
Architectures to make Simple Visualisations
using Simple Systems

Alan Dix
aQtive3 and Lancaster University1

alan@aQtive.com

Russell Beale
aQtive3 and University of

Birmingham2

russell@aQtive.com

Andy Wood
aQtive3

andy@aQtive.com

aQtive limited, Birmingham Research Park, Vincent Drive, Birmingham, B15 2SQ, UK, +44 121 414 2626

http://www.hiraeth.com/alan/topics/vis/

ABSTRACT
In previous work, the first author argued for simple lightweight
visualisations. These are surprisingly complex to produce due to
the need for infrastructure to read files, etc. onCue, a desktop
'agent', aids the rapid production of such visualisations and their
integration with desktop and Internet applications. Two examples
are used dancing histograms for 2D tables and pieTrees for
hierarchical numeric data. A major focus is the importance of
architecture, both that of onCue itself and the underlying
component infrastructure on which it is built – separation of
concerns, mixed initiative computation and plug-and-play
components lead to easily produced and easily used systems.

Keywords
Interactive visualisation, software architecture, hierarchical
data, artificial intelligence, Internet–desktop integration

1. INTRODUCTION
Previously the first author has argued for simple lightweight
visualisations based on interactive modifications of common
paper representations of data. One problem is that although such
visualisations can be produced rapidly, incorporating them into a
usable system involves the ability to deal with appropriate file
formats, table editors etc. The lightweight visualisations become
heavyweight systems. This paper describes how onCue, a context
sensitive desktop 'agent', has been used to integrate lightweight
visualisations with desktop and Internet data sources. onCue is
built upon a flexible component framework and the paper will
demonstrate how appropriate underlying software architectures
facilitate effective visualisation software. The paper will use as
exemplars two visualisations, 'dancing histograms' and 'PIE-trees'.
The former was presented at a previous AVI conference, the latter
is a novel method for displaying hierarchical data where
numerical information is associated with interior nodes as well as
leaves (for example web site logs). Two features of the onCue

architecture will be discussed in detail. First, the use of two types
of components: 'recognisers' detecting different kinds of data from
diverse sources, and 'services' invoking desktop or Internet
applications. This separation makes adding new visualisations
particularly easy. It also allows Internet-based services to be
made accessible from the desktop in a near seamless manner and
desktop services to easily use Internet data. The second feature is
a mixed data-driven and demand-driven underlying component
model. The key message is that architecture is important!

The next section recaps the arguments for simple visualisations
including the problems found implementing dancing histograms
and also the important role of architecture within user interface
construction. Section 3 looks at onCue. It describes how onCue
works, both its external behaviour and internal structure. We will
also see how this has facilitated the integration of dancing
histograms as a form of universal plug-in able to visualise tabular
data from many sources including web pages, email messages,
word processed documents and spreadsheets. In section 4, we
will look at pieTrees, both the design concept and how it is
implemented within onCue. Finally, in section 5, we will look
deeper into the underlying component infrastructure of onCue,
called aQtiveSpace and see how the model facilitated the
construction of onCue and is suitable for other forms of
visualisation project.

2. BACKGROUND
2.1. simple visualisation – promise and

problems
In a previous paper at AVI'98, "starting simple", Geoff Ellis and
the first author argued the importance of simple interactive
visualisations [7]. Many exciting visualisation techniques have
evolved over recent years, including the extensive use of 3D [1,
17] and dynamic query techniques [20, 18] involving many novel
representation techniques. We argued that the most significant
feature of these was their interactive nature and that this could be
harnessed in simpler interactive visualisations. In particular,
interactive variants of familiar paper-based representations are
easy for users to understand and potentially easy to construct.

One of the driving examples from this paper was an interactive
version of stacked histograms. Stacked histograms are often used
where one wants to compare, for example, total sales between
years, but where the sales in each year are also categorised by
product line (figure 1). Other uses include agricultural production
in different regions, where one wants a histogram giving total

2

production within each region, but see the relative contributions of
different types of production (arable, grassland, etc.).

Figure 1. Stacked histogram of product sales by year

The problem with paper-based stacked histograms is that it is only
possible to easily spot trends in the overall totals and the bottom
category. The other categories have different baselines and are
thus hard to compare. A simple interactive change was to make it
possible to move the columns to align the bottom of different
categories (figure 2).

Figure 2. Dancing histograms change the baseline

To demonstrate the concept, an applet version of dancing
histograms was produced very rapidly (less than two days effort).
This was very successful as a presentation aid and as a
demonstration on the web, but didn’t give anything that it was
easy for others to slot their own data into. Really it needed some
form of import filters for formats such as CSV, tab delimited text,
common spreadsheet formats, database data etc. and also some
way to enter and edit data in a self contained program.

The effort to produce the demonstration of the visualisation
concept was minimal, but the additional effort to turn this into a
stand-alone program would be prohibitive.

2.2. architectures for user interfaces and
interactive visualisation

Software architecture has long been regarded as an important
issue in user interface construction. Early architectural models
drew from the success of linguistic levels in compiler design, with
emphasis on the distinction between presentation (lexical),
dialogue (syntactic) and functionality (semantics). The early
reference model for this was the Seeheim model [15] with three
main components corresponding exactly to these levels:

presentation or display management (which determines the
appearance and low-level behaviour of the interface), dialogue
control (which determines the order of interaction) and a link to
the underlying data structures and semantics. This layered
presentation/semantics distinction is evident in other abstract
architectures, in particular the more recent Arch/Slinky model
[19]. Similar distinctions can be found in more component or
object-based implementation frameworks such as MVC [14] and
PAC [4], although these focus on individual parts of an interface
(e.g. the interaction with a particular item of data) rather than a
global separation of the application into components for each
linguistic level.

Effective architectural design has a number of benefits for user
interface software. It can:

(a) make the software easier to construct and maintain
(including reuse)

(b) divide the software into parts which can be run on
different parts of a distributed system (especially
important for web-based interfaces [16])

(c) improve the performance of the software

(d) encourage particular (hopefully good!) interface styles

These are of course inter-linked: for example, if interfaces are
quicker and easier to construct, designers are encouraged to use
more iterative design techniques, and also to try multiple design
alternatives, which is likely to improve the eventual user interface.
(Although rapid prototyping should not, of course, be used as an
excuse for inadequate initial design effort.) Also (b) influences
(c) in that it limits the kinds of interaction that are available
locally for the user and also the overall rate of feedback. The
same problems are also found in stand-alone systems and a poor
separation between components can reduce the performance of the
system and hence create unacceptable interface delays.

The crucial message for this paper is that architectural design is
important in user interface design and, by extension, in interactive
visualisation design. One of the reasons for the many exciting
systems produced by Xerox Parc and Maryland are that both have
constructed significant visualisation toolkits and frameworks, the
former especially for 3D visualisation and the latter more for 2D
dynamic visualisation. However, it is rare to find architectures
dealt with in detail in visualisation papers (but there are some, for
example, Jern [10]). Algorithms are often described in detail, but
architectures rarely. Indeed, in Card, Mackinlay and
Shneiderman's excellent collection [2], there are no papers on
visualisation architecture.

3. ONCUE – LINKING USERS TO
APPLICATIONS

onCue is a commercial product produced by aQtive that gives
easy access to the Internet and to desktop applications. It has
aspects of an active toolbar, an intelligent portal and a software
agent. It watches everything that is copied to the clipboard, uses
'appropriate intelligence' to suggest suitable Internet services and
desktop applications, and automates the use of the data in chosen
services.

However, for this paper, the most important thing about onCue is
that it is extensible. Developers can add their own components
(called Qbits) into the onCue framework. Given onCue is able to
work with data from any application, this effectively means one
has a 'universal plug-in'.

3

The best way to understand onCue is by an illustrated scenario of
the use of onCue from the user's perspective. We will then look at
the architecture underlying onCue and how this has helped turn
dancing histograms form a demonstration applet into an integrated
product.

3.1. onCue at work
Imagine Sarah at work in the office …

Sarah starts up onCue. Initially a small floating
window appears (figure 3) with a few icons in it
allowing her to get information and help about
onCue and to set preferences etc.

Sarah then starts to look at her email, she finds a
message from a colleague.. The message contains
text and also a table (laid out with spaces) as well as
the URL of a web page.

Sarah first selects the word "histograms" in the text (figure 4).
When she does so, the onCue window changes. Several icons
appear in it representing things she may want to do with the word
"histograms".

Figure 4. Sarah selects word in email message

onCue suggests looking up "histograms" in various online search

engines: AskJeaves , Hotbot , AltaVista ,

and Yahoo ; an online thesaurus and

dictionary ; and also suggests looking it up in the

online Encyclopedia Britannica

She clicks the thesaurus icon and onCue launches a
web browser and directs it to the thesaurus service
which then returns a web page listing similar words
such as chart, diagrams etc.

3.2. inside onCue
We'll go through the same scenario again, but this time look at
what is happening inside onCue.

When onCue launches it loads a collection of Qbits.

Some of these are integral to the product:

♦ clipboard watcher – that watches for the users' cut/copy
actions

♦ onCue window Qbit – for displaying onCue's suggestions

♦ browser Qbit – that is used to send the default web browser
to a selected URL

Other Qbits are optional. A configuration file is used to record
which need to be loaded and the user can modify this set via the
onCue preferences (or edit the files directly if brave!). Some of
these are coded in raw Java and some use the XML API, which
allows some matching and invocation of web services.

The optional Qbits are of two kinds:

♦ recognisers – which use simple heuristics and AI to work out
what kind of thing has been copied to the clipboard

♦ services – which encapsulate the things that can be suggested
to the user

In addition to all these Qbits are the code for the aQtiveSpace, the
underlying component infrastructure, and the onCue framework,
the code built on top of aQtiveSpace which brings together the
other onCue components.

Figure 5. Components in the onCue architecture

In one sense the onCue framework (OCF) is simply another
component, but it is special as it acts as the 'glue' between the
other Qbits orchestrating their efforts. Furthermore, the other
Qbits must be written to special patterns to enable the OCF to link
them together.

Each of the services has a data type that it is willing to accept. In
this example:

Service type
histogram table
encyclopedia words
thesaurus single word
SumIt! number list
Excel Qbit table
Web searches words

Each recogniser has a type it is willing to look at (in-type) and a
type it recognises (out-type). The meaning of these will become
clear as we discuss later stages:

Recogniser in-type out-type
words recogniser (Wr) text words
table recogniser (Tr) text table
single word recog (SWr). words single word
number list recogniser (NLr) text number list

onCue silently sits in the background, doing nothing except for
the clipboard watcher, which simply waits for a copy or cut to
happen.

When the user selects and copies the word "histograms", the
clipboard watcher notices and passes the copied text to the onCue
framework. aQtive Desk looks for recognisers or services that
can use the text. The recognisers Wr, Tr and NLr are all
activated.

Figure 3.

4

Figure 6. onCue activates recognisers that can accept text

Tr and NLr both fail to recognise the text (it is neither a table nor
a list of numbers), but Wr does. The words recogniser simply
looks at the text and decides whether it could be considered a
sequence of 'words'. It clearly can and so it announces to the
onCue that the text can be regarded as words. onCue records this.

Because it now knows the selected text is words it can activate the
single word recogniser SWr (this is based on matching the in-type
of SWr).

At the same time it activates the web search and encyclopedia
services as all of these just expect words.

Figure 7. Text recognised as consisting of words

Note that the recognition that the text is a collection of words also
involves posting back to onCue data structures that make it easy
to view the text as a series of words.

SWr recognises that the words are in fact also a single word (there
is but one of them!). It announces this back to the OCF. Now the
OCF can activate the thesaurus and dictionary services, as they
required a single word each.

Finally, the icons of all the active services are displayed in the
onCue window.

Notice that:

♦ The selection of services offered depends dynamically on the
kind of data selected by the user.

♦ The recognition of the type of the data may take several
steps; e.g. text → words → single word

When the user selects an icon in the onCue window, the OCF
goes back to the service and asks it to perform its action. In the
scenario this was the thesaurus icon. This Qbit simply generates a
URL, which the OCF passes to the browser Qbit, which in turn
runs an external web browser to view the page.

The OCF treats services that generate a URL for the browser
specially, as they are so common, it asks the service for the URL
and then OCF passes this to the browser. Other kinds of Qbits
have to do everything themselves!

Figure 8. Text recognised as a single word

3.3. dancing histograms in onCue
The applet version of dancing histograms was modified slightly to
launch in its own window and conform to the onCue 'service' Qbit
API. Also a table recogniser was written that could look at some
text, decide whether or not it corresponds to a table of data and, if
it does, convert it into an appropriate internal format. This initial
conversion took half a working day. Although some additional
work was done later to add options to paste the histogram into
user's own web pages and improve the table recogniser, the
dancing histograms were demonstrable and usable after only the
initial small amount of work.

Let's see what this means for Sarah …

After looking at the thesaurus for a while Sarah selects the table in
the text (figure 9):

Figure 9. Sarah selects table in email message

Inside, all the onCue Framework knows is that it has seen more
copied text. It therefore passes this to the same three recognisers
for processing: Wr, NLr and Tr. This time the words recogniser
fails to recognise it (too long, split over several lines and too
many numbers). However, the number list recogniser (NLr) does
recognise it as it ignores the other words and looks for any
numbers in the data. The table recogniser also recognises the data
as a table.

5

Figure 10. Text recognised as a table and as containing numbers

This time there are no repeat runs through the recognisers as none
of the recognisers can deal with tables or number lists (just
generate them). However, two services require tables (histograms
and Excel) and one requires a number list. These three services,

Dancing Histograms , SumIt! , and Microsoft Excel ,
are then activated and suggested to Sarah as icons in the onCue
window.

She clicks the Dancing Histograms icon and onCue launches
the Dancing Histogram window (figure 11)

Figure 11. Sarah clicks histogram icon and dancing
histogram is produced

In this case both the recognisers themselves and the data
structures they post back are more complex.

For the table this includes:

♦ Title of table (where present)
♦ Number of columns
♦ Number of rows
♦ Column labels (where present)
♦ Row labels (where present)
♦ Numerical table data

However, the same principles hold as for the simple word
recognisers. The text is recognised as having a certain form and
the fact that it does together with transformed data are 'announced'
to all Qbits that can use this type of data.

3.4. appropriate intelligence and the table
recogniser

The table recogniser is in fact, one of the most complex individual
recognisers within the current version of onCue. Many types of
data can be recognised with fairly simple rules or regular
expressions. For example, UK postcodes consist of one of a small
number of patterns of letters and digits, names are small numbers
of words or initials with initial capitals. None of these recognisers
are perfect, they may occasionally miss an unexpected form of the
type of data. For example, aQtive's business cards were
misprinted with the postcode B15 25Q instead of B15 2SQ. This
is still recognisable to a human eye as a UK post code, but does
not conform the correct syntax. Although more semantics-rich
artificial intelligence techniques could be employed to improve
the recognition rate, none would be perfect. Furthermore, such
algorithms would take far too long and consume too many
resources for a desktop tool.

Where some form of artificial intelligence is being used without
human intervention, for example, a neural network used to control
a nuclear fusion chamber [9]. In such case the algorithms used
must either be perfect (which of course won’t be the case) or
limited by simpler fail safe rules. However, user interfaces have
a human at hand, indeed the purpose of the intelligence is to work
with the user. Humans are used to dealing with uncertain
information and fallible colleagues. This means that the raw
algorithms do not need to be perfect, but instead they're
weaknesses can be mitigated by well-designed interaction.

At aQtive, we use the term appropriate intelligence to refer to the
use of simple rules and heuristics set in a fine tuned user
interaction paradigm. The crucial things are that the interaction
should

(a) be useful when it is right

(b) be right often enough to be useful

(c) not cause problems when it is wrong

To see examples of these principles, consider two uses of heuristic
intelligence in popular Microsoft tools. The Microsoft Office
paperclip is notorious. Although it often makes useful
suggestions, it is modal: just at the moment that you enter full
writing flow, it appears, with some suggestion and prevents
further typing until it is explicitly dismissed. So although it
satisfies (a) – it is useful – it fails (c) as it is costly when wrong.
In contrast, consider the sum Σ button in Microsoft Excel.
Around 80% of all spreadsheet use is the simple summing of
columns of numbers. When the sum button is pressed it inserts
"sum()" in the cell formula and then selects any contiguous cells
with numbers in above the current cell (or to the left). It has some
extra rules to deal with sub-totals, but is using relatively simple
heuristics. When it gets it right it saves selecting the relevant cells
– some benefit (a). Also because most use of summing is for
simple columns it will get it right for a lot of people a lot of the
time – (b). Finally, consider what happens when it selects the
wrong cells, If the user simply ignores the selection and attempts
to select a different range, the automatically selected range is
overridden using the normal selection process. That is there is
virtually no cost if the system guesses wrong – condition (c).

onCue attempts to use appropriate intelligence. The suggestion
mechanism in the onCue window is deliberately low key, the
window is non-modal, it does not flash or in any way force itself
on the user's attention. The aim is to be available, but not

6

intrusive. If, for example, the user selects a company name
"Cooper Diamonds", this may be incorrectly recognised as a name
and directory services offered by onCue. However, the user can
simply ignore these icons. That is, we are attempting to carry a
very low cost of failure – (c). In addition, the services offered are
useful in various ways, either as short cuts to known Internet
services and desktop applications, or in suggesting previously
unknown ones – condition (a). The goal for the recogniser
heuristics is therefore to be right often enough – condition (b).

The table recogniser is designed with these constraints in mind.
The initial (half-working day) version simply looked at the length
of lines. Each line was split into 'words' by tabs or spaces and the
length calculated. Two patterns are expected:

type I: optional line of any length (title)
line of length N (column headers)
several line of length N+1 (row title plus
data)

type II: optional line of any length (title)
 several line of length N (possible row title
plus data)

If the data did not conform with either of the above it was
rejected. If it did then the words were checked to see which were
numbers to verify in type II whether the table consisted of plain
data, data with just column headers or data with just row headers.

Although this worked well with tabbed data it didn't deal with
tables with multi-word row labels or with numeric column or row
labels. However, tabbed data is already reasonably easy to use
with existing tools. So this recogniser failed on condition (b) as it
was least often right when it would have been most useful!

A second version of the recogniser (which did take longer than a
half-day, but not too much more!), used more complex rules to
grow a window of numbers from the bottom right corner of the
potential table and used scoring to distinguish different potential
ways of regarding the data as a numeric table. It has rules like:

• if the top line is very short it is probably a title, even if it
is a number such as "1998"

• if the top line is one shorter than the rest it is probably
column headings

• if most rows have N numbers and one has N+1, the
extra number is probably part of the column label

The rules used are specific enough that it does not recognise non-
tables, but general enough to be able to deal with explicit tables in
spreadsheets and word processors, simple tabbed tables, spaced
plain-text tables (as often use in email messages) and also tables
laid out in web-browsers. The latter is especially important.
Although web page tables are produced using explicit tags, they
are typically reduced to spaced text when copy/pasted.

1.5. making the most if it
It is at this point that the value of the onCue recogniser/service
structure is brought to bear. Although the table recogniser was
built for the dancing histograms, it then becomes a part of the
onCue world that other services can use. Although spreadsheets
typically allow many graphing options, users are often uncertain
quite what is available and how to use it. Also, if one copies data
that is not in an appropriate format (for example a table of data
copied form a web page) into a spreadsheet, the effect is often

disastrous, often putting the entire line into the first column of
each row!

To help users with this, another Qbit acts as a simple link to
Microsoft Excel. It is activated by the same data produced by the
table recogniser as dancing histograms. So, when a table is

selected, the Excel icon is also offered to the user. If she
selects this onCue converts the data into a form suitable for Excel
and uses COM to tell Excel to create a new sheet and draw an
appropriate graph.

Figure 12. Sarah selects Excel icon and an Excel chart is
produced

It is now possible to select a table in a web page, copy it and two
clicks later have an Excel or dancing histogram chart. Moreover,
because the same recogniser activates the different services, the
work required is modest and the effort is reduced the more Qbits
that are available already. Although re-use is often encouraged, it
is comparatively rare in practice, except in very generic libraries.
One of the reasons for this is that software reuse is often focused
on methods or functions, whereas reuse in onCue is focused on
shared data representations. Also, important is the form of the
lower-level component framework upon which onCue is
constructed. We will look at that in greater detail in section 5.

4. EXAMPLE 2 – PIETREES
We have seen how onCue was used to make an existing
visualisation more accessible and more integrated with other
applications. In addition, we are using onCue as a platform for
the development of other visualisation techniques. In this section,
we'll look at pieTrees a novel method for interactive visualisation
of hierarchical numeric data sets.

In our AVI'98 paper Geoff Ellis and I suggested different ways in
which simple interaction could enhance traditional
representations. One of these was the pie chart. The paper
suggested how segments of pie charts could be 'exploded' in
concert with an outliner view of the data. This technique works
for strict hierarchical data such as regions where each region is
exactly decomposed into sub-regions etc. The number of people,
factories or daffodils in any region is exactly equal to the sum of
the number in each sub-region, hence the segment for the region
can simply fan open.

7

However, there is a second form of hierarchical data where there
are values associated with non-leaf nodes in addition to those at
the leaves. One example of this is file system usage. The amount
of space in the "documents" directory is the sum of the space used
by the "documents/avi200", folder, the "documents/hci99" folder
etc. plus the size of the files directly stored under "documents".
Web usage follows a similar pattern: there are a number of visits
to of the 'home page' for a portion of the site as well as visits to
pages beneath that point.

pieTrees are a way of visualising such data extending the notion
of exploding pie charts.

4.1. what are pieTrees
Suppose we have the following web usage statistics in visits per
hour on a web site:

corporate/ 4000
info.html 3000
press.html 2000

community/ 3000
user.html 2000
research.html 1000
developer.html 2000

product/ 2000
onCue/ 2000

online.html 1000
download.html 1000

vfridge 1000
support 1000

Each number refers to the number of hits to the page, or to the
index page if it is a directory. For example, there are 2000 hits
per hour to corporate/press.html. The total number of hits to each
region of the site can be simply calculated by summing everything
below that level. So, the total hits to the community region is
3000+2000+1000+2000. Note including the community index
page itself.

These region sums for the top-level regions can easily be
represented as a normal pie chart (figure 13)

community

product

corporate

Figure 13. Pie chart of hits by region.

The parallel outliner view can be folded/unfolded and the pieTree
segments will split/merge as the outlines are shown or hidden.
However, the segments cannot simple split, as there is data
associated with the index page of each region. Instead, when the
products region is expanded, the pieTree retains a small pert-circle
segment towards the center, representing the hits to the index page
of "products" with smaller segment portions outside of this (figure
14). The sizes of these are chosen so as to preserve the
proportionality between area and numbers of hits of a normal pie
chart.

corporate
community

products

Figure 14. Opening products

As the user drills deeper into the data, the process continues
(figure 15).

Figure 15. Drilling deeper Figure 16. Root hits

Of course, web sites will usually have hits to the top-level home
page and where this is so a small circle in the centre (figure 16)
represents these.

The strengths of this representation are:
(a) preserves equal area/ equal value
(b) similar to existing pie charts
(c) small visual change as regions are opened/closed
(d) temporal fusion [6] induced by simultaneous change of

outline/pieTree

Although it also has some problems:
(e) hard to judge areas (as with ordinary pie charts)
(f) poor when there is very little value at interior nodes
(g) becomes less useful towards the leaves (becomes lots of

small rectangles)

In fact, web statistics are particularly well suited for this
representation as index pages for regions of the site often have hit
counts comparable with the whole of the region below. In
particular, some sites enforce a strict menu-down/up style if
interaction, which may mean more index page hits than all the
pages below!

4.2. pieTrees and onCue
The same structure of recogniser/mini-application is used for
pieTrees as for dancing histograms.

The hierarchical data recogniser needs to be able recognise
indented data (as with the web usage data above), and also 'prefix'
data as in the UNIX disk usage (du) listing in figure 17.

8

20 ./search
286 ./images
72 ./exercises/images
34 ./exercises/maths
54 ./exercises/projects
486 ./exercises
8 ./glossary
102 ./links
18 ./misc
102 ./overviews
2 ./prototyping
132 ./text
54 ./URLs
1582 .

Figure 17. UNIX 'du' (disk usage) listing

Heuristics used in the hierarchical data recogniser include:
• Is the first element in each line a number (like du)?
• Is the last number in each line a number (like web log)?
• Are some of the non-number items prefixes of others

(e.g. "/exercises" and "/exercises/images")?
• Are some lines indented with spaces or tabs?
• Are the numbers associated with higher levels always

greater than the sum of the lower levels?

The last of these rules is important in order to distinguish cases
where the application has to produce higher level total (as with
logs) or where the data has already been summed and the system
needs to work out the differences (as in du). In the latter case, the
disk used in files at the top level of "/exercises" must be 326 =
486-(72+34+54).

Although some care has to be taken in establishing such rules the
result is (as with dancing histograms) that data from large
varieties of sources: web pages, word-processor documents,
spreadsheets, email messages, terminal sessions, can all be simply
visualised with literally two mouse clicks.

4.3. related visualisations
pieTrees are closely related to three other visualisation/data
exploration methods. First is Tree-Maps [11], which layout file-
system size or similar data in a 2D, rectilinear structure where,
like pieTrees, area corresponds to size. Tree-Maps use alternate
vertical and horizontal slicing to represent levels of hierarchical
structure. pieTrees have the advantage of leveraging off users'
existing understanding of pie charts including exploded segments,
however, the behaviour of pieTrees towards deep leaves is less
good requiring interactive refocusing on subnodes to produce
pieTrees of subtrees.

The second method is Disk Trees [3], which use a circular
representation where the angular arc of each subtree is
proportional to the number of items within the arc. This
representation is used specifically to analyse web-usage data (as
was a driving application for pieTrees) and uses line thickness to
represent number of link traversals (ignoring cross-structure
links). The difference between the Disk Trees and pieTrees is a
simple trade-off. Disk Trees focus first on number of nodes and
represent value as a secondary feature. This causes some
problems of overlap towards the leaves of deep nodes and leaves
have large values. pieTrees focus first on value with number
represented implicitly by the number of segments. This causes
some problems towards the leaves if some deep subtrees have
very small total values and hence become much thinner than
others. One major lesson from "starting simple" [7] was that

interaction allows user selection of trade-offs, so perhaps it would
be possible to dynamically choose representations that weight
number and value with Disk Trees and pieTrees simply being
ends of a continuum.

Finally, HIBROWSE [8] makes extensive use of multiple
representations of fold/unfolded hierarchical and taxonomic
structures with dynamic numerical data. This is not a graphical
technique, but is highly effective in using interaction within a
textual output medium and is a major inspiration behind pieTrees.

In addition, there are many visualisation techniques used for plain
hierarchies, that is, for visualising the hierarchies themselves, not
numeric data associated with them. These include cone–trees
[17], the PDG tree-browser [12] and the hyperbolic browser [13].
All are currently especially important given the interest in web
site management and analysis.

5. LOW-LEVEL ARCHITECTURE
onCue is built upon a lower-level component architecture called
aQtive space. aQtiveSpace is a software framework for producing
context-sensitive applications from small components, which we
call Qbits. It is particularly suited for systems that dynamically
reconfigure themselves as new Qbits are added. aQtiveSpace is
used as the underlying framework for various aQtive products, in
particular onCue. aQtiveSpace is itself built using Java.

aQtiveSpace has been developed from a strong theoretical
standpoint. It builds on earlier work on Cameo an architecture for
context-sensitive applications [21,22]. In addition, both
aQtiveSpace and Cameo before it were heavily influenced by
status-event analysis [5]. The discrete nature of computation
means that at an implementation level everything reduces to
events and the system's response to them. This is reflected in the
majority of specification notations and implementation platforms.
However, many aspects of the physical world are of a different
kind, status phenomena, which always have a value that can be
sampled. In context-aware applications, such as onCue many of
the contextual elements are better viewed as status rather than
prematurely decomposed into events. The primitives in
aQtiveSpace, although by their nature discrete, are designed to
enable an effective and natural encoding of status phenomena.
This makes it easier to build context-aware applications, such as
onCue, on top of aQtiveSpace. Also the direct mapping between
intended user interface behaviour and underlying architecture
means that the resulting systems behave correctly and
consistently.

5.1. Qbits
The components in aQtiveSpace are called Qbits. In quantum
mechanics, qubit refers to a property that is effectively half a bit.
A single qubit carries no information in itself, but, when
combined with suitable other qubits, does yield useful
information. In a similar fashion the Qbits in aQtiveSpace are
usually impotent individually, but when combined yield
substantial power to the user.

Each Qbit in aQtiveSpace has a series of named Nodes. The
nodes act somewhat like the named attributes and methods of an
object, but with some differences and additional semantics. The
nodes are like plugs and sockets by which the Qbit can be
connected to its environment and to each other.

9

5.2. nodes
Each node performs one or more of 6 kinds of interaction:

set – a value can be given to the node (e.g. setting an attribute)
get – a value can be requested from the node (e.g. getting the

value of an attribute)
call – the node can be called as in a normal object method call
listen– the node can give a value to a 'settable' node
give – the node can request a value form a 'givable' node
supply – the node can invoke a 'callable' node

Table 1. Node interactions
These interactions can be classified in two ways:

by data Flow – In the case of set and give, data flows into the
node. In the case of get and listen data flows out from the node.
In the case of call and supply the flow is bidirectional.

by initiative – In the case of set, get and call, the control comes
from the outside (external initiative), another Qbit (or arbitrary
Java code) has invoked the relevant set, get or call method on the
node. In the case of listen, give and supply, the control comes
form within (internal initiative) as the node invokes the
appropriate intercation when it is ready.

The internal initiative interactions correspond to 'callbacks' found
in many systems. They each have a means (in the reference
implementation, listen, give and supply methods) of establishing a
connection to one or more other nodes and they then invoke those
nodes when ready.

The interactions can be matched in pairs as each internal initiative
interaction has a corresponding external interaction. For example,
a listenable node is given a settable node in its listen method. It
invokes the set method on the node everytime it is ready to donate
a value.

Table 2. Interaction characteristics

interaction data flow initiative pair
set in external
get out external
call bidirectional external

listen out internal set
give in internal get

supply bidirectional internal call

The input and output data of each node (where relevant) are also
typed (e.g. number, text, image).

5.3. plug and play
The nodes of one Qbit can be connected to another where they are
compatable (i.e. they can function as complementary pairs and
have compatable types).

We can represent the node interactions s a 'Lego' block where
control flow runs from left to right, input is represented by a hole
(wanting to be filled) and output asa peg (figure 18).

In this representation, two nodes can be connected if they have a
corresponding hole/peg combination (and to take the analogy
further, if we regard tpyes as the shape of peg, then the shapes
must also correspond).

Figure 18. Node as a Lego block

The method by which nodes are described means that Qbits can
be dynamically connected together by other Qbits or program
code. This is different from, for example, object oriented
programming languages, when objects tend to 'know about' a lot
of other objects. Of course, Qbits may have internal structure,
including other Qbits, but their external behaviour is very like a
Lego brick that can be freely connected to others.

Although, connections can be established statically when an
application is configured, the plug-and-play nature of Qbits mean
it is particularly easy to connect them and disconnect them form
one another while a program is running.

5.4. asynchronous interactions
All the node interactions have synchronous and asynchronous
versions. For example, one can invoke the 'set' method and wait
for the method to return indicating that the set was successful
(synchronous). Alternatively, one can use a variant that
establishes the request to set the node, but allows the 'setting'
Qbit/code to continue to execute (asynchronous). This
asynchronous version of 'set' can be thought of as a sort of 'fire
and forget' mode. For 'call' and 'get', where a return value is
required, a 'callback' can be registered for the value when it is
ready (this may be a 'settable' node, or a Java callback object).

These asynchronous interactions are particularly useful in
accessing Internet information resources where there may be
considerable delays if Qbits access data on different parts of the
local network or Internet.

5.5. onCue in aQtive space
As mentioned above, the aQtiveSpace component model was
driven by the theoretical concepts of status–event analysis [5].
This emphasises that there are status relationships that continually
hold in interfaces, such as the relationship between the outline
view and pieTree, as well as things that happen at particular times
(events). Although the low-level implementation of any computer
interfaces is ultimately event based, the conceptual model should
involve status phenomena and the implementation framework
should allow an easy mapping between the two. The alternative
initiative interactions within the aQtiveSpace component model
are designed specifically to allow flexibility in the mapping
between status relationships and the underlying event structure.

Ultimately, the whole of the onCue interface can be seen as
embodying a form of status-status relationship – the icons that
show in the onCue window should always be the relevant ones for
the data currently in the system clipboard. Typically clipboard
data is accessed within applications in a demand-driven manner.
The user selects 'paste' and the application 'asks' the operating
system for the data from the clipboard. However, in onCue we
require the opposite form of initiative, when the data in the
clipboard changes, we need to react in a data-driven manner to
update onCue and maintain the status–status relationship.

10

onCue also incorporates Internet awareness Qbits which can tell
other parts of the system whether the user is currently connected
to the Internet or not (important for mobile systems or home-
computers with modems). There is another status–status mapping
here: the true/false value of the Internet awareness Qbit should
always reflect the current Internet connectedness. However, this
is not continually visible to the user, is expensive to test and is
only required at specific times when other Qbits are about to do
actions that require the Internet. The Internet awareness Qbit is
therefore implemented using demand-driven features in
aQtiveSpace, only checking the connectedness status when asked.

6. CONCLUSIONS
There are three principle results in this paper.

First is the pieTree, a simple interactive visualisation technique
for hierarchical numeric data, especially useful for web log and
file system data.

The second is the suitability of onCue and the underlying
aQtiveSpace infrastructure as a platform for implementing such
visualisations. The separation of recognisers and services allows
easy integration between applications within onCue and other
desktop and Internet applications. This has allowed dancing
histograms to effectively become a universal plug-in. It is
possible to copy a table from a web page, view it as a dancing
histogram and then paste the live histogram back into a new web
page or as a static image in a document.

However, the third result is the most important, not the success of
the particular onCue architecture, but the general importance of
software architecture in effective visualisation construction and
design.

7. REFERENCES
[1] Brown C., Benford S. and Snowdon D. (1996). Collaborative
Visualization of Large Scale Hypermedia Databases.ERCIM
workshop on CSCW and the Web, (Sankt Augustin, Germany),
Arbeitspapiere der GMD 984, GMD/FIT. pp. 115–123

[2] Card S.K., Mackinlay, J.D., and Shneiderman, B. (1999).
Readings in Information Visualization – using vision to think.
Morgan Kaufmann.

[3] Chi, E.H., Pitkow, J., Mackinlay, J., Pirolli, P., Gossweiler,
R.and Card, S.K. (1998). Visualizing the evolution of web
ecologies. Proceedings of CHI98, ACM Press, pp. 400–407

[4] Coutaz, J. (1987). PAC, an object oriented model for dialogue
design. Human–Computer Interaction – INTERACT'87, Eds. H.-J.
Bullinger and B. Shackel. Elsevier (North-Holland), pp. 431-436

[5] Dix, A. and Abowd, G. (1996a). Modelling status and event
behaviour of interactive systems. Software Engineering Journal,
11(6) pp. 334-346.

[6] Dix, A.. (1996b) Time, space and interaction Proc. of
FADIVA 3, Gubbio, Italy, University of Rome. pp 99–103,
http://www.comp.lancs.ac.uk/computing/users/dixa/
papers/FADIVA/

[7] Dix, A., and Ellis, G. (1998). Starting Simple - adding value
to static visualisation through simple interaction. Proceedings of
Advanced Visual Interfaces – AVI98, Eds. T. Catarci, M. F.
Costabile, G. Santucci and L. Tarantino. L'Aquila, Italy, ACM
Press. pp. 124–134.

[8] Ellis G.P., Finlay J.E. and Pollitt A.S. (1994) HIBROWSE for
Hotels: bridging the gap between user and system views of a
database IDS'94 2nd International Workshop on User Interfaces
to Databases, (Ambleside, UK, April 1994) Springer Verlag.
Workshops in Computer science, pp. 45–58

[9] Greake, E. (1991) Neural network keeps fusion plasma in
shape. New Scientist, page 27, 12th October 1991.

[10] Jern, M. (1996). "Thin" vs. "fat" visualization clients.
Proceedings of Advanced Visual Interfaces – AVI98, Eds. T.
Catarci, M. F. Costabile, G. Santucci and L. Tarantino. L'Aquila,
Italy, ACM Press. pp. 270–273

[11] Johnson, B. and Shneidermann, B. (1991). Tree-maps: a
space filling approach to the visualisation of hierarchical
information structures, Proc. of IEEE Visualization'91
Conference, San Deigo. pp. 284–291

[12] Kumar, H.P, Plaisant, C., and Shneiderman, B. (1997).
Browsing hierarchical data and multi-level dynamic queries and
pruning. International Journal of Human–Computer Studies,
46(1), pp.103–124.

[13] Lamping J. and Rao R. (1995) The Hyperbolic Browser. A
Focus+Context Technique for Visualizing Large Hierachies
Journal of Visual Languages and Computing, 6(4)

[14] Lewis, S. (1995). The Art and Science of Smalltalk. Prentice
Hall

[15] Pfaff, G., and Hagen. P., (Eds.) (1985). Seeheim Workshop
on User Interface Management Systems, Springer-Verlag, Berlin.

[16] Ramduny, D., and Dix, A. (1997) "Why, What, Where,
When: Architectures for Cooperative Work on the World Wide
Web", Proceedings of HCI'97, Springer-Verlag, pp. 283–301

[17] Robertson G.G., MacKinlay J.D., and Card S.K. (1991)
Cone Trees: Animated 3D Visualizations of Hierarchical
Information. Proceedings of CHI'91 (New Orleans, April 1991)
ACM Press, pp. 189-194

[18] Tweedie, L., Spence, R., Dawkes, H., and Su, H.. (1996).
Externalising abstract mathematical models. In Proceedings of
CHI'96, ACM Press, pp. 406–412.

[19] UIMS (1992). The UIMS tool developers workshop: A
metamodel for the runtime architecture of an interactive system,
SIGCHI Bulletin, 24(1), pp 32-37,

[20] Williamson, C.. and Shneiderman, B.. (1991) The Dynamic
HomeFinder: Evaluating Dynamic Queries in a Real-estate
Information Exploration System SIGIR'92 Proc. 15th Annual Int.
ACM SIGIR Conf. on Research and Development in Information
Retrieval, ACM Press, pp. 338–346

[21] Wood, A., Dey, A. K., and Abowd, G. D. (1997).
CyberDesk: Automated Integration of Desktop and Network
Services, Proceedings of CHI'97, ACM Press, pp. 552-553.

[22] Wood, A. (1998) CAMEO: Supporting Agent-Application
Interaction, PhD Thesis (University of Birmingham, UK).

8. GETTING ONCUE
onCue is available from:

www.aqtive.com
more information about the onCue architecture can be found at:

www.aqtive.com/community/research

11

