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SUMMARY 

Relative survival assesses the effects of prognostic factors on disease-specific mortality 

when the cause of death is uncertain or unavailable. It provides an estimate of patients’ 

survival, allowing for the effects of other independent causes of death. Regression based 

relative survival models are commonly used in population-based studies to model the 

effects of some prognostic factors and to estimate net survival. Most often, studies focus 

on routinely collected prognostic factors for which the proportion of missing values is 

usually low (around 5%). However, in some cases, additional factors are collected with 

a greater proportion of missingness. In the present article, we systematically assess the 

performance of multiple imputation in regression analysis of relative survival through a 

series of simulation experiments. According to the assumptions concerning the 

missingness mechanism (completely at random, at random, and not at random) and the 

missingness pattern (monotone, non-monotone), several strategies were considered and 

compared: all cases analysis, complete cases analysis, missing data indicator analysis, and 

multiple imputation by chained equations (MICE) analysis. We showed that MICE 

performs well in estimating the hazard ratios and the baseline hazard function when the 

missing mechanism is missing at random conditionally on the vital status. In the situations 

where the missing mechanism was not MAR conditionally on vital status, complete case 

behaves consistently. As illustration, we used data of the French Cancer Registries on 

relative survival of patients with colorectal cancer. 

Keywords: missing data; multiple imputation; proportional hazards model; relative 

survival; colon cancer. 

 

1. INTRODUCTION 

Net survival is often part of cancer survival studies. This measure represents survival for a 

specific disease when all the other causes of death have been removed. Thus, net survival 

estimates the excess mortality from that disease in the studied group. When the individual 

causes of death are accurately known (for example, in randomized clinical trials), the 

analysis of net survival may be carried out with non-disease-related deaths treated as 

censored observations. However, in cohort studies based on cancer registries, the exact 

causes of death are often unavailable [1] and, when available, it is often difficult to state 
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whether they are disease-related [2]. In such situations, relative survival is an appropriate 

approach that provides an estimate of the patients’ survival corrected for the effects of other 

independent causes of death, using the natural mortality in the general population [2]. This 

method makes it possible to establish whether covariates such as age or sex are associated 

only with the disease-specific mortality, with the natural mortality in the general population, 

or with both [3,4]. In other words, relative survival provides a measure of the excess 

mortality in the patients under study, whether or not the excess mortality is directly 

attributed to that disease, and whether or not the risks of death from other causes in the 

studied population are different from those of the general population [5]. This explains why 

relative survival is popular in population-based cancer survival studies [6] and why relative 

survival has been an active area of research over the recent decades [e.g., Ref. 6-12].  

Although quality control is an important part of cancer registration [13,14], covariate values 

may be missing for some subjects [15-17]. Most often, population-based cancer survival 

studies focus on routinely collected prognostic factors such as sex, age, year of 

diagnosis, tumour size, local or distant metastasis, for which the proportion of missing 

values is usually low (around 5%). However, for some diseases under study, 

information on other variables is also collected, and these may have a much higher 

proportion missing.  

A common approach to deal with missing data is to perform a complete case analysis i.e. 

to exclude patients with any missing value on the covariates or to exclude covariates 

that are missing in many patients. Such approaches can result in substantially smaller 

sample sizes and lead to inconsistent estimators of regression coefficients. There is 

already a large body of work concerning the problem of statistical analysis with missing 

data and several methods have been proposed to impute missing values before 

analysis [18-20]. Among those methods, multiple imputation (MI) incorporates 

uncertainty associated with the missing data appropriately into the subsequent 

inferences. It is frequently used and several reviews have described its key theoretical 

ideas, its mode of implementation and compared software implementations [21-25]. 

Besides, other authors have used MI methods or proposed approaches to handle missing 

data in regression analysis of crude survival [26-29]. Nevertheless, to the best of our 
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knowledge, the impact of missing data and the assessment of MI have never been studied in 

the framework of the regression analysis of relative survival. 

In this article, we introduce and systematically assess the performance of MI in regression 

analysis of relative survival. Comparisons are also made with complete case analysis and 

the use of a missing data indicator. A number of methods that have been proposed for MI 

are implemented in standard statistical software [23,24]. As regression analysis of relative 

survival can be performed easily [12,30,31] using the free software R [21], we have chosen 

to assess the MI by chained equations as available in the multiple imputation by chained 

equations (MICE) library for R [32]. Section 2 describes our motivating example. This 

features a population-based dataset with some missing values. Section 3 presents the 

relative survival regression model and describes briefly the missing data nomenclature and 

the MICE method. Section 4 describes how we use a simulation study to assess MICE in 

the regression analysis of relative survival. The motivating example is revisited in section 5 

and section 6 concludes with a brief discussion about the findings of the study and 

recommendations for practical use of this method in the framework of the regression 

analysis of relative survival. 

 

2. MOTIVATING EXAMPLE 

The FRANCIM network is an association that joins all French cancer registries. Among the 

studies initiated by FRANCIM, high-resolution studies focus on several particular types of 

medical information that is not routinely collected by cancer registries (such as stage at 

diagnosis, treatments, socioprofessional category, recurrence and so on). A high-resolution 

study on colorectal cancer was initiated in 2001, which included 1398 incident cancers 

diagnosed between 1 January 1995 and 31 December 1995 treated by curative surgery, and 

identified by 9 French cancer registries (Bas-Rhin, Calvados, Côte d’Or, Doubs, Hérault, 

Isère, Manche, Somme, Tarn). In our analysis, the follow-up of individual patients was 

restricted to the first five years after diagnosis, at which time the patients were censored if still 

alive.  

The covariates used for our example, were: sex, age at diagnosis, stage at diagnosis 

(according to Duke’s classification), tumor location, adjuvant treatments, socioprofessional 

category, and marital status. The other covariates collected for the study were not 
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considered for this analysis. Table I shows the distributions of these prognostic factors. 

Missing values were observed in 70 patients (5.0%) for the stage at diagnosis, in 29 patients 

(2.1%) for the adjuvant radiotherapy, in 34 patients (2.5%) for the adjuvant chemotherapy, 

in 566 patients (40.5%) for the socioprofessional category and in 417 patients (29.8%) for 

the marital status.  

It has been shown that some socioprofessional characteristics may have an impact on 

survival of patient with colorectal cancer [33,34]. Due to the relatively high proportion of 

missing values among socioprofessional category and marital status, a complete case 

regression analysis involving these variables uses only 745 subjects, a reduction of 53.3% 

from the original 1398. Clearly, this could lead to non-negligible loss of efficiency, in 

addition to being a potential source of bias. 

 

3. RELATIVE SURVIVAL REGRESSION MODEL AND MULTIPLE 

IMPUTATION METHOD 

3.1. Relative survival regression model 

According to the excess hazard model formulation [7,8] of a relative survival regression 

model, the observed hazard for total mortality, oλ , at time t after diagnosis of an individual 

aged  at diagnosis and given a vector of covariates , which could contain age, is defined 

as the sum of two components: 

a z

( ) ( ) ( ), z, , , zo e s ct a t a z tλ λ λ= + +  

The first component, eλ , represents the expected hazard function for overall mortality in 

the general population. This information is usually obtained from relevant mortality statistics 

using external sources and depends only on  (generally sex, and possibly other factors 

such as the place of residence, race,…). 

sz

The second component, cλ , represents the disease-related mortality hazard function or the 

excess mortality hazard, which is estimated from the data on hand and is usually expressed in 

a parametric form. In the very first proposed models [7,8] cλ  was written 

 where β  is a vector containing the log hazard ratios (HR) of the 

covariates and 

( ) ( ) (, expc bt tλ λ=z βz)

bλ , which represents the baseline excess mortality hazard function (which 
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corresponds to the excess hazard at time t for patients with z  = 0), is a step function (i.e. 

the baseline excess mortality hazard is assumed constant within pre-specified intervals). To 

allow more flexibility of the baseline excess hazard, some authors have proposed the use of 

regression splines [9,12,35] and fractional polynomials [11]. Here, we adopt the approach 

proposed by Remontet et al. [12], which uses a cubic regression spline to model the 

baseline excess hazard. In the absence of covariates, ( )log c tλ⎡ ⎤⎣ ⎦  may be written using a 

truncated power basis: 

( ) ( )32 3
0 1 2 3

1
log ,

k

c j
j

t t t t tλ β β β β θ jt
+

=

⎡ ⎤ = + + + + −⎣ ⎦ ∑z  

where the '  subscript corresponds to u'+ +  = u  if u  > 0 and u+  = 0 if u  ≤ 0. Expressed in 

this form,  is a smooth piecewise cubic polynomial function, i.e. a smooth 

combination of subsequent polynomials function in which the function and its first two 

derivatives are continuous at the knots [36]. 

( )log c tλ⎡⎣ ⎤⎦

 

3.2. Multiple imputation method 

3.2.1. Missing data nomenclature. Consider a sample of n subjects for which we have a 

vector of response y  and a vector of covariates z . For any given subject, z  may be 

divided into , a component to denote the observed covariates and , a component to 

denote the missing covariates (to simplify our notation, subject-specific indicator has been 

omitted). Denote the matrix of missing data indicators by r , with 

obsz misz

1jr =  if the jth element 

of z  is observed, and  otherwise, governed by the parameter 0jr = φ .  

According to Little and Rubin [20], three missing data mechanisms may be considered: 

missing completely at random (MCAR), missing at random (MAR) and missing not at 

random (MNAR). 

• Data are MCAR when the distribution of missingness is independent of , of , 

and on the response y : 

obsz misz

( ) ( ) ( )obs misP | , =P | , , =P |φr y z r y z z r  

• Data are MAR when the distribution of missingness is conditionally independent of 

 (i.e. when it depends only on observed covariates): misz ( ) ( obsP | , =P | , , )φr y z r y z  
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• Data are MNAR when the distribution of missingness  cannot be 

simplified (i.e. when it depends conditionally on the unobserved covariates). In this 

case, the process is also termed non-ignorable in the context of a likelihood analysis. 

(P | ,r y z)

 

3.2.2. Multiple imputation by chained equations method. Briefly, MI includes three stages: 

(i) using an assumption of MAR, Bayesian imputations of the missing values are made for 

M “completed” datasets; (ii) each of these “completed” datasets is analysed; (iii) the 

estimates and their standard errors are combined using Rubin’s rules [37] to produce a 

single set of estimates with their standard errors.  

The MICE imputation algorithm [38] is based on a set of univariate imputation models: the 

conditional model for each covariate given all the other covariates and the response. The 

algorithm has two steps: an estimation step and an imputation step. In the estimation step, 

an imputation model is separately specified for each covariate, involving the other 

covariates as predictors. In the imputation step, an imputation is generated for the missing 

variable, and this imputed value is used for the imputation of the next covariate. Using a 

Gibbs type sampling procedure [39], these steps are repeated until the process is assumed to 

approach convergence. This is repeated for each of the M datasets.  

The analyses were carried out using the R software package (version 2.5.0, April 

2007) [40] with the MICE library (version 1.15, March 2007) [32] for multiple imputation. 

 

4. SIMULATION STUDY 

In the following simulation, we examined the performance of the MICE method in our 

relative survival setting. Our strategy consisted of: (i) the generation of all-cases survival 

data; (ii) the generation of missing values on covariates under different missing values 

mechanisms and different missingness patterns; (iii) the use of different methods of 

analysis. 

 

4.1. Survival data generation 

Individual survival times were generated from the inverse function of the sum of two 

additive hazards: the expected hazard function in the general population and the disease-

related mortality hazard function. The former was based on the French general population, 

Published in: Statistics in Medicine 2008; 27:6310-6331. 7



R. Giorgi et al. Multiple imputation in relative survival analysis 

based on age, and sex. The latter was expressed in a parametric form where the baseline 

hazard had a generalized Weibull distribution [41], which, as will see later, offers an 

attractive choice to represent real data-based baseline hazards, and where covariates were 

sex, age and a vector of other covariates z . The values of the prognostic factors were 

assumed to be mutually independent. Gender was generated from a binary distribution with 

. Age at diagnosis was categorized into 3 groups: < 65 years, 

65-74 years, and ≥ 75 years with probabilities equal to 0.25, 0.35, and 0.40, respectively. 

Two situations were considered for z : (a) a single binary covariate with 

; and (b) with 3 binary components, , , and  with 

( ) ( )P male P female 0.5= =

( ) ( )P z=1 P z=0 0.5= = 1z 2z 3z ( )P z.=1  

equal to 0.65, 0.50, and 0.35, respectively.  

Individual censoring times were generated in the same way with the hazard selected so as 

to obtain approximately 15%, 30% or 50% overall censoring levels. Then, an individual’s 

observed time was determined as ( )iii CST ,min= , where  and  denote the 

individual’s survival and censoring time, respectively.  

iS iC

We used the method proposed by Burton et al. [42] to determine the number of simulations 

required to ignore sampling variation. With an estimated variance from fitting a single 

covariate in our relative survival regression model equals to 0.01, 584 simulations would be 

required to produce an estimate to within 2 percentage points of the regression coefficient 

of  (which corresponds to the minimum of the true values of the log hazard 

ratios of the covariates) with a 5 per cent significant level. Therefore, each simulation run 

consisted of 600 independent samples of sizes 300 and 1000. These samples constituted our 

originals simulated datasets; i.e. the full dataset containing all the cases. The next procedure 

consisted in generating missing values on the covariates. 

( )ln 1.5 0.405=

 

4.2. Missing value generation 

Several settings were considered to generate missing values on covariates. First, a simple 

setting with a single binary covariate, z . The missing values were generated according to 

the three conventional missing value mechanisms: (i) MCAR, for which the probability that 

 is missing was not linked to any other characteristics; (ii) MAR, for which the 

probability that  is missing was linked only to sex or only to age or only to vital status or 

z

z
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to vital status and sex, or to vital status and age ( ( )P misz = 0.3 in males, in patients aged ≥ 

65 years at diagnosis, in censored individuals, in censored men, and in censored individuals 

aged 65 years or older at diagnosis and ( )P misz = 0.1 otherwise); and finally (iii) MNAR, 

for which the probability that  is missing depended on  itself (z z ( )P misz = 0.8  when 1z =  

and  otherwise). In all these situations, in addition to the individuals’ 

probabilities of missing in the MAR and MNAR situations, the overall proportion of 

missing values for  was fixed to 10%, 20%, and 50%.  

( )P misz = 0.2

z

Secondly, we considered more complex situations with three independent binary covariates, 

, , , and different missingness patterns [18]: (a) a monotone missingness pattern 

where the probabilities of missing values were fixed to 10% for , 20% for , and 50% 

for , resulting in an overall proportion of missing values equal to 50%; and (b) a non-

monotone missingness pattern with different probabilities of missing values for all possible 

combinations of the three variables, resulting in an overall proportion of missing values 

equal to 50%. For both monotone and non-monotone pattern, we considered the procedure 

described before concerning the missing mechanism (MCAR, MAR and NMAR). 

1z 2z 3z

1z 2z

3z

 

4.3. Design of the evaluation 

Several analyses, performed using the above-described relative survival regression model 

(with a cubic regression spline with one interior knot at 1 year to model the baseline excess 

hazard), were considered to assess the impact of missing data on covariate in regression 

analysis of relative survival: (i) an analysis based on all cases (no missing data) and that we 

used for comparative purposes; (ii) an analysis based on complete cases, a subset of the 

initial data set without missing data; (iii) an analysis based on all the data with a missing 

data indicator variable; and (iv) an analysis based on multiple imputation, using MICE 

(with M = 5 MIs).  

The criteria used to assess the methods were: (1) the bias of the estimates (i.e. , where 

 represents the mean of the estimates of the true value β ); (2) the relative bias of the 

estimates (i.e. (

ββ −ˆ

β̂

)ˆ −β β β ); (3) the empirical coverage rates (ECR) (i.e. the proportion of 
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samples in which the 95% confidence interval includes β ); and (4) the mean of the 

standard error estimates (MSE). We also investigated the estimate of the baseline excess 

mortality hazard function, assessed by plotting the mean of 600 estimates of the baseline 

excess mortality hazard function. 

 

4.4. Results 

4.4.1. Missing data on a single binary covariate. Table II summarizes the results obtained 

with samples of size 1000 and 30% overall censoring level. Without missing values (all 

cases situation), the model performed relatively well, with a small bias (-0.006), a type I 

error rate equals to 5.5% and a MSE equals to 0.092. With the complete case analysis, the 

results were also good in the MCAR, the MAR conditionally on sex (MAR1) or 

conditionally on age (MAR2) and the MNAR situations. However, when the probability of 

missing was linked to the vital status (MAR3, MAR4, and MAR5), both the bias and type I 

error increased with increasing proportions of missing data. The results were similar when 

the analysis used a missing value indicator: the performances were better in the MCAR, 

MAR1, MAR2 and NMAR situations than in the MAR3, MAR4 and MAR5 situations. In 

those situations in which missingness depends on the vital status (MAR3, MAR4 and 

MAR5), the MICE method improved the behaviour of the analyses whatever the proportion 

of missing values (10%, 30%, or 50%): a bias of less than -0.060, an ECR ranging from 

91.7% to 95.2% and a MSE less than 0.140. 

When the proportion of missing values was 10%, the bias in the estimate of the log hazard 

ratio was minor in both the complete case and the missing data indicator analyses 

(Table II), but as previously mentioned, we are also interested in the estimate of the 

baseline excess mortality hazard function. Figure 1 shows the true baseline excess mortality 

hazard function (generated by a generalized Weibull distribution, and representing a 

clinically plausible shape of hazard with increasing risk during the first year after diagnosis, 

which then decreases as it is often the case in breast cancer) and the mean of the estimates 

obtained from the different methods used for the analysis with missing values generated 

under the MAR assumption conditionally on vital status (MAR3). When the proportion of 

missing values was about 10% (Figure 1(a)), the estimates obtained with the MICE analysis 

were similar to those obtained with all cases analysis (the reference) and the estimates 
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obtained with both complete case and missing data indicator analyses were only slightly 

biased. When the proportion of missing values increased from 10% to 50%, the estimates 

obtained with the MICE analysis remained unbiased, whereas the bias increased strongly 

with both complete case and missing data indicator analyses (Figure 1(b)). The same 

pattern of bias in the baseline hazard function was observed with the other missing data 

mechanisms associated with vital status (MAR4, MAR5). Concerning the estimates of the 

baseline hazard function we observe that: (i) in the MCAR, MAR1, and MAR2 situations 

and whatever the method used for the analysis, the estimates were similar to those obtained 

with the all case analysis; (ii) in the NMAR situation, the estimates obtained with both the 

complete case and the missing data indicator analyses were close to those obtained in the 

all cases analysis, and the estimates obtained with the MICE analysis, wich assumes MAR 

mechanism, were biased (data not shown). 

 

4.4.2. Missing data on independent binary covariates with different missingness patterns. 

Table III and Table IV show the bias of the estimates of the log hazard ratios obtained with 

samples of size 1000 and with a 30% overall censoring level when the missingness pattern 

was monotone and non-monotone, respectively. Whatever the missingness pattern, 

complete case analysis overestimated the log HRs in the MCAR, MAR1, MAR2 and 

NMAR situations and underestimated them in the MAR situations linked to the vital status 

(MAR3, MAR4 and MAR5). Both the missing data indicator and MICE analyses provided 

underestimates of the log HRs whatever the missingness mechanism. 

When the missingness pattern was monotone, the results showed that: (i) both the bias and 

the relative bias increased along with the proportion of missing values (i.e. in function of 

the binary covariates of interest , i=1,…,3); (ii) the bias was larger with the missing data 

indicator analysis in the MAR

iz

3 situation; (iii) MICE analysis performed better than the 

missing data indicator analysis in the MAR3 situation but comparably in the MAR4 and the 

MAR5 situations; (iv) the complete case analysis performed well (Table III). When the 

missingness pattern was non-monotone, the performance of the complete case analysis and 

the missing data indicator analysis was better than that of MICE (Table IV).  

Figure 2 shows that, especially with the monotone missingness pattern, the complete case 

analysis and the missing data indicator analysis overestimated the baseline excess mortality 
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hazard. This bias was less important with MICE whatever the missingness pattern 

(Figures 2(a) and 2(b)). 

When the simulations summarized in Tables II, III and IV, and in Figures 1 and 2 were 

repeated with a sample size reduced from 1000 to 300, a generally similar pattern of results 

was observed (data not shown). All these simulations were also performed with 10% and 

50% overall censoring levels and, in a general way, we observed that an increase in the 

censoring level (from 10% to 50%): (i) had no affect on the point estimates of the log HRs 

of the covariates and on the estimate of the baseline excess mortality hazard; (ii) resulted in 

an increase of the MSE (data not shown). All the results presented above using MICE were 

obtained after M = 5 MIs. To assess the impact of the number of MIs, we also performed 

analyses with M = 15 and M = 30. That increase in the number of MIs did not affect the 

previous results (data not shown). 

 

5. THE EXAMPLE REVISITED 

Table I shows the proportion of missing values for each covariate of the dataset. The 

overall proportion of missing values in that dataset was 53.3%. Further investigations have 

shown a non-monotone missingness pattern and, as shown by the simulation studies, the 

performance of MICE in estimating the log HRs of the covariates seemed to be less good 

within this context.  

All the covariates described in Section 2 were included in the relative survival regression 

models. Several approaches were used to model the adjusted effect of age (categorized, 

linear, quadratic or using cubic regression spline). We have finally chosen the approach 

with age categorized in three groups; first, for statistical reasons (Akaike Information 

Criterion, AIC: 3046.9), then because this categorization is quite common [9,35]. Table V 

shows the results obtained with the complete case analysis, the missing data indicator 

analysis and the MICE analysis (with M = 5 MIs).  

Whatever the analysis method, the adjusted effects of stage at diagnosis were significant 

while the adjusted effects of gender, tumor location, adjuvant radiotherapy, and marital 

status were not significant. The adjusted effect of age was significant with the complete 

case analysis and the MICE analysis but only close to significance with the missing data 

indicator analysis (p = 0.07). Adjuvant chemotherapy had a significant pejorative effect 
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with the missing data indicator analysis and MICE analysis. This was probably due to the 

fact that, in this unselected population, chemotherapy was administered to the patients with 

the worst prognoses. Only the effect of the socioprofessional category “Other persons with 

occupational activity” was found significant with MICE analysis; that of the association of 

stage at diagnosis and colorectal-specific mortality was even stronger. 

All the estimates obtained with the complete case analysis were different from those 

obtained with the missing data indicator analysis or MICE analysis. There was a trend 

towards overestimation of the effects of age, of the socioprofessional category and of the 

marital status, and another trend towards underestimation of the effects of stage at diagnosis, 

of adjuvant radiotherapy and of adjuvant chemotherapy. Because of the loss of information, 

all the 95% confidence intervals obtained with the complete case analysis were larger than 

those obtained with the missing data indicator analysis or MICE analysis.  

The use of the missing data indicator and MICE reduced the standard errors. Whatever the 

proportion of missing values, the estimates based on the missing data indicator analysis 

were only slightly different from those based on the MICE analysis (absolute differences 

less or equal to 0.14). While the socioprofessional categories “Clerical and manual 

workers” and “Other persons with occupational activity” were found significant in the 

missing data indicator analysis, only the latter remained significant in the MICE analysis. 

Figure 3 shows the baseline excess mortality hazard modelled using a cubic regression 

spline with one interior knot at 1 year after adjustment for all the covariates considered in 

this example. Within this context of non-monotone missingness pattern, as shown by the 

simulation studies, the fits of the baseline excess mortality hazard were similar with both 

the missing data indicator and the MICE analyses, with a high excess mortality hazard that 

decreased along the first six months after diagnosis. The complete case analysis captured 

less well that high risk during that period. The 95% confidence intervals of the baseline 

excess mortality hazard calculated with the three methods overlapped (data not shown for 

clarity of Figure 3). 

 

6. DISCUSSION 

In this article, we assessed MI in regression analysis of relative survival. Simulations have 

shown that MICE performed well in estimating the HR and the baseline hazard function 
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when the missing mechanism was MAR conditionally on the vital status with missing 

values on a single binary covariate or on several binary covariates having a monotone 

missingness pattern. When the missing mechanism was not MAR conditionally on vital 

status, complete case analysis was fine. In our motivating example, the proportion of 

missing values ranged from 2.1% to 40.5%, resulting in a 53.3% overall proportion of 

missing values (the sample size would be reduced from 1398 to 745).  

To our knowledge, the effect of missing data on covariates in relative survival analysis has 

never been investigated. Yu and Tiwari [5] used MI in relative survival to deal with the 

missing cause of failure for some individuals but not to tackle the problem of missing data 

on covariates. They extended the MI method to relative survival data to estimate the net 

survival function and obtain estimates for covariates with no missing values.  

Our simulations have shown that the estimates obtained with the complete case analysis are 

valid in the MAR situation. However, the introduction of a dependence between covariate 

missingness and vital status resulted in biased estimates. Those results are consistent with 

those of Rathouz [43] who, furthermore, proposed two new missingness mechanisms to 

take into account the dependence between covariate missingness and failure or censoring 

time: (i) censoring-ignorable missingness at random in which the missingness mechanism 

depends on the failure time but not on the censoring process; (ii) the failure-ignorable 

missingness at random in which the missingness mechanism does not depend on the failure 

time but on the censoring process [43]. Future simulations and empirical studies will 

improve the knowledge of those new types of missingness mechanisms within the 

framework of relative survival. 

In the regression model used in this article and according to the proportional hazards (PH) 

assumption, the covariate effects on the disease-related HR was assumed to be constant 

over time. Several relative survival regression models have been proposed to relax this 

assumption [4,9,11,12,35]. With the approach proposed by Remontet et al. [12], it is 

possible to model non-proportional hazards using different non-parametric functions and to 

determine the best model using AIC. We did not use that approach in our example because 

the simulations did not focus on the PH assumption; we assumed rather constant effects of 

all covariates. Doing this, the results of the example and those of the simulation can be 

interpreted the same way.  
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Several approaches have been proposed for modelling the baseline excess mortality hazard 

function: step functions [7,8], spline functions [9,12,35], and fractional polynomials [11]. 

Simulation studies have shown the ability of such functions to provide smooth fits of the 

baseline excess mortality hazard. However, one may suggest that it may be more interesting 

to detect changes, increases or decreases, in the trends of the baseline excess mortality 

hazard instead of giving a smooth fit. Joinpoint regression is one approach to check 

whether the linear trend of the baseline excess mortality hazard changes at some joinpoints. 

In that approach, the number and the location of the joinpoints can be determined using 

permutation tests [44]. A similar approach consists in modelling the baseline excess 

mortality hazard using a piecewise linear regression with the number of pieces and the 

location of the joinpoints based on prior information (for example when structural changes 

are expected at the onset of a new treatment or a new exposure). In our simulation studies, 

we investigated a piecewise linear regression for the baseline excess mortality hazard using 

two and three pieces with joinpoints fixed at 1 and 3 years, respectively (based on the shape 

of the true baseline excess mortality hazard function) with a sample size equal to 1000 and 

an overall censoring level ranging from 10% to 30%. Within that context, the performance 

of the methods we used to deal with missing data on covariates were only slightly modified 

(data not shown). The use of such models depends on the objective of the study: detection 

of changes in the trend or improvement of the fit of the baseline excess hazard function. 

However, the goal of this work was not to a deep investigation of such a methodology; thus, 

further investigations are necessary to evaluate the joinpoint regression in the framework of 

relative survival. 

In our example, we did not use a strategy for variable selection but focused on a full model 

approach with selected covariates [45]. As in our simulation studies, the baseline excess 

mortality hazard was modelled using a cubic regression spline, which is probably not the 

best choice for this dataset (see Figure 3). However, our aim was not to obtain the best fit 

but to compare the results obtained with different methods that deal with missing data, and, 

using the same dataset analysis strategy, to obtain results that could be compared to those 

obtained by simulation. Comparing our results to those obtained by Bolard et al. [35] after 

analysis of relative survival from colon cancer cases extracted from the French 
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“Bourguignon” registry, we found similar estimates for age and for sex. However, the 

performance of the method that involves variable selection needs further investigation. 

One limitation of our simulation studies is that we focused on binary covariates and we did 

not investigate missing data on continuous covariates, with possible nonlinear and/or non 

proportional effect. MICE library supplies several imputation models for continuous 

covariates: Bayesian linear regression, predictive mean matching and unconditional mean 

imputation [32]. Further work is needed to assess the performance of MICE in relative 

survival regression model when the missing values concern continuous covariates. 

In this article, MI was assessed only through the use of MI by chained equations 

method [38] using MICE R library [32]. Several studies performed within other contexts 

than relative survival regression have assessed different software packages that implement 

MI, using different methods [22-24]. They found very close results whatever the software 

package and the analysis methods. In case of missing covariate data in a risk model with a 

binary outcome, MICE was reported to be the best MI method [46]. MICE and these other 

methods and softwares might be proposed to analyse missing covariate data within the 

context of regression analysis of relative survival.  

To conclude, in regression analysis of relative survival, missing data on covariates should 

be modelled. In everyday practice, MICE method offers an attractive choice. 
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Table I: Distributions of the colorectal cancer prognostic factors and the corresponding all-
causes mortality in a population-based study of French colorectal cancer. 
 

Prognostic Factors Number (%) a Deaths at 5 years (%) b

Age   
≤ 64 392 (28.0%) 90 (23.0%) 
65 – 74 488 (34.9%) 156 (32.0%) 
≥75 518 (37.1%) 282 (54.4%) 

Gender   
Man 755 (54.0%) 297 (39.3%) 
Woman 643 (46.0%) 231 (35.9%) 

Tumor location   
Colon 854 (61.1%) 325 (38.1%) 
Rectosigmoid or rectum 544 (38.9%) 203 (37.3%) 

Tumor Stage at diagnosis   
A 395 (28.2%) 68 (17.2%) 
B 495 (35.4%) 198 (40.0%) 
C 395 (28.2%) 214 (54.2%) 
D 43 (3.1%) 32 (74.4%) 
Missing 70 (5.0%) 16 (22.9%) 

Adjuvant radiotherapy   
No 225 (16.1%) 92 (40.9%) 
Yes 1144 (81.8%) 427 (37.3%) 
Missing 29 (2.1%) 9 (31.0%) 

Adjuvant chemotherapy   
No 392 (28.0%) 142 (36.2%) 
Yes 972 (69.5%) 374 (38.5%) 
Missing 34 (2.5%) 12 (35.3%) 

Socioprofessional category   
Farmers 134 (9.3%) 46 (35.4%) 
Clerical and manual workers 214 (15.3%) 82 (38.3%) 
Other with occupational activity 360 (25.7%) 129 (35.8%) 
Other without occupational activity 128 (9.2%) 42 (32.8%) 
Missing 566 (40.5%) 229 (40.5%) 

Marital status   
Married or living with a partner 359 (25.7%) 153 (42.6%) 
Single or widowed 622 (44.5%) 221 (35.5%) 
Missing 417 (29.8%) 154 (36.9%) 

Overall 1398 (100%) 528 (37.8%) 
a Percentage of all 1398 patients. 
b Percentage of patients, in a given category, who died within the first 5 years after 
diagnosis. 
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Table II: Results of simulation studies for the all cases analysis, and, when missing data concerned a single binary covariate , for the 
complete cases analysis, the analysis using a missing data indicator, and the analysis using MICE (simulation size = 600, sample 
size = 1000, and overall censoring level = 30%). Results are shown when the true value of 

z

( )ln 2.0 and are adjusted for sex and age. zβ =
 

All Cases Complete cases Missing data indicator Multiple Imputation 
 Proportion of missing values for  z Proportion of missing values on z Proportion of missing values on z

Missing 
mechanism a

   10%   30% 50% 10%  30% 50% 10%  30% 50%
MCAR             

Bias -0.006            -0.007 -0.007 0.001 -0.009 -0.015 -0.006 -0.019 -0.044 -0.055
ECR 94.5        94.3 93.5 93.3  94.5 94.3 94.2  93.7 91.7 92.3
MSE 0.092            0.098 0.111 0.132 0.097 0.110 0.130 0.099 0.113 0.133

MAR1             
Bias -0.006            -0.008 -0.005 -0.007 -0.010 -0.013 -0.022 -0.018 -0.032 -0.049
ECR 94.5        93.2 95.2 94.8  93.5 94.8 94.8  93.2 93.2 92.3
MSE 0.092            0.097 0.110 0.130 0.097 0.109 0.128 0.098 0.112 0.131

MAR2             
Bias -0.006            -0.006 -0.003 0.010 -0.008 -0.010 -0.003 -0.025 -0.059 -0.094
ECR 94.5        94.5 95.2 95.0  94.5 95.2 95.3  93.5 92.1 87.7
MSE 0.092            0.098 0.111 0.133 0.097 0.111 0.131 0.098 0.112 0.128

MAR3             
Bias -0.006            -0.026 -0.073 -0.121 -0.028 -0.081 -0.135 -0.013 -0.025 -0.022
ECR 94.5        94.0 87.5 81.7  93.8 86.2 78.7  95.2 92.8 92.3
MSE 0.092            0.095 0.103 0.115 0.095 0.102 0.114 0.098 0.114 0.140

MAR4             
Bias -0.006            -0.019 -0.044 -0.070 -0.020 -0.048 -0.072 -0.013 -0.027 -0.036
ECR 94.5        93.5 92.5 90.5  93.3 91.5 90.2  94.5 92.3 91.7
MSE 0.092            0.096 0.106 0.122 0.096 0.105 0.121 0.098 0.113 0.136

MAR5             
Bias -0.006            -0.019 -0.054 -0.092 -0.021 -0.062 -0.104 -0.013 -0.036 -0.060
ECR 94.5        93.0 92.2 87.8  93.0 91.0 86.7  93.8 93.8 92.7
MSE 0.092            0.096 0.105 0.120 0.096 0.104 0.119 0.099 0.114 0.137

MNAR             
Bias -0.006            -0.006 -0.009 0.002 -0.007 -0.016 -0.011 -0.025 -0.069 -0.104
ECR 94.5        94.5 95.8 94.8  94.0 95.6 94.6  93.7 88.2 87.5
MSE 0.092            0.097 0.112 0.142 0.097 0.111 0.140 0.097 0.109 0.133

a  MAR1 = MAR conditionally on sex - MAR2 = MAR conditionally on age - MAR3 = MAR conditionally on vital status - MAR4 = MAR 
conditionally on vital status and sex - MAR5 = MAR conditionally on vital status and age. 
Abbreviations: ECR: empirical coverage rates - MSE, mean of the standard error estimates. 
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Table III: Monotone missingness pattern: bias of the estimates of the log hazard ratios for the all cases analysis, and, when missing data concerned three binary covariates 
(overall proportion of missing values = 50%), for the complete cases analysis, the analysis using a missing data indicator and the analysis using MICE (simulation size = 600, 
sample size = 1000, and overall censoring level = 30%). 

Missing All Cases Complete cases Missing data indicator Multiple Imputation 
mechanisma Variablesb Variablesb Variablesb Variablesb

 1z  2z  
3z  1z  2z  

3z  1z  2z  
3z  1z  2z  

3z  
MCAR       

Bias 0.005 0.007 0.008 0.009 0.016 0.019     -0.032 -0.074 -0.086 -0.048 -0.112 -0.155
Rel. Bias 0.012 0.008 0.006 0.022 0.018 0.015     -0.079 -0.081 -0.069 -0.117 -0.123 -0.124
ECR 95.2 95.5 94.7 95.2 95.2 95.2     93.8 87.3 90.5 94.2 82.3 75.5
MSE 0.090 0.089 0.092 0.129 0.126 0.132     0.095 0.097 0.124 0.106 0.109 0.136

MAR1       
Bias 0.005 0.007 0.008 0.013 0.013 0.018     -0.032 -0.072 -0.085 -0.045 -0.105 -0.131
Rel. Bias 0.012 0.008 0.006 0.032 0.014 0.014     -0.079 -0.078 -0.068 -0.112 -0.114 -0.105
ECR 95.2 95.5 94.7 95.0 93.7 94.0     95.2 88.3 90.3 95.7 83.0 80.2
MSE 0.090 0.089 0.092 0.128 0.125 0.131     0.095 0.097 0.123 0.105 0.106 0.133

MAR2       
Bias 0.005 0.007 0.008 0.013 0.013 0.019     -0.034 -0.073 -0.087 -0.053 -0.129 -0.217
Rel. Bias 0.012 0.008 0.006 0.032 0.015 0.015     -0.084 -0.080 -0.069 -0.131 -0.141 -0.173
ECR 95.2 95.5 94.7 95.2 94.5 94.7     93.7 87.8 90.5 94.2 77.7 61.2
MSE 0.090 0.089 0.092 0.130 0.127 0.132     0.095 0.098 0.125 0.106 0.107 0.134

MAR3       
Bias 0.005 0.007 0.008 -0.031 -0.079 -0.099     -0.037 -0.097 -0.156 -0.033 -0.080 -0.102
Rel. Bias 0.012 0.008 0.006 -0.077 -0.086 -0.079     -0.091 -0.105 -0.125 -0.083 -0.087 -0.081
ECR 95.2 95.5 94.7 94.3 88.3 85.8     93.7 82.5 75.3 95.3 89.2 87.8
MSE 0.090 0.089 0.092 0.114 0.112 0.117     0.093 0.094 0.112 0.103 0.106 0.129

MAR4       
Bias 0.005 0.007 0.008 -0.013 -0.041 -0.042     -0.034 -0.083 -0.113 -0.041 -0.091 -0.116
Rel. Bias 0.012 0.008 0.006 -0.031 -0.045 -0.033     -0.084 -0.091 -0.090 -0.101 -0.100 -0.093
ECR 95.2 95.5 94.7 94.7 91.8 92.5     92.8 86.7 84.0 94.7 86.5 81.7
MSE 0.090 0.089 0.092 0.121 0.118 0.124     0.094 0.095 0.117 0.104 0.106 0.131

MAR5       
Bias 0.005 0.007 0.008 -0.021 -0.052 -0.065     -0.035 -0.086 -0.129 -0.038 -0.098 -0.131
Rel. Bias 0.012 0.008 0.006 -0.052 -0.057 -0.052     -0.085 -0.094 -0.103 -0.095 -0.107 -0.105
ECR 95.2 95.5 94.7 94.7 91.2 92.5     93.3 84.7 82.2 95.7 84.8 80.3
MSE 0.090 0.089 0.092 0.119 0.116 0.121     0.094 0.095 0.115 0.105 0.105 0.133

MNAR       
Bias 0.005 0.007 0.008 0.002 0.016 0.019     -0.038 -0.082 -0.094 -0.056 -0.134 -0.215
Rel. Bias 0.012 0.008 0.006 0.006 0.018 0.015     -0.095 -0.089 -0.075 -0.138 -0.146 -0.172
ECR 95.2 95.5 94.7 94.3 95.2 94.0     93.7 86.3 90.0 93.5 71.5 66.3
MSE 0.090 0.089 0.092 0.131 0.130 0.151     0.094 0.097 0.144 0.100 0.103 0.146

Note: The proportion of missing values for , , and 3  were, fixed to 10%, 20%, and 50%, respectively (overall proportion of missing values = 50%). 1z z2z
a  MAR1 = MAR conditionally on sex - MAR2 = MAR conditionally on age - MAR3 = MAR conditionally on vital status - MAR4 = MAR conditionally on vital status 
and sex - MAR5 = MAR conditionally on vital status and age. 

(
b  The true value of )1 ln 1.5zβ = , , ( ) ( )3 ln 3.5zβ = . The estimates were adjusted for sex and age. 

2 ln 2.5zβ =

Abbreviations: Rel. Bias: relative bias; ECR: empirical coverage rates; MSE, mean of the standard error estimates. 
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Table IV: Non-monotone missingness pattern: bias of the estimates of the log hazard ratios for the all cases analysis, and, when missing data concerned three binary covariates 
(overall proportion of missing values = 50%), for the complete cases analysis, the analysis using a missing data indicator and the analysis using MICE (simulation size = 600, 
sample size = 1000, and overall censoring level = 30%). 

Missing All Cases Complete cases Missing data indicator Multiple Imputation 
Mechanisma Variablesb Variablesb Variablesb Variablesb

 1z  2z  
3z  1z  2z  

3z  1z  2z  
3z  1z  2z  

3z  
MCAR       

Bias 0.008 0.007 0.008 0.010 0.017 0.014     -0.024 -0.051 -0.071 -0.065 -0.116 -0.120
Rel. Bias 0.019 0.008 0.007 0.026 0.018 0.011     -0.059 -0.056 -0.057 -0.160 -0.127 -0.096
ECR 95.2 95.5 94.7 95.5 94.7 94.5     94.8 93.7 90.0 93.2 81.0 80.0
MSE 0.090 0.089 0.092 0.127 0.125 0.130     0.106 0.103 0.105 0.112 0.110 0.116

MAR1       
Bias 0.008 0.007 0.008 0.013 0.014 0.024     -0.021 -0.051 -0.065 -0.063 -0.111 -0.106
Rel. Bias 0.019 0.008 0.007 0.032 0.015 0.019     -0.051 -0.056 -0.052 -0.155 -0.121 -0.085
ECR 95.2 95.5 94.7 95.5 94.2 95.0     95.2 92.5 91.8 93.7 83.8 84.3
MSE 0.090 0.089 0.092 0.126 0.124 0.130     0.106 0.102 0.105 0.112 0.110 0.115

MAR2       
Bias 0.008 0.007 0.008 0.013 0.018 0.018     -0.020 -0.052 -0.073 -0.067 -0.134 -0.139
Rel. Bias 0.019 0.008 0.007 0.032 0.019 0.014     -0.050 -0.057 -0.058 -0.166 -0.147 -0.111
ECR 95.2 95.5 94.7 95.7 94.0 94.0     95.0 92.2 89.7 93.8 78.7 76.0
MSE 0.090 0.089 0.092 0.128 0.125 0.130     0.107 0.103 0.105 0.113 0.110 0.116

MAR3       
Bias 0.008 0.007 0.008 -0.033 -0.085 -0.099     -0.030 -0.079 -0.096 -0.044 -0.088 -0.089
Rel. Bias 0.019 0.008 0.007 -0.082 -0.093 -0.079     -0.075 -0.086 -0.077 -0.109 -0.096 -0.071
ECR 95.2 95.5 94.7 93.7 86.5 83.8     94.3 87.0 83.8 94.8 87.3 87.2
MSE 0.090 0.089 0.092 0.113 0.111 0.116     0.102 0.099 0.102 0.111 0.108 0.114

MAR4       
Bias 0.008 0.007 0.008 -0.009 -0.040 -0.049     -0.021 -0.066 -0.082 -0.049 -0.106 -0.107
Rel. Bias 0.019 0.008 0.007 -0.023 -0.043 -0.039     -0.053 -0.072 -0.065 -0.121 -0.116 -0.085
ECR 95.2 95.5 94.7 94.5 93.0 92.8     94.7 88.8 88.5 94.8 82.2 84.0
MSE 0.090 0.089 0.092 0.120 0.117 0.122     0.104 0.101 0.104 0.112 0.108 0.115

MAR5       
Bias 0.008 0.007 0.008 -0.023 -0.052 -0.062     -0.030 -0.064 -0.081 -0.058 -0.103 -0.100
Rel. Bias 0.019 0.008 0.007 -0.058 -0.057 -0.049     -0.073 -0.070 -0.065 -0.143 -0.112 -0.080
ECR 95.2 95.5 94.7 94.7 91.8 90.7     93.5 88.7 87.5 92.3 85.0 82.5
MSE 0.090 0.089 0.092 0.117 0.115 0.120     0.103 0.100 0.103 0.113 0.108 0.114

MNAR       
Bias 0.008 0.007 0.008 0.002 0.016 0.015     -0.016 -0.048 -0.067 -0.068 -0.124 -0.123
Rel. Bias 0.019 0.008 0.007 0.004 0.017 0.012     -0.038 -0.053 -0.054 -0.167 -0.135 -0.098
ECR 95.2 95.5 94.7 93.3 94.0 94.8     92.7 94.0 90.8 90.8 79.2 82.7
MSE 0.090 0.089 0.092 0.126 0.126 0.134     0.104 0.102 0.107 0.108 0.108 0.116

Note: The different probabilities of missing for all the possible combination of , , and  resulted in an overall proportion of missing values = 50%. 1 2zz 3z
a MAR1 = MAR conditionally on sex, MAR2 = MAR conditionally on age, MAR3 = MAR conditionally on vital status, MAR4 = MAR conditionally on vital status 
and sex, MAR5 = MAR conditionally on vital status and age. 

(
b  The true value of )1 ln 1.5zβ = , , ( ) ( )3 ln 3.5zβ = . The estimates were adjusted for sex and age. 

2 ln 2.5zβ =

Abbreviations: Rel. Bias: relative bias; ECR: empirical coverage rates; MSE, mean of the standard error estimates. 
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 Complete cases 
N = 745 

Missing data indicator
N=1398 

Multiple Imputation
N=1398 

Prognostic Factorsc log HR 95% CI P-values  log HR 95% CI P-values  log HR 95% CI P-values 
Age            

≤ 64 0.00     

           
            

        
            

        
         

           
          
           

          
          

           
          
           

       

             
           

            

         

 0.03  0.00  0.07  0.00  0.04
65 – 74 0.52 0.09 ; 0.95   0.33 0.02 ; 0.64   0.32 0.01 ; 0.63  
≥75 0.69 0.17 ; 1.21   0.42 0.06 ; 0.77   0.48 0.12 ; 0.85  

Gender 
Man 0.00 0.83 0.00 0.39 0.00 0.50
Woman  -0.05 -0.42 ; 0.33 

 
  -0.12 -0.37 ; 0.13 

 
  -0.10 -0.37 ; 0.17 

 
 

Tumor location 
Colon 0.00 0.80 0.00 0.66 0.00 0.66
Rectosigmoid or rectum -0.07 -0.51 ; 0.38 

 
  -0.07 -0.37 ; 0.22 

 
  -0.08 -0.37 ; 0.22 

 
 

Stage at diagnosis 
 A 0.00 <0.001 0.00 <0.001 0.00 <0.001

B 1.69 0.91 ; 2.48   1.99 1.45 ; 2.52   2.07 1.48 ; 2.67  
C-D 2.74 1.96 ; 3.53 

 
  2.85 2.31 ; 3.39   2.92 2.33 ; 3.51  

Missing -0.24 -1.70 ; 1.22
 Adjuvant radiotherapy 

 No 0.00 0.77 0.00 0.12 0.00 0.18
Yes -0.09 -0.61 ; 0.43 

 
  -0.30 -0.65 ; 0.05   -0.28 -0.66 ; 0.11 

 
 

Missing -0.61 -2.37 ; 1.14
 Adjuvant chemotherapy 

 No 0.00  0.35  0.00  0.004  0.00  0.01 
Yes 0.22 -0.20 ; 0.63 

 
  0.47 0.18 ; 0.76   0.45 0.14 ; 0.75  

Missing 0.50 -0.90 ; 1.91
 Socioprofessional category 

 Farmers 0.00 0.05 0.00 0.06 0.00 0.02
Clerical and manworkers 0.63 0.05 ; 1.22   0.56 0.03 ; 1.09   0.42 -0.17 ; 1.01  
Other with occupational activity 0.79 0.25 ; 1.33   0.67 0.17 ; 1.17   0.69 0.12 ; 1.26  
Other without occupational 
activity 0.41 -0.28 ; 1.10   0.36 -0.26 ; 0.97   0.42 -0.19 ; 1.04

Missing 0.63 0.14 ; 1.12
Marital status 

Married of with partner 0.00 0.63 0.00 0.61 0.00 0.81
Single or widowed 

 
0.11 -0.29 ; 0.51 

 
  -0.02 -0.32 ; 0.28   0.01 -0.28 ; 0.29 

 
 

Missing -0.09 -0.41 ; 0.24

 
Table V: Adjusted log hazard ratios (HR), and 95% confidence intervals, obtained by regression analysis of relative survival in a population-based 
study of French colorectal cancer. Results obtained using the complete case analysis, the missing data indicator analysis and the multiple 
imputations analysis. 

Abbreviations: CI = Confidence Interval – HR: Hazard Ratio. 
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Figure 1. True baseline excess mortality hazard functions against the mean of 600 estimates 
(sample size = 1000; overall censoring level = 30%) according to the method used to 
analyze the data when the missing values were generated under the MAR assumption 
conditionally on the vital status. The overall proportion of missing values was fixed to (a) 
10% and (b) 50%. 
 

 
(a) 

 
(b) 
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Figure 2. True baseline excess mortality hazard functions against the mean of 600 estimates 
(sample size = 1000; overall censoring level = 30%) according to the method used to 
analyze the data when the missing values were generated under the MAR assumption 
conditionally on the vital status, and when the missingness pattern was (a) monotone and 
(b) non-monotone. 
 

 
(a) 

 
(b) 
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Figure 3. Baseline excess mortality hazard (adjusted for all the covariates analysed; see 
Table 1), according to the method used to analyze the population-based study of French 
colorectal cancer. 
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