
Abstraction-based Intrusion Detection in
Distributed Environments

Peng Ning
North Carolina State University
and
Sushil Jajodia and Xiaoyang Sean Wang
George Mason University

Abstraction is an important issue in intrusion detection, since it not only hides the difference between heteroge-
neous systems, but also allows generic intrusion detection models. However, abstraction is an error-prone process
and is not well supported in current Intrusion Detection Systems (IDSs). This paper presents a hierarchical model
to support attack specification and event abstraction in distributed intrusion detection. The model involves three
concepts: system view, signature, and view definition. A system view provides an abstract interface of a particular
type of information; defined on the instances of system views, a signature specifies certain distributed attacks or
events to be monitored; a view definition is then used to derive information from the matches of a signature and
presents it through a system view. With the three elements, the model provides a hierarchical framework for main-
taining signatures, system views as well as event abstraction. As a benefit, the model allows generic signatures
that can accommodate unknown variants of known attacks. Moreover, abstraction represented by a system view
can be updated without changing either its specification or the signatures defined on the basis of it. This paper
then presents a decentralized method for autonomous but cooperative component systems to detect distributed
attacks specified by signatures. Specifically, a signature is decomposed into finer units called detection tasks,
each of which represents the activity to be monitored on a component system. The component systems (involved
in a signature) then perform the detection tasks cooperatively according to the “dependency” relationships among
these tasks. An experimental system called CARDS has been implemented to test the feasibility of the proposed
approach.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection—Invasive software
(e.g., viruses, worms, Trojan horses); D.4.7 [Operating Systems]: Organization and Design—Distributed sys-
tems; K.6.5 [Management of Computing and Information Systems]: Security and Protection

General Terms: Security

Additional Key Words and Phrases: Cooperative information systems, heterogeneous systems, intrusion detec-
tion, misuse detection

Name: Peng Ning
Address: Department of Computer Science, North Carolina State University, Raleigh, NC 27695; email:
ning@csc.ncsu.edu.
Name: Sushil Jajodia and Xiaoyang Sean Wang
Address: MSN4A4, Center for Secure Information Systems, George Mason University, 4400 University Drive,
Fairfax, VA 22030-4444; emails:

�
jajodia, xywang � @gmu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted with-
out fee provided that copies are not made or distributed for profit or direct commercial advantage and that copies
show this notice on the first page or initial screen of a display along with the full citation. Copyrights for com-
ponents of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in other
works, requires prior specific permission and/or a fee. Permissions may be requested from Publications Dept,
ACM Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 � P. Ning, S. Jajodia, and X.S. Wang

1. INTRODUCTION

Intrusion detection has been studied for at least two decades since the Anderson’s report
[2]. As a second line of defense for computer and network systems, intrusion detection
systems (IDSs) have been deployed more and more widely along with intrusion prevention
techniques such as password authentication and firewall. Research on intrusion detection
is still rather active due to the fast change of information technology.

Intrusion detection techniques can be classified into two categories: misuse detection
and anomaly detection. Misuse detection looks for signatures (i.e., the explicit patterns) of
known attacks, and any matched activity is considered as an attack. Examples of misuse
detection techniques include the State Transition Analysis Toolkit (STAT) [19] and Colored
Petri Automata (CPA) [27]. Misuse detection can detect known attacks effectively, though
it usually cannot accommodate unknown attacks. Anomaly detection models the subject’s
(e.g., a user or a program) behaviors, and any significant deviation from the normal behav-
iors is considered as the result of an attack. Examples of anomaly detection models include
the statistical models used in NIDES (NIDES/STAT) [20] and HAYSTACK [46]. Anomaly
detection has the potential to detect unknown attacks; however, it is not as effective as mis-
use detection for known attacks. In practice, both misuse detection and anomaly detection
are often used as complementary components in IDSs (e.g., EMERALD [43], JiNao [57]).

Abstraction, as explained in Webster’s New World Dictionary of American English [37],
is the “formation of an idea, as of the qualities or properties of a thing, by mental separation
from particular instances or material objects”. Abstraction in intrusion detection is consid-
ered important, mainly because of two reasons. First, the systems being protected as well
as the IDSs are usually heterogeneous. In particular, a distributed system often consists of
different types of component systems such as Windows and UNIX machines. Abstraction
thus becomes a necessary way to hide the difference between these component systems and
allow intrusion detection in distributed systems. For example, IETF’s Intrusion Detection
Message Exchange Format (IDMEF) provides an abstract data model and common mes-
sage format for different types of IDSs to understand each other [8]. Second, abstraction
is often used to hide irrelevant details so that IDSs can avoid unnecessary complexity and
focus on essential information. As an example, JiNao uses an Event Abstraction Module
to convert low-level IP packets into abstract events (for Link State Advertisement) so that
it can have more concise and generic representations of attacks [21; 57].

However, abstraction in intrusion detection has not been well supported. The most com-
mon way of abstraction is to use it as a preparation process, and the abstraction process is
performed in ad hoc ways. Such approaches may cause some problems as the IDSs and
our knowledge of intrusions evolve. For example, in the Mitnick attack described in [41],
the attacker first launches a SYN flooding attack to prevent a trusted host from accepting
incoming TCP connection requests (i.e., SYN packets), and then tries to connect to an-
other host using the IP address and TCP port being flooded as source IP and source port.
To detect such an attack in a misuse detection system, a human user may specify an attack
signature which involves a SYN flooding event and the related TCP connection. However,
this signature has a potential problem: The attacker may use other ways to disable one or
all of the TCP ports of the trusted host and launch a similar attack, which is not covered by
the signature. To cover such attacks, the user has to write one signature for each possible
way in which the attacker can disable a TCP port of the trusted host. In addition, when new
ways of disabling a TCP port are discovered, the user needs to input additional signatures

Abstraction-based Intrusion Detection in Distributed Environments � 3

into the system.
Certainly, an experienced user may choose a smarter way. Instead of using the SYN

flooding event in the signature, he (or she) may abstract it to an event that can disable a
TCP port on the trusted host. Such a signature is generic enough to accommodate variants
of the aforementioned Mitnick attack. However, there is no framework to support such
an attempt in existing systems. The user may, for example, write a program (e.g., the
Event Abstraction Module in JiNao [21; 57]) to abstract all events (including SYN flooding
attack) that can disable a TCP port. Unfortunately, when a new way of disabling a TCP
port is discovered, the user will have to modify the program to reflect the new information.
Such a task is certainly not a pleasant one for an administrator.

The above example suggests that (1) abstraction is an error-prone process and (2) there is
not enough support for effective and efficient abstraction in current IDSs. To address these
issues, we propose a hierarchical model for attack specification and event abstraction. Our
model is extended from the misuse detection model proposed in ARMD [31; 32], which
was developed to deal with the portability of misuse signatures for host-based IDSs.

There are three essential concepts in our model: system view, (misuse) signature, and
view definition. A system view provides an abstract representation of a particular type of
observable information, which includes an event schema and a set of predicates. Event
schema specifies the attributes that describe the abstract events on a system view, while
the predicates tell the relationship among system entities. For example, we may have a
system view TCPDOSAttacks that represents TCP based denial of service (DOS) attacks,
where the event schema specifies the IP address and port number being attacked and the
predicates indicate the severity of the attack. Although there may be different types of
such attacks, the system view TCPDOSAttacks can hide the difference between them and
provide an abstract representation.

A signature is a distributed event pattern that represents a distributed attack on the in-
stances of system views. With system views providing abstract views of the information,
the signatures can represent the attacks in a generic way. For example, we may have a sig-
nature for the Mitnick attack based on the system view TCPDOSAttacks (among others).
As a result, the signature will still be applicable even if the attacker uses other methods
instead of SYN flooding to disable a TCP port of the trusted host.

View definition is the critical concept that helps us exceed the limitation of the previous
approaches. A view definition is used to derive information from the matches of a sig-
nature and present it through a system view. With view definition, our model provides a
hierarchical framework for event abstraction. For example, we may have a system view
IPPacket that provides information for IP packet events. On the basis of IPPacket, we may
first define signatures for various TCP based DOS attacks such as SYN flooding attacks
and Ping of Death (see [25] for details of these attacks) and then abstract them as TCP
based DOS attacks on TCPDOSAttacks using view definitions. As a result, detection of
the above attacks will generate events on TCPDOSAttacks. The introduction of view def-
inition provides a toolkit to unify attack specification and event abstraction in the same
framework.

Having the three elements, our model allows a flexible and dynamic way of maintaining
signatures and system views as well as event abstraction. For example, when we initially
specify the system view TCPDOSAttacks, we may only have knowledge of some attacks
such as SYN flooding and Ping of Death. Certainly, we can specify it with whatever
we know and even describe signatures (e.g., signature for the Mitnick attack) using TCP-

4 � P. Ning, S. Jajodia, and X.S. Wang

DOSAttacks once it is specified. However, if new types of TCP based DOS attacks are later
discovered, we do not need to change either the specification of the system view itself nor
the signatures (e.g., the Mitnick attack) described on the basis of it. Instead, we only need
to specify signatures and corresponding view definitions for the new discovery.

One important problem that we have to solve for our model is how to detect the specified
attacks. The techniques proposed in ARMD [31] can be slightly extended to address host-
based intrusion detection; however, new techniques are needed for distributed intrusion
detection, since it requires distribution and coordination mechanisms, which is beyond
ARMD.

Several distributed IDSs have been proposed to address similar issues. Early distributed
IDSs for small scale systems usually have all the information sent to a central place (pos-
sibly after being filtered). For example, ASAX preprocesses the audit data in distributed
component systems and sends necessary information to a central place for analysis [34;
35]. However, such a method does not scale well to large distributed systems, because the
information collected from a large distributed system may exceed the capacity of any single
system and the intrusion detection related messages will take the network bandwidth.

Later systems (e.g., EMERALD [43] and GrIDS [50]) adopt a hierarchical framework,
which organizes IDSs into a fixed hierarchy and requires low-level IDSs send designated
information to high-level IDSs. For example, EMERALD organizes IDSs for individ-
ual hosts under the IDSs for departments, which are under an IDS for the entire enter-
prise [43]. The hierarchical approach scales better than the aforementioned centralized
approach. However, it is not always the most efficient way to detect distributed attacks.
For example, if two IDSs that are far from each other in terms of the hierarchy are desig-
nated to detect a known distributed attack, the data sent by them may have to be forwarded
several times (to higher-level IDSs) before they can be finally correlated. Indeed, the two
IDSs can communicate more efficiently if they directly talk to each other. Thus, it is worth
further research to seek more efficient alternatives to the hierarchical approach.

In this paper, we present an approach to organizing autonomous but cooperative compo-
nent systems to detect distributed attacks. Our approach is based on the dependency among
the distributed events in a signature. Unlike the hierarchical approach, our approach orga-
nizes the cooperative IDSs according to the intrinsic relationships between the distributed
events involved in attacks, and, as a result, an IDS needs to send a piece of information
to another IDS only when the information is essential for detecting the attacks. To ex-
amine the feasibility of our approach, we develop an architecture to support our approach
and implement an experimental system named Coordinated Attacks Response & Detection
System (CARDS).

The contribution of this paper is two-fold. First, we provide a framework for distributed
attack specification and event abstraction by extending the original ARMD model. In this
framework, abstraction is considered as an on-going process, and signatures and view def-
initions can be used to update the semantics of a system view without changing the its
specification and the signatures specified on the basis of it. As a result, signatures in our
model can potentially accommodate unknown variants of known attacks. Although the
specification of attack signatures and the choice of right abstraction still partially depend
on the user’s skill, this framework provides guidance and alleviates the burden of writ-
ing and maintaining signatures. Second, we develop a decentralized approach to detecting
distributed attacks specified using the revised model. By considering the intrinsic relation-
ship between the distributed events in a signature, we decompose a signature into smaller

Abstraction-based Intrusion Detection in Distributed Environments � 5

units called detection tasks that can be executed in different IDSs; moreover, we develop a
distributed algorithm to coordinate the detection tasks so that the IDSs can cooperatively
detect the attacks.

The rest of this paper is organized as follows. The next section discusses the related
work. Section 3 presents the basic model, which is extended from the misuse detection
model in ARMD to accommodate new requirements in distributed environments. Section 4
further extends the basic model and presents the hierarchical model for attack specification
and event abstraction. Section 5 presents a decentralized approach to detect distributed
attacks specified by our model. Section 6 gives a heuristic approach to generating execution
plans used by the decentralized detection. Section 7 briefly describes an experimental
system named CARDS for the approaches proposed in this paper. Section 8 concludes this
paper and points out some future research directions.

2. RELATED WORK

Our work falls into the research domain of detecting intrusions distributed over multiple
systems, including distributed intrusion detection systems and other related techniques. A
survey of the early work on intrusion detection is given in [36], and an excellent overview
of the current intrusion detection techniques and related issues can be found in a recent
book [3].

Early distributed intrusion detection systems collect audit data from distributed com-
ponent systems but analyze them in a central place (e.g., DIDS [47], ISM [15], NADIR
[17], NSTAT [24] and ASAX [34; 35]). Although audit data are usually reduced before
being sent to the central analysis unit, the scalability of such systems is limited due to the
centralized analysis.

Recent systems paid more attention to the scalability issue (e.g., EMERALD [43], GrIDS
[50], AAFID [49], and CSM [56]). EMERALD adopts a recursive framework in which
generic building blocks can be deployed in a highly distributed manner [43]. Both misuse
detection and statistical anomaly detection are used in EMERALD. GrIDS aims at large
distributed systems and performs intrusion detection by aggregating computer and net-
work information into activity graphs which reveal the causal structure of network activity
[50]. AAFID is a distributed intrusion detection platform, which consists of four types
of components: agents, filters, transceivers and monitors [49]. These components can be
organized in a tree structure, where child and parent components communicate with each
other. AAFID emphasizes on the architecture aspect of distributed intrusion detection; de-
tailed mechanism for performing distributed intrusion detection is not addressed. JiNao
is an IDS that detects intrusions against network routing protocols [21; 57]. The current
implementation of JiNao focuses on the OSPF (Open Shortest Path First) routing protocol.
A distinguished feature of JiNao is that it can be integrated into existing network manage-
ment systems. It is mentioned that JiNao can be used for distributed intrusion detection
[21; 57]; however, no specific mechanisms have been provided for doing so.

In terms of the way of performing distributed intrusion detection, our approach dif-
fers from these systems as follows: While our approach decomposes and coordinates dis-
tributed event collection and analysis according to the intrinsic relationships between the
distributed events, the aforementioned systems either have no specific way to coordinate
different IDSs (e.g., JiNao [21; 57]), or rely on some predefined hierarchical organization,
which is usually determined by administrative concerns (e.g., EMERALD [43], GrIDS
[50]). Compared with the hierarchical approach, our approach has the advantage that the

6 � P. Ning, S. Jajodia, and X.S. Wang

component IDSs can exchange necessary information without forwarding it along the hi-
erarchy.

NetSTAT is an application of STAT [19] to network-based intrusion detection [54; 55].
Based on the attack scenarios and the network fact modeled as a hypergraph, NetSTAT
automatically chooses places to probe network activities and applies the state transition
analysis. Our approach is similar to NetSTAT in the sense that both approaches can de-
cide what information needs to be collected in various places. However, our approach also
differs from NetSTAT in the following ways. NetSTAT is specific to network-based intru-
sion detection, while our approach is generic to any kind of distributed intrusion detection.
Moreover, NetSTAT collects the network events in a distributed way, but analyzes them in
a central place. In contrast, our approach analyzes the distributed events in a decentralized
way, that is, the events are analyzed as being collected in various places.

Event abstraction has long been recognized as an important issue in intrusion detection
as well as many other areas. It can not only remove the irrelevant details, but also hide the
difference between heterogeneous systems. Several systems have adopted components for
event abstraction. ARMD explicitly brought up the concept of abstract system to provide
the abstract representation of system information [31; 32]. AAFID introduces filters as a
data abstraction layer for intrusion detection agents [49]. JiNao adopts an event abstraction
module to transform low-level network activities into high-level events [21; 57]. (There
are other examples; however, we do not enumerate them here.) Our approach in this paper
further extends these ideas by providing a hierarchical framework for event abstraction. In
particular, we view event abstraction as a dynamic process (instead of a preparation stage as
in most of the previous approaches). The advantage is that we can update the semantics of
event abstraction without changing either its specification or the signatures defined on the
basis of it, and thus have generic signatures that can accommodate the variants of known
attacks.

Several approaches have been proposed to represent known attacks. Among the earliest
ones are the rule-based languages such as P-BEST [33] and RUSSEL [34; 35]. Later work
includes the state transition analysis toolkit (STAT) [18; 19] and its extension POSTAT
[16], the Colored PetriNet Automaton (CPA) [27; 28], and JiNao Finite State Machine
(JFSM) [21; 57]. The general philosophy of these approaches is to make the representation
mechanisms easy to use and yet be able to represent most of the known attacks (if not
all). Our representation mechanism can be considered as a variation of STAT or CPA,
which removes the explicit states from the attack patterns. A new feature of our method
is that it allows events to be extracted from signatures so that attack (or event) patterns
can be specified in a hierarchical way. Moreover, our representation mechanism gives
an opportunity to decompose a distributed attack pattern into smaller units that can be
executed in a distributed manner.

Common Intrusion Detection Framework (CIDF) is an effort that aims at enabling dif-
ferent intrusion detection and response (IDR) components to interoperate and share in-
formation and resources [23; 42]. CIDF views IDR systems as composed of four kinds
components that communicate via message passing: Event Generators (E-boxes), Event
Analyzers (A-boxes), Event Databases (D-boxes) and Response Units (R-boxes). A com-
munication framework and a common intrusion specification language are provided to as-
sist the interoperation among CIDF components [10; 22]. Several efforts have tried to
improve CIDF components’ ability to interoperate with each other: The Intrusion De-
tection Inter-component Adaptive Negotiation (IDIAN) protocol helps cooperating CIDF

Abstraction-based Intrusion Detection in Distributed Environments � 7

components to reach an agreement on each other’s capabilities and needs [11]; MADAM
ID uses CIDF to automatically get audit data, build models, and distribute signatures for
novel attacks so that the gap between the discovery and the detection of new attacks can
be reduced [29]; finally, the query facility for CIDF enables CIDF components to request
specific information from each other [39; 40].

IETF’s Intrusion Detection Working Group (IDWG) has been working on data formats
and exchange procedures for sharing information among IDSs, response systems, and man-
agement systems. XML has been chosen to provide the common format and an Intrusion
Detection Message Exchange Format (IDMEF) has been defined in an Internet draft [8].
IDWG uses the Blocks Extensible Exchange Protocol (BEEP) as the application protocol
framework for exchanging intrusion detection messages between different systems [44];
an Intrusion Detection Exchange Protocol (IDXP) is specified as a BEEP profile [12], and
a Tunnel profile is provided for different systems to exchange messages through firewalls
[38].

We view CIDF, IDMEF (IDXP) and their extensions as complementary to ours. First,
in terms of representation, CIDF, IDMEF (IDXP), and their extensions provide common
message formats and exchange procedures for IDSs to interoperate and understand each
other, while our work provides a framework for event abstraction as well as specification
of known intrusion patterns. Second, neither CIDF nor IDWG provides any specific way to
coordinate different IDSs (indeed, as standards, they try to avoid any specific mechanism).
Though MADAM ID enables different IDSs to collaborate with each other, the collabora-
tion is limited to collecting audit data for new attacks and distributing newly discovered
signatures [29]. In contrast, our approach decomposes a signature for a distributed attack
into smaller units, distributes these units to different IDSs, and coordinates these IDSs to
detect the attack.

The Hummer project is intended to share information among different IDSs [14]. In
particular, the relationships between different IDSs (e.g., peer, friend, manager/subordinate
relationships) and policy issues (e.g., access control policy, cooperation policy) are studied,
and a prototype system HummingBird was developed to address these issues. However, the
Hummer project is to address the general data sharing issue; what information needs to be
shared and how the information is used are out of its scope. In contrast, our decentralized
detection approach addresses the issue of efficiently detecting specific attacks; it is able to
specify what information is needed from each site and how the information is analyzed.
Indeed, our decentralized detection approach can be combined with the Hummer system
to fully take advantage of its data collection capability.

Our work is based on the host-based misuse detection system ARMD [31; 32]. This
paper further extends the result in ARMD in several ways. First, the attack specification
model is extended to allow the representation of attacks across multiple systems. In par-
ticular, our model assumes interval-based events rather than point-based events; thus, not
only event records directly derived from audit trails but also compound events are accom-
modated. Moreover, the revised model adopts the notion of negative event and can take
into account exceptional situations. Second, the revised model allows hierarchical spec-
ification of event patterns, which not only provides a way to model distributed attacks,
but also a framework for automatic event abstraction. Finally, we develop a decentralized
approach to detecting distributed attacks.

There are many other related work, such as various anomaly detection models (e.g.,
NIDES/STAT [20], HAYSTACK [46]), data mining approaches (e.g., JAM [30], ADAM

8 � P. Ning, S. Jajodia, and X.S. Wang

[4]), various tracing techniques (e.g., DECIDUOUS [6; 7], thumbprinting [51]), and em-
bedded sensors [26]. We consider these techniques as complementary to ours presented in
this paper.

3. THE BASIC MODEL

In this section, we present our basic attack specification model, which is extended from the
model in ARMD [31; 32]. A critical concept of our model is system view; each system
view provides an abstract interface for one particular type of information. Attack patterns,
which we call misuse signatures, are then specified as distributed event patterns on the
basis of system view instances.

System views reflect the notion of abstraction in our model. We consider abstraction as
an on-going process instead of a preparation stage. That is, a system view can be extended
without changing the signatures defined on the basis of its instances. A direct advantage is
that the signatures defined in our model are generic and can accommodate new attacks to
a certain degree.

In the rest of this section, we describe our basic model, i.e., how we represent system
views and attacks. In the next section, we will present a hierarchical framework for attack
specification as well as event abstraction based on the basic model.

3.1 System View and Event History

Intuitively, a system view provides an abstract representation of one particular type of
information provided by a system. The system underlying a system view may be one
single host, a network segment, or a distributed system consisting of several hosts.

Both event information and relationships among system entities are provided through
a system view. Events represent what have happened or are happening in the system,
while relationships among system entities represent the system state at certain times. For
instance, the fact that two files are owned by the same user can be represented by a rela-
tionship same owner between them.

The time when an event occurs is intrinsic to the event. In distributed environments, the
intrusion detection related events are usually not instantaneous in terms of time. For exam-
ple, a TCP connection could span several hours. To accommodate such events, we consider
that each event has a duration and associate an interval-based timestamp with it. Notation-
wise, each timestamp is denoted in the form of [begin time, end time], representing the
starting and the ending points of the time interval, respectively.

Similar to ARMD [31; 32], we use dynamic predicates to represent the relationships
among system entities. A dynamic predicate is a predicate with time as one of its argu-
ments. For example, the dynamic predicate same owner[t](file x, file y), which represents
whether files file x and file y have the same owner, is True if and only if the owners of file x
and file y are the same at time t. Note that “static”, or regular predicates are special cases
of dynamic predicates.

The notion of system view is formally stated as follows.

Definition 1 A system view is a pair (EvtSch, PredSet), where EvtSch (called event schema)
is a set of event attribute names, each with an associated domain of values, and PredSet is
a set of dynamic predicate names. An event e on (EvtSch, PredSet) is a tuple on EvtSch
with a timestamp [begin time, end time].

�

A system view serves as an interface of the information of interest. Though a system

Abstraction-based Intrusion Detection in Distributed Environments � 9

event VictimIP VictimPort begin time end time��� 10.0.0.1 80 19:37:01 19:43:05��� 10.0.0.2 23 19:38:15 19:38:15��� 10.0.0.255 � 1 19:40:50 19:45:00��� 10.0.0.3 � 1 19:44:15 19:44:15
...

Fig. 1. An event history on the system view TCPDOSAttacks

view itself is fixed once defined, the information provided through it can be extended. For
example, when we define a system view for TCP/IP based denial of service (DOS) attacks,
we may abstract the system view from Teardrop and Land attacks (Please refer to [25] for
the details of the attacks). However, we may later discover SYN flooding and Ping Of Death
attacks, which are also TCP/IP based DOS attacks. Such newly discovered information can
be directly provided through the existing system view without changing either the system
view specification or the signatures already defined on the basis of its instances.

Note that begin time and end time are implicit attributes of the event schema, which
collectively represent the timestamps of events on the system view. The information pro-
vided through a system view, including both event and state information, is formalized as
an event history on the corresponding system view.

Definition 2 An event history on the system view (EvtSch, PredSet) consists of (1) a finite
set of events

	�

������������
����
on (EvtSch, PredSet) and (2) an instantiation of the dynamic

predicate names in PredSet such that for each � in PredSet and each time point � when
an event occurs, � is instantiated as a regular predicate, denoted ��� ������� � ��������� � �"! (i.e., for
each instantiation of � � �������#� � � , ��� ������� � �������#� �$�"! gives True or False).

�

Example 1 A network monitor that reports DOS attacks that disable one or all the TCP
ports of a host may have a system view TCPDOSAttacks = (EvtSch1, %), where EvtSch1
=
	
VictimIP, VictimPort

�
. Each DOS attack is reported as an event on (EvtSch1, %). The

domain of VictimIP is the set of IP addresses, and the domain of VictimPort is the set of
all TCP ports plus &�' . VictimPort being &�' means that all TCP ports (of the host) are
disabled. An event history on TCPDOSAttacks is shown in figure 1.

As we discussed earlier, TCPDOSAttacks may be defined when we only know, for ex-
ample, Teardrop and Land attacks. When we later discover new types of DOS attacks, for
example, SYN flooding attack, we can still reuse the previously specified TCPDOSAttacks.

As another example, a host may have a system view LocalTCPConn = (EvtSch2, Pred-
Set2) for the TCP connections observed on the local host, where EvtSch2 =

	
SrcIP, SrcPort,

DstIP, DstPort
�

and PredSet2 =
	
LocalIP[t](var IP), Trust[t](var host)

�
. The domains of

the attributes are clear from the names. The dynamic predicate LocalIP[t](var IP) evalu-
ates to True if and only if var IP is an IP address belonging to the local host at time t, and
the dynamic predicate Trust[t](var host) evaluates to True if and only if var host is trusted
by the local host at time t. Examples of event history on LocalTCPConn are omitted.

�

3.1.1 Qualitative Temporal Relationships between Events. The representation and rea-
soning about the qualitative temporal relationships between interval-based events have
been extensively studied by the AI community [1; 13]. With these relationships, we can
provide a more concise representation of the patterns among events.

Here we quote the thirteen relationships between intervals [1] and the eleven relation-

10 � P. Ning, S. Jajodia, and X.S. Wang

relation meaning inverse relation��� equal � � ����� � ������� 	
��� �
� � � � � ������� 	
��� � equal
and � � � ����� 	
��� ��� ����� ����� 	
��� ���� before � � ����� ����� 	
��� ��� � � � � ������� 	
��� � after��� meets � � ����� ����� 	
��� �
� � � � � ������� 	
��� � inv-meets��� overlaps � � ����� � ������� 	
��� ��� � � � � ������� 	
��� � inv-overlaps
and ����� ����� 	
��� ��� � � � ����� 	
��� �
and � � � ����� 	
��� ��� ����� � ������� 	
��� ���� during � � ����� � ������� 	
��� ��� � � � � ������� 	
��� � inv-during
and ����� ����� 	
��� ��� � � � ����� 	
��� ���� starts � � ����� � ������� 	
��� �
� � � � � ������� 	
��� � inv-starts
and ����� ����� 	
��� ��� � � � ����� 	
��� �� � finishes ��� � � � � ������� 	
��� ��� ����� � ������� 	
��� � inv-finishes
and ����� ����� 	
��� ��� � � � ����� 	
��� �� � older (than) ��� � � � � ������� 	
��� ��� ����� � ������� 	
��� � younger (than)��� head-to-head � � ����� � ������� 	
��� �
� � � � � ������� 	
��� � head-to-head��� survives � � ����� ����� 	
��� ��� � � � ����� 	
��� � survived-by��� tail-to-tail � � ����� ����� 	
��� ��� � � � ����� 	
��� � tail-to-tail��� precedes � � ����� ����� 	
��� ����� � � � � ������� 	
��� � succeeds� � contemporary ��� � � � � ������� 	
��� ��� ����� ����� 	
��� � contemporary
and � � � � ������� 	
��� ��� ����� ����� 	
��� ���� born-before-death � � ����� � ������� 	
��� ��� � � � ����� 	
��� � die-after-birth

Fig. 2. The qualitative temporal relationships between two events

ships between semi-intervals [13] as the qualitative relationships between events. Figure
2 shows the relationships between two interval-based events

 �
and

��
. The inverse rela-

tion in the figure refers to the relation derived by switching the positions of the events in
the original relation. For example, the inverse relation of

 �
before

��
is

 �
after

��
,

which is equivalent to

��
before

 �
.

Complex qualitative (temporal) relationships between two events can be represented by
logical combinations of the above relations. For example, the situation that events

 �
and
��

do not overlap in time can be represented by �
 � before

�� !���� �
 � after

�� ! ,
or simply

 � � before ��� after !
�� . In the following, we will take advantage of these
qualitative temporal relationships to describe attack signatures.

3.2 Misuse Signatures

Misuse signatures are event patterns that represent intrusive activities across multiple sys-
tems. With system views as abstract representations of the underlying systems, a misuse
signature is defined as a pattern of events on the instances of these system views. Specif-
ically, a signature is a labeled directed graph. Each node in the graph corresponds to an
observable event on a particular system view, and each labeled arc to a qualitative tempo-
ral relationship between the two nodes (events) involved in the arc. Events matched to the
nodes must satisfy certain conditions, which are built into the model by associating a timed
condition with each node (in a way similar to ARMD).

There are two kinds of events, positive events and negative events, due to their different
“roles” in attacks. Positive events are the events that are necessary and critical for an attack.
In other words, positive events are those necessary steps that an attacker cannot miss in
order to launch the attack. Let us look at the Mitnick attack described in the introduction.
In order to attack host B, the attacker first initiates a SYN flooding attack to prevent a TCP

Abstraction-based Intrusion Detection in Distributed Environments � 11

port of host A, which is trusted by B, from accepting any connection requests. (See [45]
for detailed information about SYN flooding attack.) During the SYN flooding attack, the
attacker tries to establish a TCP connection to B pretending (by IP spoofing) to be from the
port being flooded. If the attacker succeeds, he can do whatever host B allows host A to
do, since the attacking computer is mistaken for A. In this attack, the SYN flooding attack
against host A and the TCP connection to host B from the attacking computer are positive
events, because the attack will not succeed without them.

However, the existence of positive events does not always imply an attack. For example,
even if we observe two positive events, a SYN flooding attack against host A in the network
traffic and the corresponding TCP connection on host B during the SYN flooding attack,
they do not constitute a Mitnick attack if the TCP connection is indeed initiated from host
A (rather than from the attacking computer). In other words, if we also observe the same
TCP connection on host A, then the TCP connection is just a normal connection during the
SYN flooding attack rather than a part of the Mitnick attack. We call the TCP connection
observed on host A a negative event, which serves as counter evidence of attacks. Thus,
negative events are such events that if they coexist with the positive events, the positive
events do not constitute an attack.

Negative events have appeared in different forms in other models. For example, CPA
uses (negative) invariant to specify what must not happen during an attack, that is, the
specified attack does not occur if the associated invariant is violated (matched) [27; 28].
Negative events are important to reduce false alarms; however, they should be used with
cautions. The signature writer should be certain that the existence of negative events indeed
indicates the non-existence of attacks. Otherwise, the attacker may bypass the IDS by
intentionally creating negative events.

In order to model the patterns among multiple events, we use variables to help specify
timed conditions. A variable is assigned an event attribute value from one node and then
used in a timed condition associated with another node. We also use � as a variable for an
event. A timed condition is formally defined as follows.

Definition 3 A timed condition on a system view (EvtSch, PredSet) is a Boolean formula
with atoms being either (1) comparisons between constants, variables, and event attribute
names in EvtSch, or (2) of the form ��� � � �
������ � ���
 � �
	 � ��������� 	 �
! , ��� � �
��
� � ���
 ����	 � ��������� 	 � ! ,��� ��� � � ���
������ � ���
 � � �
��
� � ���
 � !
� � ��� �
	 � �������#� 	 �
! , or ��� ��� � � � �
������ � ���
 � � �
��
� � ���
 � !��� ��� �
	 � ��������� 	 �
! , where � is a dynamic predicate name in PredSet and 	 � �������#� 	 � are con-
stants, variables, or event attribute names in EvtSch. A timed condition evaluates to True
or False when the variables are replaced with constants and � with an event.

�

We are now ready to formally define the concept of misuse signature.

Definition 4 Given a set of system view instances S =
	 �
��� ������� ���� �

!� �
 � � ! � ��������
�"� ������� � �� �

!� �
 � � ! � , a misuse signature (or signature) on S is a 7-tuple (N, E, SysView,

Label, Assignment, TimedCondition, PositiveNodes), where

(1) (N, E) is a directed graph,

(2) SysView is a mapping that maps each node n in N to a system view instance in S,

(3) Label is a mapping that maps each arc in E to a qualitative temporal relationship be-
tween two events,

(4) Assignment is a mapping that maps each node n in N to a set of assignments of
event attributes in the system view SysView � n ! to variables (denoted as variable := at-

12 � P. Ning, S. Jajodia, and X.S. Wang

tribute name) such that each variable appears in exactly one assignment in the signature,
(5) TimedCondition is a mapping that maps each n in N to a timed condition on SysView � n !

such that all variables in the timed condition appear in some assignments specified by
(4), and

(6) PositiveNodes �� % is a subset of N.
�

A misuse signature is an event pattern that represents an intrusive activity over a set of
systems represented by the system view instances. The pattern is described by a set of
events and the constraints that these events must satisfy. Given a signature (N, E, SysView,
Label, Assignment, TimedCondition, PositiveNodes), the set N of nodes represents the set
of events involved in the pattern, the edges and the labels associated with the edges, which
are specified by the mappings E and Label, encode the qualitative temporal relationships
between these events, the mapping TimedCondition specifies the conditions that each event
must satisfy, and the mapping Assignment determines attributes that are used in some timed
conditions. The set PositiveNodes of nodes represents the positive events necessary to con-
stitute an attack, while (N & PositiveNodes) represents the negative events that contribute
information to filter out false alarms.

Note that we use the qualitative temporal relationships between events to help specify
misuse signatures. However, in order to represent quantitative temporal relationships be-
tween events, we will have to assign timestamps to variables and specify them in timed
conditions. For example, if we require that two events

 �
and

 �
start within 10 sec-

onds, we can assign

"�����
������ � ���

to a variable � and then specify

 �

’s timed condition as� ��&
�� ���
�� ��� � ���
���� '�� (assuming that the time is measured in second).
To have a better illustration, we pictorially represent a misuse signature as a labeled

graph. Given a signature Sig = (N, E, SysView, Label, Assignment, TimedCondition, Posi-
tiveNodes), the components N and E are represented by a directed graph, where the nodes
in PositiveNodes have solid boundary and the other nodes have dotted boundary, the com-
ponents SysView, Assignment and TimedCondition are represented by a system view, a set
of assignments and a timed condition associated with each node, the component Label is
represented by a label associated with each arc, and the system view instances underlying
the signature are given by a list of declarations of system view instances. An example of
misuse signatures is shown as follows.

Example 2 This example shows a signature of the aforementioned Mitnick attack. It’s
worth noting that though the original attack involves a SYN flooding attack, an attacker
can actually use other methods to disable one or all of the TCP ports of host A and achieve
the same effect. Thus, the signature for the Mitnick attack should use something more
abstract than SYN flooding attack.

Figure 3 shows a generic version of the signature for the Mitnick attack. The signature
involves three system view instances: an instance of the system view TCPDOSAttacks and
two instances of LocalTCPConn. (The system views TCPDOSAttacks and LocalTCPConn
have been described in example 1.) This signature defines a generic pattern for the Mitnick
attack. Node

� �
and

� �
represent positive events. Node

� �
represents a DOS attack on

an instance of the system view TCPDOSAttacks (e.g., a network monitor), and node
� �

represents a local TCP connection event observed on one host, say host B. The timed
condition associated with

� �
says that it is from the port being attacked (or any port if all

TCP ports are disabled) and destined to host B, and the attacked host is trusted by B. The
labeled arc (

� �
,
� �

) restricts that this TCP connection should occur after the begin time

Abstraction-based Intrusion Detection in Distributed Environments � 13

n 1 n 2 n 3

εLocalIP[.begin_time](DstIP)
εTrust[.begin_time](var_IP)and

and

is an instance of LocalTCPConnSysView2
SysView3 is an instance of LocalTCPConn

system view: SysView2 system view: SysView3system view: SysView1
assignment: assignment: timed condition:

var_IP : = VictimIP
var_Port := VictimPort

var_SrcIP := SrcIP
var_SrcPort := SrcPort
var_DstIP := DstIP
var_DstPort := DstPort

SrcIP = var_SrcIP and
SrcPort = var_SrcPort and
DstIP = var_DstIP and
DstPort = var_DstPort

timed condition:

timed condition:
SrcIP = var_IP and

equal

True

(SrcPort = var_Port or var_Port = -1)

system view declaration:
SysView1 is an instance of TCPDOSAttacks

younger

Fig. 3. The signature for the Mitnick attack

of the DOS attack. Representing a negative event, node
���

stands for a TCP connection
observed on the host being DOS attacked, say host A. The timed condition of

� �
and

the labeled arc (
� �

,
� �

) indicate that this TCP connection should be the same as the one
represented by

� �
. This signature says that a TCP connection from a port being DOS

attacked (or any port of a host all TCP ports of which were disabled) is a Mitnick attack, if
the host being DOS attacked does not have the same connection.

The signature in figure 3 reflects the basic idea of describing the signature for the Mitnick
attack. It can also be revised to take into account that events

� �
and

� �
are often close to

each other in time (in addition to that
� �

is younger than
� �

). Such a signature would
be easier to execute, since we do not have to consider a DOS attack and a TCP connection
if they are far from each other in time.

�

Now we clarify the semantics of a misuse signature by formally defining what it matches.

Definition 5 Let Sig = (N, E, SysView, Label, Assignment, TimedCondition, PositiveN-
odes) be a signature on the set of system view instances S =

	
(��� ������� � �
 �

!� �
 � � ! �������� �
��� ������� � �� �

�� �
 � � ! � , and for each ' � � ���

, let ��� � 	�
 �	� � �������#��
 �
� ��� � be an
event history on the system view ����� �������
� � �

!� �
 ��� ! . For a subset ��� of N, a mapping��� ����� 	�
 � � � � �������
 � � ��� �
�� � � ����������
�� � ��� � �������
 ��� � ����������
 ��� ��� � is said to be a match of
��� on � � ��������� � � if the following conditions are satisfied:

(1) for each node n in � � , � � � ! �

is an event on the system view associated with n

and event attribute values of

are assigned to variables according to the assignments
associated with n,

(2) for each arc � � � ��� � ! in E such that
� �

and
� �

are in ��� , if � � � � ! �
 � and � � � � ! �
��
and � ����� � � ! is mapped to a qualitative temporal relationship � ��� by the mapping Label,
then

 � ��� �
 � , and

(3) for each node
�

in ��� with a timed condition, if � � � ! �

, then the timed condition is

True with � replaced with

and the variables with the values assigned in (1).

A match � of PositiveNodes on � ����������� � � is said to be a match of Sig if (1) N = Posi-
tiveNodes, or (2) N �� PositiveNodes and there does not exist a match ��! of N such that �
and �"! are the same for nodes in PositiveNodes.

�

14 � P. Ning, S. Jajodia, and X.S. Wang

Event# VictimIP VictimPort� � � www.victim.com 80��� � www.victim.com 80����� flooded.victim.com 513

(a) Events generated by the network monitor

Event# SrcIP SrcPort DstIP DstPort� � � one.victim.com 8765 target.victim.com 23� � � host.another.com 4000 target.victim.com 7� � � flooded.victim.com 513 target.victim.com 514

(b) Local TCP events on the host target.victim.com

Event# SrcIP SrcPort DstIP DstPort Protocol����� one.victim.com 8789 flooded.victim.com 23��� � host.another.com 7863 flooded.victim.com 21� � � flooded.victim.com 20 host.another.com 7864

(c) Local TCP events on the host flooded.victim.com

Fig. 4. Events on the system views

Example 3 Suppose the network monitor in example 2 has detected the DOS attacks
shown in figure 4(a). (For simplicity, all timestamps are omitted.) Also, suppose the
hosts target.victim.com and flooded.victim.com have TCP connection events shown in fig-
ure 4(b) and 4(c), and target.victim.com trusts flooded.victim.com (i.e., for all time point
t, Trust[t](flooded.victim.com) = True). Suppose event

 � �
is younger than event

"���
(i.e.,

���"� �#
������ � ���
 �
 � �
���
������ � ���

). Then

� �
and

 � �
satisfy all the conditions

specified for nodes
� �

and
� �

. In addition, there does not exist any event on the host
flooded.victim.com that satisfies the conditions for node

���
along with

� �
and

 � �
. Thus,

events

 � �

and

�� �

constitute a match of the signature. In other words, an instance of the
Mitnick attack is detected.

�

Nodes in a signature represent events on system views; therefore, in the following dis-
cussion, we will use nodes and events interchangeably.

4. DERIVING SYSTEM VIEWS FROM SIGNATURES: A HIERARCHICAL MODEL

In this section, we extend the basic model described in section 3 to derive information
from the matches of signatures and present it through (possibly existing) system views.
Such a derivation provides a way to extract (or aggregate) information from the events that
match the corresponding signatures, and thus provides a more concise view of what has
happened or is happening in the systems. As a result, our model allows signatures to be
specified hierarchically, since we can both describe signatures on the basis of system views
and derive system views from signatures.

There are several benefits of this extension. First, it reduces the complexity of specifying
signatures if the corresponding attacks can be decomposed into logical steps (or compo-

Abstraction-based Intrusion Detection in Distributed Environments � 15

nents). Having the ability to hierarchically define signatures allows a user to decompose
a complex attack into logical components and resolve them separately, and thus allows a
divide and conquer strategy in the signature specification process. Second, this approach
provides a framework for (event) abstraction. A hierarchy of system views and signatures
provides a way to abstract compound as well as aggregated information. Third, the frame-
work is dynamic and flexible. With system views as the foundation of signatures, we can
specify a signature on the basis of some system view instances and then later extend the
system views without changing the specifications of either the system views or the signa-
ture. The derivation of an existing system view makes the abstraction represented by the
system view a dynamic process.

4.1 View Definition

Intuitively, we derive the information on a system view (which is called the derived system
view) from the matches of a signature in two steps. Step 1: for each combination of events
that match the signature, we take the necessary information from them by assigning their
attribute values to the variables (which is indicated by the assignments). In other words, the
selected attribute values of an event are assigned to the variables if the event corresponds
to a positive node in a match. As a result, we can consider that each signature has a
relation whose attributes are the variables that appear in the assignments associated with
positive nodes, and each tuple in this relation consists of the attribute values assigned to
the variables in a match. We call the schema of such a relation the matched view and the
information provided through the matched view the match history of the signature. For
example, the signature of the Mitnick attack (shown in figure 3) has a matched view whose
schema is (var IP, var Port, var SrcIP, var SrcPort, var DstIP, var DstPort), and the tuples
in this view will be the corresponding IP addresses and port numbers involved in Mitnick
attacks.

Step 2: we apply a function to process the matched history. The function takes the tuples
on the matched view as input and outputs events on the derived system view. In particular,
we identify a special class of functions that can be executed in real time. That is, the
function can be applied to a match of the signature once it is detected. The events (on the
derived system view) generated this way correspond to the compound events represented
by the detection of signatures. For simplicity, we choose a subset of the dynamic predicates
in the underlying system views as the predicate set in the new one. An easy extension could
be to use logical combinations of the underlying dynamic predicates in the derived system
view.

In the following, we first formally define the notions of matched view and matched
history, then formalize the derivation of system views from signatures as view definition.

Definition 6 Let Sig = (N, E, SysView, Label, Assignment, TimedCondition, PositiveN-
odes) be a signature on a set of system view instances S =

	 �
��� ������� � � �

!� �
 � � ! � ��������
�"� ������� � � �

!� �
 � �
! � . The matched view of Sig derived from � , denoted (V), is a rela-
tion schema that consists of all the variables appearing in the assignments associated with
the nodes in PositiveNodes. Moreover, for each

�
, ' � � ���

, let � � be an event history
on �
�"� ������� � � �

!� �
 � � ! . Then the matched history of Sig derived from � ����������� � � is a
relation on (V) that consists of one tuple t for each match of Sig on � � ��������� � � and the
attribute values of t are the values assigned to the variables in the match.

�

Definition 7 Given a set S of system view instances, a view definition on S is a 4-tuple (Sig,

16 � P. Ning, S. Jajodia, and X.S. Wang

EvtSch, PredSet,
�

), where

(1) Sig is a signature on S;
(2) EvtSch is a set of event attribute names, each with an associated domain of values;
(3) PredSet is a subset of all the dynamic predicates appearing in S;
(4)

�
is a function that takes tuples of the matched view of Sig and outputs tuples on

EvtSch with interval-based timestamps.

The system view (EvtSch, PredSet) is called the system view derived by the view definition,
or simply derived system view.

�

A view definition (Sig, EvtSch, PredSet,
�

) derives a system view on the basis of the
signature Sig. EvtSch specifies the event schema of the derived system view, PredSet indi-
cates the dynamic predicates inherited from the underlying system views, and

�
describes

how the matches of Sig are transformed into events on EvtSch.
A critical component of a view definition is the function

�
. A special class of function

�
is to post-process the matches of the signature and generate a compound event for each

match. Typically, such a function
�

takes a match of Sig, selects some attributes of interest,
and presents them through the derived system view. Information extracted this way may
be used for high-level attack correlation or intrusion response. For simplicity, we use an
SQL query of the form SELECT-FROM-WHERE, which is targeted to a single instance of
the matched view, to specify such a function. Note that using a simplified SQL query does
not imply that we have to use a SQL engine or DBMS; it can be simply executed by taking
a match once it is detected, evaluating the condition in the WHERE clause and renaming
the variables of interest. Such queries can be executed at the time when the matches of the
signatures are detected, and thus support real-time processing of the detection results.

However, SQL queries (even in unrestricted forms) are not expressive enough; some
event processing semantics cannot be expressed using such queries. For example, aggre-
gation in terms of sliding time window cannot be expressed using SQL. An alternative
approach is to use rule-based languages to describe the function

�
. Rule-based languages

are more expressive than SELECT-FROM-WHERE SQL statements; however, they cannot
cover all possible event processing semantics, either. For example, both P-BEST [33] and
RUSSEL [34; 35] depend on external functions to extend their expressiveness. In addi-
tion, unlike SELECT-FROM-WHERE SQL statements, which can be executed by evaluat-
ing conditions and choosing/renaming attributes, rule-based languages require additional
mechanisms to execute the rules.

Additional work is required to clarify what representation mechanisms are needed to
specify the function

�
of a view definition. However, since our focus in this paper is the

framework of signature specification and event abstraction, we consider
�

as a customiz-
able blackbox and use SELECT-FROM (V)-WHERE for some special cases.

Example 4 Suppose we modify the signature Mitnick in figure 3 by associating additional
assignments var tm1 := begin time and var tm2 := end time to nodes

� �
and

� �
, respec-

tively. We can have a view definition MitnickAttacks= (Mitnick’,
	
Attack, VictimHost,

VictimPort, TrustedHost
�
,
	
Trust[t](var host)

�
), where Mitnick’ is the revised signature

and Query is defined by the following SQL statement.

SELECT ’Mitnick’ AS Attack, var DstIP AS VictimHost, var DstPort AS VictimPort,
var SrcIP AS TrustedHost, var tm1 AS begin time, var tm2 AS end time

FROM (V)

Abstraction-based Intrusion Detection in Distributed Environments � 17

n 1 n2 n3

where is a function that takes matches of the signature and output
the IP addresses and port numbers involved in SYN flooding attack.

f

SysVew is an instance of TCPPacket

system view: system view: system view:
assignment: assignment: timed condition:

var_SIP := SrcIP
var_SPort := SrcPort
var_DIP := DstIP
var_DPort := DstPort
var_Seq1 := SeqNum
var_time := begin_time

var_Seq2 := SeqNum
timed condition:

SrcIP = var_DIP
SrcPort = var_DPort and
DstIP = var_SIP and
DstPort = var_SPort and
AckNum = var_Seq1 + 1 and
(Flag = SYN/ACK or Flag = RST)

Flag = ACK
SrcIP = var_SIP and
SrcPort = var_SPort
DstIP = var_DIP
DstPort = var_DPort and
AckNum = var_Seq2 + 1

system view declaration:

SysView SysView SysView

The view definition:

timed condition:
Flag = SYN

and

and
and

and

before before

HalfOpenConnThe signature:

VD = (HalfOpenConn, {VictimIP, VictimPort}, {}, f),

Fig. 5. The view definition for deriving SYN flooding events from TCP packets

The system view derived by MitnickAttacks is (
	
Attack, VictimHost, VictimPort, Trust-

edHost
�
,
	
Trust[t](var host)

�
).

�

Example 5 We consider a view definition that aggregates low-level TCP/IP packet events
into compound events representing SYN flooding attacks on the system view TCPDOSAt-
tacks (discussed in example 1). Suppose the TCP/IP packet information is provided through
a system view TCPPacket = (EvtSch, %), where EvtSch =

	
SrcIP, SrcPort, DstIP, DstPort,

SeqNum, AckNum, Flag
�
. These attributes represent the source address, the source port,

the destination address, the destination port, the sequence number, the acknowledge num-
ber and the flag associated with each packet. The domain of Flag is the set of valid TCP
flags, including SYN, SYN/ACK, ACK, RST, etc. The domains of other attributes are clear
from the names. (This system view can be directly generated by tools like tcpdump.)

Figure 5 shows the signature HalfOpenConn and the view definition VD that defines the
derived system view on the basis of HalfOpenConn. Node

� �
represents a SYN packet

that initiates a TCP connection, and node
���

represents a SYN/ACK packet or a RESET
packet that responds to the SYN packet. Both node

� �
and

� �
represent positive events.

The negative node
� �

represents an ACK packet that finalize a TCP three-way handshake.
Thus, a match of HalfOpenConn indicates either a half open connection or a connection
reset during the TCP three-way handshake. The component

�
is a function (or procedure)

that takes the matches of HalfOpenConn as input and output the IP address, TCP port and
the timestamp of SYN flooding attacks. One way to implement

�
is to use a sliding time

window and report a TCPDOSAttack (which is a SYN flooding attack in this case) if the
half open connections against a certain TCP port exceeds a certain threshold.

�

The reader may have noticed that some view definitions (e.g., the one shown in example
5) may introduce delays into the system. For instance, in example 5, to correctly generate
interval-based events for SYN flooding attacks, the function

�
cannot output an event until

the attack completes (for example, when the number of half open connections to a certain
port drops below a certain threshold). There is a dilemma involved in such delays. On
the one hand, derived events with correct timestamps are essential in reasoning about the

18 � P. Ning, S. Jajodia, and X.S. Wang

Attack VictimHost VictimPort TrustedHost
Mitnick target.victim.com 514 flooded.victim.com

Fig. 6. Events in the derived history

attacks, which implies that we may have to tolerate the delays. On the other hand, such
delays have negative impact on intrusion detection: The system may miss the opportunity
to respond to some attacks.

One possible way to alleviate this situation is to split each interval based event into a
start event and a stop event. As a result, the attacks that only involve the starting point of
long events can be detected more promptly. However, we only consider fully generated
events in this paper, but view such an approach as a possible future work.

We call the information that a derived system view extracts or aggregates from the un-
derlying event histories a derived event history, which is formally defined as follows.

Definition 8 Let VD = (Sig, EvtSch, PredSet,
�

) be a view definition on a set of system view
instances S =

	
(��� ������� � , �

!� �
 � �), ����� , (��� ��� ��� � , �

!� �
 � �) � and for ' � � � �

,
let � � be an event history on �
�"� ������� � , �

!� �
 ��� ! . Then the event history on (EvtSch,
PredSet) derived from � � ��������� � � consists of

(1) a set of events that
�

outputs by taking as input the matched history of Sig derived from
� ����������� � � , and

(2) the instantiation (in � ����������� � �) of the dynamic predicate names in PredSet.

Each event in the derived event history is called a derived event.
�

Example 6 Consider the view definition shown in example 4. Suppose the event histories
on the system view instances underlying this view definition are the same as in example 3
(see figure 4). Then based on the discussion in example 3, the events in the derived event
history are shown in figure 6, and Trust[t](var host) evaluates to True if var host is trusted
by the victim host at time t.

�

The introduction of view definition allows a hierarchical organization of system views
and signatures. Such a hierarchical model not only provides a framework for attack spec-
ification and event abstraction, but also ensures that abstraction becomes a dynamic and
on-going process. Figure 7 shows a hierarchy of system views, signatures, and view def-
initions. Notice that such a hierarchy may evolve along time. For example, when we
initially specify the system view TCPDOSAttacks, we may be only aware of two types of
such attacks: Land and Teardrop (see [25] for details). Thus, we may derive information
on TCPDOSAttacks from IPPacket using signatures for Land and Teardrop and the corre-
sponding view definitions, as shown in the dashed box in figure 7. Certainly, signatures
can be specified on the basis of TCPDOSAttacks once it is defined. However, we may later
discover other TCP based DOS attacks, e.g., Ping of Death and SYN flooding attacks [25].
If this happens, we can use signatures and view definitions (e.g., the signatures and view
definitions outside of the dashed box in figure 7) to derive more events on TCPDOSAt-
tacks without changing either the specification of TCPDOSAttacks itself or the signatures
defined on the basis of it. In other words, we can gradually change the semantics of sys-
tem views and signatures without changing their specifications. As a result, the signatures
specified in our model are generic and can potentially accommodate new attacks.

As illustrated in figure 7, an instance of system view may have multiple sources to derive

Abstraction-based Intrusion Detection in Distributed Environments � 19

IPPacket

Signature for
Land

Signature for
Teardrop

Signature for
Ping of Death

Signature for
SYN flooding

Signature for
TCP Packet

View Def. 1

View Def. 5

View Def. 4

View Def. 3 View Def. 2

TCPPacket

TCPDOSAttacks

Sig

Fig. 7. A hierarchy of system views and signatures

its event history. For example, one event history on TCPDOSAttacks may be derived using
all the four view definitions below it. To ensure the derived information is meaningful and
consistent, we require that an event history on a derived system view must be generated
from the same set of event histories on the underlying system views. In our example, all
information of an event history on TCPDOSAttacks must be derived from the same event
history on IPPacket.

4.2 Discussion

4.2.1 Representable Attacks. Our model is only applicable to the attacks that generate
observable evidences. That is, the model can represent an attack only if the attack leaves
characteristic traces that can be observed. (Such traces may be generated by scanning tools
such as SAINT.) In addition, the model requires the user understand the attack well so that
the user can write a signature according to his (or her) knowledge about the attack. In other
words, our model, which shares the common drawback of other misuse detection models,
is a tool that helps the reasoning about known attacks.

An attack can be represented as a signature as long as we can identify the critical events
and their relationships that characterize the attack. Examples of such attacks include those
that involve a sequence of events, partial ordered events, and concurrently occurring events.

Signature itself is not suitable to model the attacks with frequency of events as charac-
teristics. For example, one may consider that there is a SYN flooding attack if and only
if the number of half-open connections against a certain TCP port within a sliding time
window exceeds a threshold � . We may specify a signature as having � half-open connec-
tions (events) that are destined to the same TCP port and that are all within the sliding time
window; however, the signature will be awkward because of the large number of events
resulting from a possibly large � . Fortunately, using view definition can help reduce the
complexity of signatures. For example, we may simply specify a signature for the half-
open connections and then use a view definition to count the half-open connections and
extract a SYN flooding event (attack) when the count exceeds the threshold.

20 � P. Ning, S. Jajodia, and X.S. Wang

4.2.2 Difficulty of Writing Signatures. As noted in other models (e.g., CPA [27] and
RUSSEL [34]), writing misuse patterns is not trivial. Our model is not an exception. In our
model, writing misuse signatures requires a clear understanding of the critical evidences
(i.e., distributed events) that indicate the existence of the attack. An incorrectly specified
signature may give the attackers the opportunity to fool the system. For example, if the
timed condition is a conjunction of several predicates and one of them is not essential, the
attacker may try to make the predicate false so that he can bypass the detection. However,
if the signature really reflects the exact nature of the attack, the attackers will not be able
to launch an attack without triggering the signature, provided that they do not delete the
evidences. In particular, negative events should be given special care, since incorrectly
used negative events may give the attackers a chance to bypass the system.

Choosing the right system views is critical for having a signature that can accommodate
variations of the attack. For example, to specify the signature of the Mitnick attack (Figure
3, example 2), we may simply use a system view that provides SYN flooding events for
event

���
(as in the original attack). However, the attacker may use another kind of denial

of service attack to disable the TCP port of host A (or even host A itself) and avoid being
matched by the signature. In contrast, if we use the system view TCPDOSAttacks, the
attacks will always be accommodated as long as the attacker tries to disable a particular
TCP port of host A (or host A itself). Therefore, choosing less abstracted system views
may decrease the generality of the signatures.

4.2.3 Clock Discrepancy. The model assumes that all the clocks in different systems
are well synchronized, which usually is not true in the real systems. The clock discrepancy
can certainly affect the detection of attacks. For example, consider a signature that requires
two events happen at the same time, it would be difficult to detect such an attack if the two
events are from two different systems whose clocks do not agree.

A simple countermeasure is to set up a threshold � as the maximum difference between
distributed clocks and handle timestamps in a special way. Specifically, two time points � �
and � � in two different places are considered “equal” if

� � � & � � � � � , and � � is considered
“before” � � if � � & � � � � . A higher threshold will certainly help to tolerate worse clock
discrepancy, but it will also result in a higher false alarm rate.

A true solution is to have a distributed time synchronization service that keeps the clock
discrepancy between related systems at a tolerable level. This service should be secure so
that attackers cannot create clock discrepancy to avoid being detected. Some solutions to
secure time protocols have been given in [5; 52]. Though very interesting, this problem is
out of the scope of this paper. Nevertheless, the clock discrepancy problem is not unique
to our model; if the time relationship between distributed events is intrinsic to an attack,
we cannot avoid this problem no matter what model we use.

5. DETECTING DISTRIBUTED ATTACKS

Detecting attacks specified by misuse signatures in a centralized way has been studied
in ARMD [31; 32]. Although we have extended the model, the techniques developed in
ARMD are still valid with slight changes. However, centralized detection of distributed
attacks requires that all data be sent to one place, which is quite inefficient due to the
communication overhead. Indeed, it is not a scalable solution; when the distributed system
grows large, the data to be sent may exceed the network bandwidth and the processing
capability of any single computer.

Abstraction-based Intrusion Detection in Distributed Environments � 21

εp2[.begin_time](x1)

system view: SysView2
assignment:

x2 := a2
timed condition:

εp1[.begin_time](x2)

system view: SysView1
assignment:

x1 := a1
timed condition:

system view declaration:
SysView1 is an instance of
SysView2 is an instance of

({a1}, {p1[t](x)})
({a2}, {p2[t](x)})

n1 n2

during

Fig. 8. A non-serializable signature

In this section, we explore the opportunities of detecting distributed attacks in a decen-
tralized manner. We assume that the component systems trust each other and the commu-
nication between component systems is authenticated.

5.1 Generic and Specific Signatures

A signature in our model specifies a generic pattern of a certain type of attacks, which
is usually independent of any specific systems. This is because signatures are defined on
the abstract representations of underlying systems (i.e. system views), and this abstraction
usually leads to generic signatures that can accommodate variants of the original attack.
However, when the attack is to be detected, the signature has to be mapped to specific
systems so that the IDS can reason the events observed on the specific systems according
to the signature.

To distinguish the aforementioned two situations, we call a signature a specific signature
if each system view instance used by the signature is associated with a system that provides
information (i.e., event history) for the corresponding system view. In contrast, we call a
signature a generic signature if there is at least one system view instance not associated
with any system. For example, the signature shown in figure 3 is a generic one since
no system view instance is associated with any system. If we associate the three system
view instances to a network monitor M and two hosts A and B, respectively, it becomes
a specific signature representing the Mitnick attack on these systems. Note that in this
paper we consider whether a signature is generic or specific as a system feature, and do not
include it in the formal model.

One generic signature usually corresponds to more than one specific signature, since
the attacks modeled by the generic signature may happen against different targets. It is
desirable to model attacks as generic signatures. When the attacks are to be detected for
particular target systems, the specific signatures can be generated from the generic ones by
associating the system view instances with appropriate systems. However, this does not
mean that one can only write generic signatures. One can also write a specific signature
for a particular system according to the configuration of the system.

5.2 Serializable Signatures

Not all signatures can be detected efficiently in a distributed way. Before presenting our
approach for distributed misuse detection, we first demonstrate a “problematic” signature
and then identify the signatures with which we have efficient algorithms.

Consider the signature shown in figure 8. Assume that the systems underlying the system

22 � P. Ning, S. Jajodia, and X.S. Wang

view instances SysView1 and SysView2 are host 1 and host 2, respectively. Note that the
timed condition associated with

� �
needs the variable x2 assigned at node

���
, while the

timed condition with
� �

requires the variable x1 assigned at
� �

. Suppose both host 1 and
host 2 want to process their events locally. Whenever an event

 �
occurs, host 1 needs to

send corresponding information (at least the value of x1) to host 2, since the value of x1 is
needed to evaluate the events represented by

�
�
. Similarly, all the events that occur on host

2 need to be sent to host 1. In this example, each event requires a message. When there
are more nodes that need information from each other, more messages will be required.
For such signatures, a distributed approach entails more messages; indeed, a centralized
approach is more appropriate.

The nature of this problem is the relationship between different nodes (events) in a sig-
nature. We clarify this relationship as follows. We say that a node

�
requires a variable �

if � appears in the timed condition associated with
�

. For any two nodes
�

and
� ! in a sig-

nature, we say
�

directly requires
� ! if � requires some variables assigned at

� ! . Moreover,
we say

�
requires

� ! if � directly requires
� ! or there exists another node

� ! ! such that
�

requires
� ! ! and

� ! ! directly requires
� ! . For example, in figure 8 both

� �
requires

� �
and� �

requires
���

, since
� �

requires the variable x2 assigned at
� �

and
� �

requires the variable
x1 assigned at

� �
. As another example, in figure 3

� �
requires

���
, and

�"�
requires both

� �
and

� �
. Intuitively, node

�
needs information from node

� ! through variable assignments
if
�

(directly) requires
� ! .

Now we identify the signatures that can avoid the above situations by the notion of
serializable signature.

Definition 9 A signature S is serializable if (1) the binary relation require on the set of
nodes in S is irreflexive, and (2) no positive node requires any negative node.

�

The signature in figure 3 (on page 12) is an example of serializable signatures: the
relation require on the set of nodes

	�� � � � �"� � � �
is irreflexive and the only negative node� �

is not required by any node. However, the signature in figure 8 is not serializable, since���
and

� �
require each other.

Since the relation require is transitive by definition, it is implied that the relation require
on the set of nodes of a serializable signature is a strict partial order.

Some non-serializable signatures can be transformed into equivalent serializable ones.
Consider a variant of the signature in figure 3 in which the comparison � � ��� � � 	�� �
is not placed in the timed condition associated with node

���
but represented equivalently

as ��	�� � � ��� ��� � �#� ��� � and placed in the timed condition associated with
� �

. Then
this signature is not serializable, since node

� �
and

� �
require each other. However, we can

always transform it back into the equivalent form shown in figure 3. Indeed, for any two
nodes that require each other in a non-serializable signature, if one of the problematic vari-
ables appears in a conjunctive term of the timed condition that does not involve dynamic
predicate, we can always place it into another timed condition as we did above so that the
two nodes no longer require each other.

In the rest of this paper, we will only consider the detection of attacks specified by
serializable signatures.

5.3 Detection Task and Workflow Tree

A signature for a distributed attack is composed of events distributed over multiple systems.
When detecting such attacks, communication between different systems is inevitable, since

Abstraction-based Intrusion Detection in Distributed Environments � 23

the evidences from different places need to be correlated in some way in order to reason
about the attacks. To avoid transmitting all the distributed events to a centralized place for
analysis, we let each system process the events that it observes and all the systems that are
involved in a signature collaborate to perform the detection.

We consider the nodes in a signature as the basic processing units. An alternative is to
treat all or some of the nodes in one system as one unit; however, we will have to process
the events for different nodes in one unit differently and thus have a similar result. For the
sake of description, we informally call the processing for a node

�
a detection task for

�
.

(We will clarify the semantics of detection task later by a formal definition.) Intuitively,
a detection task for node

�
determines whether an event corresponding to

�
satisfies the

conditions related to
�

.
The detection tasks in a signature are not isolated due to the relationships between the

nodes. In particular, the detection task for node
�

needs the information from the detection
task for node

� ! if
�

requires
� ! . For example, consider the signature shown in figure

3. Given only the events on SysView2, the detection task for node
� �

will not be able to
determine whether such an event satisfies the condition for

� �
without the variable � 	�� �

assigned at node
� �

. Therefore, we need to coordinate the detection tasks in a signature in
order to successfully perform the intrusion detection.

Several issues are worth considering. First, the relation require on the set of nodes in
the signature should be reflected in the coordination. As we discussed earlier, the relation
require imposes that the detection task for node

� ! should give information to the detection
task for

�
if
�

requires
� ! . Second, positive events represent possible attacks; to ensure

the security of the system, positive events should be processed as soon as possible. Third,
since the goal is to determine whether a set of events constitutes an attack, the results of all
the detection tasks should finally be correlated together.

We use workflow tree to represent the coordination of the detection tasks in a signature.
The nodes in a workflow tree consists of all the nodes in the signature, and an edge from
one node to the other indicates that the detection task for the latter node should send infor-
mation (variable values and timestamps) to the task for the former one. The workflow tree
is formally defined as follows.

Definition 10 A workflow tree for a serializable signature Sig is a tree whose nodes are all
the nodes in Sig and whose edges satisfy the following conditions: (1) given two nodes

� �
and

� �
in Sig,

� �
is a descendant of

� �
if
� �

requires
� �

, and (2) there exists a subtree that
contains all and only the positive nodes in Sig.

�

Condition 1 says that the detection task for node
� �

(directly or indirectly) receives
information from the detection task for node

� �
if
���

requires
� �

; condition 2 says that
the detection tasks for positive events must be performed before any the detection tasks for
any negative event. Moreover, the tree structure ensures that all the results of the detection
tasks will finally be correlated together. Figure 9(a) shows a workflow tree for the signature
in figure 3.

In a workflow tree, the root of the subtree that contains all and only the detection tasks
for the positive nodes is called the positive root, and the root of the entire tree, if a negative
node, is called the negative root. For example, in figure 9(a), node

� �
is the positive root

while node
�"�

is the negative root.
Note that a workflow tree specifies the coordination of the detection tasks involved in an

attack; it does not specify the order of involved events. One node being a child of another

24 � P. Ning, S. Jajodia, and X.S. Wang

n 3

n 2

n 1

(a)

3n

n 2

n 1

(b)

3n

n 1 n 2

(c)

Fig. 9. Examples of workflow trees

does not imply that the former node must happen before the latter one.
Another issue is the arrangement of negative nodes in workflow trees. In our current

approach, all positive nodes are arranged in a subtree, and no negative node can appear
under positive nodes. One may think that having negative nodes between or under positive
nodes can improve the performance. It is worth pointing out that negative events are pos-
sibly observable events, not filtering conditions. It is true that if we already observed some
negative events, we may be able to invalidate some positive events without going through
all positive nodes. However, such an arrangement also introduces difficult situations if we
do not observe the corresponding negative events. In this case, we have to send the corre-
sponding positive information to the rest of positive nodes, and two situations may follow.
On the one hand, if we do not later discover the rest of positive events, then sending pos-
itive information through negative detection tasks already costs more. On the other hand,
if we do find all positive events involved in a possible attack, we still need to check with
the previously visited negative events, since some negative events may be observed after
the previous check. Thus, the aforementioned approach does not always result in better
performance than workflow tree. Further considering the simplicity of workflow tree, we
choose our current approach to coordinate the detection tasks.

There are other alternative ways to represent the coordination of detection tasks. For ex-
ample, we may represent the coordination of detection tasks in one signature as a directed
acyclic graph with one sink, where the nodes are the detection tasks, and an edge from one
detection task to another represents that the former detection task should send information
to the latter one. An important distinction between this alternative representation and the
workflow tree is that in the former representation, each detection task may send messages
to multiple detection tasks, while in the workflow tree, each detection task sends informa-
tion to at most one detection task, and the information required by more than one detection
task is first sent to one task and then forwarded to the others. Since most of the events in
normal situations are normal, most of the information sent by a detection task is expected
not related to an attack. Using the workflow tree can not only simplify the model, but also
reduce the number of messages when most of the messages are determined useless and not
forwarded to other detection tasks. In some special cases where we would like to use sig-
natures to, for example, assess the severity of an alert, all information sent by a detection

Abstraction-based Intrusion Detection in Distributed Environments � 25

task may contribute to the final assessment; however, we believe such signatures will not
be the majority of the signatures we will use.

One signature may have multiple workflow trees. Consider a signature that has three
positive nodes

� �
,
� �

and
� �

, where
� �

requires both
� �

and
� �

. Figure 9(b) and 9(c) show
two different workflow trees for this signature. We will discuss how to select appropriate
workflow trees in the next section.

In the rest of this section, we first clarify what are detection tasks for a signature with a
given workflow tree, and then describe how the detection tasks are executed.

Definition 11 Given a serializable signature Sig = (N, E, SysView, Label, Assignment,
TimedCondition, PositiveNodes) and a workflow tree T for Sig, the detection task for each
n in N is a 11-tuple (n, sysview, assign, cond, p, PM, C, CPM, type, isRoot, negativeRoot),
where

- sysview = SysView(n),

- assign = Assignment(n) � 	 �
�� ��� � ���
�� � � �
�� ��� � ���
 ��
��
� � ���
�� � �
��
� � ���
 �
,

- cond is the conjunction of TimedCondition(n) and the qualitative temporal relationships
(represented by E and Label) between n and n’s descendants in T,

- p is the parent node of n in T if n is not the root, or p is the positive root if n is the
negative root,

- PM =
	!�
������ � ���
���� ��
��
� � ���
���� �

n ! = n or n’s descendants
� � 	

the variables assigned
at n and n’s descendants and required by n’s ancestors

�
,

- C is the set of child nodes of n in T if n is not a leaf, and C contains the negative root
node if n is the positive root node but not the root of the whole workflow tree,

- CPM is a mapping from C to sets of variables such that for each c � C, CPM(c) is the
PM component of the detection task for c,

- type = positive if n � PositiveNodes, and type = negative otherwise,

- isRoot = True if n is the root of T or the subtree of T that consists of all the nodes in
PositiveNodes, and isRoot = False otherwise, and

- if n is the positive root and T has negative nodes, negativeRoot is the root of T; otherwise,
negativeRoot is NULL (invalid).

�

The formal definition of detection task specifies the information required for the process-
ing of each event in a signature as well as how this information is derived from the signature
and the corresponding workflow tree. The component n identifies the event in the original
signature; the component sysview indicates the system view instance from which the detec-
tion task gets event and state information about the monitored system; the component cond
specifies the condition that should be tested against each event on sysview; the component
assign includes all the assignments of event attributes to variables that should be performed
if an event on sysview satisfies cond; the component p identifies the detection task (i.e., the
parent detection task) to which this detection task should send detection related messages;
the component PM specifies the schema of the messages to be sent to the parent detec-
tion task; the component C identifies all the detection tasks (i.e., the child detection tasks)
from which this detection task is going to receive detection related messages; similar to
PM, the component CPM specifies the schema of the messages to be received from each
child detection task; the component type indicates whether this detection task corresponds
to a positive or a negative event; finally, the component isRoot tells if this detection task

26 � P. Ning, S. Jajodia, and X.S. Wang

corresponds to the root of the workflow tree or the subtree consisting of all the positive
nodes.

Note that timestamp information can be implicitly represented in signatures, while in
detection tasks, we explicitly represent the processing of timestamp information by times-
tamp variables (e.g.,

�#
������ � ���
��
and

��
� � ���
��
). This is because signatures are pro-

vided by human users; thus, using qualitative temporal relationships can usually make this
job easier. However, detection tasks are developed for programs; hence, representing the
timestamp information explicitly is required.

Let us see an example before we discuss the execution of detection tasks.

Example 7 Consider the signature for the Mitnick attack in figure 3. The detection task for� �
is � �

�
= (

� �
, SysView1, 	���� ����� � , ��� �
� � , � � , �� �

, % , NULL, positive, False, NULL),
where

- 	���� ��� ��� =
	
var IP := VictimIP, var Port := VictimPort,

�#
������ � ���
 � �
:=

�
�� ��� � ���

,
��
� � ���
�� �

:=

��
� � ���
 �

,

- ��� �
� � is True, and

-
 �� �

=
	!�
������ � ���
�� �

,

��
� � ���
�� �

, var IP, var Port
�
.

This detection task says that it takes events on SysView1, which is an instance of TCP-
DOSAttacks, and for each event that satisfies ��� �
� � , it makes the assignments in 	���� ��� � �
and sends the assigned values to the detection task for

�
�
as a tuple on

 �� �
.

The detection task for
� �

is � �
�

= (
� �

, SysView2, 	���� ��� � � , ��� �
� � , � �
,
 �� �

, � � ,
� �� �

, positive, True,
� �

), where

- 	���� ��� � � =
	
var SrcIP := SrcIP, var SrcPort := SrcPort, var DstIP := DstIP, var DstPort

:= DstPort,
�
�� ��� � ���
�� �

:=
�
������ � ���

,

��
� � ���
�� �

:=

��
� � ���
 �

,

- ��� �
� � is ((
�
�� ��� � ���

	 �
������ � ���
�� �

) and (SrcIP = var IP) and (SrcPort=var Port)
and LocalIP[� ���
�� ��� � ���

](DstIP) and Trust[� � �#
������ � ���

](var IP)),

-
 �� �

=
	
var SrcIP, var SrcPort, var DstIP, var DstPort,

�
�� ��� � ���
 � �
,

��
� � ���
 � �

,�
�� ��� � ���
 � �
,

��
� � ���
 � � �

,

- � =
	����

,
�"�
�

, and

- � �� � � � � ! =
 �� �

, � �� � � � � ! =
 �� �

.

This detection task says that it takes events on SysView2, which is an instance of LocalTCP-
Conn, and receives tuples on

 �� �
and

 �� �
from the detection tasks for

� �
and

� �
, re-

spectively. For each event and the variables that satisfy ��� �
� � , it makes the assignments
in 	���� ��� � � and sends the assigned values to the detection task for

� �
as a tuple on

 �� �
.

Note that
� �

is the positive root in the workflow tree. As we will see later, it processes the
information from the detection task for the negative root

� �
in a different way.

The detection task for
� �

is � �
�

= (
�"�

, SysView3, 	���� ��� � � , ��� �
� � , � �
,
 �� �

, � � ,
� �� �

, negative, True, NULL), where

- 	���� ��� �"� =
	 �
�� ��� � ���
 ���

:=
�#
������ � ���

,

��
� � ���
 �
�

:=

��
� � ���
"�

,

- ��� �
� � is ((
�
������ � ���
 � �
�� ��� � ���
�� �

) and (

��
� � ���
 �
��
� � ���
�� �

) and (SrcIP
= var SrcIP) and (SrcPort = var SrcPort) and (DstIP = var DstIP) and (DstPort =
var DstPort)),

-
 �� �

=
	!�
������ � ���
�� �

,

��
� � ���
�� �

,
�
������ � ���
�� �

,

��
� � ���
�� �

,
�
������ � ���
�� �

,
��
� � ���
�� � �
,

Abstraction-based Intrusion Detection in Distributed Environments � 27

Algorithm DetectionTask
Input: (1) A detection task DT = (n, sysview, assign, cond, p, PM, C, CPM, type, isRoot),

(2) events on sysview, events from the detection tasks for the nodes in C, and events from the
detection task for the negative root node if � is the positive root.

Output: (1) partial match events sent to the parent task if ����������	� , and
(2) all the matches of the signature if � is the positive root.

Method:
Let
 be an empty relation whose schema is � =

� � ������� 	
��� � , ����� 	
��� � �
� �
all the attributes of��������� ��� that appear in ��� ��� or � ��������� � . For each ����� , let � � 	�� be an empty relation whose

schema is ��� �"!#�%$. If � is the positive root, let � be an empty relation whose schema is � � .

1. for each event � do
2. Let � �'&)(�'* .
3. if � is an event on ��������� ��� then
4. Let � �'&)(�,+�-/. !#0214365 7986:<;=8?>@>@A4BDCE!#�GF �2HJI �JK C=L ! �NM#O ! M#O � ;2P � � 	 � $<$Q$<$.
5. if �R��,* then
6. Let
�(�
S� +�T ! � $.
7. if � is from a child detection task for ����� then
8. Let � �'&)(�+�-U. !V0 143W5 7X8?:<;Y8
>@>@A4BDC !#�GF �2H@I �QK C=L ! �ZM#O
 MVO ! M#O � � ;�P/[� �Q\7 � � � 	 � � Q<$<$.
9. Let � � 	�� (� � �]� � + P -U. 1 � : ! � $.
10. if type = positive and isRoot = True and � is from the negative root then
11. Let � (� � � +�-U. ! �ZM#O�� $.
12. if � �'&^��,* then
13. if �	��,�����	� then
14. Send each tuple in � �'& to the detection task for � as an event.
15. if type = positive and isRoot = True then
16. Let � (� � �_� �'& .
end

Fig. 10. The algorithm for executing detection task

- � =
	�� ���

, and

- � �� � � � � ! =
 �� �

.

This detection task says that it takes events on SysView3, which is also an instance of
LocalTCPConn, and revceives tuples on

 �� �
from its child detection task identified by

� �
.

For each event and the assigned variable values that satisfy ��� �
� � , it makes the assignments
in 	���� �����"� and sends the assigned values to the detection task for

� �
as a tuple on

 �� �
(since

� �
is the positive root in the workflow tree). Here we assume that each event from

a particular system is uniquely identified by its timestamp. Note that node
���

represents
a negative event, and a satisfaction of ��� �
� � means that counter evidence is found for a
previously discovered match of the signature. Thus, the detection task � �

�
can use the

transmitted variable values to mark the match as a false alarm.
�

5.4 Execution of Detection Tasks

The workflow tree provides a framework for the coordination of the detection tasks. In this
subsection, we further explain how each detection task is performed in this framework.
We assume that the processing of each event is atomic to ensure the correctness. Allowing
concurrent processing of multiple events is interesting and may improve the performance;
however, we do not cover it in this paper but consider it as possible future work.

28 � P. Ning, S. Jajodia, and X.S. Wang

Figure 10 shows the algorithm for executing a detection task. In order to have a con-
cise description of the algorithm, we adopted some notations from the relational algebra.
(Please refer to any database textbook (e.g. [53]) for the semantics of the notations.)

The algorithm uses several relations (tables) to keep events and detection result. The re-
lation � , which we call the history table, keeps the necessary information of the events on
the system view instance sysview. The attributes of the history table consist of the times-
tamps and the event attributes that appear in assign or the condition cond. For example, the
detection task � �

�
in example 7 has the history table whose attributes consist of VictimIP,

VictimPort, begin time and end time.
For each child node � � � of

�
, the relation � � ��� , which we call the partial match table

for � , keeps the variable values assigned by the child detection task for � . The attributes
of � � ��� include all the variables in � �� �
��! . For example, for the detection task � �

�

in example 7, the partial match table � � � � � has attributes
�
�� ��� � ���
�� �

,

��
� � ���
�� �

,
var IP, and var Port.

If
�

is the positive root node in the corresponding workflow tree, the detection task then
keeps a relation

�
(called the matched table) for the detection result of the signature. In

figure 10, the attributes of the matched table include all the variables in PM. Alternatively,
we can use all the timestamp variables in PM to identify the matches, assuming that each
event is uniquely identified by its timestamp.

Note that it is necessary for a detection task to keep both the event information and the
variable values received from its child tasks. The detection task may be able to determine
that a previously examined event is involved in an attack after receiving additional infor-
mation from its child tasks. Similarly, the detection task need to examine the information
previously received from the child tasks when a local event occurs. Thus, each detection
task needs to maintain both a history table and a partial match table for each child detection
task. As an exception, the detection tasks without child tasks do not need to maintain any
table.

The execution of the algorithm DetectionTask is presented in an event-driven fashion.
For the sake of presentation, we also consider the variable values sent by a child detection
task as an event whose attributes are the variable names. To distinguish between different
events, we call the events on system view instances raw events and the events sent by a
child detection task partial match events.

When the detection task receives a raw event

on the system view sysview (line 3), it
first checks whether

satisfies cond along with some tuples in the partial match tables� � � � . This is specified by a join of

with the partial match tables � � � � for all � in � (line

4). The schema of the resulting relation is then changed to
 ��

by a series of renaming
operations followed by a projection (line 4). Then selected attribute values of

are saved

in the history table � if necessary (lines 5 and 6).
When the detection task receives a partial match event

from a child task � (line 7),

it first checks whether this event satisfies cond along with the historical events in � and
partial match tables for � ! other than � . Similarly, this is specified by a join of

with �

and all � � � � � for all � ! in � other than � (line 8). The schema of the resulting relation is
then changed to

 ��
by a series of renaming operations followed by a projection (line 8).

Then selected attribute values of

are saved in the partial match table � � � � as a tuple on
� �� �
��! (line 9).

If the detection task generates new partial match events (i.e.,
 ��

� �� %), it will send
all the events to its parent detection task (denoted by �) if it has one (lines 12 to 14).

Abstraction-based Intrusion Detection in Distributed Environments � 29

As a special case, if the detection task is for a positive root and there are negative nodes
in the corresponding workflow tree, the discovery of partial matches (i.e.,

 ��
� �� %)

implies possible attacks represented by the signature. This seems to introduce a dilemma.
On the one hand, we cannot conclude that an attack really happens if there are negative
events in the signature, since we may later discover counter evidences that invalidate these
attacks. On the other hand, if there really are attacks, not responding immediately may
cause further damage to the systems.

However, from the perspective of the system security, avoiding damage to the system
is more important than avoiding false alarms. Thus, we design the algorithm to work as
follows. When the detection task for a positive root node discovers a non-empty

 ��
� , it

saves the result into the matched table
�

(lines 15 and 16), assuming they all correspond to
attacks. When the detection task for the positive root receives an event

from the detection

task for the negative root (i.e., counter evidence of previously detected matches), it then
removes all matches that share the same attribute values as

(lines 10 and 11).

Note that the detection task for a negative event works in the exactly same way as those
for positive events, unless the node is the root of the workflow tree. In the latter case, it
sends to the detection task for the positive root the timestamps of the events involved in
each partial match.

The execution of detection task can be quite complex if the detection task has many
child tasks. The dominant steps are steps 4 and 8: Step 4 involves a conditional join
of the most recently discovered event and the partial match tables, and step 8 involves a
conditional join of the most recently received partial match event, the history table and the
other partial match tables. A naive implementation of the join operation consists of testing
the condition on all combinations of the new event and the tuples in the other tables. Thus,
step 4 would involve

�
�����

� � � � � � tests of the condition, and similarly, step 8 would involve� � ��� �
�

�
����� �

�
	� �

� � � ��� � condition tests. Such a method corresponds to exhaustive search,
and should be avoided in an implementation.

Two approaches can be used to reduce the execution cost. First, in-memory database
query optimization techniques such as in-memory hybrid hash join [9] and T-Tree [48]
can greatly reduce the cost of the join operation. Indeed, an in-memory database such as
TimesTen [48] can be used in a component IDS to reduce the development cost. Second,
some join operations may be materialized to speed-up the event processing. For example,
we can pre-compute ��
 ����� � � � � so that when a raw event is discovered, it can be directly
joined with the pre-computed table. More research is needed to make the execution of a
single detection task efficient; however, we do not address this problem in this paper but
consider it as future work.

Assume that the communication between detection tasks is resilient (i.e., a message
inserted into the communication channel will be delivered to the receipent eventually) and
the clocks of different IDSs are well synchronized. The correctness of the decomposition
and algorithm DetectionTask is assured by the following theorem.

THEOREM 1. If all the detection tasks for a signature execute according to the algo-
rithm DetectionTask, then they will detect all and only the matches of the signature.

Three issues are worth further clarifying about Theorem 1. First, Theorem 1 ensures
the detection of the matches of the signatures, not the attacks themselves. In other words,
Theorem 1 says that under the aforementioned assumptions, we can detect the attacks as
long as the evidences of the attacks are present in the event histories. Second, this theorem

30 � P. Ning, S. Jajodia, and X.S. Wang

does not imply that each alarm raised by the system represents an attack, since an alarm
may later be disabled due to the discovery of negative events. Instead, it says that each
alarm represents an attack if it stays long enough. The exact threshold to decide whether
an alarm is a true positive depends on the network delays and the processing time of the
related detection tasks. However, we do not need to identify such a threshold, since it does
not contribute to the operation of the system. Third, there is a hidden assumption under
the theorem: infinite memory. That is, we never discard any information from the history
tables or the partial match tables. However, in reality, we may have to discard some data
from these tables due to the memory limitation. As a result, we may miss some stealthy
attacks or have false alarms.

5.5 Optimization

As we pointed out earlier, one signature may have several workflow trees. Detecting the
same signature with different workflow trees may result in different performance, since
they may have different storage requirements and different patterns of message transmis-
sion between detection tasks. We will discuss how to select a good workflow tree in the
next section.

Even with a fixed workflow tree, optimization is still available to improve the perfor-
mance. Sometimes a detection task can determine that an event on the system view is
not involved in an attack even if it needs information from other detection tasks. For
example, in the workflow tree in figure 9(a), which is a workflow tree for the signature
in figure 3, the detection task for

���
can decide that a TCP connection event

is not

involved in any attack if the destination IP address does not belong to the host being
monitored (i.e., ��� � 	�� � �
 ���
�� ��� � ���
 ��� � ��� � ! ��� 	�� �
). In general, we can trans-
form the ��� �
� component of a detection task into the conjunction of two conditions such
that one of them involves only the event attributes and constants. We call this part of
the ��� �
� component a sieving condition. In the above example, the sieving condition is
� � ��	�� � �
 � �#
������ � ���
 � � � ��� � ! . The sieving conditions can be evaluated without any
information from other detection tasks, and only the events that satisfy the sieving con-
dition need further consideration. Moreover, if we can measure the likelihood that each
conjunctive term of ��� �
� is false, we can check those that have higher likelihood of being
false and thus avoid unnecessary evaluations.

Another observation reveals further optimization opportunity. This can be explained
with the above example as well. In order for an event

on the system view instance

SysView2 to be a part of an attack, it must satisfy � � ��� � � 	�� � , which is implied
by the condition ��� �
��� . This means that we can replace the variable ��	 � � with the
attribute � � ��� in the predicate � ��� ���#� � ���
�� ��� � ���
 ���
� 	�� � ! and still have an equiva-
lent condition. As a result, the sieving condition of the detection task

�
�
can be expanded

to (� ��� ���#� � ���
�� ��� � ���
 ����� � � � ! and � � � 	�� � � � � �
������ � ���
 � � � ��� � !) and filter out
more events than the original one. In general, we can perform an equality analysis through
the assignments and the timed conditions in the signature to find out all variables and at-
tributes that are equivalent to each other. Then in the condition component cond of each
detection task, if a variable is equivalent to an attribute of the system view instance, we can
replace the variable with the attribute.

The reader may have noticed that when the size of the history and the partial match tables
grow very large, the performance of the algorithm DetectionTask may be greatly affected
due to the join operations (lines 4 and 7 in figure 10). Moreover, the detection task may

Abstraction-based Intrusion Detection in Distributed Environments � 31

not be able to grow these tables when memory is limited. A practical solution, which has
been used many times in similar contexts (e.g., the token replacement policy in [27]), is to
periodically remove out-of-date tuples from the history and the partial match tables (using
certain replacement policy). This can certainly improve the performance; however, in
theory the revised algorithm may miss some stealthy attacks, since some evidence could be
removed before being correlated with others. More severely, an attacker may intentionally
create a large amount of partial matches to launch a denial of service attack against the IDS.
To detect such attempts, a statistic (e.g., the size of the table) may have to be associated
with each history/partial match table. Nevertheless, this is a problem common to all IDSs
that need to keep state about partial detection results (e.g., USTAT [19]).

The algorithm DetectionTask requires that each detection task maintain a history table
for the raw events that are possibly involved in attacks. However, one event may be stored
in more than one history table if several detection tasks take raw events from the same
system view instance. An alternative way to avoid this situation is to maintain one his-
tory table for each system view instance. However, this approach is not a silver bullet
either. When a detection task receives partial match events from its child tasks, it will have
to determine whether a candidate event stored in the history table satisfies the condition
together with the newly received information, which means that it will have to scan the
records in the history table. Maintaining one history table for each system view instance
will inevitably increase the size of the history table and thus increase the scanning time. A
trade-off between time and space may be desirable, but is out of the scope of this paper.

6. GENERATING WORKFLOW TREE

As we discussed in section 5, different workflow trees for a given signature may result in
different performance. Three major factors that reflect the performance are the CPU time,
the message transmission and the storage requirement. The less requirement for the three
factors, the better performance the workflow tree can result in.

Theoretically, we can define the optimal workflow tree for a specific signature as the
one with the least CPU usage, message transmission and space requirement, and use the
optimal workflow tree to gain the best performance. However, this requires a measurement
of the CPU usage, the message transmission and the space requirement by the specific
signatures, which involves not only how message are transmitted but also how often each
type of events in the specific signature occurs and how conditions are evaluated.

An interesting approach to achieve this is to develop a cost model that can estimate
the aforementioned measurements and select the optimal workflow tree according to the
model. However, the development of the cost model will inevitably involve calculating (or
estimating) the frequency of various types of events, which is usually time-consuming, and
the resulting model will depend on the systems that are used to generate the cost model and
may change as time goes on.

In the following, we present an alternative approach that considers several heuristics that
usually lead to “good” workflow trees.

6.1 A Heuristic Approach

In this subsection, we discuss three principles for developing effective workflow trees as
well as their relationships, and then present the heuristic algorithm that generates workflow
trees on the basis of the principles.

The edges in a workflow tree represent the required information flows in the detection

32 � P. Ning, S. Jajodia, and X.S. Wang

process. An edge implies message transmission between two systems if the detection tasks
for the two nodes involved in the edge are located at different systems. If one node requires
another node, a path between them is certainly unavoidable. However, unnecessary edges
may result in unnecessary message transmissions and additional storage.

Consider a specific signature with three nodes
� �

,
� �

, and
� �

, where
� �

requires both
node

� �
and

� �
, and the system views associated with the three nodes belong to three

different systems. This signature has two workflow trees shown in figures 9(b) and 9(c).
The workflow tree in figure 9(b) is bad, since the variable values assigned at

� �
must be

sent to
� �

through
� �

, resulting in two message transmissions and additional storage at� �
. On the other hand, the workflow tree in figure 9(c) is better than the previous one,

since it allows the variable values assigned at
� �

and
� �

to be sent to
� �

separately. This
example suggests that a workflow tree should avoid unnecessary edges. Principle 1 states
this observation.

PRINCIPLE 1. Place an edge from node
� �

to node
� �

only when (1)
� �

requires
� �

,
or (2)

� �
requires node

� ! and there is a path from
� �

to
� ! .

If the inclusion of the edges is unavoidable, the system views associated with the two
nodes involved in an edge should at least be located at the component system so that the
necessary information flow will be processed in the same local system instead of being
transmitted between different systems. Principle 2 states this observation.

PRINCIPLE 2. If there has to be a path between two nodes that belong to the same
system, place an edge directly between them whenever possible.

Different events usually occur at different rates. We call the events that happen infre-
quently the rare events. For example, the event represented by node

� �
in figure 3, which

is a DOS attack, is a rare event, since such an event seldom happens in a normal network.
Note that rare events are relative and context dependent. A type of events that is rare in
one situation may not be rare in another.

Rare events can help improve workflow tree generation. Note that a partial match event
is generated at node

�
only if

�
has received partial match events from

�
’s child nodes.

Since rare events occur infrequently, the nodes that have rare events as descendants tend
to generate fewer partial match events than the other nodes. Indeed, the lower the the
placement of the rare events in the workflow tree, the fewer partial match events will occur,
and the less message transmission and storage are required. This leads to principle 3.

PRINCIPLE 3. Place the nodes for rare events as close to the leaves as possible.

There may be conflicts between the principles. For example, the workflow tree shown in
figure 9(c) is better than the one in figure 9(b) according to principle 1. However, if event� �

is extremely rare, it may be better to choose the latter one according to principle 3. To
precisely decide which one is better requires the cost of both workflow trees, which is what
we wanted to avoid as discussed earlier.

Here we compare the three principles in normal situations and order them in terms of
their priorities. First, let us compare principles 1 and 3 using the aforementioned example.
Suppose

���
is rare. At first glance, it seems that the workflow tree in figure 9(b) is much

better than the one in figure 9(c). One reason could be that with the workflow tree in figure
9(b), detection task

� �
does not need to send messages to

� �
if it has not received anything

from
� �

. Moreover, if the history table of
���

is limited to a certain size, some information

Abstraction-based Intrusion Detection in Distributed Environments � 33

n 1

n 2

r

...

(a)

n 1

n 2

r

...

(b)

Fig. 11. Comparison of two workflow trees

may be dropped without being transmitted at all. However, this reasoning is flawed if
we look at another aspect of this workflow tree. Note that

� �
does not require

� �
, which

implies that the information sent by detection task
� �

will not reduce the information stored
in the history table of

� �
. As a result, if we use the workflow tree in figure 9(b), each event

detected by detection task
� �

will generate a partial match along with each tuple stored
in the history table of

� �
. The information sent to detection task

� �
is then the Cartesian

product of the history tables of
� �

and
� �

. In contrast, if the workflow tree in figure 9(c)
is used, only the history tables need to be sent. Therefore, we assign principle 1 higher
priority than principle 3. (Note that in extreme cases, i.e., when

� �
is extremely rare, the

workflow tree in figure 9(b) may have less cost.) A similar reasoning can show that we
should give higher priority to principle 1 than principle 2.

Now let us compare principles 2 and 3. Suppose � ,
� �

and
� �

are three events (among
others) involved in a signature. Assume that event � is rare, and events

� �
and

�"�
are in

the same component system. Figure 11(a) shows the workflow tree that we will select if
principle 2 is given higher priority, and figure 11(b) shows the workflow tree that we will
choose if we favor principle 3 over principle 2. With the workflow tree in figure 11(b),
both

� �
and � need to transmit messages through the network in order to send information

to their parent detection tasks. However, since event � is rare and it requires variables from
its descendants, � will have much less partial matches than

� �
, and the messages from �

to
� �

will be much less than those from
� �

to � . In contrast, with the workflow tree in
figure 11(a), only the messages from

���
to � needs to be sent in the network, since

� �
and� �

are located in the same component system. If we assume that sending messages from� �
to � in the first case has roughly the same cost as transmitting messages from

� �
to �

in the second case, then the workflow tree in figure 11(b) has a little more cost than the
one in figure 11(a) in terms of message transmission. However, when detecting an attack,
the workflow tree in figure 11(b) involves two messages between the component systems
in which the three nodes are located, while the workflow tree in figure 11(a) only has one.
Thus, the workflow tree in figure 11(b) introduces longer delay than the one in figure 11(a).
Nevertheless, the workflow tree in figure 11(b) requires less space than the one in figure
11(a), since the partial match table of � in figure 11(b) will be smaller than that of

�
�
in

34 � P. Ning, S. Jajodia, and X.S. Wang

Algorithm Gen WFT
Input: A specific signature S and a subset �N��� � of the nodes in S,
Output: A workflow tree & for S.
Method:

1. Let � �
����� 	 := an empty tree, � = the set of positive nodes in S;
2. Let � �
����� 	 := � ��� &�� ��� !
	 H � �D����� 	@HJ� H �Z�
� � $;
3. Let � := the set of negative nodes in S;
4. Let � �
����� 	 := � ��� &�� ��� !
	 H � �D����� 	@HJ� H �Z�
� � $;
5. return � �D����� 	 .

Subroutine Gen Tree
Input: A specific signature S, a tree & AVC , a subset � and a subset �N��� � of the nodes in S.
Output: A tree & K��
� .
Method:

1. Let � :=
� & AVC � ;

2. while � ��'* do
3. Let � be the set of nodes in � that do not require any node in � ;
4. for each node ��� in � , let its weight be the number of the trees in � that have nodes

required by � � and whose roots are in the same component system as � � ;
5. let � � be the set of nodes in � that have the largest weight;
6. if � ��� �N��� � ���* , let � � (� � ��� �N��� � ;
7. let � be any node in � � ;
8. Let � (��� � � � � , � (� � � � � � ;
9. for each tree & in � that has nodes required by � do
10. Add an edge from � to & ’s root;
11. if � ��� ��� (i.e. � has more than one tree)
12. Group the trees in � in such a way that the trees whose roots belong to the same

component system are in one group;
13. Choose a group � that has the maximum number of trees;
14. if there is a tree & in � that has no common nodes with �N��� � , let � := & ,

else let � be any tree in � ;
15. for each tree &^�� � in � , add an edge from � ’s root to & ’s root; let � �D����� 	 be the

newly constructed tree;
16. return � �
����� 	 .

Fig. 12. The algorithm to generate a workflow tree from a specific signature

figure 11(a) due to the rareness of � . Here we care more about the speed of detection than
the space requirement; thus, we decide to give principle 2 a higher priority. Principle 3
may have higher priority than principle 2 if space becomes a compelling concern.

Figure 12 shows the algorithm Gen WFT developed according to these principles. The
input of the algorithm consists of a specific signature S and a set Rare of the nodes corre-
sponding to rare events, which is a subset of the nodes in S. The output of the algorithm
is a workflow tree for S. The algorithm uses a subroutine Gen Tree to help construct the
target workflow tree. The algorithm Gen WFT first generates the part of the workflow tree
for the positive nodes and then the whole tree, ensuring that the processing of a positive
event does not require the processing of any negative one(s).

In the subroutine Gen Tree, the algorithm first constructs a set of trees according to
the relationship require, the location where the events are observed, and the rare event
information (steps 2 - 10). The algorithm always chooses a node that does not require any
node not in � as the next candidate to be processed. Since the relation require is a strict
partial order, the algorithm can always find a candidate event.

As shown in steps 4 - 7, the algorithm tries to find the nodes that will arrange the most

Abstraction-based Intrusion Detection in Distributed Environments � 35

...
Directory
Service

...Signature Managers

distribute detection tasks

...

detect suspicious actitivities

Target

retrieve

register
Monitors

Systems

Fig. 13. The CARDS architecture

number of nodes in one component system (principle 2), and then tries to find a rare event
from them (principle 3). In steps 9 and 10, the algorithm adds edges only when necessary
(principle 1).

After processing all of the input nodes, the subroutine Gen Tree builds one single tree if
the previous steps result in more than one tree (steps 11 - 15). The algorithm chooses one
of them and adds edges from its root to the roots of all the others. To minimize the message
transmission, the algorithm chooses the tree whose root belongs to the component system
having the most roots of the aforementioned trees (principle 2). Again, the algorithm places
rare events as close to the leaves as possible by trying not to choose a tree that has nodes
representing rare events (principle 3).

7. CARDS: AN EXPERIMENTAL SYSTEM

A prototype system named Coordinated Attack Response and Detection Systems (CARDS)
is being developed to explore the feasibility of the approaches proposed in this paper. The
preliminary design and development of CARDS has been described in [58]. CARDS is
composed of three kinds of independent but cooperative components: signature manager,
monitor and directory service. Figure 13 shows the architecture of CARDS. In a typical
environment, there may be one or more signature managers and one or more monitors. The
monitors can be embedded in the monitored system or as a dedicated system separate from
the monitored system. Different monitors can cooperate with each other through message
passing when they are involved in cooperative detection of attacks.

As shown in figure 13, with the monitor configuration information (i.e., what system
view instances are provided by the monitors) retrieved from the directory service, a signa-
ture manager generates specific signatures from generic signatures, decomposes specific
signatures into detection tasks (according to the methods in sections 5 and 6), and dis-
tributes these tasks to the involved monitors.

Given a generic signature, the signature manager generates specific signatures for all
possible systems that can provide the system view instances required by the generic signa-
ture. This is because in theory the attack specified by the generic signature may happen to
all these systems; thus, all of them should be protected against the attack. However, people
may not want to detect all specific signatures of a generic one due to some administrative
concerns. We envisage some support for the generation of specific signatures according to
different administrative concerns. However, this is out of the scope of the current work.
We do not cover it in this paper nor in the current implementation of CARDS.

Monitors are the components that carry out the intrusion detection tasks. At the begin-

36 � P. Ning, S. Jajodia, and X.S. Wang

Probe 1 Probe n

Detection Engine

information
source n

information
source 1

Detection Task Base

Signature
Managers

Other
MonitorsInter-Monitor

Comm Module

Task Receiver

Directory
Service

sys. view msys. view 2sys. view 1

...

...

Console

register

Fig. 14. The monitor architecture

ning of detection, each monitor receives detection tasks from signature managers. During
detection, it cooperates with other monitors if some detection tasks are parts of some dis-
tributed attacks.

Figure 14 shows the inner structure of a monitor, which is composed of one or more
probes, a detection engine, an inter-monitor communication module, a detection task base,
and a task receiver.

Probes are responsible for collecting information from the target system, filtering and
reformatting the information into structures defined by system views, and providing the
results to the detection engine. Each probe gets information from one particular source,
such as a host audit trail. A probe could also be used to derive information from a signature;
however, this functionality has not yet been implemented in the current system. The system
view configuration of each probe (i.e., system view instances that each probe provides)
should be registered in the directory service, which is later retrieved by signature managers
to generate specific signatures.

The task receiver receives commands for adding or removing detection tasks from the
signature manager, and then add or remove detection tasks from or to the detection task
base accordingly.

The detection engine is the core module of the monitor that executes the detection tasks.
When a detection task is derived from a specific signature involving several monitors, the
detection engine cooperates with the detection engines in the related monitors by pass-
ing messages through the inter-monitor communication module. The console is the user
interface of the monitor.

The directory service is the information center for providing system-wide information
to both signature managers and monitors. Two types of information are provided: system
view definition and system view configuration. The system view definition specifies the
structures and the semantics of the system views. Once a system view is defined, its defini-
tion should be placed in the directory service. The system view configuration information
specify the system view instances provided by the probes (of the monitors).

The directory service is critical for the scalability of the IDS. It allows the signature man-
agers and the monitors to work in a decentralized and scalable manner and deal with only
the components necessary for conducting the designated detection tasks. However, the
unavailability of the directory service does not affect the cooperation of detection tasks;
instead, it only prevents signature managers from generating specific signatures. Never-
theless, if possible, the directory service should be replicated and distributed (using, for

Abstraction-based Intrusion Detection in Distributed Environments � 37

example, LDAP replication server) to provide better availability.
The current version of CARDS is mostly written in Java, with a few probes written in

C++ and incorporated into the system via Java Native Interface (JNI). CARDS uses XML
to describe system views, signatures, and detection tasks. However, to save the processing
time, events transmitted between detection tasks are described using attribute name-value
pairs. Since secure communication between the components is not the focus of this system,
message transmission between components is carried out over TCP.

We have conducted experiments in small-scale systems. The results showed the fea-
sibility of signature decomposition and the distribution and execution of detection tasks.
Further results in large distributed systems are needed to evaluate the scalability of the pro-
posed approaches. In addition, our experience shows that in a large distributed system, it
is necessary to have some mechanisms to support various policies regarding the generation
of specific signatures from generic ones. However, we do not cover the policy issue in this
paper but consider it as future work.

8. CONCLUSION AND FUTURE WORK

In this paper, we explored the abstraction-based misuse detection in distributed environ-
ments. We extended the misuse detection model in ARMD [32], which was developed to
address the portability of misuse signatures for host-based IDSs, to provide a hierarchical
model for distributed attack specification and event abstraction. In addition, we developed
a decentralized approach to detect attacks distributed over multiple systems. We also im-
plemented an experimental system called CARDS [58] to examine the feasibility of the
proposed approach.

The support provided by our model enables the event abstraction to be dynamic and
also benefits the attack specification process. As a misuse detection method, our approach
allows signatures to accommodate unknown variants of known attacks. However, this does
not imply that our approach can detect entirely new attacks. The unknown attacks that
can be detected must share the essential features of some existing signature. In addition,
the choice of system views and specification of signatures still depend on the signature
writers’ understanding of the attacks. Thus, an experienced signature writer may have a
good signature that captures the nature of the attack, while a novice may have a narrowly
define or even incorrect signature.

The simplicity of the revised model leaded to a decentralized approach to detecting dis-
tributed attacks. Considering each event in a signature as a basic processing unit (i.e., de-
tection task), this approach does not require all the information be sent to a central place.
Instead, one component IDS needs send messages to another one only when necessary.
This greatly reduces the network bandwidth and processing time required to detect dis-
tributed attacks. In addition, taking into consideration rare events further improves the
detection performance. The same method may be applicable to some anomaly detection
models if we can clearly identify the require relation in them. Nevertheless, this requires
further work and is out of the scope of this paper.

In addition to the difficulty of writing good signatures, the approach in this paper also has
several limitations. Our approach requires reasonably well synchronized clocks in various
component systems, continuous operation of each participating component IDS as well as
the availability and authenticity of the communication channels between them. If these
requirements are not satisfied, systems using our approach may produce false alarms and
miss certain attacks. Moreover, a trade-off has to be made about how much historical audit

38 � P. Ning, S. Jajodia, and X.S. Wang

data to keep in each component IDS due to memory constraint and performance reasons.
On the one hand, if we decide to keep too much data, a component IDS may not have
enough memory to keep the historical data and the performance of a component IDS may
degrade. On the other hand, if we do not keep enough historical data, we may miss some
stealthy attacks. Nevertheless, these problems are not unique to our approach, but common
to all distributed intrusion detection techniques.

The experimental system CARDS provides a test-bed for the abstraction-based approach
proposed in this paper. In CARDS, specification of distributed attacks are separated from
the detection of the attacks. Distributed attacks are described by generic signatures, which
are common to all systems that provide the system views underlying the signatures. To
protect specific systems, generic signatures are first mapped to specific signatures using
the system configuration information, and then specific signatures are decomposed into
detection tasks, which are distributed to and executed by the cooperative component IDSs.
Our experience with CARDS showed the feasibility of the abstraction-based approach, but
also pointed out more research issues that need to be addressed.

Several issues are worth future research. In this paper, we have studied how to generate
and distribute detection tasks from signatures, and the whole process is done in a predefined
way. An interesting way that could possibly improve the performance is to dynamically and
adaptively generate and distribute detection tasks according to the current detection result.
The second issue is to further improve the performance of individual detection tasks. Our
current research on distributed detection focuses on the coordination of detection tasks;
however, it is equally important to efficiently execute detection tasks. The third issue is the
generation of specific signatures from generic ones. Here we generate all possible specific
signatures from one generic one according to the current system configuration. A policy
language that can control the specific signatures generation process could provide more
flexibility from the administration’s perspective. Finally, we will continue to refine the
implementation of CARDS.

ACKNOWLEDGEMENT

The authors are grateful to the anonymous reviewers for their valuable comments. The
authors would also like to thank Dr. Gene Spafford for his suggestions on improving the
quality of our paper.

REFERENCES

[1] J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11):832–843,
November 1983.

[2] J. P. Anderson. Computer security threat monitoring and surveillance. Technical report, James P. Anderson
Co., Fort Washington, PA, 1980.

[3] R.G. Bace. Intrusion Detection. Macmillan Technology Publishing, 2000.

[4] D. Barbará, N. Wu, and S. Jajodia. Detecting novel network intrusion using bayes estimators. In Proceedings
of the First SIAM Conference on Data Mining, April 2001.

[5] M. Bishop. A security analysis of the NTP protocol version 2. In Proceedings of the 6th Annual Computer
Security Applications Conference, pages 20–29, 1990.

[6] H.Y. Chang, R. Narayan, C. Sargor, F. Jou, S.F. Wu, B.M. Vetter, F. Gong, X. Wang, M. Brown, and J.J.
Yuill. Deciduous: Decentralized source identification for network-based intrusions. In 6th IFIP/IEEE
International Symposium on Integrated Network Management. IEEE Communication Society, 1999.

[7] H.Y. Chang, S.F. Wu, C. Sargor, and X. Wu. Towards tracing hidden attackers on untrusted IP networks.
Submitted for publication., 2000.

Abstraction-based Intrusion Detection in Distributed Environments � 39

[8] D. Curry and H. Debar. Intrusion detection message exchange format data model and extensible markup
language (xml) document type definition. Internet Draft, draft-ietf-idwg-idmef-xml-03.txt, February
2001.

[9] D.J. DeWitt, R.H. Katz, F. Olken, L.D. Shapiro, M.R. Stonebraker, and D. Wood. Implementation tech-
niques for main memory database systems. SIGMOD Record, 14(2):1–8, 1984.

[10] R. Feiertag, C. Kahn, P. Porras, D. Schnackenberg, S. Staniford-Chen, and B. Tung. A common intrusion
specification language. http://www.gidos.org/drafts/language.txt, 2000.

[11] R. Feiertag, S. Rho, L. Benzinger, S. Wu, T. Redmond, C. Zhang, K. Levitt, D. Peticolas, M. Heckman,
S. Staniford, and J. McAlerney. Intrusion detection inter-component adaptive negotiation. Computer
Networks, 34:605–621, 2000.

[12] B.S. Feinstein, G.A. Matthews, and J.C.C. White. The intrusion detection exchange protocol (IDXP). Inter-
net Draft draft-ietf-idwg-beep-idxp-02.txt, March 2001.

[13] C. Freksa. Temporal reasoning based on semi-intervals. Artificial Intelligence, 54:199–227, 1992.
[14] D. Frincke, D. Tobin, J. McConnell, J. Marconi, and D. Polla. A framework for cooperative intrusion

detection. In Proceedings of the 21st National Information Systems Security Conference, Crystal City,
Virginia, October 1998.

[15] L. T. Heberlein, B. Mukherjee, and K. N. Levitt. Internetwork security monitor: An intrusion-detection
system for large-scale networks. In Proceedings of 15th National Computer Security Conference, pages
262–271, Baltimore, MD, October 1992.

[16] Y. Ho, D. Frincke, and D. Jr. Tobin. Planning, petri nets, and intrusion detection. In Proceedings of the 21st
National Information Systems Security Conference, Crystal City, Virginia, October 1998.

[17] J. Hochberg, K. Jackson, C. Stallings, J. F. McClary, D. DuBois, and J. Ford. NADIR: An automated system
for detecting network intrusion and misuse. Computers & Security, 12(3):235–248, May 1993.

[18] K. Ilgun. USTAT: A real-time intrusion detection system for UNIX. In Proceedings of IEEE Symposium on
Security and Privacy, pages 16–28, Oakland, CA, May 1993.

[19] K. Ilgun, R. A. Kemmerer, and P. A. Porras. State transition analysis: A rule-based intrusion detection
approach. IEEE Transaction on Software Engineering, 21(3):181–199, 1995.

[20] H.S. Javits and A. Valdes. The NIDES statistical component: Description and justification. Technical report,
SRI International, Computer Science Laboratory, 1993.

[21] Y.F. Jou, F. Gong, C. Sargor, X. Wu, S.F. Wu, H.C. Chang, and F. Wang. Design and implementation of a
scalable intrusion detection system for the protection of network infrastructure. In DARPA Information
Survivability Conference and Exposition, 2000.

[22] C. Kahn, D. Bolinger, and D. Schnackenberg. Communication in the common intrusion detection frame-
work. http://www.gidos.org/drafts/communication.txt, 1998.

[23] C. Kahn, P. A. Porras, S. Staniford-Chen, and B. Tung. A common intrusion detection framework. Submit-
ted to Journal of Computer Security, July 1998.

[24] R. A. Kemmerer. NSTAT: A model-based real-time network intrusion detection system. Technical Report
TRCS97-18, Reliable Software Group, Department of Computer Science, University of California at
Santa Barbara, 1997.

[25] K. Kendall. A database of computer attacks for the evaluation of intrusion detection systems. Master’s
thesis, Department of EECS, MIT, June 1999.

[26] F. Kerschbaum, E.H. Spafford, and D. Zamboni. Using embedded sensors for detecting network attacks. In
Proceedings of the 1st ACM Workshop on Intrusion Detection Systems, November 2000.

[27] S. Kumar. Classification and Detection of Computer Intrusions. PhD thesis, Purdue University, August
1995.

[28] S. Kumar and E. H. Spafford. A pattern matching model for misuse intrusion detection. In Proceedings of
the 17th National Computer Security Conference, pages 11–21, October 1994.

[29] W. Lee, R.A. Nimbalkar, K.K. Yee, S.B. Patil, P.H. Desai, Tran T.T., and S.J. Stolfo. A data mining and
CIDF based approach for detecting novel and distributed intrusions. In Proceedings of 3rd International
Workshop on the Recent Advances in Intrusion Detection, October 2000.

[30] W. Lee, S. J. Stolfo, and K. W. Mok. A data mining framework for building intrusion detection models. In
Proceedings 1999 IEEE Symposium on Security and Privacy, Oakland, CA, May 1999. To appear.

[31] J. Lin. Abstraction-Based Misuse Detection: High-level Specifications and Adaptable Stragegies. PhD the-
sis, George Mason University, Fairfax, VA, December 1998.

40 � P. Ning, S. Jajodia, and X.S. Wang

[32] J. Lin, X. S. Wang, and S. Jajodia. Abstraction-based misuse detection: High-level specifications and adapt-
able strategies. In Proceedings of the 11th Computer Security Foundations Workshop, pages 190–201,
Rockport, MA, June 1998.

[33] U. Lindqvist and P. A. Porras. Detecting computer and network misuse through the production-based expert
system toolset (P-BEST). In Proceedings of the 1999 IEEE Symposium on Security and Privacy, pages
146–161, Oakland, CA, May 1999.

[34] A. Mounji. Languages and Tools for Rule-Based Distributed Intrusion Detection. PhD thesis, University of
Namur (Belgium), September 1997.

[35] A. Mounji, B.L. Charlier, D. Zampuni �eris, and N. Habra. Distibuted audit trail analysis. In Proceedings of
the ISOC ’95 Symposium on Network and Distributed System Security, pages 102–112, 1995.

[36] B. Mukherjee, L. T. Heberlein, and K. N. Levitt. Network intrusion detection. IEEE Network, 8(3):26–41,
May 1994.

[37] V. Neufeldt, editor. Webster’s New World Dictionary of Amercian English. Webster’s New World, 3rd col-
lege edition edition, 1988.

[38] D. New. The TUNNEL profile. Internet Draft draft-ietf-idwg-beep-tunnel-01.txt, February 2001.
[39] P. Ning, X. S. Wang, and S. Jajodia. Modeling requests among cooperating intrusion detection systems.

Computer Communications, 23(17):1702–1716, 2000.
[40] P. Ning, X. S. Wang, and S. Jajodia. A query facility for common intrusion detection framework. In Pro-

ceedings of 23rd National Information Systems Security Conference, pages 317–328, Baltimore, MD,
2000.

[41] S. Northcutt. Network Intrusion Detection: An Analyst’s Handbook. New Riders, 1999.
[42] P. Porras, D. Schnackenberg, S. Staniford-Chen, M. Stillman, and F. Wu. The common intrusion detection

framework architecture. http://www.gidos.org/drafts/architecture.txt, 1998.
[43] P. A. Porras and P. G. Neumann. EMERALD: Event monitoring enabling response to anomalous live dis-

turbances. In Proceedings of the 20th National Information Systems Security Conference, National
Institute of Standards and Technology, 1997.

[44] M. Rose. The blocks extensible exchange protocol core. IETF RFC 3080., March 2001.
[45] C. L. Schuba, I. V. Krsul, M. G. Kuhn, E. H. Spafford, A. Sundaram, and D. Zamboni. Analysis of a denial

of service attack on TCP. In Proceeding of 1997 IEEE Symposium on Security and Privacy, pages
208–223, Oakland, CA, May 1997.

[46] S. E. Smaha. Haystack: An intrusion detection system. In Proceedings of Fourth Aerospace Computer
Security Applications Conference, December 1988.

[47] S. R. Snapp, J. Brentano, G. V. Dias, T. L. Goan, L. T. Heberlein, C. Ho, K. N. Levitt, B. Mukherjee,
S. E. Smaha, T. Grance, D. M. Teal, and D. Mansur. DIDS (distributed intrusion detection system) -
motivation, architecture, and an early prototype. In Proceedings of 14th National Computer Security
Conference, pages 167–176, Washington, D.C., October 1991.

[48] TimesTen Performance Software. Architecture for real-time data management: Timesten’s core in-memory
database technology. White Paper, 2001.

[49] E.H. Spafford and D. Zamboni. Intrusion detection using autonomous agents. Computer Networks, 34:547–
570, 2000.

[50] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland, K. Levitt, C. Wee, R. Yip,
and D. Zerkle. GrIDS - a graph based intrusion detection system for large networks. In Proceedings of
the 19th National Information Systems Security Conference, volume 1, pages 361–370, October 1996.

[51] S. Staniford-Chen and L. Heberlein. Holding intruders accountable on the internet. In Proceedings of 1995
IEEE Symposium on Security and Privacy, pages 39–49, Oakland, May 1995.

[52] Smith. S.W. and J.D. Tygar. Security and privacy for partial order time. In ISCA Seventh International
Conference on Parallel and Distributed Computing Systems, October 1994.

[53] J. Ullman and J. Widom. A First Course in Database Systems. Prentice Hall, April 1997.
[54] G. Vigna and R. A. Kemmerer. NetSTAT: A network-based intrusion detection system. Journal of Computer

Security, 7(1):37–71, 1999.
[55] G. Vigna and R. A. Kermmerer. NetSTAT: A network-based intrusion detection approach. In Proceedings

of the 14th Annual Security Applications Conference, December 1998.
[56] G. B. White, E. A. Fisch, and U. W. Pooch. Cooperating security managers: A peer-based intrusion detec-

tion system. IEEE Network, pages 20–23, January 1996.

Abstraction-based Intrusion Detection in Distributed Environments � 41

[57] S.F. Wu, H.C. Chang, F. Jou, F. Wang, F. Gong, C. Sargor, D. Qu, and R. Cleaveland. JiNao: Design and
implementation of a scalable intrusion detection system for the OSPF routing protocol. To appear in
Journal of Computer Networks and ISDN Systems.

[58] J. Yang, P. Ning, X. S. Wang, and S. Jajodia. CARDS: A distributed system for detecting coordinated
attacks. In Sihan Qing and J. H. P. Elof, editors, Proceedings of IFIP TC11 Sixteenth Annual Working
Conference on Information Security (SEC 2000), pages 171–180. Kluwer Academic Publishers, August
2000.

APPENDIX

A. PROOF OF THEOREM 1

PROOF. Consider a set of detection tasks derived from a signature Sig = (N, E, SysView,
Label, Assignment, TimedCondition, PositiveNodes) and a workflow tree T for Sig.

Suppose there is a match of Sig. This implies that for each positive node
�

in Sig there
is an event, denoted

��
, on the system view associated with

�
such that they together

satisfy the three conditions specified in definition 5. Consider the detection task � � � for
a leaf node

�
� in T. The ��� �
� component of � � � is the timed condition associated with�

� according to definition 11. Since the event

��

� satisfies the timed condition associated
with

�
� (which equals to ��� �
�) and there is no child detection task, the

 ��
� table in

step 4 of the algorithm will contain the values of the variables required by other detection
tasks. Since the communication is resilient, the variable values in

 ��
� will be sent to the

detection task for the parent node of
�

� .
Now consider the detection task � � � for an interior node

� � . Event

 � �

will be saved in
the history table � at step 6 of the algorithm DetectionTask. If � � � receives the variable
values assigned from

 �
� for all child nodes

�
� of

� � , it will compute a non-empty
 ��

�
table in either step 4 (when it receives

 � �
after all the variable values) or step 8 (other

situations), since

 � �

and

 �

� ’s are part of the match. The table
 ��

� will contain the
variable values assigned from

�� �
(through the renaming operation) or inherited from the

detection tasks for
� � ’s child nodes. Then in step 14, � �"� will send the variable values to

its parent detection task. By induction, the detection task for the positive root node in T
will store the timestamps of

��
’s. This is to say that all matches of the signature will be

detected by the algorithm DetectionTask.
For each tuple � in the matched table

�
, � has timestamp attributes

�#
������ � ���
��
and
��
� � ���
��

for each positive node
�

in Sig, which together identify an event

��

on the
system associated with

�
. For each node

�
, since

�
�� ��� � ���
��
and

��
� � ���
��
are finally

transmitted to the detection task for the positive root,

��

must satisfy the ��� �
� component
of the corresponding detection task. According to definition 11, the ��� �
� component of
each detection task is the conjunction of the timed condition associated with

�
and the

qualitative temporal relationships between
�

and
�

’s descendants in T. This has two im-
plications. First,

 �
satisfies the timed condition associated with

�
. Second, for each arc� ��� ��� � ! in Sig, either

���
(when

� �
is closer to the root) or

� �
(when

� �
is closer to the

root) satisfying the ��� �
� component implies that

 � �

and

 � �

satisfy the qualitative tempo-
ral relationship represented by the labeled arc. This means that there is a match of all the
positive nodes.

If � ��
��� � � � �
 � �

�
 � and there exists a match of all the nodes in Sig, the detection
task for the negative root in T will discover this match and sends the timestamp variables
to the positive root. Then this match will be removed from

�
in step 11. This is to say that

all the tuples that remain in
�

long enough (i.e., longer than the time required to process

42 � P. Ning, S. Jajodia, and X.S. Wang

and transmit the negative events) represent matches of the signature Sig. This concludes
the proof.

