Methodologies and Technologies for
Rule-Based Systems Design and
Implementation. Towards Hybrid Knowledge
Engineering.

Grzegorz J. Nalepa!

Institute of Automatics, AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Krakéw, Poland, gjn@agh.edu.pl

Summary. A practical design of non-trivial rule-based systems requires a system-
atic, structured and consistent approach. The paper focuses on selected issues in
RBS knowledge engineering. Some ideas on combining knowledge engineering with
software engineering are discussed. Furthermore, results of RBS design tools sur-
vey are enclosed. In the paper an original design and implementation methodology
for RBS is also presented. It has been developed in the MIRELLA project. It is a
top-down hierarchical design methodology, based on new knowledge representation
methods (XTT and ARD), on-line logical system analysis in Prolog, and XML-
based knowledge encoding. Basing on the experience with XT'T-based methodology,
as well as tools supporting it, the paper discusses an extended hierarchical design
methodology for RBS. A preview of the HEKATE project, which aims at developing
a hybrid knowledge engineering methodology is also given.

1 Introduction

Knowledge-based systems (KBS) are an important class of intelligent systems
originating from the field of Artificial Intelligence [17]. They can be espe-
cially useful for solving complex problems in cases where purely algorithmic
or mathematical solutions are either unknown or demonstrably inefficient.

Building real-life KBS is a complex task. Since their architecture is fun-
damental different from classic software, classical software engineering ap-
proaches cannot be applied efficiently. Some specific development methodolo-
gies, commonly referred to as knowledge engineering, are required.

In AI rules are probably the most popular choice for building knowledge-
based systems, that is the so-called rule-based expert systems [4, 5, 7]. Rule-
based systems (RBS) are used extensively in practical applications, especially
in domains such as automatic control, decision support, and system diagnosis.
They constitute today one of the most important classes of KBS.

2 Grzegorz J. Nalepa

A rule-based expert system consists of a knowledge base and an inference
engine. The knowledge engineering process aims at designing and evaluating
the knowledge base, and implementing a proper inference engine. The process
of building the knowledge base involves the selection of a knowledge repre-
sentation method, knowledge acquisition, and possibly low-level knowledge
encoding. In order to create an inference engine a reasoning technique must
be selected, and the engine has to be programmed.

During the engineering process a number of problems occur. Particular
problems concern the selection of a knowledge representation formalism as
well as the actual design of an appropriate rule base. As the number of rules
exceeds even relatively very low quantities, it is hard to keep the rule-base
consistent, complete, and correct. These problems are related to knowledge-
base verification, validation, and testing [21, 22]. The selection of appropriate
software tools and programming languages is non-trivial either.

This paper is devoted to discussing the most important differences between
knowledge engineering (see Sect. 2) and classic software approaches [19] (see
Sect. 3). When it comes to practical system implementation, current RBS
development is heavily dependent on software engineering tools, which enforce
certain design patterns not suitable for knowledge engineering. This is why
the paper aims at identifying possible areas of cooperation between software
and knowledge engineering approaches in Sect. 4. Section 5 identifies the most
important issues in RBS knowledge engineering process and presents possible
approaches. Then in Sect. 6 an overview of selected design and implementation
tools is presented. Practical design of non-trivial rule-based systems requires
a systematic, structured and consistent approach. In this paper an original
design and implementation methodology for rule-based systems is discussed
in Sect. 7. It is a top-down hierarchical design methodology, based on new
knowledge representation methods (XTT and ARD), on-line logical system
analysis in Prolog, and XML-based knowledge encoding. It is supported by
a prototype CASE tool called Mirella. Basing on the experience with XTT-
based methodology, as well as tools supporting it, in the Sect. 8 an extended
hierarchical design methodology for RBS is discussed. At the end a preview of
the HEKATE project, which aims at developing a hybrid knowledge engineering
methodology, is also given.

2 Knowledge Engineering Approach

What makes KBS distinctive is the separation of knowledge storage (the
knowledge base) from the knowledge processing facilities. In order to store
knowledge, KBS use various knowledge representation methods, which are
declarative in nature. In case of RBS these are production rules. Specific knowl-
edge processing facilities, suitable for specific representation method used, are
then selected. In case of RBS these are logic-based inference engines.

Methodologies and Technologies for RBS Design and Implementation. 3

The knowledge engineering (KE) process in case of RBS involves two main
tasks: knowledge base design, and inference engine implementation. Further-
more, some other specific tasks are also required, such as: knowledge base
analysis and verification, and inference engine optimization. The performance
of a complete RBS should be evaluated and validated. Classic expert systems
books [5] represent this process as shown in Fig. 1. While this process is spe-
cific to expert systems in general, it is usually similar in case of other KBS.

Identification -
Identify problem

Reformulations

chararteristics

L Conceptualization

Find concepts

Reformulations

Requirements representing knowledge
¥ "\ VERIFICATION
i '
Formalization
Concepts Design structure B B —
organizing knowledge Redesigns

L Implementation | _

Formulate rules

Structure Refinements

embodying knowledge

L Testing

Rules Validate rules
organizing knowledge

Fig. 1. Classic knowledge engineering process (Liebowitz 1998)

What is important about the process, is the fact that it should capture the
expert knowledge and represent it in a way that is suitable for processing (this
is the task for the knowledge engineer). The actual structure of a KBS does
not need to be system specific — it should not ,mimic” or model the structure
of the real-world problem. However, the KBS should capture and contain the
knowledge about the real-world system. The task of the programmers is to
develop processing facilities for the knowledge representation.

It should be pointed out, that in case of KBS there is no single universal
engineering approach, or universal modelling method (such as UML in soft-
ware engineering). Different classes of KBS may require a specific approach,
see [5, 2, 7, 20]. Having outlined the main aspects of KBS development, it can
be discussed how they are related to classic software engineering methods.

4 Grzegorz J. Nalepa
3 Software Engineering Approach

Software engineering (SE) is the domain where a number of mature and well-
proved design methods exist. They address needs of specific classes of business
software. In software engineering the software development process and life
cycle is represented by several models. One of the most common is called
the waterfall model [19] and is shown in Fig. 2. In this process a number
of development roles can be identified: users and/or domain experts, system
analysts, programmers, testers, integrators, and end users. What makes this
process different from knowledge engineering, is the fact, systems analysts in
general try to model the structure of the real-world information system in
the structure of computer software system. So the structure of the software
corresponds to some respect to the structure of the real-world system. The
task of the programmers is to encode and implement the model (which is the
result of the system analysis) in some lower-level programming language.

The most important difference between software and knowledge engineer-
ing, is that the former tries to model how the system works, while the latter
tries to capture and represent what is known about the system.

Requirements
definition
System and
software design
Implementation
and unit testing

Integration and

system testing

Operation and
maintanance

Fig. 2. Classic waterfall software life cycle (Sommerville 2004)

4 Heterogeneous Development Methodology

Historically, there has always been a strong feedback between software engi-
neering and computer programming tools. At the same time these tools have
been strongly determined by the actual architecture of computers themselves.
For a number of years there has been a clear trend for the software engineer-
ing to become as implementation-independent as possible. Modern software
engineering approaches tend to be abstract and conceptual.

Methodologies and Technologies for RBS Design and Implementation. 5

On the other hand, knowledge engineering approaches have always been
device and implementation-agnostic. The actual implementation of KBS has
been based on some high level programming languages such as Lisp or Pro-
log. However, modern knowledge engineering tools heavily depend on some
common development tools and programming languages, especially when it
comes to user interfaces, network communication, etc.

It could be said, that these days software engineering becomes more
knowledge-based, while knowledge engineering is more about software engi-
neering. This opens multiple opportunities for both approaches to improve
and benefit. Software engineering could adopt from knowledge engineering: ad-
vanced conceptual tools, such as declarative knowledge representation meth-
ods, knowledge transformation techniques based on existing inference strate-
gies, as well as verification, validation and refinement methods. This trend is
already visible in the business rules approach [16, 23]. Model-Driven Archi-
tecture (MDA) is a new software engineering paradigm that tries to provide
a unified design and implementation method and appropriate tools for the
declarative specification of business logic [9].

In order to improve and better integrate with existing software knowledge
engineering could adopt: programming interfaces to existing software systems
and tools, interfaces to advanced storage facilities such as databases and data
warehouses, modern user interfaces, including graphical and web-based ones.

This paper is written from the knowledge engineering point of view. This
is why the following sections focus on different ways of improving the KE
process in case of RBS.

5 Rule-Based Systems Design Issues

In RBS development knowledge engineering is essentially a process of con-
struction. As it was pointed out in Sect. 2, it involves two main tasks: knowl-
edge base (rule base) design, and inference engine implementation.

5.1 Rule Base Design

The first decision that has to be made is one concerning knowledge repre-
sentation method. It is widely recognized that there is no single formalism
suitable to represent knowledge for all purposes. A variety of formalisms and
structures is needed to represent knowledge. In the field of rule-based expert
systems the knowledge representation method is a systematic way of “encod-
ing” what an expert knows about some domain. However “encoding” means
here rather “describing” then “encrypting” [4].

Some of the issues arising in knowledge representation are: syntax, se-
mantics, expressive adequacy, reasoning, completeness and other consistency
issues, real-world knowledge, control, flexibility. Different representations ad-
dress these issues in different ways [2]. While there are numerous knowledge

6 Grzegorz J. Nalepa

representation methods, the logic-based ones are essential to the theory and
practice of rule-based systems and expert systems in general.

Although propositional calculus is a simple logical system, it can serve as
a practically useful language for encoding rule-based systems. Further, both
analysis and design of such systems is relatively simple. The most basic logical
form of propositional rules is as follows (see [7]): p1 Ap2 A...Ap, — h. This
form of a rule is logically equivalent to a Horn clause, provided that all the
literals are positive. A more complex rule may contain conclusion part com-
posed of several propositions. In forward-chaining systems rules are applied
by checking if their preconditions are satisfied. Whenever a rule is fired, its
conclusion is added to the current knowledge base. Propositional rule-based
systems can take various visual forms incorporating some structural represen-
tation; most important are: decision tables and decision trees [7].

Decision tables are an engineering way of representing production rules.
Conditions are formed into a table which also holds appropriate actions. Clas-
sical decision tables use binary logic extended with “not important” mark to
express states of conditions and actions to be performed.

The main advantage of decision tables is their simple, intuitive interpre-
tation. One of the main disadvantages is that classical tables are limited to
binary logic. In some cases the use of values of attributes is more convenient.
A slightly extended tables are OAV tables (OAT). OAV stands for Object-
Attribute-Value (OAT — Object-Attribute-Value-Table, see [7]).

Decision trees are an important representation, since the tree-like repre-
sentation is readable, easy to use and understand. The root of the tree is an
entry node, under any node there are some branching links. The selection of
a link is carried out with respect to a conditional statement assigned to the
node. The evaluation of this condition determines the selection of the link.
The tree is traversed top-down, and at the leaves final decisions are defined.

Formal ontologies are an important knowledge representation method,
used extensively in some new implementations of Web-oriented intelligent
systems. Recently ontologies gained a precise semantic interpretation with
the definition of OWL DL (description logics), which is currently extended by
horn-clause rules (see [3] for a current proposal for SWRL/RuleML).

In expert system practice there are several other knowledge representation
methods used. Their logical interpretation is not always as direct as decision
rules, tables, or trees. However, they do have many applications as a valu-
able conceptualization tool. These includes: graphs, and conceptual graphs,
semantic networks, and frames, see [5, 20] for more details.

5.2 Rule Base Encoding

On the low level rules have to be encoded in a format ready for process-
ing. Inventing a new, specific rule format, may seem the most straightforward
approach. It gives developers a lot of freedom when it comes to the implemen-
tation. However, it poses problems when interfacing with existing systems.

Methodologies and Technologies for RBS Design and Implementation. 7

From the KE point of view, it is desirable to adopt some general standard.
However, from the SE point of view, it might be desirable to adopt specific
issues of the particular application.

A more common and reasonable approach consists in choosing an expert
system shell, and using a predefined rule format. It simplifies the implementa-
tion, however it determines the system architecture. It can for example enforce
certain inference strategy. More on this is elaborated in Sect. 6.3.

Encoding rules in some high level logic programming language such as Pro-
log is — to some degree — a good combination of the two above. Prolog allows
inventing any rule format, while providing high-level inference strategies, see
Sect. 6.2 for more details.

The development of the Web and recent W3C Semantic Web initiative
make encoding rules for web applications an important issue. Encoding rules
in an XML-based format, such as RuleML (www.ruleml.org) is often the best
solution in such a case.

5.3 Rule Base Analysis

Rule-based expert systems technology is being applied to critical tasks and
complex problem-solving. This is why there are concerns about its dependabil-
ity. A proper system development cycle, as well as a rigorous verification and
validation (VE&V) can provide an appropriate level of quality and safety [22].

The verification and validation of expert systems are still a maturing field,
so there is no apparent consensus among researches on a single definition. The
following definitions may be found in [21]:

e Verification checks well-defined properties of an expert system against its
specification; it can focus on the knowledge base or the inference engine.

e Validation checks whether an expert system corresponds to the system it
is supposed to represent.

e Testing is the examination of the behavior of a program by executing the
program on sample data sets.

e Fuvaluation focuses on the accuracy of the system knowledge.

In case of mission-critical RBS applied as control systems a formal verification
is essential [7] in order to provide certain level of system safety.

5.4 Inference Engine Development

This stage involves choosing inference strategy for rule analysis. Two most
general types of inference are: forward chaining and backward chaining. Fur-
thermore, combinations of the two types can be applied. The most typical
strategy is to use forward chaining as a general control strategy, while at some
stages, if detailed goals are to be inferred, backward chaining is employed.

8 Grzegorz J. Nalepa

Depending on the rule encoding chosen an inference engine may be already
provided. It is the case with expert systems shells. If Prolog rules are chosen,
built-in Prolog backward-chaining approach can also be used directly.

Today a number of tools are freely available for an RBS developer. They
support different phases of RBS design, implementation and analysis. Selected
examples are described in the following section.

6 Selected Development Tools Overview

The modern tools available to assist in building expert systems can be divided
into several categories discussed in the following subsections.

6.1 Conventional Programming Languages

Conventional programming languages, e.g. ANSI C, do not support program-
ming paradigm suitable for expert systems. Their procedural approach does
not match very well the declarative nature of an expert system. Using these
languages, a development of expert systems, while possible, is very difficult.

Object-oriented languages could be considered higher level languages.
There is a smaller semantic gap between expert systems and languages such
as: Java, Smalltalk or Eiffel. This is why they are sometimes chosen as expert
system implementation tools. Languages such as Python, or Ruby have been
gaining a growing acceptance due to their fast prototyping capabilities.

It can be concluded that it is more common to choose conventional lan-
guages as low-level implementation tools, while using higher level tool such as
expert system shell to build a knowledge base.

Java is a classic object-oriented programming language. However, it has
become a language of choice for many Web-related Al projects. Currently
there is a number of Java-based tools for expert systems, see Sect. 6.3. It is
worth noting that a standardization effort (JSR 94: Java Rule Engine API)
is currently undertaken to formulate a standard Java Rule Language.

6.2 AI Programming Languages

For many years Lisp has been a language of choice for symbolic computation.
Features of Lisp [4] are: programs are represented by list structures, and prim-
itive operations are operations on lists. Lisp is the foundation of many expert
systems and shells, such as CLIPS. In last decades it was extended in many
ways, including object-oriented framework CLOS.

There are, however, problems with Lisp. The main problem is that lists
have limited knowledge representation capabilities. Another is that no strong
programming methodology has emerged from Lisp-based tools. There is a
number of different dialects of Lisp language too.

Methodologies and Technologies for RBS Design and Implementation. 9

Prolog is both flexible and powerful, with strong logical foundations. It has
facilities for both knowledge representation and processing. Opposed to Lisp
which is a symbolic language, Prolog is a declarative one. However, it does have
dual semantics, both declarative and procedural. It is well-suited to symbolic
rather than numerical problems. Since there is only a small semantic gap
between expert-systems and Prolog, the language is an ideal tool for practical
development of these systems.

The Prolog language is based on predicate logic. Prolog clauses are Horn
clauses from the logical point of view. In order to find solutions (satisfy goals)
Prolog uses the resolution rule and unification. Prolog is studied in detail in [1].
It has some important features to support logic-based reasoning. The Prolog
inference engine uses backward-chaining with backtracking and recursion.

Meta programs treat other programs as data. They are used to help in
both understanding and building knowledge-based systems [20]. Prolog is al-
most unique in the extent to which it can serve as its own meta-language. A
Prolog program can create new goals, examine itself, and modify the infer-
ence engine, blurring the distinction between program and data. Prolog-based
meta-interpreters are ideal to build forward-chaining inference engines.

6.3 Selected Expert System Shells

CLIPS is one of the most common expert system development tools
(www.ghg.net/clips). It supports multiple reasoning and conflict resolution
strategies. CLIPS is an expert system shell, so it does not provide any tools
supporting the design of the knowledge base.

Jess is a Java Expert System Shell (jessrules.com). It is inspired by
CLIPS but implemented in Java. Compared to CLIPS it adds several features
and offers superior performance. It is easy to integrate with Java-based web-
enabled applications. It plays an important role in the JSR 94 effort.

JDREW (www.jdrew.org) is a deductive reasoning engine for clausal first
order logic written in Java and well integrated with the Web. Knowledge-
based systems can use JDREW as an embedded reasoning engine through its
various APIs. JDREW can be easily deployed as part of a larger Java system.

The Algernon (algernon-j.sf.net) rule-based inference system is im-
plemented in Java and interfaced with Protege ontology editor. It performs
forward and backward rule-based processing of frame-based knowledge bases,
and stores and retrieves information in ontologies and knowledge bases. It is
aimed at integration with Semantic Web projects.

6.4 Selected Design Environments

Sphinz [8] is an integrated development environment for expert systems de-
velopment. It uses backward-chaining inference engine, contains a shell (PC-
Shell) and several design tools, such as CAKE, which supports the process of
knowledge base design and simple verification.

10 Grzegorz J. Nalepa

KbBuilder [18] is an integrated environment for designing and verifying
Sphinx knowledge bases. The approach is oriented towards backward-chaining
systems based on simple attributive language. Furthermore, its verification
capabilities are limited to local properties of the so-called decision units.

Mandarax (mandarax.sf.net) is an open source Java class library for
deduction rules. It provides an infrastructure for defining, managing and
querying rule bases. Mandarax includes open APIs to interface with rela-
tional databases and XML, in particular RuleML. Oryz is a graphical user
interface application to design and maintain Mandarax knowledge bases.

XpertRule (www.attar.com) supports developing rule-based systems. It
uses a simple visual knowledge builder which maps knowledge modules to
decision trees, which are main knowledge representation units. It also provides
additional features, such as fuzzy reasoning.

VisiRule (www.lpa.co.uk) is a visual design tool for developing expert
systems. A principal idea is to support the designer by a graphical flowchart
representing the decision logic. The chart can be automatically translated
into a lower level logic-based representation, processed in Prolog. The most
important feature is the support for the visual design of the knowledge base;
it is however, limited to decision trees. VisiRule does not provides means to
validate or evaluate the knowledge base.

Drools (www.drools.org) is a framework for building forward-chaining
expert systems, with the use of the Rete algorithm. It is implemented and
Java, and integrated with Java building tools. It generates source in a selected
language, from a conceptual description encoded in XML. This description
includes declarative parts (rules) and embedded procedural code in the target
language. The tool does not offer any verification or evaluation facilities.

7 Mirella Project

In [10] results of a research and evaluation of multiple RBS design meth-
ods, supported by development tools have been presented. A conclusion has
been drawn, that existing methods and tools have some serious limitations
located in the following areas: knowledge representation, formal analysis and
verification, and design support tools. Most important limitations concerning
the knowledge representation methods consist in using system-specific knowl-
edge representation formalisms. This results in restricted application area, and
scalability problems. With respect to the practical analysis approaches, the
following problems have been identified: late verification problem, inefficient
development cycle, and lack of integrated software framework.

Available design approaches do not offer integrated computer development
tools (CASE) supporting the RBS building process at all stages — from the
design to implementation. Such methods support mainly subsequent stages
of the conceptual design, while direct technical support for the logical design

Methodologies and Technologies for RBS Design and Implementation. 11

and during the implementation phase is mostly limited to providing a context-
sensitive, syntax checking editors, or simple wizards that support the design.

Practical design of non-trivial RBS requires a systematic, structured and
consistent approach. Such an approach is usually referred to as a design
methodology. To overcome limitations outlined above, a new approach to RBS
design process, supported by an integrated CASE tool, has been proposed [10].

It is a top-down hierarchical design methodology, based on the idea of
meta-level approach to the design process. It includes three phases: concep-
tual, logical, and physical. It provides a clear separation of logical and phys-
ical (implementation) design phases. It offers equivalence of logical design
specification and prototype implementation, and employs XTT, a new hybrid
knowledge representation. The methodology is supported by a CASE tool.

The main goal of the methodology is to move the design procedure to a
logical level, where knowledge specification is based on the use of abstract rule
representation. The design specification can be automatically translated into
a low-level code, including Prolog and XML, so that the designer can focus
on logical specification of safety and reliability. On the other hand, selected
system properties can be automatically analyzed on-line during the design, so
that its characteristics are preserved. The generated Prolog code constitutes
a prototype implementation of the system. Since it is equivalent to the visual
design specification it can be considered an executable specification.

These ideas are the basis for the MIRELLA Project, mirella.ia.agh.edu.pl.
The goals of the project are: to fully develop and refine the design process
outlined above, extend its’ application areas onto different real-life RBS, and
provide computer tools and methods supporting this process. So far the follow-
ing elements have been developed: the XTT knowledge representation method,
the concept of an integrated design process, a prototype Mirella CASE tool.
They have been all described in detail in [10]. Some of the applications of
these ideas were presented in [11, 12]. Further developments include ARD
conceptual design [13, 7]. All of these are shortly introduced below.

7.1 EXtended Tabular Trees

The main idea behind the new visual knowledge representation language
called Extended Tabular-Trees [10] aims at combining some of the existing
approaches, namely decision trees and decision tables building a special hi-
erarchy of Object-Attribute-Tables [6, 7]. It allows for a hierarchical visual
representation of the OAT tables linked into tree-like structure, according to
the control specification provided. XTT as a design and knowledge representa-
tion method offers transparent, high density knowledge representation as well
as a formally defined logical, Prolog-based interpretation, while preserving
flexibility with respect to knowledge manipulation. On the machine readable
level XT'T can be represented in an XML-based XTTML (XTT Markup Lan-
guage) suitable for import and export operations; it can also be translated to
XML-based rule markup formats such as RuleML.

12 Grzegorz J. Nalepa
7.2 Integrated Design Process

The eXtended Tabular Trees-based design method introduces possibility of
on-line system properties analysis and verification, during the system design
phase. Using XTT as a core, in [10] an integrated design process, covering the
following phases has been presented:

1. Conceptual modeling, in which system attributes and their functional re-
lationships are identified; during this design phase the ARD modelling
method is used. ARD stands for Attribute-Relationship Diagrams [13, 7].
It allows for specification of functional dependencies of system attributes
using a visual representation. Using this model the logical XTT struc-
ture can be designed. ARD can be represented in an XML-based ARDML
(ARD Markup Language) suitable for data exchange operations, as well
as possibly transformations to other diagram formats.

2. Logical design with on-line verification, during which system structure is
represented as XTT hierarchy, which can be instantly analyzed, verified
(and corrected, if necessary) and even optimized on-line. The XTT hier-
archy can also be represented in XML, using the XTTML format.

3. Physical design, in which a preliminary Prolog-based implementation is
carried out. A RuleML translation of the XTT rule base is also available.

Using the predefined XTT translation it is possible to automatically build
a prototype. It uses Prolog-based meta-language for representing XTT knowl-
edge base and rule inference (also referred to as XTT-PROLOG).

7.3 Mirella CASE Tool

A prototype CASE tool for the XTT method called MIRELLA [10] has been
developed. It supports XTT-based visual design methodology, with an inte-
grated, incremental design and implementation process, providing the pos-
sibility of the on-line, incremental, verification of formal properties. Logical
specification is directly translated into Prolog-based representation providing
an executable prototype, so that system operational semantics is well-defined.
In the MIRELLA Editor the specification looks as in Fig. 3.

7.4 Meta-Level Features

The approach is based on the idea of a knowledge representation method which
offers the design and implementation equivalence by a direct XTT — Prolog
mapping. Using a visual design method the designer can focus on building the
system structure, since the prototype implementation can be dynamically gen-
erated and automatically analyzed. The approach discussed herein offers strict,
formal description of system attributes and structure, creates a framework for
integrating the design and verification process, and supports the design and
verification process by an integrated CASE tool.

Methodologies and Technologies for RBS Design and Implementation. 13

[33 [HIREL LA Visual Editor
Elle Edit View Help

= H % o |3 §F a 9 & ¢

Open Save Clear Quit NewTab Tables Zoomin ZoomOut Domain Info

° [-

arcadé dsalgé routing

- inet|amy |- reash
T =] F T e =
e [|- ce]
senvied|table [table 1 4 2 [~
= - Toom
- ssh |- Lesi)an g srcadd destad||routin:

- inst|- duz |- accep

- neen)

R R 7 [5] o
(- inaf|- recd|am smadg des\gg routin q- 1an [|- accep
service awy |- len |- REJZR wWww
(o |- e
(- 1an |-
2

receive =

Fig. 3. RBS design session in Mirella

In this way, it is possible to assure that some safety-critical system proper-
ties such as attribute domains, and basic system structural logical constraints
are preserved during the design process.

7.5 Lessons learned from Mirella

Ezpressive knowledge representation is needed in order to truly support the
design. Mirella is focused around XTT, which proved to be a valuable tool,
allowing for designing different classes of RBS. Addressing all of the design
phases is an important issue addressed in Mirella. In order to successfully
build real-life systems it is necessary to formulate a complete design method-
ology, covering design stages from conceptual analysis to the implementation,
including verification. On-line formal verification allows for assuring system
characteristics during the design, and keeping them up the the implemen-
tation. Integration of design phases is needed in order to truly support the
designer, and preserve system characteristics during the design process. Easy
to use visual CASE tool not only is important for the design support but also
is necessary for the adoption of the new design methodology.

Mirella in its current state was successful as a proof of concept. However,
after more than two years of development some possible areas of extension and
improvement have been identified, such as: business rules support, automatic
knowledge acquisition facilities, optional backward-chaining, possibly fuzzy
rules support, and even more extended verification capabilities [14].

14 Grzegorz J. Nalepa

8 Towards Hybrid Knowledge Engineering

Basing on the experiences with the MIRELLA project a refined RBS design
methodology is put forward. It addresses three design phases described in
Sect. 7.2, that is: conceptual, logical, and physical design. It also addresses
three important aspects of the design models used, that is:

e visual representation, which is valuable for both the design support and
the human interaction,

e knowledge encoding, which is based on XML and is useful for automatic
models transformations,

e executable code, which is based on Prolog representation of RBS.

An outline of this approach is shown in Fig. 4.

ARD \. Conceptual

diagrams ARDML " Design
. XTT XTT
Loglcal tabular XTTML Meta Formal
Design trees Prolog \ Verification
Physical RuleML \ Prolog
Design
visual " knowledge executable \
representation encoding code

Fig. 4. Hierarchical design methodology

It is hoped, that if refined, this methodology could provide universal mod-
elling methods for RBS design and implementation. The HEKATE projects aims
at applying this methodology to practical design and analysis of intelligent
systems. Main goals of the HEKATE project are to:

e develop an extended, hierarchical methodology for practical design, anal-
ysis and implementation of selected software classes,

e build computer CASE tools package supporting this methodology,

e test the approach on illustrative software examples.

The projects focuses on wide class of software, namely two very different
classes, that is:

e general business software based on the so called business logic,
e low-level control software, possibly for the embedded control systems,
based on a control logic [15].

A principal idea in this approach is to describe the logic behind the soft-
ware using advanced knowledge representation methods. The logic would be
expressed with use of a Prolog-based representation. The logical, Prolog-based

Methodologies and Technologies for RBS Design and Implementation. 15

core would be then embedded into a business application, or embedded con-
trol system. The business or control applications can be developed with some
classic programming languages such as Java or C. The HEKATE project should
eventually provide a coherent runtime environment for running the combined
Prolog and Java/C code.

Hekate is currently (fall 2006) in a very early development stage. See the
project webpage at hekate.ia.agh.edu.pl for more up to date information
on the project progress, tools and technologies.

9 Concluding Remarks

In the paper RBS knowledge engineering issues, methodologies and selected
tools have been discussed. They have been contrasted with some aspects of
software engineering. The paper also discusses and advanced design methodol-
ogy developed in MIRELLA project which aims at combining classic knowledge
engineering methods with software engineering approach. While MIRELLA is
work in progress it already created some valuable results such as XTT knowl-
edge representation method, along with on-line Prolog verification approach.
It is hoped that the HEKATE will develop these concepts into a complete hier-
archical design and implementation methodology for both business software
and rule-based systems.

References

1. Ivan Bratko. Prolog Programming for Artificial Intelligence. Addison Wesley,
3rd edition, 2000.

2. Adrain A. Hopgood. Intelligent Systems for Engineers and Scientists. CRC
Press, Boca Raton London New York Washington, D.C., 2nd edition, 2001.
ISBN 0849304563.

3. Tan Horrocks, Peter F. Patel-Schneider, Sean Bechhofer, and Dmitry Tsarkov.
Owl rules: A proposal and prototype implementation. Journal of Web Seman-
tics, 3(1):23-40, 2005.

4. Peter Jackson. Introduction to Expert Systems. Addison—Wesley, 3rd edition,
1999. ISBN 0-201-87686-8.

5. Jay Liebowitz, editor. The Handbook of Applied Expert Systems. CRC Press,
Boca Raton, 1998. ISBN 0-8493-3106-4.

6. A. Ligeza, I. Wojnicki, and G.J. Nalepa. Tab-trees: a case tool for design of
extended tabular systems. In H.C. Mayr et al., editor, Database and Ezxpert
Systems Applications, volume 2113 of Lecture Notes in Computer Sciences, pages
422-431. Springer-Verlag, Berlin, 2001.

7. Antoni Ligeza. Logical Foundations for Rule-Based Systems. Springer-Verlag,
Berlin, Heidelberg, 2006.

8. K. Michalik. Zintegrowany Pakiet Sztucznej Inteligencji Sphinz 4.0. AlTech
Artificial Intelligence Laboratory, Katowice, Poland, 2003.

9. Joaquin Miller and Jishnu Mukerji. MDA Guide Version 1.0.1. OMG, 2003.

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Grzegorz J. Nalepa

Grzegorz J. Nalepa. Meta-Level Approach to Integrated Process of Design and
Implementation of Rule-Based Systems. PhD thesis, AGH University of Sci-
ence and Technology, AGH Institute of Automatics, Cracow, Poland, September
2004.

Grzegorz J. Nalepa and Antoni Ligeza. Designing reliable web security systems
using rule-based systems approach. In Ernestina Menasalvas, Javier Segovia,
and Piotr S. Szczepaniak, editors, Advances in Web Intelligence. First Interna-
tional Atlantic Web Intelligence Conference AWIC 2003, Madrid, Spain, May
5-6, 2003, volume LNAI 2663 of Lecture Notes in Artificial Intelligence, pages
124-133, Berlin, Heidelberg, New York, 2003. Springer-Verlag.

Grzegorz J. Nalepa and Antoni Ligeza. Markup-languages-based approach
to knowledge management and representation. In Malgorzata Nycz and
Mieczystaw Lech Owoc, editors, Pozyskiwanie Wiedzy i Zarzqdzanie Wiedzg,
number 1011 in Prace Naukowe Akademii Ekonomicznej im. Oskara Langego
we Wroclawiu, pages 332-339, Wroctaw, 2004. Akademia Ekonomiczna im. Os-
kara Langego we Wroctawiu.

Grzegorz J. Nalepa and Antoni Ligeza. Conceptual modelling and automated
implementation of rule-based systems. In Tomasz Szmuc Krzysztof Zielinski,
editor, Software engineering : evolution and emerging technologies, volume 130
of Frontiers in Artificial Intelligence and Applications, pages 330-340. IOS Press,
2005.

Grzegorz J. Nalepa and Antoni Ligeza. Prolog-based analysis of tabular rule-
based systems with the xtt approach. In Geoffrey C. J. Sutcliffe and Randy G.
Goebel, editors, FLAIRS 2006 : proceedings of the nineteenth international
Florida Artificial Intelligence Research Society conference : [Melbourne Beach,
Florida, May 11-13, 2006], pages 426-431, FLAIRS. - Menlo Park, 2006. Florida
Artificial Intelligence Research Society, AAAI Press.

Grzegorz J. Nalepa and Piotr Zigcik. Integrated embedded prolog platform
for rule-based control systems. In Andrzej Napieralski, editor, MIXDES 2006
: MIXed DESign of integrated circuits and systems : proceedings of the inter-
national conference : Gdynia, Poland 22-24 June 2006, pages 716-721, . odz,
2006.

Ronald G. Ross. Principles of the Business Rule Approach. Addison-Wesley
Professional, 2003.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice-Hall, 2nd edition, 2002.

Roman Siminski. Dynamiczna weryfikacja poprawnosci baz wiedzy w procesie ich
weryfikacji. PhD thesis, Instytut Podstaw Informatyki PAN, Warszawa, 2002.
Tan Sommerville. Software Engineering. International Computer Science. Pear-
son Education Limited, 7th edition, 2004.

I. S. Torsun. Foundations of Intelligent Knowledge-Based Systems. Academic
Press, London, San Diego, New York, Boston, Sydney, Tokyo, Toronto, 1995.
A. Vermesan. The Handbook of Applied Expert Systems, chapter Foundation and
Application of Expert System Verification and Validation. CRC Press, 1998.
A. Vermesan and F. Coenen, editors. Validation and Verification of Knowl-
edge Based Systems. Theory, Tools and Practice. Kluwer Academic Publisher,
Boston, 1999.

Barbara von Halle. Business Rules Applied: Building Better Systems Using the
Business Rules Approach. Wiley, 2001.

