A Proof Markup Language for Semantic Web
Services

Paulo Pinheiro da Silva Deborah L. McGuinness
Richard Fikes

Knowledge Systems Laboratory, Stanford University
Stanford, CA 94305, USA.
e-mail: {pp,dlm,fikes}@ksl.stanford.edu

Abstract

The Semantic Web is being designed to enable automated reasoners
to be used as core components in a wide variety of Web applications and
services. In order for a client to accept and trust a result produced by
perhaps an unfamiliar Web service, the result needs to be accompanied
by a justification that is understandable and usable by the client. in this
paper, we describe the Proof Markup Language (PML), an interlingua
representation for justifications of results produced by Semantic Web ser-
vices. We also introduce our Inference Web infrastructure that uses PML
as the foundation for providing explanations of Web services to end users.
We additionally show how PML is critical for and provides the founda-
tion for hybrid reasoning where results are produced cooperatively by
multiple reasoners. Our contributions in this paper focus on technologi-
cal foundations for capturing formal representations of term meaning and
justification descriptions thereby facilitating trust and reuse of answers
from web agents.

1 Introduction

The Semantic Web is being designed to enable automated reasoners to be used
as core components in a wide variety of Web applications and services. In order
for a client to accept and trust a result produced by an unfamiliar Web service,
the result needs to be accompanied by a justification that is understandable
and usable by the client. For such justifications to be viable for Semantic Web
applications and services, they must be expressed using a standard ontology
and a standard Semantic Web representation language so that any client can
interpret a justification produced by any service, be portable across the Web
in that all references in a justification are URIs, and be combinable so that
justifications can be formed for results produced by multiple reasoners.

In this article, we describe the Proof Markup Language (PML) as an interlin-
gua representation for justifications of reasoning results produced by Semantic
Web services, and we describe example uses of PML in hybrid reasoning and
explanation generation. PML is an ontology added to W3C’s OWL Semantic
Web representation language [13] so that a PML justification is expressed in
OWL and is therefore exchangeable among Semantic Web services and clients
using the RDF /XML syntax. PML is a component of the Inference Web (IW)
infrastructure for Web-based explanations [11, 9], and makes use of the Inference
Web IWBase distributed repository of meta-data including information sources,
reasoning systems, and inference rules [10].

PML provides a means of describing a justification as a sequence of informa-
tion manipulations used to generate an answer. Such a sequence is referred to as
a Proof. A PML proof can represent many kinds of information manipulations
ranging from formal logic derivations to natural deduction derivations to data
base and information retrieval operations to the natural language processing
performed during information extraction.

The rest of the article is organized as follows. Section 2 describes the Infer-
ence Web Semantic Web infrastructure for explanations. Section 3 introduces
the PML specification. Section 4 demonstrates practical uses of the PML for-
mat for explanations and hybrid reasoning. Section 5 presents related work.
Section 6 concludes the article and describes future work.

2 Inference Web

Inference Web (IW) is a framework for explaining answers produced from Se-
mantic Web services and applications. IW provides tools and infrastructure
for building, maintaining, presenting, exchanging, combining, annotating, fil-
tering, comparing, and rendering proofs and proof fragments. Inference Web is
composed of the following portions:

e Specifications: Question answering components may generate answers and
justifications for their answers using the PML format described in this
article. PML provides a proof interlingua representation. IW includes a
specification of PML in OWL!. IW also utilizes the Proof Protocol for
Deductive Reasoning (PPDR) [15], which is an abstract, uniform way of
specifying inference rules.

e Data: PML documents published on the Web become a portion of the
Inference Web data used that is referenced when browsing and summa-
rization tools are presenting explanations, abstractions, and other viewing
options to users. Examples of PML documents produced by several ques-
tion answering systems can be browsed on the Web by following the links
in http://iw.stanford.edu/proofs.html. Inference Web also processes the
PML documents to identify when portions of them may be combined to

Lhttp://iw.stanford.edu/2004/03 /iw.owl

form more complex conclusions. IW also uses rewrite rules to transform
the proofs into more understandable explanations. The IW data includes
the PML proofs and explanations along with a registry of information
used for proof presentation. The registry, called IWBase, is a distributed
repository of meta-data including sources, inference engines and inference
rules. This information is used to support follow-up questions concerning
explanations, proofs, and their individual components.

e Tools and Services: Inference Web includes a tool suite including: a
browser for displaying proofs and explanations; an abstractor for trans-
forming potentially long and incomprehensible PML proofs into shorter
and more understandable PML explanations; an explainer for users to
ask for explanations and the tool to present explanations in multiple, al-
ternative ways; a registrar for submitting and maintaining the evolving
IWBase entries; a proof generation service for facilitating the creation of
PML proofs by inference engines; and the IWBase registry for storing
information used in proofs and explanations.

The TWBase (formerly known as the IW Registry) is a hyperweb of dis-
tributed repositories of meta-information relevant to proofs and explanations,
including knowledge provenance information [16]. Every entry in these repos-
itories is an instance of an IWBase concept as described in Section 3.3. For
example, Ontology is an IWBase concept that is the superclass of entries repre-
senting: ontologies, knowledge bases, thesauri, etc. An ontology entry describes
stores of assertions about the ontology such as its original creator(s), date of
creation, data of last update, version, URL (for browsing), description in En-
glish, etc. IWBase’s provenance information is expanding on an as-needed basis
driven by application demands.

Every entry has a URI and is stored both as a file written in OWL and as
a set of tuples in a database. IWBase files are mainly used by PML proofs to
annotate their content as described throughout this article.

3 PML Specification

PML classes are OWL classes (thus they are subclasses of owl:Class). They are
used to build OWL documents representing both proofs and proof provenance
information. Thus, PML concepts can be considered to be either proof level
concepts or provenance level concepts. Primitive types mentioned in this article
are from the XML schema specification?.

2http://www.w3.org/TR/xmlschema-2/

3.1 Proof Level Concepts

NodeSet3, InferenceStep, and Expression are the main constructs of proofs and
explanations.

A NodeSet represents a step in a proof whose conclusion is justified by any
of a set of inference steps associated with the NodeSet. PML adopts the term
“node set” since each instance of NodeSet can be viewed as a set of nodes
gathered from one or more proof trees having the same conclusion.

e The URI* of a node set is the unique identifier of the node set. Every node
set has one well-formed URI.

e The Conclusion of a node set represents the expression concluded by the
proof step. Every node set has one conclusion, and a conclusion of a node
set is of type Expression.

e The expression language of a node set is the value of the property has-
Language of the node set in which the conclusion is represented. Every
node set has one expression language, and that expression language is of
type Language.

e Each inference step of a node set represents an application of an inference
rule that justifies the node set’s conclusion. A node set can have any
number of inference steps, including none, and each inference step of a
node set is of type InferenceStep. The inference steps are members of a
collection that is the value of the property isConsequent0f of the node
set. A node set without inference steps is of a special kind identifying an
unproven goal in a reasoning process as described in Section 4.1.2 below.

An InferenceStep represents a justification for the conclusion of a node set.
Inference steps are anonymous OWL classes defined within node sets. For this
reason, it is assumed that applications handling PML proofs are able to identify
the node set of a inference step. Also for this reason, inference steps have no
URIs.

e The rule of an inference step, which is the value of the property hasRule of
the inference step, is the rule that was applied to produce the conclusion.
Every inference step has one rule, and that rule is of type InferenceRule
(see Section 3.3.3). Rules are in general registered in the IWBase by en-
gine developers. However, PML specifies three special instances of rules:
Assumption, DirectAssertion, and UnregisteredRule. When specified in
an inference step, the Assumption rule says that the conclusion in the
node set is an explicit assumption. The DirectAssertion rule says that
the conclusion on the node was told by the sources associated with the

3PML concept names are typed in sans serif style and PML attribute names are typed in
courier style.
4http://www.ietf.org/rfc/rfc2396.txt

inference step (see the hasSource property of an inference step). The Un-
registred Rule says that the conclusion in the node set was derived by some
unidentified, unregistered rule. UnregisteredRules allow the generation of
proofs-like structures applying undocumented, unnamed rules.

The antecedents of an inference step is a sequence of node sets each of
whose conclusions is a premise of the application of the inference step’s
rule. The sequence can contain any number of node sets including none.
The sequence is the value of the property hasAntecedent of the inference
step. The fact that the premises are ordered may be relevant for some
rules such as ordered resolution [17] that uses the order to match premises
with the schemas of the associated rule. For other rules such as modus
ponens, the order of the premises is irrelevant. In this case, antecedents
can be viewed as a set of premises.

Each binding of an inference step is a mapping from a variable to a term
specifying the substitutions performed on the premises before the appli-
cation of the step’s rule. For instance, substitutions may be required to
unify terms in premises in order to perform resolution. An inference step
can have any number of bindings including none, and each binding is of
type VariableBinding. The bindings are members of a collection that is the
value of the property hasVariableMapping of the inference step.

Each discharged assumption of an inference step is an expression that is
discharged as an assumption by application of the step’s rule. An infer-
ence step can have any number of discharged assumptions including none,
and each discharged assumption is of type Expression. The discharged as-
sumptions are members of a collection that is the value of the property
hasDischargeAssumption of the inference step. This property supports
the application of rules requiring the discharging of assumptions such as
natural deduction’s implication introduction. An assumption that is dis-
charged at an inference step can be used as an assumption in the proof
of an antecedent of the inference step without making the proof be condi-
tional on that assumption.

Each source of an inference step refers to an entity representing original
statements from which the conclusion was obtained. An inference step
can have any number of sources including none, and each source is of
type Source as described in Section 3.3.1. The sources are members of
a collection that is the value of the property hasSource of the inference
step. An inference step’s source supports the justification of the node set
conclusion when the step’s rule is a DirectAssertion.

The engine of an inference step, which is the value of the property hasIn-
ferenceEngine of the inference step, represents the inference engine that
produced the inference step. Each inference step has one engine, which is
of type InferenceEngine.

e The timestamp of an inference step, which is the value of property has-
TimeStamp of the inference step, is the date when the inference step was
produced. Time stamp is of the primitive type dateTime. Every inference
step has one time stamp.

An inference step is said to be well-formed if:

1. Its node set conclusion is an instance of the conclusion schema specified
by its rule;

2. The expressions resulting from applying its bindings to its premise schemas
are instances of its rule’s premise schemas;

3. It has the same number of premises as its rule’s premise schemas; and

4. If it is an application of the DirectAssertion rule, than it has at least one
source, else it has no sources.

Further proof verification may be performed by checking side conditions
on declarative rules [15] and running verification methods on method rules.
However, a discussion of this level of verification is beyond the scope of this
article.

PML node set schemas and PML inference step schemas used later in the
article are defined as follows. A PML node set schema is a PML node set
which has a conclusion that is either a sentence schema® or a sentence; which has
a set of variable bindings that map free variables in the conclusion to constants;
which has zero of more inference steps; and whose inference steps are either
inference steps or inference step schemas. An inference step schema is an
inference set of a node set schema whose antecedents are node set schemas.

An Expression is a PML representation of well-formed logical expressions
written in accordance with a given Language.

A proof generated by the Wine Agent® is used in Section 3.2 below to de-
scribe how answer justifications are represented in a set of PML documents.
Figure 1 presents the last node set of a set of PML documents. There, the node
set conclusion is a triple written in KIF [5] and based on the RDF predicate
type saying that TonysSpecialty is of type seafood. In fact, the 7x in the
node set conclusion is a variable since the conclusion is written in KIF (accord-
ing to the value of the hasLanguage property of node set) and KIF variables
are prefixed with a question mark. Moreover, according to the value of the
hasVariableMapping property of the inference step justifying the node set con-
clusion, ?x is bound to the term SEAFOOD. The conclusion of the node set in
Figure 1 has one justification since the node set has a single inference step.

5A sentence schema is a sentence optionally containing free variables. An instance of a
sentence schema S is a sentence that is S with each free variable replaced by a constant.
Shttp://www.ksl.stanford.edu/people/dlm/webont /wineAgent /

<rdf:RDF>
<iw:NodeSet rdf:about="http://.../tonysns4_0.owl#tonysns4_0">
<iw:conclusion>
(Ihttp://www.w3.0rg/1999/02/22-rdf-syntax-ns#| : : type
|http://.../tonys.daml#]|::|TonysSpecialty| ?x)
</iw:conclusion>
<iw:hasLanguage rdf:resource="http://.../registry/LG/KIF.owl#KIF"/>
<iw:isConsequentOf rdf:parseType="Collection">
<iw:InferenceStep>
<iw:hasRule rdf:resource="http://.../registry/DPR/GMP.owl#GMP"/>
<iw:hasInferenceEngine
rdf :resource="http://.../registry/IE/JTP.owl#JTP"
rdf :type="http://.../iw.owl#InferenceEngine"/>
<iw:hasAntecedent rdf:parseType="Collection">
<iw:NodeSet rdf:about="http://.../tonysns4_1.owl#tonysns4_1"/>
<iw:NodeSet rdf:about="http://.../tonysns4_5.owl#tonysns4_5"/>
</iw:hasAntecedent>
<iw:hasVariableMapping rdf:parseType="Collection">
<iw:VariableMapping iw:Variable="7x">
<iw:Term>
|http://.../tonys.daml#]| :: | SEAFOOD|
</iw:Term>
</iw:VariableMapping>
</iw:hasVariableMapping>
</iw:InferenceStep>
</iw:isConsequent0f>
</iw:NodeSet>
</rdf :RDF>

Figure 1: A PML node set.

3.2 Proofs

Since a PML node set can have multiple inference steps and each antecedent of
each of those inference steps can have multiple inference steps, a PML node set
N and the node sets recursively linked to N as antecedents of inference steps
represent a graph of alternative proofs of N’s conclusion. In this section, we
describe how to extract individual proofs of N’s conclusion from that graph of
alternative proofs. We shall call each such extracted proof a “proof from N”.

We begin by defining a proof as a sequence of “proof steps”, where each
proof step consists of a conclusion, a justification for that conclusion, and a set
of assumptions discharged by the step. “A proof of C” is defined to be a proof
whose last step has conclusion C'. A proof of C' is conditional on an assumption
A if and only if there is a step in the proof that has A as its conclusion and
“assumption” as its justification, and A is not discharged by a later step in the
proof. An unconditional proof of C' is a proof of C that is not conditional on any
assumptions. (Note that assumptions can be made in an unconditional proof,
but each such assumption must be discharged by a later step in the proof.)
Finally, proof P1 is said to be subproof of P2 if and only if the sequence of proof
steps that is P1 is a subsequence of the proof steps that is P2.

Given these definitions, we can now define the proofs that are extractable

from a PML node set as follows: for any PML node set N, P is a “proof from
N7 if and only if:

1. The conclusion of the last step of P is the conclusion of N;
2. The justification of the last step of P is one of N’s inference steps S; and

3. For each antecedent A; of S, exactly one proof from A; is a subproof of
P.

If N is a node set having conclusion C', then a proof from N is a proof of C.

Figure 2 presents a fragment of the proof represented within the set of PML
documents produced by the Wine Agent. The actual rendering of the proof
from the set of PML documents as presented in Figure 2 was performed by
the IWBrowser discussed in Section 4.3.1 below. The basic idea for getting a
proof from the set of PML documents is that tools can traverse the set of node
sets, which may be inter-connected by inference steps within the node sets. For
example, the node set in Figure 1 has the conclusion of the last step of the proof
fragment in Figure 2 (that TonysSpecialty has type Seafood). The node set in
Figure 1 has two antecedents (that crab is a subclass of seafood and that since
crab is a subclass of ?x then tonysSpecialty has type 7x) that are new proofs
and are subproofs of the proof fragment in Figure 2.

A description of the entire proof for the answer that TonysSpecialty is a kind
of seafood is beyond what is necessary for pedagogical purposes in this article.
However, the set of PML documents representing the proof for this answer is
available on the Web”, which can be browsed® using the IW Browser.

3.3 Provenance Level Concepts

Inference Web stores provenance information about proofs and explanations in
the IWBase. This section describes the concepts supported by IWBase that are
part of the PML specification.

3.3.1 Provenance Element

ProvenanceElement represents a information unit describing the origin of some
PML proof level concept introduced in Section 3.1. ProvenanceElement is a su-
perclass of the PML concepts at the provenance level and the ProvenanceElement
attributes are described as follows:

e The URI of a provenance element is the unique identifier of the provenance
element. Every provenance element has one well-formed URI, which is an
instance of the primitive type anyURI.

Thttp://iw.stanford.edu/proofs/jtp/tonys/tonys/
8http://iw.stanford.edu/documents/isexample.html

;
Generalized Modus Ponens TP~ KSL Jora Theorem [Generalized modus Ponens

[JTP- K51 Jaua Theorem Prover] “Prover] [JTF - KSL Java Thearem Prover]

(<= {type TonysSpecialty 7z} (and

Generalized hodus Ponens
TR - K5L Jawa Theatem Prover]

8 (type (<= (subClassOf CRAB 7x) SubClass o7
(txglsaﬁhg:gssgfpﬁtélql?g)‘;ﬂ Tonys Specialty {subClass Of SHELLFISH (SHELLHS“ l
SOf 7c 7 CRAB 7%
R SEAFOOD)
-
=
[P~ RSk Jovs Theorem prover
(<= (type Tﬂnvssnel:lal subClassOf CRAB ?x)) {subClass Of CRAB SEAFOOD)

[HideJeadh]

\ /

[Exrerled fiodus Panens] —
type TonysSpecialty SEAFQOD
{typ Y p Y)

D=2 D] == e

1]

Figure 2: A partial view of a proof extracted from PML documents.

e The URL of a provenance element describes a URL used to browse an ele-
ment’s web document. For instance, if the provenance element is an orga-
nization named the New York Times, then the http://www. nytimes.com
URL can be used to access a web document about the organization. In
this case the URL points to the organization’s web site. A provenance
element can have zero or one URLs.

e The Name of a provenance element describes a short name (or “nickname”)
for the element within the IWBase. Every provenance element has one
name, and the name is an instance of the primitive type string.

e The Submitter of a provenance element represents the team of people re-
sponsible for the registration of the provenance element in IWBase. Every
provenance element has one submitter, and the submitter is an instance of
the type Team, which is a subclass of Source as described in Section 3.3.2.

e The DateTimeInitialSubmission of a provenance element is the date
when the provenance element was first registered in IWBase. Every prove-
nance element has one DateTimeInitialSubmission, and that is an in-
stance of the primitive type dateTime.

e The DateTimeLastSubmission of a provenance element is the last date
when the provenance element was registered in IWBase. Every provenance
element has one DateTimeLastSubmission, and that is an instance of the
primitive type dateTime.

e The EnglishDescription of a provenance element is a description in En-
glish of the provenance element. A provenance element can have zero or

one descriptions in English, and EnglishDescription is an instance of
the primitive type string. The description in English is intended to be
used by tools to present provenance elements to human agents. For ex-
ample, the description in English of the Modus Ponens inference rule may
be a better presentation and more informative for most users browsing a
PML document than the presentation of the formal logical specification
of the rule.

3.3.2 The Source Concept

A Source is a ProvenanceElement representing an entity which is the source of the
original data. Current types of Inference Web sources include: InferenceEngine,
Ontology, Organization, Person, Publication, Language, and Team. We provide a
description of two source types here.

e An InferenceEngine represents an engine that is able to produce a justi-
fication for a given conclusion. Note that the use of the term “inference
engines” in this article is not limited to engines with reasoning capabili-
ties. For example, search engines retrieving information may serve as an
inference engine and provide a justification of their answer by a direct
assertion inference step. Similarly extraction modules may be viewed as
inference engines and, in fact, we have registered a number of extraction
modules from the UIMA extraction toolkit[2] so that extracted answers
may be explained in Inference Web using PML.

e A Language represents a language used to write conclusions of node sets.
Any language can be registered in IWBase including formal logical lan-
guages, such as KIF, and natural languages, such as English, and repre-
sentation languages such as DAML+OIL and OWL.

3.3.3 The Rule Concept

An InferenceRule represents a ProvenanceElement specialization describing rules
applied to premises deriving node set conclusions. An InferenceRule can be either
a PrimitiveRule or a DerivedRule.

A PrimitiveRule is a type of an InferenceRule that is implemented by one or
more inference engines. A given rule R; may not be called primitive until it
becomes associated with one or more inference engines. Thus, assuming that
R, is implemented by an inference engine F;, the inference engine may declare
R; to be a primitive rule. The notion that R; is a primitive rule for one specific
engine is relevant since R; may also be derived from Ry, which is a primitive rule
for another engine Fs. In this case, Ry may be registered once as a primitive rule
and zero or more times as a derived rule, depending on how many combinations
of rules are used to derive R;. For example a natural deduction reasoner F; may
define modus ponens as a primitive rule and another reasoner F, may register
Robinson’s resolution rule as a primitive rule. The E5 reasoner may be able to
derive a modus ponens rule using its primitive resolution rule. Thus, any rule

10

R; can be registered multiple times, once as a primitive rule and multiple other
times as derived rules depending on the number of different combinations of
rules used to derive R;.

e The specification of a primitive rule is a string describing in a declarative
way the sequence of premise schemas, the conclusion schema, and the
syntactical conditions for applying the rule.

e The language of a primitive rule is the language in which the primitive rule
specification is written. A primitive rule may have one language, which is
of type Language.

A DeclarativeRule is a PrimitiveRule and is well-formed if and only if all the
syntactic conditions for the primitive rule hold.

A MethodRule is a PrimitiveRule whose conditions cannot be completely spec-
ified in terms of the attributes of the conclusion’s node set, the conclusion’s in-
ference step applying the primitive rule, and the premises’ node sets. Inference
rules that are “procedural attachments” are examples of method rules. The
current work on PML does not involve checking if method rules are well-formed
although future plans include checking support.

A DerivedRule is an InferenceRule specified from a PML node set schema with
the restriction that each node set schema must have one and only one inference
step. The Specification of a derived rule represents a proof (as defined in
Section 3.2) from a given PML node set schema since each PML node set must
have one and only one inference step. Moreover, the derived rule’s proof is a
proof schema since the PML node sets of the proof are PML node set schemas.

4 Using PML Proofs

4.1 Support for Hybrid Reasoning

Experience with automated reasoners has made clear that in order to effec-
tively determine answers to complex real-world questions, general-purpose rea-
soners need to be augmented with special-purpose reasoners that embody both
domain-specific and task-specific expertise. That is, effective deductive answer
determination requires hybrid reasoning.

We have developed an object-oriented modular architecture for hybrid rea-
soning (called the JTP architecture), a library of general-purpose reasoning
system components (called the JTP library) that supports rapid development
of reasoners and reasoning systems using the JTP architecture, and a multi-use
reasoning system (called the JTP system) employing the JTP architecture and
library [3]. The JTP architecture and library is intended to enable the rapid
building, specializing, and extending of hybrid reasoning systems. Each rea-
soner in a JTP hybrid reasoning system can embody special-purpose algorithms
that reason more efficiently about particular commonly-occurring kinds of infor-
mation. In addition, each reasoner can store and maintain some of the system’s

11

knowledge, using its own specialized representations that support faster infer-
ence about the particular kinds of information for which it is specialized.

Proofs represented in PML play a central role in the JTP architecture in
that they are used to represent both queries and reasoning results as they are
sent to and received from reasoners during the hybrid reasoning process. In this
section we describe JTP’s use of PML proofs in hybrid reasoning.

4.1.1 JTP System Architecture

The JTP architecture assumes that there is a single initially empty knowledge
base (KB) with respect to which all processing is done. A KB is considered to
be a representation of a logical theory and to contain a set S of symbolic logic
sentences and a set of justifications for each sentence in S. The architecture sup-
ports commands for loading a KB, adding an axiom to a loaded KB, removing
an axiom from a loaded KB, and asking what (partial or full) instances of a
sentence schema are entailed by a loaded KB.

The primary work of the system is assumed to be performed by modules
called reasoners. There are “telling” reasoners that are invoked when a sen-
tence is being added to the KB and “asking” reasoners that are invoked when
the KB is being queried. Reasoners produce reasoning steps, each of which
is a partial or completed PML proof The reasoning steps produced by telling
reasoners are completed proofs of additional sentences that are inferred from the
reasoner’s input. The reasoning steps produced by asking reasoners are partial
or completed proofs of candidate answers to a query.

Since the set of answers to a query may be of unpredictable size and may
require an unpredictable amount of time to derive, the output of a reasoner is an
enumerator that can be pulsed to obtain the next reasoning step produced
by the reasoner. Enumerators enable a reasoner to provide output reasoning
steps as they are derived and for additional derivations to be attempted on an
as needed basis.

A reasoning system using the JTP architecture needs some means of deter-
mining to which of its arbitrary number of reasoners to route its inputs. That
capability is provided by reasoners in the system that act as “dispatchers”
of an input to other reasoners that the dispatcher determines may be able to
process the input. Each dispatcher has a set of child reasoners associated with
it and serves as a transparent proxy for those child reasoners.

4.1.2 Reasoning Steps

Reasoners produce enumerations of reasoning steps, and take reasoning steps as
input. A reasoning step is a PML node set schema that represents a partial or
completed proof of a symbolic logic sentence.

A reasoning step that is a node set schema N having conclusion C', variable
bindings B, and no inference steps specifies a query to find proofs of instances of
the sentence schema C'/B (i.e., the sentence schema produced by applying the
bindings B to C'). A reasoner given such a reasoning step as input can produce

12

either partial or complete proofs of instances C'/B. Each partial or complete
proof to be returned by the reasoner can be represented by adding inference
steps and variable bindings to a copy of the input reasoning step. Each node
set in a reasoning step produced by a reasoner that does not have an inference
step is an unproven subgoal for which a proof is needed in order to complete
the proof.

Thus, reasoning steps are used to represent both queries and reasoning re-
sults as they are sent to and received from reasoners during the hybrid reasoning
process.

4.1.3 The Tell and Ask Commands

The Tell Command takes as input a sentence S and adds it to the KB. The
command processor does that by forming a reasoning step R representing a
proof of S justified as a direct assertion, and then calling a telling reasoner with
P as input.

A telling reasoner takes as input a reasoning step that is a proof. The proof
may represent either a sentence that is being told to the system (justified as
a direct assertion), or a result of a previous inference, justified by an inference
rule, that the reasoner is to build upon. The reasoner may assert the sentence to
one or more knowledge stores, produce additional inferences in the form of new
proofs, or signal that a contradiction has been found. The output of a telling
reasoner is an enumerator whose output when pulsed is a proof representing the
result of a new inference.

The Ask Command takes as input a sentence schema S, and produces as
output an enumerator whose output when pulsed is an unconditional proof of
an instance of S. The command processor produces its output by forming a
reasoning step having conclusion S, and then calling an asking reasoner with
that reasoning step as input.

An asking reasoner accepts as input a reasoning step R having conclusion C,
and no inference step. R represents a query whose answers are instances of C.
The reasoner attempts to produce reasoning steps having the same conclusion
as R and a variable binding set that is a superset of R’s variable binding set.
The reasoner’s output is an enumerator whose output when pulsed is such a
reasoning step. If no reasoning steps can be produced, then the enumerator is
empty.

For example, consider a query to find bindings for v; and vy such that “(P
v1 v2)” is true. Assume the knowledge base contains the axioms “(=> (and (Q
zy) (Ry z)) (Pzz))” and “(Q a b)”. An asking reasoner that receives this
query as a node set schema could return a node set schema with “(P vy v2)” as
the conclusion, {(v; a)} as the variable bindings, and an inference step schema
whose rule is generalized modus ponens; whose bindings are (z a) and (y b); and
whose antecedents are Ay, Ay, and As. The conclusion of A; would be “(=>
(and (Q z y) (Ry 2)) (P « z))”, and A; would have an inference step whose
rule is “direct assertion”. The conclusion of As would be “(Q a b)”, and A
would have an inference step whose rule is “direct assertion”. The conclusion

13

of A3 would be “(R b z)”, and As would have no inference steps. Thus, “(R b
z)” would be an unproven subgoal to be dispatched to an appropriate reasoner
in an attempt to complete the proof.

4.2 Support for Knowledge Provenance

Users and reviewers of our work have consistently been interested in having
simple ways to obtain the ground assertions that were used to find a particular
conclusion C. A summary of the statements used in the proof provides one
course level of abstraction of the proof. A tool using PML can take any par-
ticular answer represented by the conclusion C of a node set IV and trace back
through the inference steps used in a recursive way, looking at their antecedents
and determining all of the sources used to arrive at C'. Thus, the resulting
collection has the sources of all possible proofs from N in the set of PML doc-
uments, which may be more interesting for some users than just the collection
of sources of one proof from N. Beyond simple collections of the statements or
sources used, PML documents also have links to the meta-information available
for these sources. Thus a user may find that the particular conclusion C relied
on exactly two knowledge bases used as information sources (and potentially a
particular set of sentences in those two knowledge bases) and additionally may
learn that those two knowledge bases were considered authoritative sources by
a particular verification body and the two knowledge bases were updated within
the last week. That may be as much information as some users would like to
see about a conclusion at a particular time.

In practical scenarios such as those used on the ARDA AQUAINT? and
NIMD'® projects, presentation of knowledge provenance information can be
large lists of assertions entailing the conclusion of a node set. In terms of PML
proof concepts, the ground assertions are the conclusions of node sets justified
by inference steps applying the direct assertion rule. The list of sources is a
consolidation of the sources of the ground assertions’ inference steps justifying
the ground assertions. The meta-information of the sources are the entries of the
sources in the IWBase. Thus, PML proofs are the artifacts relating knowledge
provenance information in the IWBase to explanations of answers provided by
Semantic Web applications and services.

4.3 Support for Explanations

Any transformation of the proof of a conclusion that is more understandable
to the user than the proof is considered an explanation in this paper. The
presentation of PML proofs as discussed in Section 4.3.1 provides a strategy
to explain conclusions. Many users of the Semantic Web, may be unable to
understand logical proofs or simply be unwilling to review them. For these
users, the presentation of the ground assertions used to conclude C' as already
discussed in Section 4.2 may be a better type of explanation for C' since it gives

Yhttp://www.ic-arda.org/InfoExploit/aquaint /
Ohttp://www.ic-arda.org/Novel_Intelligence/

14

them an understanding of what the conclusion depended upon without going
into the details of the inference(s) used. In general, any abstraction of the proof
of C' may also be an explanation of C. The use of rewriting rules as discussed
in Section 4.3.2 is an operational method for abstracting proofs and is one that
we leverage to generate explanations that provide some notion of the inferences
without providing all of the details.

4.3.1 Browsing PML Documents

The IW browser is a Web application used to render PML documents as human-
friendly HTML documents. Given a node set’s URI, the browser can render a
proof by using the node set’s inference steps to generate graph composed of
node sets and their inference steps. The use of the PML format provides two
immediate benefits for browsing proofs:

e Direct Access to Proof Nodes: Proofs can easily be composed of hundreds
or thousands of node sets. Users, however, may not need to browse all
nodes to understand a large proof. In fact, we often see that information
from a few key node sets may be enough for most users to understand a
proof. Further, not only may it be enough, it is preferable to only view a
few critical components of the proof instead of viewing most or all of the
proof. Thus, PML proofs allow users to refer to URIs of specific node sets
of proofs rather than be forced to deal with a monolithic proof.

e Lightweight Loading of Proofs: The browser’s proof lens is a metaphor
of a magnifier visualizing parts of proofs. The lens focus is the conclusion
of a given node set. The lens magnitude is the maximum number of
inference steps traversed on any single path for presentation in the limited
view. The user may “refocus” the lens by choosing something other than
the current conclusion and then only view a portion of the proof supporting
that statement. The lens notion supports lightweight proof loading since
node sets are loaded only on demand, thus all the node sets not in the
lens focus will not be loaded until a refocusing occurs that requires them
for presentation.

When interacting with the browser, users may select from a number of proof
styles and sentence formats for displaying PML documents. Proof style is the
layout used during proof presentation. For example, a “textbook” logic layout
style uses a bar to separate the conclusion of a node set from the premises of
that conclusion.

The name of the inference step is placed on the right side of bar. Sentence
format identifies the preferred way of formating the conclusions of node sets.
The “raw” format means that conclusions are presented as they are represented
in the PML document. Other sentence formats rely on the browser capability of
translating conclusions from their original languages into the requested format.
Since many users prefer to see a form of natural language output, we have
provided a simple logic to English presentation module that will present nodes
labeled in KIF in a limited English format.

15

4.3.2 PML Explanations

When Inference Web uses abstraction techniques for proofs, it will hide po-
tentially a lot of information about how a conclusion was reached. We have
observed that hiding many of the primitive core rules in reasoners is useful
for many users. For example, users may not want to see many applications of
“modus ponens” in the JTP reasoner and may instead prefer to see one applica-
tion of a courser grained inference such as class transitivity. The JTP reasoner
was built using primitive rules because they were useful for efficient implemen-
tation of the reasoner, but not necessarily because they are useful for human
understanding. Typically primitive rules are at the wrong level of granularity
to present to an end user and also many times they are the wrong granularity
to present to agents as well.

The rewriting of proofs based on primitive rules into proofs based on derived
rules is one way of abstracting primitive rules. However, syntactic manipulations
of proofs may also be insufficient for abstracting machine-generated proofs into
some more understandable proofs [6]. Proofs can become more understandable
if they are rewritten using IW tactics, that are rules derived from axioms from
language descriptions such as the DAML [4] axiomatic set. In tactics, axioms
are the elements responsible for aggregating steps together in order to make the
rules more understandable.

The IWBase registrar includes an editor of derived rules that can be used
to specify tactics. The IW abstractor algorithm generates explanations in a
systematic way using IWBase derived rules. For any particular conclusion C,
the IW abstractor may abstract away a number of node sets of proof of C. Using
the IW explainer, the user may always ask for alternative explanations through
follow-up questions and still obtain the proof of C, however the explanation of C'
and the presentation of provenance information provide abstracted explanations.
The general result of using the IW abstractor in the IW explainer is to hide
primitive rules and expose higher-level derived rules.

The ability to provide portions of proofs and provide support for follow-up
questions has been found to be a critical component in creating usable explana-
tion systems[8]. Inference Web follows this architectural design of being able to
present stand alone components of proofs and then support follow-up questions
that are appropriate in the context of any particular proof.

4.4 PML API and Proof Generation Services

A PML API is fully implemented in Java and will be publicly available soon.
For now, most PML users rely on the proof generation services (PGS) available
on any node of the IWBase including the IWBase Core node ''. Thus, using
the PGSs, inference engines can call the services passing node set and inference
step attributes according to the PGS documentation, which return the PML
documents to be stored under a web server. Compared with the PML API,

1PGSs documentation and links for the core node are available at
http://iw.stanford.edu/documents_registering.html

16

PGSs are a better solution for generating PML since they already have support
for querying the IWBase in order to include the meta-information annotating
the proofs. Also, PGSs provide an uniform way of generating PML in case the
PML specification evolves.

5 Related Work

Automated reasoners have many different ways to represent proofs [18]. More-
over, a single reasoner can have multiple ways of representing proofs. For exam-
ple, a reasoner can have an internal representation of proofs that has a number
of features to handle optimizations and an external representation of proofs used
to present a trace of how conclusions are derived. Proofs exchanged between
reasoners are usually external representation of proofs. Indeed, many proof ele-
ments such as optimization properties can be useless for other reasoners because
the optimizations are tied to the internals of a particular engine.

External representations of proofs have been developed for several reasons.
For example, most automated reasoners are able to produce a simple trace of
their proofs in order to support author debugging. These traces though were
rarely meant for end users or even programs but they can provide the raw mate-
rial for generating explanations. The need to check proofs is a more sophisticated
reason to have a external representation of proof. For example, Watson [19] cre-
ated a technique to represent and check proofs produce by Isabelle [14].

Most external representations of proofs in use by more than one automated
reasoning were developed within the context of hybrid reasoning systems and
logical frameworks. But even in the context of hybrid reasoning systems, these
external representations typically have goals of hybrid reasoning interoperability
rather than our goal with PML of providing a general proof representation.
PDS [1] is one example of a general representation of proofs that is used in
hybrid reasoning systems such as MBase [7].

PML and PDS have some similarities and differences. They share the ability
of representing proofs at different levels of abstraction. For instance, the PML
ability to generate explanations from proofs corresponds to the PDS notion of
“third dimension” for is proof representation. The MBase use of PDS is also of
particular interest for PML since it demonstrated the need of a web artifact to
represent proofs. Indeed, MBase uses an XML version of PDS. PML is more
flexible than PDS for describing information manipulation in general however.
For example, PML sentences may have multiple justifications and may be writ-
ten in any language. While PML was originally designed with explanation of
hybrid reasoners, it has had a major influence from work explaining informa-
tion extraction and has evolved to facilitate explanations of those results (such
as the work with the UIMA extractors). PML has had a primary emphasis
of supporting portable proofs using web infrastructure aiming at interoperable
web explanations. Another emphasis that separates our work on PML and In-
ference Web is our emphasis on explanation of provenance and our registration
mechanism (IWBase) providing this support.

17

In order to show some of the power of our explanation work with Inference
Web and PML, we have provided a few examples of web services utilizing PML
proofs. The KSL Wine Agent, the DAML Query Language Client'2, and the
OWL Query Language Client all use PML proofs in order to provide interop-
erable explanations of their answers. In this paper, we only showed a simple
example from the KSL wine agent in its typical task of suggesting wine and
food combinations for particular meals. In that example, we just showed a
portion of the explanation for the type of a particular meal (TonysSpeciality).
The implemented system provides explanations for food types as well as wine
combinations as well as wine suggestions and places to buy them. The wine
agent loads a knowledge base into the JTP reasoner, then asks JTP for answers
to questions such as what wine should be served with a particular meal, then
presents the answers along with their PML proofs through a specialized interface
using the Inference Web browser and explainer. In the simple example in this
paper, we just showed a portion of a proof that would have been dumped for
the wine description for the meal that served TonysSpeciality. Since that wine
description suggested a white wine, a user might have asked for the type of the
food (it was a crabdish which is also of course a seafood dish and the knowledge
base contains information in it that suggests white wines with seafood dishes).
Using this and other web services, we have provided implemented examples of
how one can use PML and the inference web to exploit knowledge bases in lan-
guages such as OWL and reasoner that can provide justifications for answers in
PML to provide explanations of their answers using the Inference Web.

The IW Browser!3 is a web service that renders PML proofs and presents
them in multiple formats for humans. All of these agents presented in this
paper use the Stanford JTP hybrid reasoner but other reasoners and question
answering systems are being registered in Inference Web and are supporting
PML dumps. We have extended a version of SRI’s SNARK theorem prover'*
to produce PML proofs and we have also worked with ISI to integrate ISI’s
Prometheus'® query planner with Inference web. We have also worked with
IBM to integrate a number of their information extractors to produce PML and
thus to be able to use inference web to explain their findings. Trento’s semantic
match system using JSAT has also been integrated with Inference Web and
PML and can now provide explanations of semantic matches[12]. We are also
pursuing discussions with designers of other reasoning systems including W3C'’s
CWM!'6 and UT’s KM'7 and SRI’s SPARK.

In these discussions and in our integration efforts, we have gathered require-
ments for a portable proof markup language that will support standard first
order logic theorem provers as well as a broad array of systems that return an-
swers to question such as extractors that take in natural language documents

2http://onto.stanford.edu:8080/dql/servlet/DQLFrontEnd
Bhttp://iw.stanford.edu/iwbrowser

Mhttp:/ /www.ai.sri.com/ “stickel /snark.html

Shttp:/ /www.isi.edu/info-agents/Prometheus/

6http:/ /www.w3.org/2000/10/swap/doc/cwm.html
http:/ /www.cs.utexas.edu/users/mfkb/km.html

18

and extract sets of structured facts or query planners that take in a query and
determine how to answer the query by posing subqueries to resources that are
expected to have information relevant to the query.

6 Conclusion and Future Work

In this article we have introduced a proof markup language — PML — that is used
to support web services inter-operation and trust. Since PML is an interlingua
and since a number of question answering systems can justify their answers
using PML, inter-operation is facilitated. Since trust is increase (for humans
or agents) when they can ask for the reasons that an answer is believed, and
further find meta information about the information and the assumptions on
which any information manipulation step is based, trust is increased.

PML has been integrated into the Inference Web infrastructure and is used
as the interlingua that allows IW to present, combine, summarize, abstract, and
explain answers generated by web services. In our discussion of hybrid reasoning
and our integration efforts with JTP, we presented how PML supports hybrid
reasoning and provided one implemented example of how the integration with a
reasoner works. This implementation then provides the basis for utilizing PML
and Inference web to provide explanations of a number of web services that
may serve as pedagogical examples. We provided a brief description of how the
KSL wine agent uses PML and Inference Web to explain its suggestions and
conclusions.

PML provides the representational foundation and Inference Web provides
the tools and infrastructural support for enabling proof annotation, knowledge
provenance presentation, and explanation browsing for agents and humans. This
work provides the foundation from which web services may realize their promise
of providing remote, interoperable access across components of distributed soft-
ware systems.

Acknowledgments. The authors would like to thank Pat Hayes for many
thought provoking conversations concerning explanation and for the PML name.

References

[1] Lassaad Cheikhrouhou and Volker Sorge. PDS — A Three-Dimensional Data
Structure for Proof Plans. In Proceedings of the International Conference
on Artificial and Computational Intelligence (ACIDCA’2000), Monastir,
Tunisia, March 2000.

[2] D. Ferrucci and A. Lally. UIMA: An Architectural Approach to Un-
structured Information Processing in the Corporate Research Environment.
Journal of Natural Language Engineering, June 2004. To appear.

19

[3]

[11]

[12]

Richard Fikes, Jessica Jenkins, and Gleb Frank. JTP: A System Archi-
tecture and Component Library for Hybrid Reasoning. Technical Report
KSL-03-01, Knowledge Systems Laboratory, Stanford University, Stanford,
CA, USA, 2003.

Richard Fikes and Deborah L. McGuinness. An Axiomatic Semantics for
RDF, RDF-S, and DAML+OIL (March 2001). Technical Report Note 18,
W3C, December 2001.

Michael R. Genesereth and Richard Fikes. Knowledge interchange format,
version 3.0 reference manual. Technical Report Logic-92-1, Computer Sci-
ence Department, Stanford University, Stanford, CA, USA, 1992.

Xiaorong Huang. Reconstructing Proofs at the Assertion Level. In Pro-
ceedings of CADE-94, LNAI-814, pages 738-752. Springer, 1994.

Michael Kohlhase and Andreas Franke. MBase: Representing Knowledge
and Context for the Integration of Mathematical Software Systems. Journal
of Symbolic Computation, 32(4):365-402, September 2001.

Deborah L. McGuinness. Ezxplaining Reasoning in Description Logics. PhD
thesis, Rutgers University, 1996.

Deborah L. McGuinness and Paulo Pinheiro da Silva. Infrastructure for
Web Explanations. In D. Fensel, K. Sycara, and J. Mylopoulos, editors,
Proceedings of 2nd International Semantic Web Conference (ISWC2003),
LNCS-2870, pages 113-129, Sanibel, FL, USA, October 2003. Springer.

Deborah L. McGuinness and Paulo Pinheiro da Silva. Registry-Based Sup-
port for Information Integration. In Proceedings of IJCAI-2003 Workshop
on Information Integration on the Web (IIWeb-03), pages 117-122, Aca-
pulco, Mexico, August 2003.

Deborah L. McGuinness and Paulo Pinheiro da Silva. Explaining Answers
from the Semantic Web. Journal of Web Semantics, 2004. To appear.

Deborah L. McGuinness, Pavel Shvaiko, Fausto Giunchiglia, and Paulo Pin-
heiro da Silva. Towards Explainig Semantic Matching. In Volker Haarslev
and Ralf Moller, editors, Proceedings of the 2004 International Workshop
on Description Logics. CEUR-Workshop Proceedings, 2004. To appear.

Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontol-
ogy Language Overview. Technical report, World Wide Web Consortium
(W3C), February 10 2004. Recommendation.

Lawrence C. Paulson. Isabelle: the next 700 theorem provers. In
P. Odifreddi, editor, Logic and Computer Science, pages 361-386. Aca-
demic Press, 1990.

20

[15]

[16]

[17]

[18]

[19]

Paulo Pinheiro da Silva, Patrick Hayes, Deborah L. McGuinness, and
Richard Fikes. PPDR: A Proof Protocol for Deductive Reasoning. Tech-
nical Report KSL-04-04, Knowledge Systems Laboratory, Stanford Univer-
sity, Stanford, CA, USA, March 2004.

Paulo Pinheiro da Silva, Deborah L. McGuinness, and Rob McCool. Knowl-
edge Provenance Infrastructure. IEEFE Data Engineering Bulletin, Decem-
ber 2003. To appear.

J. Reynolds. Unpublished seminar notes. Stanford University, Stanford,
CA, 1966.

Geoffrey N. Watson. Proof Representations in Theorem Provers. Technical
Report 98-13, Software Verification Research Centre, The University of
Queensland, Queensland, Australia, September 1998.

Geoffrey N. Watson. A Generic Proof Checker. PhD thesis, The University
of Queensland, Queensland, Australia, 2002.

21

