppC 10/16/00 1:42 PM Page 479

connect (qmle, SIGNAL (textChanged()),
this, SLOT (slotUpdateStatusBar()));

setView (qmle);
}

void
KEditor::slotUpdateStatusBar ()
{
QString linenumber;
int line, col;

qmle->getCursorPosition (&line, &col);
linenumber.sprintf (“%4d”, line);

statusBar()->changeItem (linenumber, SBLineNumber);
}

void
KEditor::slotSaveAs()
{
url=KFileDialog::getSaveUrl(0,

“*.txt|Text Files (*.txt)”,this)
file=url.path();

if (!file.isLocalPath())
{

KTempFile temp;
file=temp.name();

slotSave();
temp.unlink();
return;

}
slotSave();

}

void
KEditor::slotSave()
{
if (url.isEmpty() || file.isEmpty())
slotSaveAs(), return;

Appendixes

PART V
480

LISTING C.18 Continued

28 8911 AppC 10/16/00 1:42 PM Page 480

QFile f(file);

if (!f.open(IO_WriteOnly | IO_Truncate))
KNotifyClient::event(“cannotopenfile”), return;

QTextStream t(&f);
t << qmle->text();

f.close();
qmle->setEdited(false);

}

void
KEditor::slotOpen()
{
if (qmle->edited())
{
int result=KMessageBox::questionYesNo(this,
i18n(“You already have a file open! Would you like

“to save the currently “
“opened file and open another?”),

i18n(“Continue?”));

if (result==KMessageBox::Yes)
slotSave();

else
return;

}

url=KFileDialog::getOpenURL(0,
“*.txt|Text Files (*.txt)”, this);

if (!KIO::NetAccess::download(url, file))
KNotifyClient::event(“cannotopenfile”), return;

QFile f(file);
if (!f.open(IO_ReadOnly))
KNotifyClient::event(“cannotopenfile”), return;

QTextStream t(&f);
QString text(t.read());
qmle->clear();
qmle->setText(text);

Answers

APPENDIX C

C

A
N

SW
ER

S
481

LISTING C.18 Continued

28 8911 AppC 10/16/00 1:42 PM Page 481

f.close();
}

// main.cpp: main() which can be used to test KEditor
#include <kapp.h>

#include “keditor.h”

int
main (int argc, char *argv[])
{
KApplication kapplication (argc, argv, “keditor”);
KEditor *keditor = new KEditor (0);

kapplication.setMainWidget (keditor);

keditor->show();
return kapplication.exec();

}

2. Use KRun to execute a program (and tell the user of its completion). Store the text of the
KLineEdit for the sake of session management. (See Listing C.19.)

LISTING C.19 Using KRun to Execute a Program

kjogger.h: Class Declaration for KJogger
#ifndef __KJOGGER_H__
#define __KJOGGER_H__

#include <ktmainwindow.h>
#include <klineedit.h>
#include <kprocess.h>
#include <kconfig.h>

class JogView;

class KJogger : public KTMainWindow
{
Q_OBJECT
public:
KJogger (const char *name=0);

protected:

Appendixes

PART V
482

LISTING C.18 Continued

28 8911 AppC 10/16/00 1:42 PM Page 482

void saveProperties(KConfig* config);
void readProperties(KConfig* config);

private:
JogView *view;

};

class JogView : public KLineEdit
{
Q_OBJECT
public:
JogView(QWidget *parent);

protected slots:
/**
* Run the program.
**/
void slotRun();
/**
* Enable the KLineEdit that we are.
**/
void slotEnable(KProcess*);
private:
KProcess proc;

};

#endif

kjogger.cpp: Class Definition for KJogger,

#include <kapp.h>
#include <kmenubar.h>
#include <kstdaction.h>
#include <kaction.h>

#include “kjogger.moc”

KJogger::KJogger (const char *name) : KTMainWindow (name)
{
KStdAction::quit (kapp, SLOT (closeAllWindows()),
actionCollection());

Answers

APPENDIX C

C

A
N

SW
ER

S
483

LISTING C.19 Continued

28 8911 AppC 10/16/00 1:42 PM Page 483

createGUI();
view=new JogView(this);

setView (view);

}

void
KJogger::saveProperties(KConfig* config)
{
config->writeEntry(“program”,view->text());

}

void
KJogger::readProperties(KConfig* config)
{
view->setText(config->readEntry(“program”,””));

}

JogView::JogView (QWidget *parent) : KLineEdit(parent)
{
connect(this, SIGNAL(returnPressed()), SLOT (slotRun()));
connect(&proc, SIGNAL (processExited(KProcess*)), SLOT

(slotEnable(KProcess*)));
}

void
JogView::slotRun()
{
setEnabled(false);
proc.clearArguments();
proc << text();

proc.start();
}

void
JogView::slotEnable(KProcess*)
{
setEnabled(true);

}

// A main() function required to test this program.

Appendixes

PART V
484

LISTING C.19 Continued

28 8911 AppC 10/16/00 1:42 PM Page 484

#include “kjogger.h”
#include <kapp.h>
#include <dcopclient.h>

int main(int argc, char **argv)
{
KApplication app(argc, argv, “kjogger”);
app.dcopClient()->registerAs(app.name());

if (app.isRestored())
RESTORE(KJogger)

else
{

KJogger *widget = new KJogger;
widget->show();

}

return app.exec();
}

Chapter 7

Exercises
1. Starting with KDropDemo as a base, write a program that accepts drops of images. Use

QImageObject instead of QTextObject.

Only kdropdemo.cpp was modified. See Listing C.20.

LISTING C.20 Modified kdropdemo.cpp

#include <qdragobject.h>

#include “kdropdemo.h”

KDropDemo::KDropDemo (QWidget *parent, const char *name) :
QLabel (parent, name)

{
setAcceptDrops(true);

//Chapter 7, Exercise 1
setAlignment (AlignCenter);
setText (“Drop\nan\n image \non\n me!”);

Answers

APPENDIX C

C

A
N

SW
ER

S
485

LISTING C.19 Continued

28 8911 AppC 10/16/00 1:42 PM Page 485

}

void
KDropDemo::dragEnterEvent (QDragEnterEvent *qdragenterevent)
{
//Chapter 7, Exercise 1
qdragenterevent->accept (QImageDrag::canDecode (qdragenterevent));

}

void
KDropDemo::dropEvent (QDropEvent *qdropevent)
{
//Chapter 7, Exercise 1
QPixmap qpixmap;

if (QImageDrag::decode (qdropevent, qpixmap))
{
setPixmap (qpixmap);

}
}

2. Now, using KDragDemo as a base, write a program that lets the user drag a pixmap to
another application. You can use a QPixmap returned by BarIcon() as the data for the
drag.

kdragdemo.h and kdragdemo.cpp were modified (see Listings C.21 and C.22). You can use
main.cpp, given in Listing 7.3.

LISTING C.21 Modified kdragdemo.h

#ifndef __KDRAGDEMO_H__
#define __KDRAGDEMO_H__

#include <qlabel.h>

//Chapter 7, Exercise 2
class QImage;

/**
* KDragDemo
*
**/
class KDragDemo : public QLabel

Appendixes

PART V
486

LISTING C.20 Continued

28 8911 AppC 10/16/00 1:42 PM Page 486

{
public:
KDragDemo (QWidget *parent, const char *name=0);

protected:
bool dragging;
//Chapter 7, Exercise 2
QImage *qimage;

void mouseMoveEvent (QMouseEvent *qmouseevent);
void mouseReleaseEvent (QMouseEvent *qmouseevent);

};

#endif

LISTING C.22 Modified kdragdemo.cpp

#include <qdragobject.h>
#include <qimage.h>

#include <kiconloader.h>
#include “kdragdemo.h”

KDragDemo::KDragDemo (QWidget *parent, const char *name) :
QLabel (parent, name)

{
dragging = false;

//Chapter 7, Exercise 2
QPixmap qpixmap;
qpixmap = BarIcon (“exit”);
setPixmap (qpixmap);

qimage = new QImage;
*qimage = qpixmap;

}

void
KDragDemo::mouseMoveEvent (QMouseEvent *qmouseevent)
{
if (!dragging && qmouseevent->state() == Qt::LeftButton)

Answers

APPENDIX C

C

A
N

SW
ER

S
487

LISTING C.21 Continued

28 8911 AppC 10/16/00 1:42 PM Page 487

{
dragging = true;

//Chapter 7, Exercise 2
QImageDrag *qimagedrag = new QImageDrag (*qimage, this);
qimagedrag->dragCopy();

}
}

void
KDragDemo::mouseReleaseEvent (QMouseEvent *)
{
dragging = false;

}

3. Look up KAudio in the KDE class documentation. Using KStandardDirs and KAudio,
locate and play one of the sounds distributed with KDE. (The sounds are in
$KDEDIR/share/sounds.) See Listings C.23–C.25.

LISTING C.23 kplaysound.h

#ifndef __KPLAYSOUND_H__
#define __KPLAYSOUND_H__

#include <qlabel.h>

class KAudio;

/**
* KPlaySound
*
**/
class KPlaySound : public QLabel
{
Q_OBJECT

public:
KPlaySound (QWidget *parent, const char *name=0);

protected slots:
/**
* The sound is done playing.
**/
void slotPlayFinished();

Appendixes

PART V
488

LISTING C.22 Continued

28 8911 AppC 10/16/00 1:42 PM Page 488

protected:
KAudio *kaudio;

};

#endif

LISTING C.24 kplaysound.cpp

#include <kaudio.h>
#include <kstddirs.h>

#include “kplaysound.moc”

KPlaySound::KPlaySound (QWidget *parent, const char *name) :
QLabel (parent, name)

{

kaudio = new KAudio;

connect (kaudio, SIGNAL (playFinished()),
this, SLOT (slotPlayFinished()));

KStandardDirs *dirs = KGlobal::dirs();

QString soundpath;
soundpath = dirs->findResource (“sound”, “KDE_Startup.wav”);

kaudio->play (soundpath);
}

void
KPlaySound::slotPlayFinished()
{
//playing has finished

}

LISTING C.25 main.cpp

#include <kapp.h>

#include “kplaysound.h”

Answers

APPENDIX C

C

A
N

SW
ER

S
489

LISTING C.23 Continued

28 8911 AppC 10/16/00 1:42 PM Page 489

int main (int argc, char *argv[])
{
KApplication kapplication (argc, argv, “kplaysoundtest”);
KPlaySound kplaysound (0);

kplaysound.show();
kapplication.setMainWidget (&kplaysound);
kapplication.exec();

}

Chapter 8

Exercises
1. Make a dialog box that can be used to compose and send an email message. The dialog

box must contain vertically aligned “From:”, “To:”, “Cc”:, and “Subject:” labels each
with a line edit widget to the right. The line edit widgets shall be able to display at least
20 characters regardless of the font size. Beneath the labels, add a multiline edit widget
that uses the rest of the available space in the dialog box. The dialog box should have the
following action buttons at the bottom: “Address”, “Send”, and “Cancel”. Listing C.26
demonstrates how to create the dialog box and Figure C.1 shows this dialog box.

LISTING C.26 Creating a Dialog Box to Compose and Send Email Messages

1: //
2: // maildialog.h
3: //
4:
5: #ifndef _MAIL_DIALOG_H_
6: #define _MAIL_DIALOG_H_
7:
8: class QLineEdit;
9: class QMultiLineEdit;
10: #include <kdialogbase.h>
11:
12: class MailDialog : public KDialogBase
13: {
14: Q_OBJECT
15:
16: public:
17: MailDialog(QWidget *parent=0,const char *name=0,bool modal=true);
18:

Appendixes

PART V
490

LISTING C.25 Continued

28 8911 AppC 10/16/00 1:42 PM Page 490

19: protected slots:
20: virtual void slotUser2();
21: virtual void slotUser1();
22:
23: private:
24: QLineEdit *mFromLineEdit;
25: QLineEdit *mToLineEdit;
26: QLineEdit *mCcLineEdit;
27: QLineEdit *mSubjectLineEdit;
28: QMultiLineEdit *mBodyTextEdit;
29: };
30: #endif
31:
32: //
33: // maildialog.cpp
34: //
35:
36: #include <qlabel.h>
37: #include <qlayout.h>
38: #include <qlineedit.h>
39: #include <qmultilineedit.h>
40: #include <klocale.h>
41:
42: #include “maildialog.h”
43:
44: MailDialog::MailDialog(QWidget *parent, const char *name, bool modal)
45: : KDialogBase(parent, name, modal, i18n(“Compose Mail”),
46: User2|User1|Cancel, Ok, false, i18n(“&Send”),
47: i18n(“&Address”))
48: {
49: setPlainCaption(“Compose Mail”);
50:
51: QWidget *page = new QWidget(this);
52: setMainWidget(page);
53: QVBoxLayout *topLayout = new QVBoxLayout(page, 0, spacingHint());
54:
55: QGridLayout *glay = new QGridLayout(topLayout,4,2);
56: QLabel *fromLabel = new QLabel(i18n(“From:”), page);
57: QLabel *toLabel = new QLabel(i18n(“To:”), page);
58: QLabel *ccLabel = new QLabel(i18n(“Cc:”), page);
59: QLabel *subjectLabel = new QLabel(i18n(“Subject:”), page);
60:
61: mFromLineEdit = new QLineEdit(page);
62: mToLineEdit = new QLineEdit(page);
63: mCcLineEdit = new QLineEdit(page);

Answers

APPENDIX C

C

A
N

SW
ER

S
491

LISTING C.26 Continued

28 8911 AppC 10/16/00 1:42 PM Page 491

64: mSubjectLineEdit = new QLineEdit(page);
65:
66: glay->addWidget(fromLabel, 0, 0, AlignRight);
67: glay->addWidget(toLabel, 1, 0, AlignRight);
68: glay->addWidget(ccLabel, 2, 0, AlignRight);
69: glay->addWidget(subjectLabel, 3, 0, AlignRight);
70: glay->addWidget(mFromLineEdit, 0, 1);
71: glay->addWidget(mToLineEdit, 1, 1);
72: glay->addWidget(mCcLineEdit, 2, 1);
73: glay->addWidget(mSubjectLineEdit, 3, 1);
74: mFromLineEdit->setMinimumWidth(fontMetrics().maxWidth()*20);
75:
76: mBodyTextEdit = new QMultiLineEdit(page);
77: topLayout->addWidget(mBodyTextEdit, 10);
78: mBodyTextEdit->setMinimumHeight(fontMetrics().lineSpacing()*10);
79: }
80:
81: void
82: MailDialog::slotUser1() // Send
83: {
84: // Send your mail here
85: }
86:
87: void
88: MailDialog::slotUser2() // Addresses
89: {
90: // Open your address book here
91: }
92:
93:
94: //
95: // A main.cpp file used to test the dialog
96: //
97:
98: #include <kcmdlineargs.h>
99: #include “maildialog.h”
100: int main(int argc, char **argv)
101: {
102: KCmdLineArgs::init(argc, argv, “appname”, 0, 0);
103: KApplication app;
104: MailDialog *dialog = new MailDialog;
105: dialog->show();
106: int result = app.exec();
107: return result;
108: }

Appendixes

PART V
492

LISTING C.26 Continued

28 8911 AppC 10/16/00 1:42 PM Page 492

FIGURE C.1
The mail dialog.

2. Change the dialog box so that it no longer contains the “Address” action button. Add a
“Help” button instead. Add pushbuttons labeled “Choose...” to the right of the line edit
widgets belonging to the “To:” and “Cc:” fields. Listing C.27 shows how to create this
dialog (only the constructor has changed from Listing C.26), and Figure C.2 depicts the
outcome.

LISTING C.27 Modifying the Dialog Box

1: MailDialog::MailDialog(QWidget *parent, const char *name, bool modal)
2: : KDialogBase(parent, name, modal, i18n(“Compose Mail”),
3: Help|User1|Cancel, Ok, false, i18n(“&Send”))
4: {
5: setPlainCaption(“Compose Mail”);
6:
7: QWidget *page = new QWidget(this);
8: setMainWidget(page);
9: QVBoxLayout *topLayout = new QVBoxLayout(page, 0, spacingHint());
10:
11: QGridLayout *glay = new QGridLayout(topLayout,4,2);
12: QLabel *fromLabel = new QLabel(i18n(“From:”), page);
13: QLabel *toLabel = new QLabel(i18n(“To:”), page);
14: QLabel *ccLabel = new QLabel(i18n(“Cc:”), page);
15: QLabel *subjectLabel = new QLabel(i18n(“Subject:”), page);
16:
17: mFromLineEdit = new QLineEdit(page);
18: mToLineEdit = new QLineEdit(page);
19: mCcLineEdit = new QLineEdit(page);
20: mSubjectLineEdit = new QLineEdit(page);
21:
22: QPushButton *toPushButton = new QPushButton(i18n(“Choose...”), page);

Answers

APPENDIX C

C

A
N

SW
ER

S
493

28 8911 AppC 10/16/00 1:42 PM Page 493

23: toPushButton->setAutoDefault(false);
24: QPushButton *ccPushButton = new QPushButton(i18n(“Choose...”), page);
25: ccPushButton->setAutoDefault(false);
26:
27: glay->addWidget(fromLabel, 0, 0, AlignRight);
28: glay->addWidget(toLabel, 1, 0, AlignRight);
29: glay->addWidget(ccLabel, 2, 0, AlignRight);
30: glay->addWidget(subjectLabel, 3, 0, AlignRight);
31: glay->addMultiCellWidget(mFromLineEdit, 0, 0, 1, 2);
32: glay->addWidget(mToLineEdit, 1, 1);
33: glay->addWidget(mCcLineEdit, 2, 1);
34: glay->addMultiCellWidget(mSubjectLineEdit, 3, 3, 1, 2);
35: mFromLineEdit->setMinimumWidth(fontMetrics().maxWidth()*20);
36: glay->addWidget(toPushButton, 1, 2);
37: glay->addWidget(ccPushButton, 2, 2);
38:
39: mBodyTextEdit = new QMultiLineEdit(page);
40: topLayout->addWidget(mBodyTextEdit, 10);
41: mBodyTextEdit->setMinimumHeight(fontMetrics().lineSpacing()*10);
42: }

Appendixes

PART V
494

LISTING C.27 Continued

FIGURE C.2
The mail dialog with the modified layout.

Chapter 9

Exercises
1. What if the process of creating your window contents is a long job? Combine the QTimer

method for long jobs with double-buffering to efficiently paint a complex scene without

28 8911 AppC 10/16/00 1:42 PM Page 494

hanging the GUI. Your program’s GUI should still respond to input while the application
is painting the window. (You can easily check this by attempting to close the window
while the program is painting.)

Listings C.28–C.30 give possible answers to Exercise 1.

LISTING C.28 klongdraw.h: Class Declaration for KLongDraw, a Widget That Draws a
Complex Scene

#ifndef __KQUICKDRAW_H__
#define __KQUICKDRAW_H__

#include <qwidget.h>

class QPixmap;
class QTimer;

const int NEllipses=50000;

/**
* KLongDraw
* Handle long drawing job while keeping UI alive.
**/
class KLongDraw : public QWidget
{
Q_OBJECT

public:
KLongDraw (QWidget *parent, const char *name=0);

protected slots:
/**
* Redraw some of the scene then exit and check the UI.
**/
void slotDrawSome();

protected:
/**
* Repaint the window using a bit-block transfer from the
* off-screen buffer (a QPixmap). Recreate the pixmap first,
* if necessary.
**/
void paintEvent (QPaintEvent *);

void resizeEvent (QResizeEvent *);

Answers

APPENDIX C

C

A
N

SW
ER

S
495

28 8911 AppC 10/16/00 1:42 PM Page 495

private:
QTimer *qtimer;
QPixmap *qpixmap;
bool bneedrecreate;
double x[NEllipses], y[NEllipses];
int w, h;
int total;

};

#endif

LISTING C.29 klongdraw.cpp: Class Definition for KLongDraw, a Widget That Draws a
Complex Scene

#include <qpainter.h>
#include <qtimer.h>
#include <qpixmap.h>

#include <kmenubar.h>
#include <kapp.h>
#include <kstdaccel.h>

#include “klongdraw.moc”

KLongDraw::KLongDraw (QWidget *parent, const char *name=0) :
QWidget (parent, name)

{
bneedrecreate=true;
qpixmap=0;

for (int i=0; i<NEllipses; i++)
{
x[i]=(kapp->random()%1000)/1000.;
y[i]=(kapp->random()%1000)/1000.;

}

setBackgroundMode (NoBackground);

qtimer = new QTimer (this);
connect (qtimer, SIGNAL (timeout()),

this, SLOT (slotDrawSome()));
}

Appendixes

PART V
496

LISTING C.28 Continued

28 8911 AppC 10/16/00 1:42 PM Page 496

void
KLongDraw::paintEvent (QPaintEvent *)
{

if (bneedrecreate)
{
if (qpixmap!=0)
delete qpixmap;

qpixmap = new QPixmap (width(), height());

QPainter qpainter;
qpainter.begin (qpixmap, this);
qpainter.fillRect (qpixmap->rect(), white);

bitBlt (this, 0, 0, qpixmap);

w = width()/100;
h = height()/100;

bneedrecreate=false;
total=0;

qtimer->start(0);
}

bitBlt (this, 0, 0, qpixmap);

}

void
KLongDraw::slotDrawSome()
{

QPainter qpainter;
qpainter.begin (qpixmap, this);

qpainter.setBrush (blue);

int imax = total+100;
for (int i=total; i<imax; i++)
qpainter.drawEllipse (x[i]*width(), y[i]*height(), w, h);

total = imax;

Answers

APPENDIX C

C

A
N

SW
ER

S
497

LISTING C.29 Continued

28 8911 AppC 10/16/00 1:42 PM Page 497

//This updates the window periodically with the partially-drawn scene.
// While this _does_ indicate progress on the update, you might,
// instead, update a progress bar here and only call update()
// after the entire scene has been drawn.
if (!(total%1000))
update();

if (total>=NEllipses)
{
qtimer->stop();
update();

}

}

void
KLongDraw::resizeEvent (QResizeEvent *)
{
bneedrecreate = true;

}

LISTING C.30 main.cpp: A main() Function Suitable for Testing KLongDraw

#include <kapp.h>

#include “klongdraw.h”

int
main (int argc, char *argv[])
{
KApplication kapplication (argc, argv, “klongdrawtest”);
KLongDraw *klongdraw = new KLongDraw (0);

kapplication.setMainWidget (klongdraw);

klongdraw->show();
return kapplication.exec();

}

Appendixes

PART V
498

LISTING C.29 Continued

28 8911 AppC 10/16/00 1:42 PM Page 498

Chapter 10

Exercises
1. Examine the KHTMLWidget reference documentation. Modify KSimpleBrowser to turn on

Java applet and JavaScript support. Try it out. See Listings C.31 and C.32 for the
answers.

LISTING C.31 ksimplebrowser.h—Class Declaration for KSimpleBrowser

#ifndef __KSIMPLEBROWSER_H__
#define __KSIMPLEBROWSER_H__

#include <ktmainwindow.h>

class KHTMLPart;

/**
* KSimpleBrowser
* A feature-limited Web browser.
**/
class KSimpleBrowser : public KTMainWindow
{
Q_OBJECT
public:
KSimpleBrowser (const char *name=0);

public slots:
void slotNewURL ();

protected:
KHTMLPart *khtmlpart;

};

#endif

LISTING C.32 ksimplebrowser.cpp—Class Definition for KSimpleBrowser

#include <khtmlview.h>
#include <khtml_part.h>

#include “ksimplebrowser.moc”

const int URLLined = 1;
KSimpleBrowser::KSimpleBrowser (const char *name=0) :
KTMainWindow (name)

Answers

APPENDIX C

C

A
N

SW
ER

S
499

28 8911 AppC 10/16/00 1:42 PM Page 499

{

toolBar()->insertLined (“”, URLLined,
SIGNAL (returnPressed ()),
this, SLOT (slotNewURL ()));

toolBar()->setItemAutoSized (URLLined);

//Chapter 10, Exercise 1
khtmlpart->enableJava(true);
khtmlpart->enableJScript(true);

khtmlpart = new KHTMLPart (this);
khtmlpart->begin();
khtmlpart->write(“<HTML><BODY><H1>KSimpleBrowser</H1>”

“<P>To load a web page, type its URL in the line “
“edit box and press enter.</P>”
“</BODY></HTML>”);

khtmlpart->end();

setView (khtmlpart->view());
}

void
KSimpleBrowser::slotNewURL ()
{
khtmlpart->openURL (toolBar()->getLinedText (URLLined));

}

2. Load an image file into a QImage instance and perform the following image transforma-
tion on an 8-bit color image (try one of the images in $KDEDIR/share/wallpapers):
Replace each color in the color table (accessed via QImage::color()), with

qRgb (qGray (color), qGray (color), qGray (color));
Display the image.

See Listings C.33 and C.34 for possible answers.

LISTING C.33 ktransform.h—Class Declaration for KTransform

#ifndef __KTRANSFORM_H__
#define __KTRANSFORM_H__

#include <qwidget.h>

Appendixes

PART V
500

LISTING C.32 Continued

28 8911 AppC 10/16/00 1:42 PM Page 500

class QImage;

/**
* KTransform
* Transform a color image to grayscale.
**/
class KTransform : public QWidget
{
public:
KTransform (const QString &filename,

QWidget *parent, const char *name=0);

protected:
void paintEvent (QPaintEvent *);

private:
QImage *qimage;

};

#endif

LISTING C.34 ktransform.cpp—Class Declaration for KTransform

#include <qimage.h>
#include <qpainter.h>

#include “ktransform.h”

KTransform::KTransform (const QString &filename,
QWidget *parent, const char *name=0) :

QWidget (parent, name)
{
qimage = new QImage;
qimage->load (filename);

int i;
for (i=0; i<qimage->numColors(); i++)
{
QRgb color = qimage->color (i);
QRgb gray = qRgb (qGray (color), qGray (color), qGray (color));
qimage->setColor (i, gray);

}

}

Answers

APPENDIX C

C

A
N

SW
ER

S
501

LISTING C.33 Continued

28 8911 AppC 10/16/00 1:42 PM Page 501

void
KTransform::paintEvent (QPaintEvent *)
{
QPainter qpainter (this);

qpainter.drawImage (0, 0, *qimage);
}

Chapter 11

Exercises
1. Suppose you would like to have only one instance of your panel applet running at a time.

(Who would want, for example, two pagers in their panel?) Combine KWeather and
KUnique into one application that runs only once and displays a “sorry” message if the
user tries to start it a second time. See Listings C.35–C.37 for the answers.

LISTING C.35 kuniqueweather.h: Class Declaration for KUniqueWeather, a Single-Instance
Panel Applet

1: #ifndef __KUNIQUEWEATHER_H__
2: #define __KUNIQUEWEATHER_H__
3:
4: #include <kuniqueapp.h>
5: #include <kpanelapplet.h>
6:
7: class KUniqueWeather : public KUniqueApplication, KPanelApplet
8: {
9: public:
10: KUniqueWeather (int& argc, char** argv,
11: const QCString& rAppName = 0, QWidget *parent=0);
12:
13: protected:
14: void preferences();
15:
16: };
17:
18: #endif

Appendixes

PART V
502

LISTING C.34 Continued

28 8911 AppC 10/16/00 1:42 PM Page 502

LISTING C.36 kuniqueweather.cpp: Class Definition for KUniqueWeather, a Single-
Instance Panel Applet

1: #include <stdio.h>
2:
3: #include <qlabel.h>
4:
5: #include “kuniqueweather.h”
6:
7: KUniqueWeather::KUniqueWeather (int& argc, char** argv,
8: const QCString& rAppName, QWidget *parent) :
9: KUniqueApplication (argc, argv, rAppName),
10: KPanelApplet (parent)
11: {
12: QLabel *qlabel = new QLabel (“Rainy\n 48F”, this);
13: qlabel->setAlignment (Qt::AlignVCenter);
14: setMinimumSize (qlabel->sizeHint());
15:
16: setActions (Preferences);
17:
18: dock(“kweather”);
19: }
20:
21: void
22: KUniqueWeather::preferences()
23: {
24: printf (“Here we let the user configure the panel applet.\n”);
25: }

LISTING C.37 main.cpp: The main() Function Used to Start KUniqueWeather

1: #include <kapp.h>
2: #include <kmessagebox.h>
3:
4: #include “kuniqueweather.h”
5:
6: int
7: main (int argc, char *argv[])
8: {
9: if (!KUniqueWeather::start(argc, argv, “kuniqueweather”))
10: {
11: KApplication a (argc, argv, “kuniqueweather”);
12: KMessageBox::sorry (0, “Cannot start more that one instance of “
13: “KUniqueWeather.”);
14: exit (0);
15: }

Answers

APPENDIX C

C

A
N

SW
ER

S
503

28 8911 AppC 10/16/00 1:42 PM Page 503

16:
17:
18: KUniqueWeather kuniqueweather (argc, argv, “kuniqueweather”);
19:
20: return kuniqueweather.exec();
21: }

Chapter 12
There are no exercises in this chapter.

Chapter 13
There are no exercises in this chapter.

Chapter 14

Exercises
1. Implement a beep sound similar to the stereo beep at the beginning, but with a variable

frequency (see Listing C.38). Make the frequency change very slowly between 220.0 and
660.0 to achieve a siren effect. If you want to keep the source simple, don’t do different
things for the left and right channels.

The trick is to use Synth_MUL and Synth_ADD to get the range right:

LISTING C.38 Implementing a Beep Sound with Variable Frequency

// exercise1.cc

#include “artsflow.h”
#include “connect.h”

using namespace Arts;

int main()
{

Dispatcher dispatcher;

Synth_FREQUENCY freq1,freqmod; // object creation
Synth_WAVE_SIN sin1,sinmod;

Appendixes

PART V
504

LISTING C.37 Continued

28 8911 AppC 10/16/00 1:42 PM Page 504

Synth_MUL mulmod;
Synth_ADD addmod;
Synth_PLAY play;

// the modulation frequency
setValue(freqmod, 0.3);
connect(freqmod, sinmod);

// bring it from the range [-1..1] to [-220..220]
setValue(mulmod,”invalue1”,220.0);
connect(sinmod,mulmod,”invalue2”);

// add 440, to achieve the desired range: [220..660]
setValue(addmod,”invalue1”,440.0);
connect(mulmod,addmod,”invalue2”);

// and use it as input for the beep generation
connect(addmod,freq1);
connect(freq1, sin1); // object connection

connect(sin1, play, “invalue_left”);
connect(sin1, play, “invalue_right”);

// start and go ;-)
freq1.start(); freqmod.start();
sin1.start(); sinmod.start();
addmod.start(); mulmod.start();
play.start();
dispatcher.run();

}

2. Complete the missing cases in the StereoBalanceControl module above. See Listings
C.39 and C.40 for the answers.

LISTING C.39 The Missing Cases in balance_impl.cc

case sbLeftOnly:
for(i=0;i<samples;i++)
{

outleft[i] = inleft[i];
outright[i] = inleft[i];

}
break;

case sbRightOnly:

Answers

APPENDIX C

C

A
N

SW
ER

S
505

LISTING C.38 Continued

28 8911 AppC 10/16/00 1:42 PM Page 505

for(i=0;i<samples;i++)
{

outleft[i] = inright[i];
outright[i] = inright[i];

}
break;

case sbReverse:
for(i=0;i<samples;i++)
{

outleft[i] = inright[i];
outright[i] = inleft[i];

}
break;

LISTING C.40 The Missing Cases in balance.cc

if(strcmp(argv[1],”leftonly”) == 0)
bcontrol.balance(sbLeftOnly);

if(strcmp(argv[1],”rightonly”) == 0)
bcontrol.balance(sbRightOnly);

if(strcmp(argv[1],”reverse”) == 0)
bcontrol.balance(sbReverse);

3. Rewrite the stereo beep example in a way that the beeps are spinning in circles from the
left channel to the right channel and back to the left channel. Listing C.41 highlights the
code to do this.

LISTING C.41 Stereo Beep Example

// exercise3.cc

#include “artsflow.h”
#include “connect.h”

using namespace Arts;

int main()
{

Dispatcher dispatcher;

Synth_FREQUENCY freq1,freq2,freqspin; // object creation
Synth_WAVE_SIN sin1,sin2,sinspin;
Synth_MUL mulspin1,mulspin2;

Appendixes

PART V
506

LISTING C.39 Continued

28 8911 AppC 10/16/00 1:42 PM Page 506

Synth_ADD addspin1,addspin2;
Synth_MUL mul1spin1,mul1spin2,mul2spin1,mul2spin2;
Synth_ADD addleft,addright;
Synth_PLAY play;

setValue(freq1, 440.0); // set frequencies
setValue(freq2, 880.0);
setValue(freqspin, 0.4);

connect(freq1, sin1); // object connection
connect(freq2, sin2);
connect(freqspin, sinspin);

// first side: (freqspin * 0.5) + 0.5 (is between 0..1)
connect(sinspin, mulspin1, “invalue1”);
setValue(mulspin1, “invalue2”, 0.5);
connect(mulspin1, addspin1, “invalue1”);
setValue(addspin1, “invalue2”,0.5);

// first side: (freqspin * (-0.5)) + 0.5 (is between 1..0)
connect(sinspin, mulspin2, “invalue1”);
setValue(mulspin2, “invalue2”, -0.5);
connect(mulspin2, addspin2, “invalue1”);
setValue(addspin2, “invalue2”,0.5);

// multiply sin1 with the (0..1) and (1..0) ranges
connect(sin1,mul1spin1,”invalue1”);
connect(addspin1,mul1spin1,”invalue2”);
connect(sin1,mul1spin2,”invalue1”);
connect(addspin2,mul1spin2,”invalue2”);

// multiply sin2 with the (0..1) and (1..0) ranges
connect(sin2,mul2spin1,”invalue1”);
connect(addspin1,mul2spin1,”invalue2”);
connect(sin2,mul2spin2,”invalue1”);
connect(addspin2,mul2spin2,”invalue2”);

// left channel output
connect(mul1spin1,addleft,”invalue1”);
connect(mul2spin2,addleft,”invalue2”);
connect(addleft, play, “invalue_left”);

// right channel output
connect(mul2spin1,addright,”invalue1”);

Answers

APPENDIX C

C

A
N

SW
ER

S
507

LISTING C.41 Continued

28 8911 AppC 10/16/00 1:42 PM Page 507

connect(mul1spin2,addright,”invalue2”);
connect(addright, play, “invalue_right”);

// start and go ;-)
freq1.start(); freq2.start(); freqspin.start();
sin1.start(); sin2.start(); sinspin.start();
mulspin1.start(); mulspin2.start();
addspin1.start(); addspin2.start();
mul1spin1.start(); mul1spin2.start();
mul2spin1.start(); mul2spin2.start();
addleft.start(); addright.start();
play.start();
dispatcher.run();

}

Part IV
There are no exercises for the chapters in this part.

Appendixes

PART V
508

LISTING C.41 Continued

28 8911 AppC 10/16/00 1:42 PM Page 508

INDEX
SYMBOLS

& (ampersand), 26
@ (at symbol), 366

A
aboutApp action, 126
aboutKDE action, 126
Abstract tag (DocBook), 375
accessing

application configuration files, 158-160
documentation, 404
resources, 167-172
streams, 340-341

accounts, CVS (Concurrent Version
System), 396

<Action> tag (XML), 100
actionCollection() method, 89
actions, 88

aboutApp, 126
aboutKDE, 126
actualSize, 126
addBookmark, 126
back, 126
configureToolbars, 126
copy, 126
custom actions, 95-105
Cut, 126
editBookmarks, 126
find, 126
findNext, 126
findPrev, 126

29 KDE index 10/16/00 1:46 PM Page 509

actions
510

firstPage, 126
fitToHeight, 126
fitToPage, 126
fitToWidth, 127
forward, 127
goTo, 127
gotoLine, 127
gotoPage, 127
help, 127
helpContents, 127
home, 127
KAction class, 88
keyBindings, 127
lastPage, 127
mail, 127
next, 127
open, 127
openNew, 127
openRecent, 127-128
paste, 127
preferences, 127
print, 127
printPreview, 127
prior, 127
quit, 127
redisplay, 127
redo, 127
replace, 127
reportBug, 127
revert, 127
save, 127
saveAs, 127
saveOptions, 127
selectAll, 127
showMenubar, 127-128
showStatusbar, 128
showToolbar, 128
spelling, 128
standard actions, 88-94

KStdAction class, 88
KStdActionsDemo

widget, 89-94, 97

undo, 128
up, 128
whatsThis, 128
zoom, 128
zoomIn, 128
zoomOut, 128

actualSize action, 126
Add Folder command

(Classbrowser pop-up
menu), 418

Add Member Function
command
(Classbrowser pop-up
menu), 418

Add Member Variable
command
(Classbrowser pop-up
menu), 418

-add option (cvs com-
mand), 399

add() method, 116
addAuthor() method, 93
addBookmark action,

126
addGlobalReference

method, 339
address book, 246-249
administrative files

(packages)
config.cache, 381
config.h, 381
config.log, 381
config.status, 381
configure, 381
configure.in, 381
updating, 385

aKtion, 355-356
all target, 387
ampersand (&), 26
analog, real-time syn-

thesis (aRts), 324-328
announcing software,

389-390
API tools (DCOP), 310

findObject() method, 311
isApplicationRegistered()

method, 310
isRegistered() method,

310
registeredApplications()

method, 310
remoteFunctions()

method, 310
remoteInterfaces()

method, 310
remoteObjects() method,

310
senderId() method, 311
socket() method, 311

appdata resource type,
167

applets, panel
(KWeather), 257

kweather.cpp class defini-
tion, 258

kweather.h class defini-
tion, 259-260

main() method, 257-258
application configura-

tion files, 157
accessing, 158-160
directory location, 158
example of, 157-158

application icons, 133
application resources

accessing, 167-172
.desktop files, 172
standard resource loca-

tions, 166
types, 167

Application tag
(DocBook), 376

Application Wizard
(KDevelop), 409-411

29 KDE index 10/16/00 1:46 PM Page 510

browsers
511

applications, 14
compiling, 15

example, 15-16
g++ compiler, 16-17
make utility, 17-18

configuration, 129
creating

KDevelop Application
Wizard, 409, 411

project editing, 413
templates, 411-412

debuggers, 15
dialog-based

(KDialogApp), 252
kdialogapp.cpp class

declaration, 253-254
kdialogapp.h class

definition, 252-253
main() method,

254-255
document-centric, 20
documenting with

DocBook tools,
367-368

DocBook installation,
369

DocBook Web site,
376

processing documen-
tation, 369-370

sample documenta-
tion, 370-373

tags, 375-376
GUI (graphical user inter-

face) elements
creating/configuring,

23, 25
menubars, 25-28
status lines, 28
toolbars, 28

interfaces, 144-145
network transparency,

140-143
options, 129

programming conven-
tions, 29

running, 138
single-instance

(KUniqueApplication),
255

kunique.cpp call defi-
nition, 256

kunique.h class defini-
tion, 257

main() method, 255
structure of, 19

KApplication class, 19
KTMainWindow class,

20-21
main() method, 22-23

text editors, 14
apps resource type, 167
architecture, DCOP

(Desktop
Communication
Protocol), 292-293

archives, creating, 389
aRts (analog, real-time

synthesis), 324-328
artsbuilder, 356
async element (IDL), 337
asynchronous streams,

342-344
at symbol (@), 366
attach() method, 294,

346
attributes, 100

IDL (interface definition
language), 336

widget attributes, 61
Author tag (DocBook),

375
@author tag (KDOC),

366
AuthorGroup tag

(DocBook), 375

Autoconf tool, 403
Automake tool, 403

B
back action, 126
balance() method,

350-351
beginTransaction()

method, 300
binary packages,

installing, 10
bindings (DCOP), 322
blockUserInput()

method, 304
Book ID tag (DocBook),

376
BookInfo tag (DocBook),

375
Bookmarks menu com-

mands, 129
bounding boxes, 69
branches (CVS), 394
Breakpoint page

(KDevelop Output
View), 407

Brown, Preston, 290
browsers

Classbrowser
(KDevelop), 416-418

simple browser applica-
tion

ksimplebrowser.cpp
class definition,
233-234

ksimplebrowser.h class
declaration, 232-233

main() method,
234-235

29 KDE index 10/16/00 1:46 PM Page 511

C/C++ Files window
512

C
C/C++ Files window

(KDevelop), 407
C++ templates, 48
calculateBlock method,

331-332, 340
call() method, 296-297
callbacks, 41
canDecode() method,

152
CDE (Common Desktop

Environment), 6
cgi resource type, 167
CGotoDialog

layout, 186-188
modeless dialog box,

193-194
Chapter tag (DocBook),

376
check() method, 241
checking out applica-

tions (CVS), 399
checking spelling. See

spell-checking
checkList() method, 241
checkWord() method,

241
Child Classes command

(Classbrowser pop-up
menu), 418

child widgets, 71
geometry management,

73-74
QBoxLayout manager,

74
QGridLayout man-

ager,
74-77

KChildren example, 71
kchildren.cpp class

definition, 72

kchildren.h class dec-
laration, 71-72

main() method, 73
class declarations

KabDemo, 246-247
KChildren, 71-72
KConfigDemo, 158
KCustomActions, 95-96
KDialogApp, 253-254
KDisc, 79-80
KDragDemo, 154-155
KDropDemo, 151-152
KHelpers, 112-113
KImageView, 238
KLongJob, 221-223
KPushButton, 62-63
KQuickDraw, 215-216
KRemoteDemo, 173
KResourceDemo, 168
KSaveAcross, 161-162
KSimpleApp, 20
KSpellDemo, 242
KStatusBarDemo, 106
KStdActionsDemo,

89-91, 97
KTicTacToe, 74, 76
KXOSquare, 66-67

class definitions
KabDemo, 247-248
KChildren, 72
KConfigDemo, 159
KCustomActions, 96-98
KDialogApp, 252-253
KDisc, 80-81
KDragDemo, 154
KDropDemo, 151
KHelpers, 113-115
KImageView, 237
KQuickDraw, 217-218
KRemoteDemo, 174-175
KResourceDemo,

168-169

KSaveAcross, 163-164
KSimpleApp, 24-25
KSpellDemo, 241-242
KStatusBarDemo,

107-108
KStdActionsDemo, 92
KTicTacToe, 76-77
KUnique, 257
KWeather, 258-260
KXOSquare, 67-69

Class Viewer (CV), 406
Classbrowser

(KDevelop), 416-418
classes. See also individ-

ual class names
class reference, 457-458
declaring. See class dec-

larations
defining. See class defini-

tions
documentation, 29,

366-367
naming conventions, 29
network transparency,

140
part, 265
part manager, 265
plugin, 265
slots, 41, 45
template, 48-49
utility (Qt), 48

Classparser (KDevelop),
416

Classtool command
(Classbrowser pop-up
menu), 418

clean target, 387
clients (DCOP), 320
closeEvent() event han-

dler, 60

29 KDE index 10/16/00 1:46 PM Page 512

configuring
513

code
accessing in CVS

(Concurrent Version
System), 394

CVS accounts, 396
cvs utility, 397-400
cvsup utility, 395-397
snapshots, 394-395
Web interface, 395

distribution, 388
compressed archives,

389
informative text files,

388-389
software announce-

ments, 389-390
uploads, 389-390

documentation (KDOC),
362

class documentation,
366-367

comments, 363-366
downloading, 362
installing, 363
library documentation,

366
method documenta-

tion, 366-367
listings. See listings
packages, 380

administrative files,
381, 385

make targets, 387
shared libraries, 386
structure of, 380-381
subdirectories,

383-385
test results, 386-387
top-level directories,

382-383

color depth, 133
commands

Bookmarks menu, 129
Classbrowser pop-up

menus
Add Folder, 418
Add Member

Function, 418
Add Member Variable,

418
Child Classes, 418
Classtool, 418
Go to Declaration,

418
Graphical Classview,

418
New Class, 418
New File, 418
Options, 418
Parent Classes, 418

cvs, 398-400
Edit menu, 128
File menu, 128
gdb debugger, 424
Go menu, 129
Help menu, 129
Settings menu, 129
Tools menu, 129
View menu, 128

comments, 363-366
-commit option (cvs

command), 398
Common Desktop

Environment (CDE), 6
Common Object Request

Broker Architecture
(CORBA), 289

compilers
dcopidl, 304-308
invoking, 338

compiling programs, 15
example, 15-16
g++ compiler, 16-17
make utility, 17-18

compliance (UI), 86
document-centric inter-

face, 86-87
actions. See actions
content areas,

109-111
menubars, 87
status bars, 105-109
toolbars, 87

help, 112-117
standard dialog boxes,

118
KFileDialog, 120
KFontDialog, 120
KMessageBox,

121-122
sample application,

118-119
components. See parts
compressed archives,

389
computeSome() method,

226
Concurrent Versions

System. See CVS
config resource type,

167
config.cache file, 381
config.h file, 381
config.log file, 381
config.status file, 381
configuration files, 157

accessing, 158-160
directory location, 158
example of, 157-158

configure file, 381
configure.in file, 381
configureToolbars

action, 126
configuring

applications, 129
cvs utility, 397
cvsup utility, 396-397

29 KDE index 10/16/00 1:46 PM Page 513

configuring
514

directories
subdirectories,

383-385
top-level directories,

382-383
spell-checking, 245-246

connect() method,
344-345

connectDCOPSignal()
method, 313

connecting objects,
344-345

contacts (address book),
246-249

content areas, 109
Konqueror, 110-111
KOrganizer, 111
KWrite, 110

copy action, 126
CORBA (Common Object

Request Broker
Architecture), 289

counting references,
338-339

createGUI() method, 279
custom actions

(KCustomActions wid-
get)

kcustomactions.cpp class
definition, 96-98

kcustomactions.h class
declaration, 95-96

kcustomactions.h class
definition, 103-104

kcustomui.rc file, 99
main() method, 104-105
toolbars, 102-103

Cut action, 126
CV (Class Viewer), 406
CVS (Concurrent

Versions System),
392-393

accounts, 396
branches, 394

committing changes, 398
cvs utility

command-line
options, 398

commands, 398-400
configuring, 397

cvsup utility
advantages, 395
configuring, 396-397

directories
adding, 399
removing, 400

files, adding/removing,
399

modules
checking out, 398-399
listing, 400
names, 393-394
updating, 399

snapshots, 394-395
Web interface, 395

cvs utility
commands, 398-400
configuring, 397

cvsup utility
advantages, 395
configuring, 396-397

D
data resource type, 167
data streaming, 291-292

reading devices, 292
writing to devices, 291

data types (IDL), 336
Date tag (DocBook), 375
DCOP (Desktop

Communication
Protocol), 286

API (application pro-
gramming interface)
tools

findObject() method,
311

isApplicationRegistere
d() method, 310

isRegistered() method,
310

registeredApplications
() method, 310

remoteFunctions()
method, 310

remoteInterfaces()
method, 310

remoteObjects()
method, 310

senderId() method,
311

socket() method, 311
architecture, 292-293
dcop (shell client), 320
DCOP bindings, 322
dcopc interface, 321
embedded KPart

instances, 314-315
goals, 286-288
history of, 288-290
kdcop (shell client), 320
KNotify example,

319-320
KUniqueApplication

example, 316-319
passing command-line

parameters, 318-319
startup, 317-318

KXMLRPC interface,
321-322

message redirection tech-
nology (referencing),
311-313

performance and over-
head, 315-316

programming interface,
293

attach() method, 294
call() method,

296-297

29 KDE index 10/16/00 1:46 PM Page 514

dialog boxes
515

dcopClient() method,
294

dcopIDL, 304-308
detach() method, 304
makefile rules,

308-309
process() method,

297-300
registerAs() method,

294
resume() method, 304
send() method,

295-296
suspend() method, 304
transactions, 300-304

signals and slots, 313
underlying technologies,

290
data streaming,

291-292
ICE (Inter-Client

Exchange) mecha-
nism, 290-291

dcop (DCOP shell client),
320

dcopc interface, 321
dcopClient() method,

294
dcopIDL, 304-308
DCOPRef objects,

311-313
debuggers, 15

DDD debugger, 15
gdb, 421-425

declaring widget classes.
See class declarations

defining
streams, 337
widget classes

KabDemo, 247-248
KChildren, 72
KConfigDemo, 159

KCustomActions,
96-98

KDialogApp, 252-253
KDisc, 80-81
KDragDemo, 154
KDropDemo, 151
KHelpers, 113-115
KImageView, 237
KQuickDraw, 217-218
KRemoteDemo,

174-175
KResourceDemo,

168-169
KSaveAcross, 163-164
KSimpleApp, 24-25
KSpellDemo, 241-242
KStatusBarDemo,

107-108
KStdActionsDemo, 92
KTicTacToe, 76-77
KUnique, 257
KWeather, 258-260
KXOSquare, 67-69

deleting CVS
(Concurrent Version
System) files and direc-
tories, 399-400

@deprecated tag
(KDOC), 366

designing
dialog boxes, 190-191,

210-211
icons, 133-134

Desktop Communication
Protocol. See DCOP

.desktop files, 172
detach() method, 304,

346
development

documentation, 404
languages, 402
project management,

402-403

diagnostic tools, gdb
debugger, 421-422

commands, 424
enabling debugging infor-

mation, 423
options, 422
running, 423-425

dialog boxes, 180
design guidelines,

210-211
dialog-based application

(KDialogApp), 252
kdialogapp.cpp class

declaration, 253-254
kdialogapp.h class

definition, 252-253
main() method,

254-255
kdeui (KDE user-inter-

face library), 196
manager widgets,

197-199
read-to-use dialog

boxes, 196-197
KDialogBase class,

199-201
KEdit Option dialog

example, 201-202,
209-210

KSpellConfig configura-
tion dialog, 245

layout, 183
CGotoDialog exam-

ple, 186-188
design issues, 190-191
hierarchies of layouts,

186
manual placement,

183-185
nested layouts, 185
QLayout classes,

183-185
QVBox/QHBox wid-

gets, 189-190

29 KDE index 10/16/00 1:46 PM Page 515

dialog boxes
516

modal
advantages/disadvan-

tages, 191
modal dialog allo-

cated from the heap,
192

modal dialog located
on the stack, 191

modeless
advantages/disadvan-

tages, 191
CGotoDialog class

example, 193-194
removing from mem-

ory, 194-195
simple example, 180-182
standard dialog boxes,

118
KFileDialog, 120
KFontDialog, 120
KMessageBox,

121-122
sample application,

118-119
Dialog Editor (KDevelop

IDE), 408-409
dialog-based application

(KDialogApp), 252
kdialogapp.cpp class dec-

laration, 253-254
kdialogapp.h class defini-

tion, 252-253
main() method, 254-255

directories
CVS (Concurrent Version

System)
adding, 399
removing, 400

subdirectories, 383-385
top-level directories,

382-383
disableResize() method,

191

disabling application
methods, 225-226

Disassemble page
(KDevelop Output
View), 407

disconnectDCOPSignal()
method, 313

distclean target, 387
distribution, 388. See

also packages
compressed archives, 389
informative text files,

388-389
software announcements,

389-390
uploads, 389-390

distributions (KDE), 7
DOC (Documentation

Tree View), 406
<DOCTYPE> tag (XML),

267
document structure tags

(DocBook), 376
document-centric pro-

grams, 20
document-centric user

interface, 86-87
actions, 88

custom actions,
95-105

KAction class, 88
standard actions,

88-94
content areas, 109

Konqueror, 110-111
KOrganizer, 111
KWrite, 110

menubars, 87
status bars, 105

Konqueror status bar,
105

KWrite status bar,
106-109

toolbars, 87

documentation, 29, 362
accessing, 404
DocBook tools, 367-368

DocBook Web site,
376

downloading, 369
processing documen-

tation, 369-370
sample documenta-

tion, 370-373
tags, 375-376

KDevelop IDE, 413
API documentation,

414
Documentation-

Browser, 414
online handbooks, 413
searching, 414-416

KDOC, 362
class documentation,

366-367
comments, 363-366
downloading, 362
installing, 363
library documenta-

tion, 366
method documenta-

tion, 366-367
widgets, 63

Documentation Tree
View (DOC), 406

Documentation-Browser
(KDevelop), 408, 414

double-buffering, 215
advantages, 219-220
example of, 215-219
screen flicker, 220

download() method, 173
downloading

DocBook tools, 369
KDOC, 362

29 KDE index 10/16/00 1:46 PM Page 516

Extensible Markup Language
517

drag and drop, 150
responding to drop

events, 150-153
starting a drag, 153-157
XDND protocol, 150

drag events, starting,
153-154, 156-157

DragCopy operations,
156

DragCopyOrMove oper-
ations, 156

DragDefault operations,
156

dragEnterEvent() event
handler, 60, 152

dragLeaveEvent() event
handler, 60

DragMove operations,
156

dragMoveEvent() event
handler, 60

drawEllipse() method, 69
drawing lines/shapes, 69
drawLine() method, 69
drawRect() method, 69
drop events, responding

to, 150-153
dropEvent() event han-

dler, 61, 152

E
Edit menu commands,

128
editBookmarks action,

126
editing

KEdit, 131-132
projects, 413
spell-checking (KSpell),

241
configuring, 245-246
methods, 241

modal spell-checking,
244

sample application,
241-242

editor
Dialog Editor

(KDevelop), 408-409
advantages, 408
weaknesses, 409

overview, 14
ellipses, drawing, 69
emacs editor, 14
email mailing lists, 9
embedding

KPart instances, 314-315
parts, 277

mainwindow GUI,
277-278

mainwindow header,
278

mainwindow imple-
mentation, 278-279

multiple parts,
280-281

emitDCOPSignal()
method, 313

emitting signals, 42
Emphasis tag (DocBook),

376
enabling

application methods,
225-226

gdb debugger, 423
endTransaction()

method, 301
enterEvent() event han-

dler, 60
enumeration values

(IDL), 335
environment variables

KDEDIR, 16
QTDIR, 16

error() method, 122
Ettrich, Matthias, 6, 288,

290

event handling
drag events, 153-157
drop events, 150-153
Qt, 33
signals and slots, 41
widgets, 58, 78

closeEvent(), 60
dragEnterEvent(), 60
dragLeaveEvent(), 60
dragMoveEvent(), 60
dropEvent(), 61
enterEvent(), 60
event(), 59
focusInEvent(), 59
focusOutEvent(), 60
KDisc example, 79-81
keyPressEvent(), 59
keyReleaseEvent(), 59
keystrokes, 82-83
leaveEvent(), 60
mouse clicks, 82
mouseDoubleClickEve

nt(), 59
mouseMoveEvent(), 59
mousePressEvent(), 59
mouseReleaseEvent(),

59
moveEvent(), 60
paintEvent(), 60
resizeEvent(), 60
showEvent(), 61
wheelEvent(), 59

event() event handler,
59

Example_ADD module,
332-334

@exception tag (KDOC),
366

exe resource type, 167
exec() method, 191
Exit command (gdb

debugger), 424
Extensible Markup

Language. See XML

29 KDE index 10/16/00 1:46 PM Page 517

factories
518

F
factories,

NotepadFactory
notepad_factory.cpp

implementation,
274-276

notepad_factory.h header,
274

file dialog boxes,
KFileDialog, 120

file manager. See
Konqueror

File menu commands,
128

File Viewers (KDevelop),
419

LFV (Logical File
Viewer), 406, 419-420

RFV (Real File Viewer),
406, 420-421

filenames, 141
files

administrative files, 381
config.cache, 381
config.h, 381
config.log, 381
config.status, 381
configure, 381
configure.in, 381
updating, 385

application configuration
files, 157

accessing, 158-160
directory location, 158
example of, 157-158

CVS (Concurrent Version
System), 399

.desktop, 172
header, 130
HTML files, 232-235
image formats, 235-236

Makefiles, 18
example of, 18-19
targets, 387

.mcopclass files, 332
naming conventions, 29,

141
opening

KRun class, 138-140
network transparency,

141
source, 131
translation, 136

find action, 126
findNext action, 126
findObject() method,

311
findPrev action, 126
firstPage action, 126
fitToHeight action, 126
fitToPage action, 126
fitToWidth action, 127
flicker effect, 220
flushing graphics, 37
focusInEvent() event

handler, 59
focusOutEvent() event

handler, 60
font dialog boxes

KFontDialog, 120
KMessageBox, 121-122

formatting tags
(DocBook), 376

forward action, 127
Frame Stack page

(KDevelop Output
View, 407

FreeQt license, 433
Freshmeat Web site, 390
FTP (File Transfer

Protocol), snapshots,
394-395

functions. See methods

future of MCOP, 356
composition/RAD, 356
GUIs, 356
media types, 357
scripting, 356

G
g++ compiler, 16-17
gdb debugger, 15,

421-422
commands, 424
enabling debugging infor-

mation, 423
options, 422
running, 423-425

geometry management
(widgets), 73-74

dialog boxes, 183
CGotoDialog exam-

ple, 186-188
design issues, 190-191
hierarchies of layouts,

186
manual placement,

183-185
nested layouts, 185
QLayout classes,

183-185
QVBox/QHBox wid-

gets, 189-190
QBoxLayout manager, 74
QGridLayout manager,

74, 76-77
getColor() method, 120
getExistingDirectory()

method, 120
getFont() method, 120
getGlobalReference()

method, 339
getOpenFileName()

method, 120

29 KDE index 10/16/00 1:46 PM Page 518

GUIs
519

getSaveFileName()
method, 120

GhostViewTest
ghostviewtest.cpp, 279
ghostviewtest.h, 278
ghostviewtest_shell.rc,

277-278
ghostviewtest.cpp file,

279
ghostviewtest.h file, 278
ghostviewtest_shell.rc

file, 277-278
GNU debugger. See gdb

debugger
GNU General Public

License (GPL), 431-432,
449-456

GNU Library Public
License (LGPL), 430,
440-449

Go menu commands,
129

Go to Declaration com-
mand (Classbrowser
pop-up menu), 418

goTo action, 127
gotoLine action, 127
gotoPage action, 127
GPL (General Public

License), 431-432,
449-456

Granroth, Kurt, 321
Graphical Classview

command
(Classbrowser pop-up
menu), 418

graphical user inter-
faces. See GUIs

graphics
flushing, 37
image view/converter

application
(KImageView), 237

kimageview.cpp class
declaration, 238

kimageview.h class
definition, 237

main() method, 240
QImage class, 236
QPixmap class, 237
supported formats,

235-236
gt-2.1.0 package, 10
GUIs (graphical user

interface)
address book, 246-249
compliance. See UI com-

pliance
dialog boxes, 180

design guidelines,
210-211

kdeui (KDE user-
interface library),
196-199

KDialogBase class,
199-201

KEdit Option dialog
example, 201-202,
209-210

layout, 183-191
modal, 191-192
modeless, 191-195
simple example,

180-182
document-centric inter-

face, 86-87
actions. See actions
content areas,

109-111
menubars, 87
status bars, 105-109
toolbars, 87

drag and drop, 150
responding to drop

events, 150-153
starting a drag,

153-157

KDevelop IDE, 402-404
Classbrowser, 416-418
Classparser, 416
Dialog Editor,

408-409
documentation,

413-416
File Viewers, 406,

419-421
gdb debugger,

421-425
KDE applications,

creating, 409-413
software development,

402-404
versions, 406, 425
views, 406-407
working area, 407-408

KMedia2, 347-348
MCOP and, 356
menubars, 25-28
responsiveness, 214

importance of,
214-215

long jobs, optimizing
performance of,
220-229

Window updates, dou-
ble-buffering,
215-220

SimpleSoundServer,
345-347

StereoEffectStack,
349-350

standard dialog boxes,
118

KFileDialog, 120
KFontDialog, 120
KMessageBox,

121-122
sample application,

118-119
status lines, 28

29 KDE index 10/16/00 1:46 PM Page 519

GUIs
520

toolbars, 28
Tooltips, 112-117
user friendliness,

144-145
widgets, 58

attributes, 61
child widgets, 71-74,

76-77
defined, 58
dialog widgets. See

dialog boxes
documentation, 63
drawing commands,

65
event handlers, 58-61
painting, 63-71
sample class declara-

tion, 62-63
signals, 61
slots, 61
user input, 78-83

H
Hausmann, Simon, 321
header files, 130
help, 112

Help menu commands,
129

ToolTips, 112-117
help action, 127
Help menu commands,

129
helpContents action, 127
helpMenu() method, 117
Hemsley, Rik, 321
history of

DCOP (Desktop
Communication
Protocol), 288-290

KDE/Qt licenses,
434-436

home action, 127
HTML (Hypertext

Markup Language)
files, rendering,
232-235

html resource type, 167

I
i18n() method, 135, 171
ICE (Inter-Client

Exchange) mechanism,
290-291

icon resource type, 167
icons, 133

application specifica-
tions, 133

color depth, 133
designing, 133-134
names, 134
PNG format, 133
toolbar specifications,

133
type, 134

IDE (integrated develop-
ment environment).
See KDevelop IDE

IDL (interface definition
language), 335

attributes, 336
compiler, invoking, 338
data types, 336
enumeration values, 335
#include statements, 335
methods, 336
streams, 337
structs, 336

@image tag (KDOC), 367
ImageIO, 51

images
image view/converter

application
(KImageView), 237

kimageview.cpp class
declaration, 238

kimageview.h class
definition, 237

main() method, 240
QImage class, 236
QPixmap class, 237
suported formats,

235-236
in/out element (IDL),

337
#include statements, 335
information() method,

122
initial object references,

339-340
initializeGL() method

(QGL widget), 53
initializing MCOP mod-

ules, 341
attributes, 341
C++ constructor, 341
C++ destructor, 342
streamEnd() method, 342
streamInit() method, 342
streamStart() method,

342
input (user), 78

KDisc widget example,
79-81

keystrokes, 82-83
mouse clicks, 82

install target, 387
installing

KDE
binary packages, 10
source packages, 11

KDOC, 363

29 KDE index 10/16/00 1:46 PM Page 520

kdeadmin module
521

integrated development
environment (IDE). See
KDevelop IDE

Inter-Client Exchange
(ICE) mechanism, 290-
291

interface definition lan-
guage. See IDL

Interface Hall of Shame
Web site, 144, 211

interfaces. See GUIs
(graphical user inter-
faces)

@internal tag (KDOC),
366

internationalization
i18n() method, 135
translator files, 135-136

invoking
IDL compiler, 338
paint events, 64

isApplicationRegistered()
method, 310

isRegistered() method,
310

ItemizedList tag
(DocBook), 376

J-K
Jansen, Geert, 288
jobs, optimizing perfor-

mance of, 220
application methods,

225-226
processEvents() method,

227-229
QTimer class, 220-225
speed issues, 226

KabDemo application
(address book dialog),
246

kabdemo.cpp class defin-
ition, 247-248

kabdemo.h class declara-
tion, 246-247

main() method, 249
kabdemo.cpp file,

247-248
kabdemo.h file, 246-247
KAction class, 88, 126
KApplication class, 19
KAudioPlayer class,

354-355
KButtonBox manager

widget, 197-198
KChildren sample wid-

get (child widget), 71
kchildren.cpp class defin-

ition, 72
kchildren.h class declara-

tion, 71-72
main() method, 73

kchildren.cpp file, 72
kchildren.h file, 71-72
KConfigDemo widget

kconfigdemo.cpp class
definition, 159

kconfigdemo.h class dec-
laration, 158

main() method, 160
kconfigdemo.cpp file,

159
kconfigdemo.h file, 158
KCustomActions widget

kcustomactions.cpp class
definition, 96-98

kcustomactions.h class
declaration, 95-96,
103-104

kcustomui.rcp class file,
99

main() method, 104-105
toolbars, 102-103

kcustomactions.cpp file,
96-98

kcustomactions.h file,
95-96, 103-104

kcustomui.rc file, 99
kdcop (DCOP shell

client), 320
KDE (overview of), 6

advantages, 6-8
distributions, 7
installing, 10-11
licenses, 11
obtaining, 9
online resources, 9
Qt toolkit, 32
system requirements, 9

KDE Developers’ Web
site, 8

KDE Mini application
template, 411

KDE Normal application
template, 412

KDE Translator’s and
Documenter’s Web site,
135

KDE user-interface
library (kdeui)

dialog boxes, 196-197
manager widgets,

197-199
KDE Web site, 9
kde-common module,

393
kde-devel mailing list, 9
kde-il8n module, 393
KDE-MDI application

template, 412
/kde/share/config direc-

tory, 158
kdeadmin module, 10,

393

29 KDE index 10/16/00 1:46 PM Page 521

kdebase module
522

kdebase module, 10, 393
kdebindings module

(CVS), 394
KDEDIR environment

variable, 16
$KDEDIR/share/apps-

text.txt file, 170
kdegames module, 10,

394
kdegraphics module, 10,

393
kdei18n package, 10
kdelibs module, 10, 393
kdemultimedia module,

10, 393
kdenetwork module, 10,

393
kdenonbeta module,

394
kdesdk module, 394
kdesupport module, 10,

393
kdetoys module, 394
kdeui (KDE user-

interface library)
dialog boxes, 196-197
manager widgets,

197-199
kdeutils module, 10, 393
KDevelop IDE, 402-404

Classbrowser, 416-418
Classparser, 416
Dialog Editor, 408-409
documentation, 413

API documentation,
414

Documentation-
Browser, 414

online handbooks, 413
searching, 414-416

File Viewers, 419
LFV (Logical File

Viewer), 406,
419-420

RFV (Real File
Viewer), 406,
420-421

gdb debugger, 421-422
commands, 424
enabling debugging

information, 423
options, 422
running, 423-425

KDE applications, creat-
ing

Application Wizard,
409-411

project editing, 413
templates, 411-412

software development
documentation, 404
languages, 402
packages, 403
project management,

402-403
versions, 406, 425
views

Output View, 407
Tree View, 406-407

working area, 407-408
kdevelop module, 394
kdgb debugger, 15
KDialog manager wid-

get, 198
KDialogApp (dialog-

based application), 252
kdialogapp.cpp class dec-

laration, 253-254
kdialogapp.h class defini-

tion, 252-253
main() method, 254-255

kdialogapp.cpp file,
253-254

kdialogapp.h file,
252-253

KDialogBase class,
199-201

KDialogBase manager
widget, 198

KDisc widget (user input
example)

kdisc.cpp class definition,
80-81

kdisc.h class declaration,
79-80

main() method, 83
KDOC

class documentation,
366-367

comments, 363-366
downloading, 362
installing, 363
library documentation,

366
method documentation,

366-367
kdocsample.h file,

364-365
KDragDemo widget

kdragdemo.cpp class dec-
laration, 154-155

kdragdemo.h class defini-
tion, 154

main() method, 157
kdragdemo.cpp file,

154-155
kdragdemo.h file, 154
KDropDemo widget, 150

kdropdemo.cpp class dec-
laration, 151-152

kdropdemo.h class defini-
tion, 151

main() method, 152-153
kdropdemo.cpp file,

151-152
kdropdemo.h file, 151
KEdit

Option dialog box,
201-202, 209-210

session management
code, 131-132

29 KDE index 10/16/00 1:46 PM Page 522

kquickdraw.h file
523

keyBindings action, 127
KeyCap tag (DocBook),

376
KeyCombo tag

(DocBook), 376
keyPressEvent() event

handler, 59
keyReleaseEvent() event

handler, 59
keystrokes, handling,

82-83
Keyword tag (DocBook),

375
keywords, moc, 46
KeyWordSet tag

(DocBook), 375
KFileDialog, 120
KFontDialog, 120
kfte editor, 14
kfte module (CVS), 394
khello program, 15-16
KHelpers widget

khelpers.cpp class defini-
tion, 113-115

khelpers.h class declara-
tion, 112-113

main() method, 115
khelpers.cpp file,

113-115
khelpers.h file, 112-113
KHTMLWidget, 232
KImageView widget

(image viewer/con-
verter), 237

kimageview.cpp class
declaration, 238

kimageview.h class defin-
ition, 237

main() method, 240
kimageview.cpp file, 238
kimageview.h file, 237
kimgioRegister()

method, 170

KIPC, 288
KJanusWidget manager

widget, 198
KLongJob widget (long

job example)
klongjob.h class declara-

tion (original version),
221-223

main() method, 225
klongjob.h file, 221-223
klyx module (CVS), 394
KMedia2 interface,

347-348
KMessageBox, 121-122
kmusic module (CVS),

394
KNotify API, 354-355
KNotify class, 319-320
KNotifyClient class,

136-137
koffice module (CVS),

394
Konqueror, 8, 105,

110-111
KOrganizer, 111
korganizer module

(CVS), 394
KParts, 7, 264

compared to widgets,
264-265

embedding, 277
DCOP (Desktop

Communication
Protocol), 314-315

mainwindow GUI,
277-278

mainwindow header,
278

mainwindow imple-
mentation, 278-279

multiple parts,
280-281

framework, 265-266
including in shared

libraries, 273
factory headers, 274
factory implementa-

tion, 274-276
makefiles, 273

NotepadPart example,
269

constructor, 270-271
Makefile.am, 273
notepad_factory.cpp

implementation,
275-276

notepad_factory.h
header, 274

notepad_part.h
header, 269-270

openFile() method,
272-273

saveFile() method,
273

setReadWrite()
method, 271-272

PartManager, 280
plug-ins, 282-283
read-only parts, 268
read/write parts, 268
XML files, 266-268

kposquare.cpp file,
66-69

KQuickDraw widget
kquickdraw.cpp class def-

inition, 217-218
kquickdraw.h class decla-

ration, 215-216
main() method, 218-219

kquickdraw.cpp file,
217-218

kquickdraw.h file,
215-216

29 KDE index 10/16/00 1:46 PM Page 523

KRemoteDemo widget
524

KRemoteDemo widget
kremotedemo.cpp class

definition, 174-175
kremotedemo.h class dec-

laration, 173
main() method, 176-177

kremotedemo.cpp file,
174-175

kremotedemo.h file, 173
kresource.po file, 171
KResourceDemo widget

$KDEDIR/share/apps-
text.txt contents, 170

kresource.po translation
template file, 171

kresourcedemo.cpp class
definition, 168-169

kresourcedemo.h class
declaration, 168

kresourcedemo.cpp file,
168-169

kresourcedemo.h file,
168

KRun class
opening files, 138-140
running applications, 138

KSaveAcross widget
ksaveacross.cpp class

definition, 163-164
ksaveacross.h class decla-

ration, 161-162
main() method, 165-166

ksaveacross.cpp file,
163-164

ksaveacross.h file,
161-162

KSimpleApp program
ksimpleapp.cpp class def-

inition, 24-25
ksimpleapp.h class decla-

ration, 20
main() method, 22
menubar, 25-28
status line, 28

toolbar, 28
ksimpleapp-1.0.lsm list-

ing, 388
ksimpleapp.cpp file,

24-25
ksimpleapp.docbook

listing, 370-373
ksimpleapp.h file, 20
KSimpleBrowser appli-

cation
ksimplebrowser.cpp class

definition, 233-234
ksimplebrowser.h class

declaration, 232-233
main() method, 234-235

ksimplebrowser.cpp file,
233-234

ksimplebrowser.h file,
232-233

KSpell (spell-checking),
241

configuring, 245-246
methods, 241
modal spell-checking,

244
sample application,

241-242
KSpellConfig configura-

tion dialog box, 245
KSpellDemo (spell-

checking application)
kspelldemo.cpp class

declaration, 242
kspelldemo.h class defin-

ition, 241-242
main() method, 245

kspelldemo.cpp file, 242
kspelldemo.h file,

241-242
KStatusBarDemo widget

kstatusbardemo.cpp class
definition, 107-108

kstatusbardemo.h class
declaration, 106

main() method, 107
kstatusbardemo.cpp file,

107-108
kstatusbardemo.h file,

106
KStdAction class, 88, 126
KStdActionsDemo wid-

get, 89
kstdactionsdemo.cpp

class declaration, 89-91,
97

kstdactionsdemo.h class
definition, 92

main() method, 94
kstdactionsdemo.cpp

file, 89-91, 97
kstdactionsdemo.h file,

92
KTicTacToe widget

(geometry manage-
ment example)

ktictactoe.cpp class defin-
ition, 76-77

ktictactoe.h class declara-
tion, 74-76

playing the game, 78
ktictactoe.cpp file, 76-77
ktictactoe.h file, 74-76
KTMainWindow class,

20-21
Kulow, Stephen, 380
kunique.cpp file, 256
kunique.h file, 257
KUniqueApplication

(single-instance appli-
cation), 255

kunique.cpp call defini-
tion, 256

kunique.h class defini-
tion, 257

main() method, 255

29 KDE index 10/16/00 1:46 PM Page 524

listings
525

KUniqueApplication
class, 316-319

passing command-line
parameters, 318-319

startup, 317-318
KWeather applet, 257

kweather.cpp class defini-
tion, 258

kweather.h class defini-
tion, 259-260

main() method, 257-258
kweather.cpp file, 258
kweather.h file, 259-260
kwrite editor, 14,

106-110
KXMLRPC interface,

321-322
KXOSquare widget

(painting example), 65
code analysis, 69
kxosquare.cpp class dec-

laration, 66-67
kxosquare.cpp class defi-

nition, 67-69
main() method, 70-71

L
-l option (cvs command),

399
languages

i18n() method, 135
translator files, 135-136

lastPage action, 127
layout

dialog boxes, 183
CGotoDialog example,

186-188
design guidelines,

210-211
design issues, 190-191
hierarchies of layouts,

186

manual placement,
183-185

nested layouts, 185
QLayout classes,

183-185
QVBox/QHBox wid-

gets, 189-190
layout managers,

189-190
layout managers,

189-190
leaveEvent() event han-

dler, 60
legal issues. See licenses
LFV (Logical File

Viewer), 406, 419-420
LGPL (Library GNU

Public License), 430,
440-449

@li tag (KDOC), 367
lib resource type, 167
@libdoc tag (KDOC), 366
libkimgic library, 236
LibKMid, 355
libraries, 7

documentation, 366
kdeui (KDE user-

interface library), 196
dialog boxes, 196-197
manager widgets,

197-199
libkimgic, 236
Mesa, 54
OpenGL, 54
parts, including, 273

factory headers, 274
factory implementa-

tion, 274-276
makefiles, 273

Qt. See Qt
shared libraries, 386

Library GNU Public
License (LGPL), 430

licenses, 11, 428
FreeQt, 433
GPL (GNU General

Public License),
431-432, 449-456

history of, 434-436
importance to projects,

429-430
LGPL (Library GNU

Public License), 430,
440-449

online resources, 436
QPL (Q Public License),

433-434
lines, drawing, 69
listing CVS (Concurrent

Version System) mod-
ules, 400

listings
application configuration

file example, 157
connecting slots to sig-

nals, 43
dcop, 320
DCOP

client using stub inter-
face, 308

DCOP within KPart,
314, 317

DCOPClient call()
method, 296-297

DCOPClient send()
method, 295

DCOPClient send()
method with QString
data, 295

dcopidl, 305-306
DCOPRef usage, 312
handmade stub file,

307
makefile rules, 309

29 KDE index 10/16/00 1:46 PM Page 525

listings
526

object that implements
DCOP processing,
298-299

processing with trans-
actions, 301-303

typical application
that uses DCOP,
306-307

dialog boxes
CGotoDialog class

example, 186-188
dialog from kdeui

library, 197
KButtonBox in a dia-

log, 198
KEdit dialog code,

202-203, 209
manual geometry

strategy and
QLayouts classes,
183-185

modal dialog allo-
cated from the heap,
192-193

modal dialog located
on the stack, 192

modeless dialog exam-
ple, 193

modeless dialogs,
removing from mem-
ory, 194-195

QVBox widget for
geometry manage-
ment, 189-190

SelectDialog class,
180-182

Example_ADD interface,
331

Example_ADD module,
333

GhostViewTest
ghostviewtest.cpp, 279
ghostviewtest.h, 278
ghostviewtest_shell.rc,

277-278
ImageIO sample pro-

gram, 51
KabDemo application

(address book dialog)
kabdemo.cpp class

definition, 247-248
kabdemo.h class dec-

laration, 246-247
main() method, 249

KChildren widget
kchildren.cpp class

definition, 72
kchildren.h class dec-

laration, 71-72
main() method, 73

KConfigDemo widget
kconfigdemo.cpp class

definition, 159
kconfigdemo.h class

declaration, 158
main() method, 160

KCustomActions widget
kcustomactions.cpp

class definition,
96-98

kcustomactions.h
class declaration,
95-96, 103-104

kcustomui.rc file, 99
main() method,

104-105
KDisc widget

ktictactoe.cpp class
definition, 80-81

ktictactoe.h class dec-
laration, 79-80

main() method, 83

kdocsample.h, 364-365
KDragDemo widget

kdragdemo.cpp class
declaration, 154-155

kdragdemo.h class
definition, 154

main() method, 157
KDropDemo widget

kdropdemo.cpp,
151-152

kdropdemo.h, 151
main() method,

152-153
khello program, 16
KHelpers widget

khelpers.cpp class def-
inition, 113-115

khelpers.h class decla-
ration, 112-113

main() method, 115
KImageView

kimageview.cpp class
declaration, 238

kimageview.h class
definition, 237

main() method, 240
KLongJob widget (long

job example)
klongjob.h class dec-

laration (original
version), 221-223

main() method, 225
KPushButton class decla-

ration, 62-63
KQuickDraw widget

kquickdraw.cpp class
definition, 217-218

kquickdraw.h class
declaration, 215-216

main() method,
218-219

29 KDE index 10/16/00 1:46 PM Page 526

listings
527

KRemoteDemo widget
kremotedemo.cpp

class definition,
174-175

kremotedemo.h class
declaration, 173

main() method,
176-177

KResourceDemo widget
$KDEDIR/share/apps-

text.txt contents, 170
kresource.po transla-

tion template file,
171

kresourcedemo.cpp
class definition,
168-169

kresourcedemo.h class
declaration, 168

KRun class, 138-140
KSaveAcross widget

ksaveacross.cpp class
definition, 163-164

ksaveacross.h class
declaration, 161-162

main() method,
165-166

KSimpleApp program
ksimpleapp.cpp class

definition, 24-25
ksimpleapp.h class

declaration, 20
main() method, 22

ksimpleapp-1.0.lsm, 388
ksimpleapp.docbook,

370-373
KSimpleBrowser

ksimplebrowser.cpp
class definition,
233-234

ksimplebrowser.h class
declaration, 232-233

main() method, 235

KSpellDemo (spell-
checking application)

kspelldemo.cpp class
declaration, 242

kspelldemo.h class
definition, 241-242

main() method, 245
KStandardDialogs

main.cpp, 118-119
KStatusBarDemo widget

kstatusbardemo.cpp
class definition,
107-108

kstatusbardemo.h
class declaration,
106

main() method, 107
KStdActionsDemo wid-

get
kstdactionsdemo.cpp

class declaration,
89-91, 97

kstdactionsdemo.h
class definition, 92

main() method, 94
KTicTacToe widget

ktictactoe.cpp class
definition, 76-77

ktictactoe.h class dec-
laration, 75-76

KUniqueApplication
kunique.cpp call defi-

nition, 256
kunique.h call defini-

tion, 257
main.cpp, 255
passing command-line

parameters, 318-319
starting, 317

KWeather applet
kweather.cpp class

definition, 258

kweather.h class defin-
ition, 259-260

main() method, 258
KXOSquare widget

kxosquare.cpp class
declaration, 66-67

kxosquare.cpp class
definition, 67-69

main() method, 70
Makefile.am, 383-384
Makefile example, 18-19
moc example, 46-47
MyWindow class imple-

mentation, 47
network transparency

complete example,
141-143

filenames, 141
opening files, 141

NotepadPart part
Makefile.am, 273
notepad_factory.cpp

factory implementa-
tion, 275-276

notepad_factory.h fac-
tory header, 274

notepad_part.cpp part
1 constructor, 271

notepad_part.cpp part
2, 272

notepad_part.cpp part
3, 272-273

notepad_part.cpp part
4, 273

notepad_part.h
header, 269-270

notepad_part.rc XML
description, 270

OpenGL program exam-
ple, 54

QList class example, 50
QPainter class example,

37

29 KDE index 10/16/00 1:46 PM Page 527

listings
528

QPushButton class exam-
ple, 39

QWidget class example,
35

reading from device with
QDataStream, 292

session management code
header file example,

130
KEdit, 131-132
main source code

example, 129-130
source file example,

131
static run() methods, 138
stereo beeps, 326
StereoBalanceControl,

353
template classes, 49
writing through

QDataStream, 291
ListItem tag (DocBook),

376
locale resource type, 167
Logical File Viewer

(LFV), 406, 419-420
long jobs, optimizing

performance of, 220
application methods,

enabling/disabling,
225-226

processEvents() method,
227-229

QTimer class, 220-225
speed issues, 226

M
mail action, 127
mailing lists, 9

main() method
KabDemo application,

249
KChildren widget, 73
KConfigDemo widget,

160
KCustomActions wid-

get, 104-105
KDialogApp, 254-255
KDisc, 83
KDragDemo widget,

157
KDropDemo widget,

152-153
KHelpers widget, 115
KImageView widget,

240
KLongJob widget, 225
KQuickDraw, 218-219
KRemoteDemo wid-

get, 176-177
KSaveAcross widget,

165-166
KSimpleApp, 22-23
KSimpleBrowser,

234-235
KSpellDemo, 245
KStatusBarDemo wid-

get, 107
KStdActionsDemo

widget, 94
KUniqueApplication,

255
KWeather applet, 258
KXOSquare widget,

70-71
main.cpp file

(KstaqndardDialogs),
118-119

maintainer-clean target,
387

mainwindow class, 265
make targets, 387

make utility, 17-18
Makefile.am file, 273,

383-384
Makefiles, 18

DCOP (Desktop
Communication
Protocol), 308-309

example of, 18-19
targets, 387

manager widgets
(kdeui), 197-199

managing sessions, 129,
132, 161-166

header file example, 130
KEdit, 131-132
main source code exam-

ple, 129-130
source file example, 131

manual geometry strat-
egy (dialog boxes),
183-185

MCOP, 334
future of, 356

composition/RAD, 356
GUIs, 356
media types, 357
scripting, 356

IDL compiler, invoking,
338

IDL syntax, 335
attributes, 336
data types, 336
enumeration values,

335
methods, 336
stream definitions, 337
structs, 336

initial object references,
339-340

interfaces
KMedia2, 347-348
SimpleSoundServer,

345-347

29 KDE index 10/16/00 1:46 PM Page 528

methods
529

StereoEffectStack,
349-350

module initialization
attributes, 341
C++ constructor, 341
C++ destructor, 342
streamEnd() method,

342
streamInit() method,

342
streamStart() method,

342
modules, writing,

328-329
Example_ADD mod-

ule, 332-334
interface definitions,

329-330
interface implementa-

tion, 331-332
.mcopclass files, 332
mcopidl, 330
REGISTER_IMPLE-

MENTATION, 332
object connections,

344-345
reference counting,

338-339
StereoBalanceControl

sample program, 350
balance() method,

350-351
IDL (interface defini-

tion language), 350
makefile, 352
running on server,

352-354
stream access, 340-341
synchronous versus asyn-

chronous streams,
342-344

mcopclass files, 332
mcopidl, 330
memory, removing dia-

log boxes from,
194-195

<Menu> tag (XML), 100
<MenuBar> tag (XML),

100
menubars, 25-28, 87
<Merge> tag (XML),

267-268
Mesa, 53
message redirection

technology (referenc-
ing), 311-313

Messages page
(KDevelop Output
View, 407

Meta Object Compiler
(MOC), 33, 45

executing programs, 48
keywords, 46
main program file exam-

ple, 48
meta-information tags

(DocBook), 375
methods, 336. See also

event handlers
actionCollection(), 89
add(), 116
addAuthor(), 93
addGlobalReference(),

339
attach(), 294, 346
balance(), 350-351
beginTransaction(), 300
blockUserInput(), 304
calculateBlock(),

331-332, 340
call(), 296-297
canDecode(), 152
check(), 241
checkList(), 241

checkWord(), 241
computeSome(), 226
connect(), 344-345
connectDCOPSignal(),

313
createGUI(), 279
dcopClient(), 294
detach(), 304
detach(), 346
disableResize(), 191
disconnectDCOPSignal(),

313
documentation, 366-367
download(), 173
dragEnterEvent(), 152
drawEllipse(), 69
drawLine(), 69
drawRect(), 69
dropEvent(), 152
emitDCOPSignal(), 313
enabling/disabling,

225-226
endTransaction(), 301
error(), 122
exec(), 191
findObject(), 311
getColor(), 120
getExistingDirectory(),

120
getFont(), 120
getGlobalReference(),

339
getOpenFileName(), 120
getSaveFileName(), 120
helpMenu(), 117
i18n(), 135, 171
information(), 122
isApplicationRegistered(),

310
isRegistered(), 310
kingioRegister(), 170
main()

KabDemo application,

29 KDE index 10/16/00 1:46 PM Page 529

methods
530

249
KChildren widget, 73
KConfigDemo widget,

160
KCustomActions wid-

get, 104-105
KDialogApp, 254-255
KDisc, 83
KDragDemo widget,

157
KDropDemo widget,

152-153
KHelpers widget, 115
KImageView widget,

240
KLongJob widget, 225
KQuickDraw, 218-219
KRemoteDemo wid-

get, 176-177
KSaveAcross widget,

165-166
KSimpleApp, 22-23
KSimpleBrowser,

234-235
KSpellDemo, 245
KStatusBarDemo wid-

get, 107
KStdActionsDemo

widget, 94
KUniqueApplication,

255
KWeather applet, 258
KXOSquare widget,

70-71
modalCheck(), 241
naming conventions, 29
newInstance(), 256
openFile(), 269, 272-273
openNew(), 91
paintEvent(), 64, 218
process(), 297-300
processEvents(), 227-229

QGL widget, 53
QList class, 50
QPainter class, 37
QPushButton class, 39
queryClose(), 161
QWidget class, 33-34
readProperties(), 161,

164
registerAs(), 294
registeredApplications(),

310
remoteFunctions(), 310
remoteInterfaces(), 310
remoteObjects(), 310
removeGlobalReferences(),

339
repaint(), 64
resume(), 304
run(), 138
saveFile(), 269, 273
saveProperties(), 161,

164
send(), 295-296
senderId(), 311
setAcceptDrops(), 152
setActiveWindow(), 257
setButtonText(), 199
setDefaultObject(), 300
setExclusiveGroup(), 102
setMinimumSize(), 259
setModified(), 272
setNotifications(), 313
setPen(), 69
setPlainCaption(), 201
setReadWrite(), 271-272
show(), 23
slotOpen(), 176
slots(), 40
slotSave(), 176
slotSpecialHelp(), 117
socket(), 311
sorry(), 122
startComputation(), 224

statusBar(), 28
stopComputation(), 225
streamEnd(), 342
streamInit(), 342
streamStart(), 342
suspend(), 304
toolBar(), 28
update(), 64
upload(), 173
warningContinueCancel(),

121
writeGlobalSettings(),

245
methodsslotSpellCheck(),

244
MIDI, LibKMid, 355
mime resource type, 167
Mini application tem-

plate, 411
moc (Meta Object

Compiler), 33, 45
executing programs, 48
keywords, 46
main program file exam-

ple, 48
modal dialog boxes, 191

advantages/disadvan-
tages, 191

modal dialog allocated
from the heap, 192

modal dialog located on
the stack, 191

modalCheck() method,
241

modeless dialog boxes
advantages/disadvan-

tages, 191
CGotoDialog class exam-

ple, 193-194
removing from memory,

194-195
modules

CVS (Concurrent Version

29 KDE index 10/16/00 1:46 PM Page 530

notepad_part.cpp file
531

System)
checking out, 398
listing, 400
names, 393-394
updating, 399

MCOP
initializing, 341-342
writing, 328-332

mouse clicks, handling,
82

mouse events, 34
mouseDoubleClickEvent

() event handler, 59
mouseMoveEvent()

event handler, 59
mousePressEvent() event

handler, 59
mouseReleaseEvent()

event handler, 59
moveEvent() event han-

dler, 60
multi element (IDL), 337
multimedia, 324, 328.

See also sound
aKtion, 355-356
aRts (analog, real-time

synthesis), 324-328
KNotify API, 354-355
LibKMid, 355
MCOP, 334

future of, 356-357
IDL compiler, 338
IDL syntax, 335-337
initial object refer-

ence, 339-340
interfaces, 345-350
module initialization,

341-342
modules, writing,

328-334
object connections,

344-345

reference counting,
338-339

StereoBalanceControl
sample program,
350-354

stream access,
340-341

synchronous versus
asynchronous
streams, 342-344

sound
KAudioPlayer class,

354-355
LibKMid, 355
playing, 136
SimpleSoundServer

interface, 345-347
stereo beeps, 326
StereoBalanceControl

sample program,
350-354

StereoEffectStack
interface, 349-350

multiple parts, embed-
ding, 280-281

music. See sound
MyWindow class imple-

mentation, 47

N
naming conventions, 29

files, 141
icons, 134

navigation
drag and drop, 150

responding to drop
events, 150-153

starting a drag,
153-157

menubars, 25-28
toolbars, 28

nested layouts (dialog
boxes), 185

network transparency, 8,
140-143, 150, 172,
174-177

New Class command
(Classbrowser pop-up
menu), 418

New File command
(Classbrowser pop-up
menu), 418

newInstance() method,
256

next action, 127
Normal application tem-

plate, 412
NotepadFactory

notepad_factory.cpp
implementation,
274-276

notepad_factory.h header,
274

NotepadPart part, 269
constructor, 270-271
Makefile.am, 273
notepad_factory.cpp file,

274-276
notepad_part.cpp file,

270-273
notepad_part.h header

file, 269-270
openFile() method,

272-273
saveFile() method, 273
setReadWrite() method,

271-272
notepad_factory.cpp file,

274-276
notepad_part.cpp file,

270-273
notepad_part.h header

file, 269-270

29 KDE index 10/16/00 1:46 PM Page 531

notepad_part.h header file
532

notifications, 136-137

O
objects

connecting, 344-345
DCOPRef, 311-313
MCOP-aware, creating,

328-329
Example_ADD mod-

ule, 332-334
interface definitions,

329-330
interface implementa-

tion, 331-332
.mcopclass files, 332
mcopidl, 330
REGISTER_IMPLE-

MENTATION, 332
QDataStream, 291
references

counting, 338-339
initial object refer-

ences, 339-340
obtaining KDE, 9
online resources, 9
open action, 127
openFile() method, 269,

272-273
OpenGl, 53-54
opening files

KRun class, 138-140
network transparency,

141
openNew action, 127
openNew() method, 91
openRecent action,

127-128
optimizing

DCOP (Desktop

Communication
Protocol), 315-316

long jobs
application methods,

enabling/disabling,
225-226

processEvents()
method, 227-229

QTimer class,
220-225

speed issues, 226
Option dialog box

(KEdit), 201-202,
209-210

options (applications),
129

Options command
(Classbrowser pop-up
menu), 418

Output View (KDevelop
IDE), 407

P
packages, 380

adminstrative files
config.cache, 381
config.h, 381
config.log, 381
config.status, 381
configure, 381
configure.in, 381
updating, 385

creating, 403
distribution, 388

compressed archives,
389

informative text files,
388-389

software announce-
ments, 389-390

uploads, 389-390
gt-2.1.0, 10
installing

binary packages, 10
source packages, 11

kdeadmin, 10
kdebase, 10
kdegames, 10
kdegraphics, 10
kdei18n, 10
kdelibs, 10
kdemultimedia, 10
kdenetwork, 10
kdesupport, 10
kdeutils, 10
make targets, 387
shared libraries, 386
structure of, 380-381
subdirectories, 383-385
test results, 386-387
top-level directories,

382-383
paintEvent() event han-

dler, 60, 64, 218
paintGL() method (QGL

widget), 53
painting widgets, 63

invoking paint events, 64
KXOSquare example,

65-71
paintEvent() method, 64
repainting, 64

panel applet
(KWeather), 257

kweather.cpp class defini-
tion, 258

kweather.h class defini-
tion, 259-260

main() method, 257-258
Para tag (DocBook), 376
@param tag (KDOC), 366

29 KDE index 10/16/00 1:46 PM Page 532

protocols
533

Parent Classes command
(Classbrowser pop-up
menu), 418

parsers, Classparser, 416
part class, 265
part manager class, 265
PartManager, 280
parts, 264

compared to widgets,
264-265

embedding, 277
mainwindow GUI,

277-278
mainwindow header,

278
mainwindow imple-

mentation, 278-279
multiple parts,

280-281
framework, 265-266
including in shared

libraries, 273
factory headers, 274
factory implementa-

tion, 274-276
makefiles, 273

NotepadPart example,
269

constructor, 270-271
Makefile.am, 273
notepad_factory.cpp

implementation,
275-276

notepad_factory.h
header, 274

notepad_part.h
header, 269-270

openFile() method,
272-273

saveFile() method, 273
setReadWrite()

method, 271-272
PartManager, 280
plug-ins, 282-283

read-only parts, 268
read/write parts, 268
XML files, 266-268

paste action, 127
performance
performance optimiza-

tion
DCOP (Desktop

Communication
Protocol), 315-316

long jobs, 220
application methods,

enabling/disabling,
225-226

processEvents()
method, 227-229

QTimer class,
220-222, 224-225

speed issues, 226
permissions, 432
pipes, 286
playing

sound, 136
stero beeps, 326

plug-ins
KParts plug-ins, 282-283
plugin class, 265

PNG (Portable Network
Graphics) format, 133

positioning child wid-
gets. See geometry
management

pre tags (KDOC), 366
preferences action, 127
print action, 127
printPreview action, 127
prior action, 127
process() method,

297-300
processEvents() method,

227-229

processing DocBook doc-
umentation, 369-370

program listings. See
listings

programming conven-
tions, 29

programming interface
(DCOP), 293

attach() method, 294
call() method, 296-297
dcopClient() method, 294
dcopIDL, 304-308
detach() method, 304
makefile rules, 308-309
process() method,

297-300
registerAs() method, 294
resume() method, 304
send() method, 295-296
suspend() method, 304
transactions, 300-304

programs. See applica-
tions

projects
editing, 413
managing, 402-403

protocols
DCOP (Desktop

Communication
Protocol), 286

API tools, 310-311
architecture, 292-293
dcop (shell client),

320
DCOP bindings, 322
dcopc interface, 321
embedded KPart

instances, 314-315
goals, 286-288
history of, 288-290
kdcop (shell client),

320
KNotify example,

319-320

29 KDE index 10/16/00 1:46 PM Page 533

protocols
534

KUniqueApplication
example, 316-319

KXMLRPC interface,
321-322

message redirection
technology (referenc-
ing), 311-313

performance and
overhead, 315-316

programming inter-
face, 293-309

signals and slots, 313
underlying technolo-

gies, 290-292
FTP (File Transfer

Protocol) snapshots,
394-395

XDND, 150

Q
Q Public License (QPL),

433-434
QBoxLayout geometry

manager, 74
QDataStream objects,

291
QGL widget, 53
QGridLayout geometry

manager, 74, 76-77
QHBox widget, 189-190
QImage class, 236
QLayout classes, 185-186

code example, 183-185
design issues, 190-191

Qlist class, 49
QObject class, 33
QPainter class, 36, 63

example usage (listing),
37

member method, 37
methods, 64

QPicture class, 65
QPixmap class, 237
QPL (Q Public License),

433-434
QPushButton class,

38-39
QSplitter, 111
Qt, 32

classes, 49
QObject, 33
QPainter, 36-37
QPushButton, 38-39
QWidget, 33-35

event handling, 33
FreeQt, 433
ImageIO, 51
Mesa, 53
moc, 45

executing programs,
48

keywords, 46
main program file

example, 48
moc (Meta Object

Compiler), 33
OpenGL, 53
parameters, 44
signals, 40-42
slots, 40

connecting to signals,
42

creating, 41
parameters, 44
temporary classes, 45

STL, 49
supported image formats,

235-236
utility classes, 48

QTDIR environment
variable, 16

QTimer class, 220-225
queryClose() method,

161

quit action, 127
QVBox widget, 189-190
QWidget class, 33, 58

attributes, 61
documentation, 63
event handlers, 58

closeEvent(), 60
dragEnterEvent(), 60
dragLeaveEvent(), 60
dragMoveEvent(), 60
dropEvent(), 61
enterEvent(), 60
event(), 59
focusInEvent(), 59
focusOutEvent(), 60
keyPressEvent(), 59
keyReleaseEvent(), 59
leaveEvent(), 60
mouseDoubleClickEve

nt(), 59
mouseMoveEvent(),

59
mousePressEvent(), 59
mouseReleaseEvent(),

59
moveEvent(), 60
paintEvent(), 60
resizeEvent(), 60
showEvent(), 61
wheelEvent(), 59

sample class declaration,
62-63

signals, 61
slots, 61

R
@raises tag (KDOC), 366
read-only parts, 268
read/write parts, 268
reading devices, 292
ReadOnlyPart class, 268

29 KDE index 10/16/00 1:46 PM Page 534

setButtonText() method
535

readProperties() method,
161, 164

ReadWritePart class, 268
Real File Viewer (RFV),

406, 420-421
recording drawing com-

mands, 65
redisplay action, 127
redo action, 127
@ref tag (KDOC), 367
references

counting, 338-339
initial object references,

339-340
referencing (message

redirection technol-
ogy), 311-313

registerAs() method, 294
registeredApplications()

method, 310
registering interface

implementations, 332
REGISTER_IMPLEMENTA-

TION, 332
ReleaseInfo tag

(DocBook), 375
remoteFunctions()

method, 310
remoteInterfaces()

method, 310
remoteObjects() method,

310
-remove option (cvs

command), 399
removeGlobalReferences

method, 339
removing modeless dia-

log boxes, 194-195
rendering HTML

(Hypertext Markup
Language) files,
232-235

repaint() method, 64
repainting widgets, 64

replace action, 127
reportBug action, 127
resizeGL() method, 53
resizeEvent() event han-

dler, 60
Resource/Header Files

window (KDevelop),
407

resources
accessing, 167-172
.desktop files, 172
standard resource loca-

tions, 166
types, 167

responding to drop
events, 150-153

responsiveness, 214
importance of, 214-215
long jobs, optimizing

performance of, 220
application methods,

enabling/disabling,
225-226

processEvents()
method, 227-229

QTimer class,
220-225

speed issues, 226
Window updates, double-

buffering, 215
advantages, 219-220
example of, 215-219
screen flicker, 220

resume() method, 304
@returns tag (KDOC),

366
revert action, 127
RFV (Real File Viewer),

406, 420-421
Run command (gdb

debugger), 424
Run to Cursor command

(gdb debugger), 424

run() methods, 138
running

applications, 138
gdb debugger, 423-425

S
save action, 127
saveAs action, 127
saveFile() method, 269,

273
saveOptions action, 127
saveProperties()

method, 161, 164
screen flicker, 220
scripting, 356
searching KDevelop doc-

umentation, 414-416
@sect tag (KDOC), 367
Sectn tag (DocBook), 376
@see tag (KDOC), 367
selectAll action, 127
SelectDialog class,

180-182
send() method, 295-296
senderId() method, 311
services resource type,

167
session management,

129, 132, 161-166
header file example, 130
KEdit, 131-132
main source code exam-

ple, 129-130
source file example, 131

setAcceptDrops()
method, 152

setActiveWindow()
method, 257

setButtonText() method,
199

setDefaultObject()
method, 300

29 KDE index 10/16/00 1:46 PM Page 535

setDefaultObject() method
536

setExclusiveGroup()
method, 102

setMinimumSize()
method, 259

setModified() method,
272

setNotifications()
method, 313

setPen() method, 69
setPlainCaption()

method, 201
setReadWrite() method,

271-272
Settings menu com-

mands, 129
shared libraries

creating, 386
parts, including, 273

factory headers, 274
factory implementa-

tion, 274-276
makefiles, 273

@short tag (KDOC), 366
show() method, 23
showEvent() event han-

dler, 61
showMenubar action,

127-128
showStatusbar action,

128
showToolbar action, 128
signals, 33, 40, 61, 313

connecting to slots, 42
emitting, 42
parameters, 44

SimpleSoundServer
interface, 345-347

@since tag (KDOC), 366
single-instance applica-

tion
(KUniqueApplication),
255

kunique.cpp call defini-
tion, 256

kunique.h class defini-
tion, 257

main() method, 255
sizing child widgets. See

geometry manage-
ment

slotButton(), 46
slotOpen() method, 176
slots, 33, 40, 61, 313

connecting to signals, 42
creating, 41
parameters, 44
slotButton(), 46
temporary classes, 45

slotSave() method, 176
slotSpecialHelp()

method, 117
slotSpellCheck()

method, 244
snapshots, 394-395
socket() method, 311
software development

documentation, 404
languages, 402
packages, creating, 403
project management,

402-403
sorry() method, 122
sound. See also multi-

media
KAudioPlayer class,

354-355
LibKMid, 355
playing, 136
SimpleSoundServer

interface, 345-347
stereo beeps, playing,

326
StereoBalanceControl

sample program, 350

balance() method,
350-351

IDL (interface defini-
tion language), 350

makefile, 352
running on server,

352-354
StereoEffectStack inter-

face, 349-350
sound resource type,

167
source code. See code
source files

installing, 11
session management, 131

speeding up Window
updates (double-
buffering), 215

advantages, 219-220
example of, 215-219
screen flicker, 220

spell-checking (KSpell),
241

configuring, 245-246
methods, 241
modal spell-checking,

244
sample application,

241-242
spelling action, 128
standard actions

KStdAction class, 88
KStdActionsDemo wid-

get, 89
kstdactionsdemo.cpp

class declaration,
89-91, 97

kstdactionsdemo.h
class definition, 92

main() method, 94
standard dialog boxes,

118

29 KDE index 10/16/00 1:46 PM Page 536

templates
537

KFileDialog, 120
KFontDialog, 120
KMessageBox, 121-122
sample application,

118-119
standard resource loca-

tions, 166
startComputation()

method, 224
starting drag events,

153-157
startobject parameter,

42
statements, #include,

335
states (toolbar icons),

133
static run() methods, 138
status bars, 105

Konqueror status bar, 105
KWrite status bar,

106-109
status lines, 28
statusBar() method, 28
Stderr page (KDevelop

Output View), 407
Stdout page (KDevelop

Output View), 407
Step In command (gdb

debugger), 424
Step In Instruction com-

mand (gdb debugger),
424

Step Out command (gdb
debugger), 424

Step Over command
(gdb debugger), 424

Step Over Instruction
command (gdb debug-
ger), 424

stereo beeps, playing,
326

StereoBalanceControl
sample program, 350

balance() method,
350-351

IDL (interface definition
language), 350

makefile, 352
running on server,

352-354
StereoEffectStack inter-

face, 349-350
STL (Standard Template

Library), 49
Stop command (gdb

debugger), 424
stopComputation()

method, 225
streamEnd() method,

342
streamInit() method, 342
streams, 291-292

accessing, 340-341
defining, 337
reading devices, 292
synchronous versus asyn-

chronous, 342-344
writing to devices, 291

streamStart() method,
342

structs, 336
stub files (DCOP),

307-308
subdirectories, 383-385
suspend() method, 304
synchronous streams,

342-344
system events, han-

dling. See event han-
dling

system requirements
(KDE), 9

T
tags

DocBook
document structure

tags, 376
formatting tags, 376
meta-information tags,

375
KDOC

@author, 366
@deprecated, 366
@exception, 366
@image, 367
@internal, 366
@li, 367
@libdoc, 366
@param, 366
@raises, 366
@ref, 367
@returns, 366
@sect, 367
@see, 367
@short, 366
@since, 366
@throws, 366
@version, 366

XML (Extensible Markup
Language), 100

DOCTYPE, 267
Merge, 267-268

targetobject parameter,
42

targets (makefiles), 387
tasks. See jobs
templates

C++, 48
classes, 49, 49
KDevelop application

templates, 411-412
KDE Mini, 411
KDE Normal, 412
KDE-MDI, 412

STL (Standard Template
Library), 49

29 KDE index 10/16/00 1:46 PM Page 537

testing KXOSquare widget
538

testing KXOSquare wid-
get, 70-71

text editor. See KWrite
<text> tag (XML), 100
@throws tag (KDOC),

366
TicTacToe widget. See

KTicTacToe widget
toolBar() method, 28
toolbar resource type,

167
<ToolBar> tag (XML),

100
toolbars, 28, 87

icons, 133
KCustomActions widget,

102-103
toolkit. See Qt
tools

Autoconf, 403
Automake, 403
cvs

commands, 398-400
configuring, 397

cvsup
advantages, 395
configuring, 396-397

DocBook, 367-368
DocBook Web site,

376
downloading, 369
processing documen-

tation, 369-370
sample documenta-

tion, 370-373
tags, 375-376

gdb debugger, 421-422
commands, 424
enabling debugging

information, 423
options, 422
running, 423, 425

KDOC, 362
class documentation,

366-367
comments, 363-366
downloading, 362
installing, 363
library documenta-

tion, 366
method documenta-

tion, 366-367
make, 17-18
xgettext, 171

Tools menu commands,
129

Tools window
(KDevelop), 408

Tooltips, 112-115, 117
top-level directories,

382-383
transactions (DCOP),

300-304
translation files, 135-136
transparency (network),

172-177
Tree View (KDevelop

IDE), 406-407
CV (Class Viewer), 406
DOC (Documentation

Tree View), 406
LFV (Logical File

Viewer), 406, 419-420
RFV (Real File Viewer),

406, 420-421
VAR (Variable Viewer),

406
Trolltech Web site, 32
troubleshooting, gdb

debugger, 421-422
commands, 424
enabling debugging

information, 423
options, 422
running, 423-425

tuning performance. See
optimizing perfor-
mance

types (IDL), 336

U
UI (user interface) com-

pliance, 86
document-centric inter-

face, 86-87
actions. See actions
content areas,

109-111
menubars, 87
status bars, 105-109
toolbars, 87

help, 112-117
standard dialog boxes,

118
KFileDialog, 120
KFontDialog, 120
KMessageBox,

121-122
sample application,

118-119
ULink tag (DocBook),

376
undo action, 128
uninstall target, 387
unique applications

(KUniqueApplication
example), 316-319

passing command-line
parameters, 318-319

startup, 317-318
up action, 128
-update option (cvs

command), 399
update() method, 64

29 KDE index 10/16/00 1:46 PM Page 538

widgets
539

updating
administrative files, 385
modules (CVS), 399

upload() method, 173
uploading software,

389-390
user input, 78

KDisc widget example,
79-81

keystrokes, 82-83
mouse clicks, 82

user interfaces. See GUIs
(graphical user inter-
faces)

user-friendly applica-
tions, 144-145

user-interface library.
See kdeui (KDE user-
interface library)

user notifications,
136-137

utilities. See tools
utility classes (Qt), 48

V
VAR (Variable Viewer),

406
variables, environment,

16
@version tag (KDOC),

366
version control, CVS

(Concurrent Versions
System), 392-393

accounts, 396
branches, 394
cvs utility, 397-400
cvsup utility, 395-397
directories, 399-400
files, 399

modules, 393-394
snapshots, 394-395
Web interface, 395

versions (KDevelop IDE),
406, 425

vi editor, 14
View menu commands,

128
Viewers command (gdb

debugger), 424
views

Output View, 407
Tree View, 406-407

W
wallpaper resource

type, 167
warningContinueCancel(

) method, 121
Web sites

DKE Developers, 8
DocBook, 376
Freshmeat, 390
ICE documentation, 291
Interface Hall of Shame,

144, 211
KDE, 9
KDE Translator’s and

Documenter’s Web site,
135

licenses, 436
Mesa, 53
OpenGl, 53
QDataStream documen-

tation, 291
Trolltech, 32
XDND protocol, 150
XML-RPC, 322

whatsThis action, 128
wheelEvent() event han-

dler, 59

widgets, 7, 58. See also
names of specific
widgets
attributes, 61
child widgets, 71

geometry manage-
ment, 73-77

KChildren example,
71-73

compared to parts,
264-265

defined, 58
dialog widgets. See dia-

log boxes
documentation, 63
drawing commands,

recording, 65
drawing graphics on, 36
event handlers, 58

closeEvent(), 60
dragEnterEvent(), 60
dragLeaveEvent(), 60
dragMoveEvent(), 60
dropEvent(), 61
enterEvent(), 60
event(), 59
focusInEvent(), 59
focusOutEvent(), 60
hideEvent(), 61
keyPressEvent(), 59
keyReleaseEvent(), 59
leaveEvent(), 60
mouseDoubleClickEve

nt(), 59
mouseMoveEvent(), 59
mousePressEvent(), 59
mouseReleaseEvent(),

59
moveEvent(), 60
paintEvent(), 60
resizeEvent(), 60
showEvent(), 61
wheelEvent(), 59

29 KDE index 10/16/00 1:46 PM Page 539

widgets
540

manager widgets (kdeui),
197-199

painting, 63
invoking paint events,

64
KXOSquare example,

65-71
paintEvent() method,

64
repainting, 64

QGL, 53
sample class declaration,

62-63
signals, 61
slots, 61
user input, 78

KDisc widget exam-
ple, 79-81

keystrokes, 82-83
mouse clicks, 82

Window updates, dou-
ble-buffering, 215

advantages, 219-220
example of, 215-219
screen flicker, 220

wizards, Application
Wizard, 409-411

working area (KDevelop
IDE), 407-408

World Wide Web sites.
See Web sites

writeGlobalSettings()
method, 245

writing QDataStream
serialization, 291

X-Y-Z
X Atoms, 288
X Windows program-

ming, 32
XDND protocol, 150
xgettext utility, 171
XML (Extensible Markup

Language), 100
tags, 100

<DOCTYPE>, 267
<Merge>, 267-268

user interfaces, 266-268
XML-RPC, 321-322

-z6 option (cvs com-
mand), 398

zoom action, 128
zoomIn action, 128
ZoomOut action, 128

29 KDE index 10/16/00 1:46 PM Page 540

	KDE 2.0 Development
	Copyright © 2001 by Sams Publishing
	Overview
	Contents

	Introduction
	Part I Fundamentals of KDE Application Programming
	Chapter 1 The K Desktop Environment Background
	Chapter 2 A Simple KDE Application
	Chapter 3 The Qt Toolkit
	Chapter 4 Creating Custom KDE Widgets
	Chapter 5 KDE User Interface Compliance
	Chapter 6 KDE Style Reference

	Part II Advanced KDE Widgets and UI Design Techniques
	Chapter 7 Further KDE Compliance
	Chapter 8 Using Dialog Boxes
	Chapter 9 Constructing A Responsive User Interface
	Chapter 10 Complex-Function KDE Widgets
	Chapter 11 Alternative Application Types

	Part III Application Interaction and Integration
	Chapter 12 Creating and Using Components (KParts)
	Chapter 13 DCOP—Desktop Communication Protocol
	Chapter 14 Multimedia

	Part IV Developer Tools and Support
	Chapter 15 Creating Documentation
	Chapter 16 Packaging and Distributing Code
	Chapter 17 Managing Source Code with CVS
	Chapter 18 The KDevelop IDE: The Integrated Development Environment for KDE
	Chapter 19 Licensing Issues

	Part V Appendixes
	Appendix A KDE-Related Licenses
	Appendix B KDE Class Reference
	Appendix C Answers

	INDEX

