
Real-time behaviour synthesis for dynamic Hand-Manipulation

Vikash Kumar, Yuval Tassa, Tom Erez, Emanuel Todorov

Abstract— Dexterous hand manipulation is one of the most
complex types of biological movement, and has proven very
difficult to replicate in robots. The usual approaches to robotic
control – following pre-defined trajectories or planning online
with reduced models – are both inapplicable. Dexterous manip-
ulation is so sensitive to small variations in contact force and
object location that it seems to require online planning without
any simplifications. Here we demonstrate for the first time
online planning (or model-predictive control) with a full physics
model of a humanoid hand, with 28 degrees of freedom and
48 pneumatic actuators. We augment the actuation space with
motor synergies which speed up optimization without removing
dexterity. Most of our results are in simulation, showing non-
prehensile object manipulation as well as typing. In both cases
the input to the system is a high level task description, while
all details of the hand movement emerge online from fully
automated numerical optimization.

I. INTRODUCTION

Dexterous manipulation is one of the most complex and
expressive classes of biological movement. Unlike other
dynamic movements such as locomotion – which have been
discovered by evolution in many different forms – manip-
ulation appears to be challenging even for biology. Indeed
a large part of the primate brain is devoted to controlling
the hand and its complex musculo-tendon network. Manual
dexterity is perhaps the most distinguishing sensorimotor
capability of humans. Therefore, if we aspire to integrate
robots into our human-centered world, we must equip them
with manipulators and control strategies of similar dexterity.

Dexterous manipulation not only involves effective co-
ordination of a high degree-of-freedom (dof) manipulator,
but also requires stabilizing an object that only becomes
controllable through contacts. High dof, including mutually
coupled dof, operate in a very compact space co-inhabited by
the object being manipulated. This results in a large number
of contacts and dynamic phenomena such as rolling, sliding
and deformation. Movement of objects within the workspace
causes contacts to appear and disappear often, which greatly
complicates motion planning.

In addition to high dof, a dexterous manipulator must
also exhibit a well balanced combination of capabilities such
as speed, strength, low loop latency, and compliance. High
number of actuated dof in a small space makes it hard to
design such manipulators. Dexterous robotic hands exist [1]
[2] [3], but the difficulty in controlling them has motivated
many researchers to focus on more limited mechanisms. Our
goal instead is to develop general-purpose control solutions

The authors are with the Departments of Computer Science & Engineer-
ing and Applied Mathematics, University of Washington, WA 98195, USA

E-mail: {vikash, tassa, etom, todorov }@cs.washington.edu

that can be applied to mechanisms as complex as a human
hand.

Most prior work on hand control has focused on achieving
stable grasp. While a lot of progress has been made on the
theoretical side, practical applications are largely limited to
using task-specific manipulators in carefully controlled en-
vironments. Part of the difficulty in deploying manipulation
in less constrained environments comes from challenges in
sensing and state estimation – due to visual occlusions and
limited tactile sensing. But control is also challenging. Even
if we assume a perfect model, most existing methods for
grasp synthesis are too slow to operate in real-time, making
it impossible to adapt to an uncertain environment.

For applications of dexterous manipulation in uncon-
strained human environments, we need the capability to
plan in real time. This is because no pre-computed solution
or simplifying set of assumptions are likely to work for
such a complex behavior, that is so exquisitely sensitive to
small variations in contact force or object position. Planning
needs to be error tolerant and capable of quickly generating
corrective maneuvers that stabilize the object in the face
of unexpected disturbances. This is particularly challenging
in non-prenehsile manipulation, i.e. in the absence of a
statically-stable grasp. Numerical optimization is the only
general approach we are aware of that is at least in principle
capable of ”inventing” complex movements fully automati-
cally, without intervention from a human. This is why our
approach is centered on optimization.

The challenges of legged locomotion bare resemblance to
those of dexterous manipulation: in both cases, an effective
solution must deal with the forces acting between the robot’s
body, over which it exerts full control, and the unactuated
dynamics – the root joint for locomotion, and the object
in manipulation. After decades of research in legged loco-
motion, we are now capable of producing careful walking
with humanoid robots [4] [5]. However these developments
have not yet had an impact on hand movement control, in
part because they rely on domain-specific abstractions such
as ZMP, capture points, inverted pendulum approximations,
etc. In fact this may be why manipulation is so much harder:
in manipulation, constructing a reduced model that captures
the essence of the behavior seems impossible. Any such
model will clearly need to include the object and all the hand
surfaces that can interact with it, along with the kinematic
limitations of the manipulator – so it is not really a reduction.

From a computational perspective, hand movement syn-
thesis is challenging because high dof (both actuated and
unactuated) results in high dimensionally of the search space.
Inter-finger contacts and object-finger interactions produce



large number of contacts that impose discontinuities in the
search space. The optimization landscape is further compli-
cated by active involvement of dynamic phenomenon such
as rolling, sliding and large number of contacts that make
and break often.

In this paper we describe our ongoing work in real-time
planning (or model-precitive control, MPC) of dexterous
manipulation. The most interesting results are obtained in
simulation, we present these results in light of a hardware
platform we are developing – a ShadowHand skeleton that
we have equipped with faster and more compliant actuation
[6]. This hardware platform called ”ADROIT” is described in
section IV. MPC control of object manipulation in simulation
is presented in section VI. We also introduce an element
which is often considered in hand manipulation but is novel
to the MPC setting: namely hand synergies. Synergy-space
planning techniques are described in section VI-E.

Our movement synthesis for dynamic hand manipulation
builds upon our previous work [7] [8] which was able
to synthesize full body movements. However, it was un-
able to scale up for motion synthesis in case of dexter-
ous hand manipulating owing to difference in the nature
of the optimization manifold. After carefully investigating
the challenges, we introduce synergy-space planning and
demonstrate for the first time online synthesis of dexterous
object manipulation. The input to the planner is a high-level
task description: we only specify the desired position of the
object being manipulated, and the entire hand movement is
then synthesised automatically. Similarity, in case of typing,
we specify the sequence of desired key presses and the
behavior emerges automatically. Instead of imposing these
specification as hard constraints, we pose them as costs and
mix them with other intuitive costs such as being gentle and
moving at a nominal speed.

II. RELATED WORK

Grasping has received more attention from the robotics
community than dexterous manipulation. Researchers have
approached grasping primarily from two different directions.
One approach focuses on improving the design of the manip-
ulator so as to improve its capabilities in terms of producing
stable grasps. The other approach exploits optimization based
techniques to evaluate the stability of the grasp using grasp
metrics [9]. Various grasp metrics has been proposed with no
clear advantage of using one over the other. These methods
are less likely to generalize for dexterous manipulation but
are based on important ideas. One such idea is force closure
which can be treated as the ZMP equivalent in case of
grasping. Another idea is position the manipulator in pre-
grasp configuration and close the finger while relying on the
compliance of the joints to grasp the object. Graspit [10]
is a tool for simulating and evaluating grasp for different
shapes which is quite popular in the community. While
grasping has always been the center of hand research, one
common approach towards reactive manipulation is tele-
operation using data gloves. In tele-operation the hard part of
planning and decision making is left to the intelligent user

while the controllers blindly follows the joint trajectories.
Contact invariant trajectory optimization [11] is an offline
method capable of synthesising hand manipulation but its
slow and trades physics for visually expressive manipulation
behavior. Such approaches are hard to generalizable and are
less likely to scale in real applications. Also, see review paper
[12] [13]

A. Motion capture techniques
The graphics community has long utilized motion capture

system and dimensionality reduction techniques (see below)
to synthesize movements for animated characters. While the
focus has always been on full body movements, motion
capture techniques have been used for hand movement
synthesis [14] [15]. These approaches have not been widely
successful in the robotics research owing to the real world
physics constraints (that can be violated in animation), its
inability to generalize and computationally expensive post
processing step. An up-to-date discussion on motion capture
based hand manipulation can be found in [16]

B. Dimensionality reduction and synergy based control
Although rich and diverse, animal forms exhibit charac-

teristic movements that can be attributed to its morphology,
neural system and habitat. Researchers have ascribed these to
bio-muscular and neural factors [17] [18]. Low dimensional
embedding has been found at the level of kinematics [19],
instantaneous muscle activity [20], spatio-temporal muscle
activity [21] and feedback control law [22]. These low
dimensional embeddings have long been exploited in the
graphics community to reduce the dimensionality of search
spaces to synthesize full body movements. It has also been
demonstrated that such embeddings also exists in hand
movements. Approximately 95% of the postural variance
associated with hand grasping can be explained using four
principal components [23]. Such low dimensional embedding
and synergy spaces have been exploited by the robotics
community to accelerate the pace of grasping research [10].
However, it has restricted the capabilities of present robotic
devices to simple grasps. Similar to biological systems,
present day robots have many dofs. While synergies and low
dimensional spaces have helped us control and emulate some
of the functionalities; they have restricted the behaviours
to simple movements that conceal the expressiveness and
dexterity of these robots.

III. ONLINE TRAJECTORY OPTIMIZATION
The hand manipulation behaviors presented here are gener-

ated autonomously via numerical optimization. At any given
moment, the controller has a plan that predicts the system’s
state over some finite horizon into the future. This plan
is constantly optimized in a receding-horizon fashion, and
the initial state is set according to the estimated current
state. At every iteration, our trajectory optimization algorithm
employs a model of the system’s dynamics to solve a finite-
horizon optimal control problem, an approach known as
Model Predictive Control (MPC). Here we use a first-order
version of the Differential Dynamic Programming algorithm



[24]. For brevity, here we present only an outline of the
algorithm; for more details on our optimization approach,
see [7], [8].

A. Finite-Horizon Optimal Control
We formulate the dynamics in discrete time; given the

state xi and control signal ui at time i, we use the model
xi+1 = f(xi,ui) to compute the next state: The optimization
is driven by a cost function `(xi,ui) that depends on the
instantaneous state and control. We also define a final cost
function `f (xN ) that depends only on the final state of the
trajectory.

Given an initial state x0 and a sequence of controls
U ≡ {u0,u1 . . . ,uN−1}, we compute the resulting state
trajectory by repeatedly applying the dynamics f for N
times. The solution of the optimal control problem is the
control sequence that minimizes the total cost along a
trajectory for a given initial state x0:

U∗(x) ≡ argmin
U

N−1∑
i=0

`(xi,ui) + `f (xN ).

B. Trajectory Optimizer
Our optimization algorithm relies on the principle of

dynamic programming: the Value at time i indicates the
minimum cost one can hope to obtain for the remaining
N − i steps when acting optimally. The final value is equal
to the final cost: V (x, N) = `N (x), and the rest is computed
recursively going backwards in time along the trajectory:

V (x, i) = min
u

[`(x,u) + V (f(x,u), i+1)].

At every iteration, we compute a second-order approximation
of the derivatives of V WRT xi, and derive from it a search
direction ∆U. We then perform a line search, rolling out
multiple trajectories with control sequences U0 + α∆U for
different values of α, and select the best one.

Our algorithm is the control analog of the Gauss-Newton
method for nonlinear least-squares optimization: we use
a first-order expansion of the dynamics and second-order
expansion of the cost. For linear dynamics and quadratic
cost we can compute the global optimum in a single iteration.
However, the cost functions we use are not quadratic in state
space (sec. VII), and the hand dynamics is highly-nonlinear,
mostly due to the effects of contact making and breaking as
well as due to the synergy-based actuation model. Therefore,
converging to the optimal control U∗ requires multiple
iterations of local approximation. However, the system is in
motion while the optimization is being computed. Therefore
we find it more computationally advantageous to update x0
after every iteration than to find the optimal control sequence
for a stale initial state.

IV. ADROIT: MANIPULATION PLATFORM

ADROIT is a reconfigurable manipulation platform being
developed for exploring and addressing challenges in dy-
namic and dexterous manipulation. The physics model used
in our simulations is based on the ADROIT platform. We
started our search for an ideal platform from a pneumatic

robot ShadowHand [1], well known for its dexterity and
human-like morphology. We soon attributed its speed and
compliance bottlenecks to its actuation system consisting of
McKibben muscles and low flow-rate binary valves.

In [6] we developed a general purpose universal pneumatic
actuation for tendons driven systems. Our actuation system
allows us to move the ShadowHand skeleton faster than
a human hand (70 msec limit-to-limit movement) with 30
msec overall reflex latency. The system is almost frictions
less and so compliant that only 6 grams of external force at
the fingertip displaces it when the system is powered. This
combination of speed, force and compliance is a prerequisite
for dexterous manipulation, yet it has never before been
achieved with a tendon-driven system, let alone a system
with 24 dof and 40 tendons.

Fig. 1. The ADROIT platform (ceiling mount)

ADROIT (figure 1) is a reconfigurable platform with 24
dof hand mounted on a 4 dof arm. All the joints can
be actuated independently by its two exclusive opposing
cylinders; with the exception of DIP and PIP joints of the
four fingers that are mutually coupled.

The skeleton is mostly dominated by the Shadowhand
skeleton with modifications to accommodate our pneumatic
actuation system. Other major modifications include, the
reinforcement of base joint to support upside down mounting.
A low level driver written in ’C’ talks to the system. The
system is capable of sampling all the tendons length and
pressure sensors at 9000Hz. A PIC microprocessor embed-
ded in the palm samples all the joint angle and reports data
at 500Hz via a CAN channel. The pneumatic valves can be
commanded at 125Hz.

The entire platform is in a stage of constant evolution
with the iterative improvements between (a) the hardware
requirements, as demanded by the controller while synthe-
sising dynamic manipulation behaviors in simulation and
(b) manipulation capabilities, given the development in our
control strategies and hardware limitations.

V. MODELLING

In order to evaluate the hardware and test our control
strategies, the ADROIT simulator (figure 2) is developed
using the Mujoco Physics engine. Mujoco [25] is a new
physics engine that works with generalised co-ordinates and
supports a number of unique features including tendons



actuation. Let q denote the vector of joint angles. Mujoco
represents tendons L(q) as path via routing points (i.e. sites),
such that it does not penetrate any geometric wrapping
objects (sphere and cylinders). At each time step Mujoco
automatically computes the tendon’s moment arms ∂L(q)

∂q

which links tendon velocities L̇ to the joint velocities q̇ and
joint torques τ to the scalar tension f applied on the tendon
by the corresponding linear actuator.

The upper bound on tension f is determined by the type
of actuator connected to the tendons. The lower bound fslack
needs to be carefully maintained to avoid tendon slack.
While the upper bound is strict, lower bound depends on the
physical properties of the actuator (like friction, damping,
stiction of the actuator and corresponding joints) and the
nature of task being performed.

*
*

COUPLER

EXTENSORFLEXOR

DISTAL

DIP-JOINT

MIDDLE

PIP-JOINT

PROXIMAL

MCP-JOINT

KNUCKLE

26
25

45

Fig. 2. ADROIT Simulator visualizations (table mount) Left: A full CAD
model of our 28-DOF platform. Center: An equivalent simplified model
using capsules to simplify contact detection. The kinematic tree is the
same in both models. Right: Tendon schematics representing DIP-PIP joint
coupling.

Mujoco’s tendon length constraints are exploited to model
PIP and DIP joint coupling. These joints are coupled using a
tendon network that constraints the DIP flexion to be greater
that PIP flexion. Figure 2 illustrates how this coupling is
modelled in Mujoco using a soft tendon length constrain.

The simulator supports two different actuator mechanisms.
First, a linear actuator that directly acts on a tendon to
produce tension. Second, third order pneumatic actuator that
uses pressure dynamics to produce tendon tension. [26]
presents the modelling results of pressure dynamics of our
muscle assembly (pneumatic cylinder, pipeline and valves).
We present a generic parametric model of pressure dynamics
that allow us to predict pressure upto 5 seconds in the
future (given the current state and future voltage trajectories).
The linear actuator provides a nice abstraction secluding
pneumatics from the rest of the robot. Since our pres-
sure dynamics are 3rd order, secluding pneumatics removes
pressure from the list of state variables, thus reducing the
dimensionality of the state space. This reduction is extremely
helpful while exploring hardware capabilities independent of
pneumatic actuation.

The dynamic manipulation results and the typing results
mentioned in the paper were generated using linear actua-
tors.

VI. BEHAVIOR SYNTHESIS

Our approach for synthesising dynamic hand manipulation
behaviors is to use MPC, also known as online trajectory-
optimization or receding-horizon control. Each MPC itera-
tion begins with updating the state of the system using the
latest estimates from the estimator. An estimator processes
readings from all the sensors and maintains a coherent
estimate of the state at all times. A single iteration of a
trajectory-optimization algorithm is applied starting from this
state, and the initial part of the resulting policy is applied to
the system until the process can be repeated and the policy
updated again. For MPC to succeed, large updates to the
policy must be made in each step so that the optimizer
can “keep-up” with the changing state. This means that the
regularization parameter µ, which slows the optimizer should
be small and carefully chosen.

A. State
ADROIT platform has 28 dof and is actuated using 48

pneumatics cylinders. Depending on wether linear or 3rd
order pneumatic actuators are in use, our state space is either
56 (q + q̇ for 28 joints) or 104 (q + q̇ for 28 joints + p for
48 tendons) dimensional. Manipulation example adds another
12 dimensions for the object state and typing on keyboard
adds extra 24 dimensions for the keyboard state. While
Adroit is equipped with effective sensing capabilities (joint,
touch, pressure and tendon length sensors) which makes its
state observable, additional sensing options are required for
sensing the bottle and the keyboard. We use the PhaseSpace
3D tracking system.

B. Trajectory optimization
We have demonstrated earlier [7] [8] that iLQG can be

used under MPC setting to generate full body movements in
real time, while the very same approach failed in producing
dynamic hand manipulation behaviors.

After careful investigation we attributed its inability to
the nature of optimization space to be navigated and to
the difference in the morphology of hardware and actuation
mechanism other than direct torque control. Unlike full
body movements, large number of dof exists in a very
compact workspace in hand manipulation, resulting in a
compact high dimensional optimization landscape. High dof
to workspace volume ratio results in large number of contacts
that make and break too often embedding discontinuities in
the already compact high dimensional space. High dexterity
allows multiple solution to co-exists inviting optimizers to
be stuck in local minima.

In following section we will address these challenges one
by one and discuss ways to mitigate them.

C. Contact pruning
In MuJoCo, the most intensive part of computing a single

step is the handling of contacts. Unlike full body movements
where the number of active contacts are small with low
variance, manipulation with high dof manipulator involves
large number of active contacts. Self contacts in case of full
body movements are rarely active and few when active. For



dexterous hands like ours, dof to workspace volume ratio is
very high which results in most of the contacts being active
all the time. Number of contacts with the environment in the
former case is mostly small (feet-ground contacts). However
in the later case, object under manipulation interacts with
almost all the links of the hand resulting in large number of
active contacts. Moreover these contacts make and break too
often producing huge dynamic non-linearities in the search
space. Computation time is severely affected as number
of contacts (inter-finger and finger-object) increases. High
variability in the number of contacts introduces variability
in computation timings and hence policy lags.

For real-time behaviours synthesis, mesh collisions were
never an option. Even simple geometric collision models
using capsule resulted in too many active contacts (40 on
average) for real time behaviours. To speed up the computa-
tions, contact space was very carefully populated considering
kinematic constraints and joint couplings. Furthermore, na-
ture of these contacts were carefully picked. Mujoco supports
3 types of contacts: 1-D contacts, 3-D contacts, 6-D contacts.
1-D contacts are only capable of producing normal forces.
All inter-finger contacts are 1-D contacts. 3-D contacts are
capable of producing normal and surface friction. In addition
to normal and surface friction, 6D contacts produces rolling
and torsional friction. All object finger contacts are 3D
contacts, except finger tip-object contacts which are 6D.

It should be noted that we never made compromises while
pruning the contact space. If violations were ever found, we
immediately add the respective contacts back.

D. Passive springs and armature inertia
Low-weight finger segments, strong and low friction ac-

tuators provide ADROIT its unique combination of speed,
strength and compliance [6]. Such a combination is desirable
for any robot hardware but not-so-desirable for numerical
optimizers and naive controllers. Numerical optimizers enjoy
accelerating the light weight segments producing behaviours
that are either unsafe or look unnatural. Weak joint springs
were added around the resting configuration of the hand (as
shown in Figure 2) in the model that was available to the
optimizers for planning. These springs acted as a passive
attractors towards the resting configuration of the hand and
prevented optimizers from choosing unnatural behaviours.
Behavioural artifacts resulting from high acceleration were
mitigated by adding armature inertia to the joints propor-
tional to the link masses. It not only removed the artifacts
but also improved convergence thereby improving the quality
of the solution.

E. Synergy spaces
Animal life form exhibits complex and diverse set of

behaviours. These behaviours are produced by numerous
bio-mechanical muscles that transmit force using skeletal
tendons. Unlike the rest of the body, hands exhibit com-
plicated tendon network that span across multiple joints
that introduce substantial coupling between joints. For full
body movements, its possible to have individual control
over each joints. Kinematics constraints and a regulariser

around default body posture have long been exploited to
synthesize movements close to animal life forms. However,
these tricks were not enough for synthesis of human like hand
movements. Optimization rarely produces desired behaviors
and if it does, it produces a solution that is too rich to be
exhibited by human hands.

To make the optimization space more tractable for numer-
ical optimizers, we introduced five hand synergy dimension
[23] on top of individual control dimensions and made them
slightly cheaper for the optimizer to choose them. First
four synergies individually influence the curl of the four
fingers and the fifth synergy influences the spread of the
four fingers. Addition of synergy dimensions increased the
space of control dimensions by five but made the problem
more tractable for the optimizer, without compromising the
control over individual joints (hence dexterity) of the hand.
Synergies help the optimizer to quickly find a pre-grasping
pose, after which individual joints dominate to produce
expressive behaviours.

This is for the first time that iLQG has been demonstrated
to be amenable in synergy spaces. Traditionally synergy
spaces have always been exploited as a mechanism for di-
mensionality reduction to make a high dimensional problem
trackable. However, here we are adding synergy dimensions
without removing existing dimensions, thus expanding the
dimensionality of an already high dimensional problem.
This is a little counterintuitive. We found that the optimizer
exploits synergy spaces to quickly navigate through the space
full of nonlinearities and discontinuities to localize itself
in the correct neighbourhood, where dimensions other than
synergies (i.e. individual joint actuation) dominate to produce
expressive behaviours.

VII. COST TERMS

Synthesis of behaviours involves specification of high
level cost function that encodes the task objectives. All
behaviours presented in the paper were generated using
very simple high level cost functions. These cost function
are composed of few simple terms with intuitive meaning
associated with each term that talks about the task. Note
that no cost terms outlining the movement of the hand (or
grasp metric) are provided. We focused our efforts on generic
behaviors like dynamic manipulation and object relocation
which constitutes significant portion of our daily activities.
Once the framework was in place it was easily extendible
for specific tasks like typing. In addition to the regular
control penalization, which was common for all behaviors,
the following other cost terms were used:

Dynamic manipulation:
Dynamic manipulation behaviours include dynamic catch-

ing of a falling objects, grasping and stabilizing of unstable
objects. Cost terms penalizes

• Control synergies. These bear slightly lower penalty
than the rest of the independent actuators.

• Velocity of the object being manipulated.
• Distance of the object to its desired goal configuration

(position and orientation)



• The last cost term, with a small coefficient penalizes the
distance of the object from the center of hand’s grasp
envelop.

Ideally, if the MPC horizon is long enough, we will not need
the last cost term. In practice, real-time constraints restricts
us from using very long horizon. In absence of this term,
if the object is far away, the optimizer will not be able to
find an improvement within the given time horizon. In such
cases, this term acts as hint term for the hand to make an
initial approach towards the object. We used a static point
equidistant from - the palm base, finger’s (Index, middle, ring
and little) middle segments and thumb’s distal segment as the
center of the grasp envelop. Once the initial approach has
been achieved, the first three terms dominate. Note that we
used no grasp-specific costs promoting force closure or other
supposedly desirable grasp properties. All the behaviors seen
in the movie [goo.gl/WPTjcS]emerged from these simple
cost terms.

Object relocation:

All costs for relocation were same as for dynamic ma-
nipulation except object desired configuration cost. Desired
configuration was exposed as a parameter to the user. Users
were allowed to change this cost by dynamically changing
desired configuration in middle of the simulation, resulting
in interactive grasping and relocation.

Object relocation starts as a dynamic stabilization se-
quence, but with a pre-specified intermediate goal configu-
ration, called the ‘hold configuration’. Any relaxed position
of the hand where it can stably hold the object away from
all the obstacles can be used as the hold configuration.
The hand waits at the hold configuration for the user to
specify the final desired relocation configuration, after which
the final relocation maneuver is attempted. If the desired
configuration has been preemptively specified by the user, the
hand immediately exits the hold configuration and attempts
to position the object at the desired configuration. Once the
user is satisfied with the final configuration of the object
he/she triggers the release, which switches off the grasp cost
resulting in hand gracefully leaving and moving away from
the object once its stable.

Typing:

This behavior include interactively typing specific num-
bers on a number pad. Keys on number pad are spring loaded
to make the problem challenging. Key press is not detected
until the key is fully pressed. Typing results exploit keyboard
heat maps to pre-allocate key-finger pair. One rational behind
this assumption is that although every individual has his/her
own typing preferences, key-finger pairs are almost static.
Downside of this approach is that if fingers get stuck in
local minima, alternative options will never be explored by
the optimizer. Behaviors include cost on

• Desired key pressed
• Desired key approach by the assigned finger’s tip.
• Next key hover by the next assigned finger: This cost

encouraged the next assigned finger, to make the initial

approach towards its key if not being used thus speeding
up the typing.

• Auto-correct. This terms kicks-in when accidental typ-
ing mistakes are made. A back space is pressed before
moving ahead.

Our approach towards typing is event driven. Once a key
press is detected, the typing sequences increments and the
entire plan is recomputed for the next assignment. In other
words, optimizer is not able to plan through the transitions.
To allow the optimizer to plan through the transition, an
additional cost term ‘next key press’ is appended. Smooth
step-up Sup and step-down Sdn = (1 − Sup) functions are
used as cost coefficients for ‘desired key press’ and ‘next key
press’ respectively. When key event is detected the steps are
switched which allows the cost to smoothly transition from
key hover to key press.

Sup(t) =
1

2
(

(t− a1)√
(t− a1)2 + b21

− (t− a2)√
(t− a2)2 + b22

)

where t is time, a1 and a2 are the step locations, and b1 and
b2 are the step smoothness.

VIII. RESULTS AND DISCUSSIONS

Fig. 4. ADROIT while typing the key-1 on the numeric keypad

We will now present the real time interactive behaviour
synthesis results for ADROIT in general tasks like dynamic
manipulation, object relocation and specific tasks like typing.
All the results mentioned in this paper are generated using
a Intel Xeon X5690 @3.47 Ghz processor with 12GB of
memory running Windows7. Typical timings for different
parts of the computation can be found in table I. Optimization
parameters can be found in table II. To better appreciate
our results we highly recommend watching the video at-
tachment of our paper. Our latest results can be found at
[goo.gl/WPTjcS].

A. Hand manipulation behaviors
Characteristic behaviours in the dynamic hand manipu-

lation sequence involve catching falling objects, grasping
objects from different configurations and stabilization of
unstable objects. Figure 3 shows frames (150ms apart) of
two agile recovery maneuvers.



Fig. 3. Two sequences from the accompanying movie. The time between consecutive frames is 150ms. Both sequences show an agile recovery manoeuver.
The top sequence begins with a back-handed fumble of the object, which is then caught and brought into the desired position. In the second sequence the
initial grip on the object is not robust and the object begins to slip. The controller releases the slipping object and re-grips it in mid-flight.

Use of carefully picked contacts pairs of different nature
helped reduce the average number of active contacts from 40
to 20 which provided a major boost in simulation timings.
For dynamic grasping, we observed that our optimizers enjoy
slightly smoother contacts over the hard ones. Large number
of frequently changing contacts introduce discontinuities in
the search space. Smoother contacts makes these disconti-
nuities better behaved for optimisers to plan through them.
Use of armature inertia to tame large accelerations worked
much better than trying to force it using velocity cost. The
success rate for dynamic manipulation was around 80%. For
unsuccessful cases, either the hand gets stuck in some local
minima and never emerges from it or is unable to make a
good grasp due to faulty initial approach.

B. Typing on a numeric keypad
Figure 4 shows a snapshot from the typing sequence while

ADROIT is pressing the first key. Average number of active
contacts for typing stayed relatively low (5 on average,
mostly inter finger). Our typing worked fairly well. Though
rare, we did observe the fingers getting stuck in local minima
for some sequences. Due to preassigned key-finger pairs,
optimizers don’t even explore alternative approaches to make
progress, when stuck. Naive approach to get out of the local
minima will be to momentarily pause typing and relax all
fingers before moving ahead. We leave key-finger assignment
problem as future work. Mistyping due to accidental contact
of finger with the edge of the adjacent key is also observed.

IX. FUTURE DIRECTIONS

Our motivations and goals are to implement dynamic hand
manipulation on our Adroit hardware platform. To the best
of our capabilities, utmost measures have being taken to not
make any assumptions in our simulation results that will not
be valid on the real hardware. We are in process of iteratively

TABLE I
MPC TIMINGS (SEC) FOR INTEL XEON X5690 @3.47 GHZ, 12GB

MEMORY, WINDOWS7.

Timings Dynamic Manipulation Typing
Total 0.059 0.047
Policy lag 0.050 0.038
Rollout 0.006 0.004
Derivatives 0.036 0.025
Cost computations 0.001 0.001
Backpass 0.010 0.010
Line search 0.007 0.006

TABLE II
OPTIMIZATION PARAMETERS

Specifications Dynamic Manipulation Typing
Simulation dt (sec) 0.005 0.001
Optimizer dt (sec) 0.005 0.020
Horizon (sec) 0.300 0.640
Mindist(m) 0.010 0.001
Contact softness(m) 0.005 0.001

adapting our simulation results to the capabilities of the
hardware and work on the hardware bottlenecks identified
from the simulation results. Strength of the shoulder joint
was one of the major hardware bottleneck that was identified
and we are currently addressing it.

In future, we intend to carefully investigate application of
MPC and other control strategy on ADROIT. Initial testing
of our behavior synthesis framework on the actual hardware
indicates sensitivity to modelling errors. We are performing
careful system identification to obtain a good model of the
system. Such a model will never be perfect and we might
have to explore options with better tolerance to modeling
errors.

ADROIT has the capability to emulate biological muscles.



We want to experiment with muscles models from the bio-
mechanics literate to check if they have something to offer
to the robotics community.

With respect to individual behaviors, our approach towards
typing is shortsighted as the optimizer only sees and plans
for present and the next key in the typing sequence, even
if the entire sequence is specified in advance. One option is
to incorporate a phase variable (encoding the development
made by the trajectory) in the optimization and let the
optimizer choose the number of key presses and plan through
it. Piano playing is another problem with temporal objective
that will require specific attention to key-finger assignment
problem.

X. ACKNOWLEDGEMENT

This work was supported by the NSF and the NIH.

REFERENCES

[1] Shadow Robot Company, www.shadowrobot.com.
[2] S. Haidacher, J. Butterfass, M. Fischer, M. Grebenstein, K. Joehl,

K. Kunze, M. Nickl, N. Seitz, and G. Hirzinger, “DLR hand ii:
hard- and software architecture for information processing,” Robotics
and Automation, 2003. Proceedings. ICRA ’03. IEEE International
Conference on, vol. 1, pp. 684–689 vol.1, Sept. 2003.

[3] A. Deshpande, Z. Xu, M. Weghe, L. Chang, B. Brown, D. Wilkinson,
S. Bidic, and Y. Matsuoka, “Mechanisms of the anatomically correct
testbed (act) hand,” IEEE/ASME Trasactions on Mechatronics, 2011.

[4] C. Joel, M. Lau, G. Cheung, J. Kuffner, J. Hodgins, and T. Kanade,
“Footstep planning for the honda asimo humanoid,” in IEEE Interna-
tional Conference on Robotics and Automation, 2005.

[5] “Simulation and control of biped walking robots,” http://mediatum.ub.
tum.de/doc/997204/997204.pdf.

[6] V. Kumar, Z. Xu, and E. Todorov, “Fast, strong and compliant
pneumatic actuation for dexterous tendon-driven hands,” in IEEE
International Conference on Robotics and Automation, 2013.

[7] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of com-
plex behaviors through online trajectory optimization,” in Conference
on Intelligent Robots and Systems, 2012, pp. 4906–4913.

[8] T. Erez, K. Lowrey, Y. Tassa, V. Kumar, S. Kolev, and E. Todorov, “An
integrated system for real-time model predictive control of humanoid
robots,” in International Conference on Humanoid Robots, 2013.

[9] “Grasp quality measures,” http://personalrobotics.ri.cmu.edu/courses/
papers/SuarezEtal06.pdf.

[10] A. T. Miller and P. K. Allen, “Graspit! a versatile simulator for robotic
grasping,” Robotics & Automation Magazine, IEEE, vol. 11, no. 4, pp.
110–122, 2004.

[11] I. Mordatch, Z. Popović, and E. Todorov, “Contact-invariant opti-
mization for hand manipulation,” in Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 2012.

[12] A. Bicchi and V. Kumar, “Robotic grasping and contact: A review,”
in Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE
International Conference on, vol. 1. IEEE, 2000, pp. 348–353.

[13] A. M. Okamura, N. Smaby, and M. R. Cutkosky, “An overview of dex-
terous manipulation,” in Robotics and Automation, 2000. Proceedings.
ICRA’00. IEEE International Conference on, vol. 1. IEEE, 2000, pp.
255–262.

[14] K. Yamane, J. J. Kuffner, and J. K. Hodgins, “Synthesizing animations
of human manipulation tasks,” in ACM Transactions on Graphics
(TOG).

[15] A. Safonova and J. K. Hodgins, “Construction and optimal search of
interpolated motion graphs,” in ACM Transactions on Graphics (TOG).

[16] Y. Ye and C. K. Liu, “Synthesis of detailed hand manipulations using
contact sampling,” ACM Transactions on Graphics (TOG).

[17] J. J. Kutch and F. J. Valero-Cuevas, “Challenges and new approaches
to proving the existence of muscle synergies of neural origin,” PLoS
computational biology, vol. 8, no. 5, p. e1002434, 2012.

[18] M. C. Tresch and A. Jarc, “The case for and against muscle synergies,”
Current opinion in neurobiology, 2009.

[19] M. Santello, M. Flanders, and J. F. Soechting, “Postural hand synergies
for tool use,” The Journal of Neuroscience, 1998.

[20] M. C. Tresch, P. Saltiel, and E. Bizzi, “The construction of movement
by the spinal cord,” Nature neuroscience, 1999.

[21] A. d’Avella, P. Saltiel, and E. Bizzi, “Combinations of muscle
synergies in the construction of a natural motor behavior,” Nature
neuroscience, 2003.

[22] D. B. Lockhart and L. H. Ting, “Optimal sensorimotor transformations
for balance,” Nature neuroscience, 2007.

[23] E. Todorov and Z. Ghahramani, “Analysis of the synergies underlying
complex hand manipulation,” in Engineering in Medicine and Biology
Society, 2004. IEMBS’04. 26th Annual International Conference of the
IEEE. IEEE, 2004.

[24] D. H. Jacobson and D. Q. Mayne, Differential Dynamic Programming.
Elsevier, 1970.

[25] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on. IEEE, 2012.

[26] T. Yuval, T. Wu, J. Movellan, and E. Todorov, “Modeling and
identification of pneumatic actuators,” in International Conference on
Mechatronics anf Automation (ICMA), 2013.


