On the Way to a Distributed Systems Calculus:
An End-to-End Network Calculus with Data Scaling

. *
Markus Fidler
Centre for Quantifiable Quality of Service
NTNU Trondheim, Norway

fidler@ieee.org

ABSTRACT

Network calculus is a min-plus system theory which facili-
tates the efficient derivation of performance bounds for net-
works of queues. It has successfully been applied to provide
end-to-end quality of service guarantees for integrated and
differentiated services networks. Yet, a true end-to-end anal-
ysis including the various components of end systems as well
as taking into account mid-boxes like firewalls, proxies, or
media gateways has not been accomplished so far. The par-
ticular challenge posed by such systems are transformation
processes, like data processing, compression, encoding, and
decoding, which may alter data arrivals drastically. The het-
erogeneity, which is reflected in the granularity of operation,
for example multimedia applications process video frames
which, however, are represented by packets in the network,
complicates the analysis further. To this end this paper
evolves a concise network calculus with scaling functions,
which allow modelling a wide variety of transformation pro-
cesses. Combined with the concept of packetizer this theory
enables a true end-to-end analysis of distributed systems.

Categories and Subject Descriptors

C.2.4 [Computer System Organization]: Computer Com-
munication Networks—Distributed Systems; C.4 [Computer
System Organization|: Performance of Systems

General Terms

Performance

Keywords

Network calculus, scaling functions, packetizers

*This work was supported in part by an Emmy Noether
grant of the German Research Foundation (DFG) and by
the Centre for Quantifiable Quality of Service in Commu-
nication Systems (Q2S). The Q2S Centre of Excellence is
appointed by the Research Council of Norway and funded
by the Research Council, NTNU, and UNINETT.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to

Jens B. Schmitt
Distributed Computer Systems Lab
University of Kaiserslautern, Germany

jschmitt@informatik.uni-kl.de

1. INTRODUCTION

A central aspect to networked applications is the per-
formance of underlying communication systems. Relevant
characteristics comprise capacity that has to be provisioned,
buffer sizes that are required to achieve certain small loss
rates, and end-to-end delays that need to be considered by
real-time applications, including telephony, video broadcast-
ing, and online gaming. Queuing theory has been widely
applied to analyze such performance measures and with the
advent of network architectures for quality of service it has
been complemented by network calculus [4, [12] which is a
deterministic framework for worst-case analysis of backlogs
and delays.

Network calculus can be seen as a system theory under
min-plus algebra [2| and in almost the same manner as clas-
sical system theory it features intuitive and powerful con-
volution formulae for analysis of single servers as well as
for concatenation of tandem servers. This concatenation
property is of the utmost importance since it establishes
a general framework for efficient analysis of multiple node
scenarios, where performance bounds exhibit an outstand-
ing linear scaling in the number of traversed nodes [5, [12].
In contrast end-to-end performance bounds that are derived
iteratively on a node-by-node basis scale quadratically.

However, network calculus and queuing theory in general
apply only to forwarding of data but not to any kind of pro-
cessing where data are scaled. Whenever such data scaling
applies, systems need to be divided into subsystems which
are at best analyzable separately. Data scaling is frequent,
but often neglected since its effects are considered to be mi-
nor, for example in case of protocol overhead. Yet, there
exists a variety of systems for which this assumption does
not hold and which consequently cannot be analyzed holis-
tically so far. Examples comprise encoding and decoding,
mid-boxes of different types such as media-gateways, dis-
tributed multimedia systems, up to wireless sensor networks
where data are aggregated inside the network.

Fig. [1] displays a video delivery and transcoding scenario
where video frames are grabbed from a camera, encoded and
packetized by a server and broadcast across a network. The
client receives the sequence of packets, decodes it, and dis-
plays the video frames on a screen. In addition a transcoder
is situated in the network which may adapt the video codec
with respect to the capabilities of heterogeneous clients.

A detailed model of the system in Fig.[I] comprises numer-

republish, to post on servers or to redistribute to lists, requires prior specific Ous elements, including the camera, the bus between cam-

permission and/or a fee.
SIGMetrics/Performance’08une 26-30, 2006, Saint Malo, France.
Copyright 2006 ACM 1-59593-320-4/06/000655.00.

era and video server, the server running the video encoder,
network routers, the transcoder, and so on. Network cal-

Figure 1: Video Delivery and Transcoding

culus models network elements, such as routers, using the
notion of service curve which characterizes the input-output
relation of a server. Service curves for a variety of sched-
ulers have been derived. Among these are first-in first-out
aggregate scheduling, rate-based schedulers, such as proces-
sor sharing, priority scheduling, as well as earliest deadline
first scheduling. The general concept is, however, of much
broader applicability and various other resources, for exam-
ple processing units, such as the video encoder and decoder
in Fig. [1} can be abstracted using service curves.

When applying known network calculus for analysis the
system in Fig. [[] falls apart into a subsystem that is the
part of the network upstream of the transcoder and a sub-
system that is the part of the network downstream of the
transcoder. In addition encoder, transcoder, and decoder
have to be analyzed individually. This separation is very
unfortunate since it results in weak end-to-end performance
bounds, yet, it has to be applied whenever data are scaled.

Apart from data scaling the example poses a second chal-
lenge, that is the heterogeneous granularity of data units
that are processed. The coders operate on video frames or
slices as opposed to the network which forwards packets.

The remainder of this paper is organized as follows: Sect.
provides a brief background on known network calculus. In
Sect. [3| we introduce the concepts of scaling functions and
curves and evolve a corresponding network calculus frame-
work, which allows for a true end-to-end analysis of systems
with data scaling. Sect. [d] shows a sample scaling function
for video coding. Examples for end-to-end concatenation of
servers in the presence of scaling functions, which are fun-
damental for an efficient end-to-end analysis, are provided
in Sect. [5] where we also come back to the system in Fig.

2. NETWORK CALCULUS BASICS

Network calculus is a min-plus system theory for deter-
ministic queuing systems which builds on the calculus for
network delay in [6) 7] and on the work on generalized pro-
cessor sharing in 14} [15]. The important concept of mini-
mum service curve was introduced in |8} |16} |3} |11} 1] and the
concept of maximum service curve in [9]. The service curve
based approach facilitates the efficient analysis of tandem
queues, where a linear scaling of performance bounds in the
number of traversed queues is achieved as elaborated in [5]
and referred to as pay bursts only once phenomenon in [12].
A detailed overview on min-plus algebra can be found in [2]
and on network calculus in [4} |12]. The tightness of perfor-
mance bounds is in particular shown in [12].

A basic set of functions that are extensively used by net-
work calculus is the set of real-valued, non-negative, and
wide-sense increasing functions that pass through the ori-
gin.

F={f:RY = R", f(t) > f(s)Vt > s >0, f(0) = 0}.

Time and data are assumed to be continuous, that is t €
Rt = [0,00). Note that it is always possible to map a contin-
uous model to a discrete model with n € Ng = {0,1,2,...}
by choosing an interval A and sampling at ¢ = nA.

Let us now recall the following operations of min-plus re-
spectively max-plus convolution and de-convolution.

Definition 2.1 (Convolution and De-Convolution)
Min-plus convolution and de-convolution of two functions f
and g are defined to be

he) = (F 9 9)(0) = inf {f(t=s)+ ()}
WO = (090 = sup {f(t+3)=g(s).

s€[0,00)

Accordingly max-plus convolution and de-convolution are
h(t) = (f®g)(t) = Sl[lop]{f(t —s)+9(s)}
s€|0,t

ho) = (F B o)) = inf {f(t+9)—a(s)}.

Th. recapitulates some properties of min-plus convolu-
tion which are of major importance in the sequel. The list
is by far not exhaustive.

Theorem 2.1 (Properties of ®) Let f,g,h € F. The
following properties hold:

1. Closure of ®: (f®g) € F,
2. Commutativity of ®: fQ@g=9gQ® f,
3. Associativity of ®: (f®g)Q@h=f® (g h),

Note that de-convolution is not closed in F and not com-
mutative.

Network calculus applies the general model of arrival func-
tions to describe traffic flows.

Definition 2.2 (Arrival Function) An arrival function is
a cumulative function F(¢t) € F that is defined to be the
amount of data of a flow seen in the interval [0,t].

Based on the description of traffic flows using arrival func-
tions performance measures can be defined.

Definition 2.3 (Backlog and Delay) Assume a server
has input arrival function F'(t) and output arrival function
F'(t). The backlog at the server for time ¢ is defined to be

b(t) = F(t) — F'(b).

Assuming first-in first-out data delivery the delay for time ¢
is defined as

d(t) =inf{r >0: F(t) < F'(t +7)].

Arrival curves and service curves are used to specify up-
per bounds on the amount of traffic generated by flows and
lower and upper bounds on the service offered by servers,
respectively.

Definition 2.4 (Arrival Curve) Consider an arrival func-
tion F(t). Any function «(t) € F is said to be an arrival
curve of F(t) if for all ¢ > 0 it holds that

a(t) > (F @ F)(t).

Generally it is meaningful to limit the set of arrival curves to
sub-additive functions since otherwise the arrival curve a(t)
itself allows deriving a tighter upper bound that is the sub-
additive closure of a(t). We will come back to sub-additivity
and related issues in Sect. 311

Definition 2.5 (Service Curves) Consider a server with
input and output arrival function F(t) and F'(t), respec-
tively. Any two functions 3(¢t) € F and y(¢t) € F are said to
be a minimum respectively maximum service curve of the
server if for all ¢ > 0 it holds that

F'(t) 2(F ® B)(t)
F'(t) <(F @)(t).

Throughout this work we generally assume that all types of
servers, including forwarding but for example also processing
units, are characterized by service curves.

Based on the concepts of arrival and service curve three
fundamental performance bounds can be derived at first for
single servers, which comprise output arrival curves, backlog
bounds, and delay bounds.

Theorem 2.2 (Performance Bounds) Consider a server
which offers a minimum service curve 3(t). Let the input to
the server be upper constrained by an arrival curve o(t). An
output arrival curve of the server is

o (t) = (@ B)(1).
The backlog at the server is upper bounded by
b < (a@ B)(0).

Assuming first-in first-out order the delay is upper bounded
according to

d<inf{t >0: (a0 p)(-t) <0}

Graphically, the backlog bound is the maximum vertical de-
viation of arrival and service curve and the delay bound the
maximum horizontal deviation. If the server also offers a
maximum service curve v(t) the output arrival curve can be
refined to be o/ (t) = ((a ® v) @ B)(t).

Theorem 2.3 (Tightness of Bounds) The backlog and
the delay bound in Th. are tight, that is there exists
a sample path such that the bounds hold with equality, if
a, B € F are tight, which implies that o is sub-additive. If
in addition « is left-continuous and a @ a is not bounded
from above then the output bound is also tight.

Theorem 2.4 (Concatenation) Consider two servers with
minimum service curves B1(t) and B2(t) and maximum ser-
vice curves Y1(t) and v2(t) in sequence. There exists an
equivalent single server system with minimum and maximum
service curve

B(t) =(61 @ B2)(t)
() =(m1 ® y2)(1)-

The proof of Th. follows from the associativity of min-
plus convolution, that is (F ® 1) ® B2)(t) = (F ® (61 ®
(B2))(t). The same applies for maximum service curves.

The concatenation theorem is of particular importance
since it allows deriving end-to-end delay and backlog bounds
which scale linearly in the number of traversed servers. In
contrast deriving delay or backlog bounds for each server
and summing the individual bounds up results in quadratic
scaling in the number of servers. Let us provide a simple
example to support the importance of this issue.

Example 2.1 (Scaling of End-to-End Delay Bounds)
Consider a series of n identical first-in first-out rate-latency
servers with service curves §3;(t) = R[t — T|* for i € [1,n],
where [.]7 is equal to its argument if it is positive and zero
otherwise. Let the input to the first server be leaky bucket
constrained with arrival curve ag(t) = 7t + b. An arrival
curve of the output of the first server is aq(t) = rt + b+ rT
which is the input arrival curve of the second server and so
on. For the i-th server an output arrival curve is a;(t) =
rt+b+irT. A delay bound for the first server is di < T+b/R.
For the second server we find do < T + (b+ rT)/R and for
the i-th server d; < T+ (b+ (¢ —1)rT)/R. The sum over all
n yields a bound for the end-to-end delay

n

A< di<nT+ng + 21"
i=1

2 R

which scales in O(n?). In detail, there are two effects which
relate to the burstiness of the flow: The term nb/R is in
O(n) and reflects the cumulated time it takes to transmit
b units of data by each of the servers. The second term
(n/2)(n — 1)rT/R in O(n?) is due to an increase in bursti-
ness seen for the output of each subsequent server. Unfor-
tunately the delay bound is not tight, which can be easily
seen because the example considers both the worst-case out-
put and the worst-case delay for each node simultaneously
which, however, are mutually exclusive.

In contrast the end-to-end service curve obtained from
concatenation of the n servers becomes 3 = R[t —nT]" and
an end-to-end delay bound follows immediately as

b
d<nT + —
=n +R

which scales in O(n). Note that the term which is due to
the burstiness of the flow b/R does not depend on n nor
is it subject to any kind of burstiness increase. Thus, it
scales in O(1). This property of end-to-end concatenated
service curves is also referred to as pay bursts only once
phenomenon. It is fundamental for the efficient analysis of
multiple node scenarios.

Definition 2.6 (Packetizer) Let L(n) € F with n € Ng
be a discrete sequence of cumulative packet lengths, such
that the length of the n-th packet is L(n) — L(n—1). An L-
packetizer is a system which given L(n) and an input arrival
function F(t) enforces the output

PH(F(t) = sup {L(n)lmy<rn}
né€f0,00)
where 1; is one if its argument is true and zero otherwise.

The maximum packet length

lmax = sup {L(n + 1) - L(TL)}
ne(0,00)

is assumed to be finite. The output arrival function F’(t) =
PE(F(t)) of the L-packetizer is said to be L-packetized, that
is F'(t) = PY(F'(¢)).

Theorem 2.5 (Impact of Packetizer) Consider the ser-
ver in Def. . Assume the input to the server is L-packetiz-
ed and let the output of the server be input to another L-
packetizer, where Imax 1S the maximum packet size. The
combined system offers a minimum respectively maximum
service curve

B'(t) = [B(t) — lmax]
v (t) =~(t).

Th. essentially says that given an L-packetized arrival
function F'(t) is input to the system described above, then
(F®B)(t) < PE((F®B)(t)) for all t > 0.

3. A CALCULUS WITH DATA SCALING

Whenever data are not just forwarded as they are but pro-
cessed and altered, the amount of data may be subject to
change, thus limiting the applicability of known network cal-
culus as introduced in Sect.[2l We introduce and define the
concept of scaling function to describe corresponding effects
and extend the framework of network calculus accordingly.

3.1 Scaling Functions and Curves

This section provides a thorough definition of scaling func-
tions and corresponding upper and lower bounding func-
tions, called scaling curves. The definitions reflect the fun-
damental principles of network calculus and are key to an
intuitive framework for analysis of distributed systems.

Definition 3.1 (Scaling Function) A scaling function
S € F assigns an amount of scaled data S(a) to an amount
of data a.

The definition of scaling functions matches the notion of a
router respectively de-multiplexer in [4], where correspond-
ing input-output relations are derived for several traffic mod-
els. The following investigations extend this concept to a
broader framework.

Corollary 3.1 (Inverse Scaling Function) Given a bi-
jective scaling function S € F it follows for its inverse S™!
that S~ € F is a scaling function, too.

PRroOOF. If S is bijective its inverse S™' exists. Since S €
F implies S : Rt — R™ the range of S which is the domain
of S71 is RT, that is ™' is defined for R™ and it holds that
S7H(S(a)) = S(57!(a)) = a. Since S(0) = 0 it follows that
S71(0) = 0. Further on, since S(b) > S(a) for all b > a it
also follows that S~!(b) > S™'(a) for all b > a, such that
S~ € F is a scaling function. [

Continuous scaling functions are closely related to fluid traf-
fic models, where irregularities that are introduced for ex-
ample by the granularity of frames or packets can be easily
incorporated using packetizers. Consider a scaling function
S(a) which is known only for a set of discrete amounts of
data a = L(n) where L(n) € F and n € No. An example are
video coders which operate on the granularity of frames or
slices. Using the concept of packetizer from Def. 2.6 any ar-
rival function F(t) € F can be L-packetized and P*(F(t))

can be used as input to a scaling function S which is de-
fined for L(n) with n € Ng only. Moreover with the addi-
tion of the L-packetizer the domain of S can be extended
to R* and S can be defined where it previously was unde-
fined such that S € F. Note that the output S(P¥(F(t)))
of the tandem of L-packetizer and scaling function S is not
altered by this extension. Further on, if we investigate the
term S(PL(F’(t))), where F'(t) is the output of a server
with service curve 3(t) and input arrival function F(t) the
extended scaling function S : RT — R allows applying
Th.[2.5 Tt follows that S(P*((F & B)(t))) > S((F & 8')(t)),
where 3'(t) = [B(t) —lmax] T, since S is wide-sense increasing
and PY((F ® B)(t)) > (F ® 8')(t) for all t > 0. We come
back to packetizers and scaling functions in Sect. [3-4]

In the sequel we frequently use inverse functions where we
implicitly assume their existence. Note that the inverse of a
function f € F cannot always be assumed to exist, however,
the pseudo-inverse f,¢(a) = inf{b : f(b) > a} as defined
in [12] generally does. For the pseudo-inverse it is known
that f,.;(f(a)) < a and a worst-case deviation term § can
be defined, such that i;fl (f(a)) > a— 4. Owing to these up-
per and lower bounds a similar theory as the one presented
in the following can be derived using pseudo-inverse func-
tions where, however, notational complexity increases and
the deviation term § may result in pessimistic bounds.

An example of an implementation of a bijective scaling
function is a pair of encoder and decoder. Let F(t) be the
arrival function of a raw data stream. The effects of en-
coding can be described using a scaling function Sg which
assigns a correspondingly scaled data stream with arrival
function Fs(t) = Sg(F(t)) to the stream of raw data. In
the same way there exists a scaling function Sp which re-
flects the properties of the decoder. Under the assumption
of symmetry of encoder and decoder the function Sp is the
inverse function of Sg denoted by Sp = Sgl and we find
that Sp(Fs(t)) = F(t). Note that the generality of the def-
inition of scaling functions allows modelling both a coding
which removes redundancy, such as source coding, as well as
a coding which adds redundancy, such as channel coding.

Definition 3.2 (Scaling Curves) Consider a scaling func-
tion S. Any two functions S € F and S € F are said to be
a minimum respectively maximum scaling curve of S if for
all b > 0 it holds that

S(b) < '[Blf){S(b—i— a) — S(a)} = (S @ S)(b)

a€ (0,00

S(b) > sup {S(b+a)—S(a)} = (S0 S)b).

a€l0,00)

If S is bijective it fulfills the condition of Cor. and its in-
verse S~ ! is a scaling function, too. Def. allows deriving
minimum and maximum scaling curves for S~! thatis S~%
and S~ in the same way. The following corollary provides
an interesting property of scaling curves for inverse scaling
functions.

Corollary 3.2 (Inverse Scaling Curves) Consider a bi-
jective scaling function S and let S and S be the respective
minimum and mazimum scaling curves. If S and S are bi-
jective, a valid maximum scaling curve of the inverse scaling
function ST is S71 and a valid minimum scaling curve of

the inverse scaling function S™1 is s

PrRooF. From Def. |3__2|it is known that S—1 is a maximum
scaling curve of S~! if for all b > a > 0 it holds that

S (b—a)> S (b) = S (). (1)

Since S € F is wide-sense increasing and S is assumed to
be bijective, that is it has range RT, is equivalent to

S71(S(a))

S1(S(b) — S(a)) =57 (S(b)) — @)
=b—a
for all b > a > 0. Thus any function S—T which fulfills
is a valid maximum scaling curve of S~*.
Since S € F is wide-sense increasing it follows that its
inverse S~! is also wide-sense increasing. Thus we have for
all b > a > 0 that

STHS(b—a)) < ST'(S(b) — S(a)).

Interchanging the sides and using that S™'(S(b—a)) = b—a
from the assumption of bijectivity yields

S7H(S(b) = S(a) 2 b—a

which proves that S™! is a valid maximum scaling curve of
S~1 since it fulfills .

The proof for the minimum scaling curve of the inverse
scaling function follows in the same way. [

Corollary 3.3 (Sub- and Super-Additive Closure)
Consider a scaling function S with minimum and mazimum
scaling curve S and S. The super-additive closure of S is a
minimum scaling curve of S and the sub-additive closure of
S is a mazimum scaling curve of S.

A function f is said to be sub-additive respectively super-
additive if f(a +b) < f(a) + f(b) respectively f(a + b) >
f(a) + f(b). The sub-additive closure of f is defined to be
inf,>1 {f™} where f™ is the n-fold min-plus self-convoluti-
on of f with fV = f, f& =faf ¥ =fefef,
and so on. The super-additive closure of f is sup,, -, {f™}
where f(™ is the n-fold max-plus self-convolution of f with
fO=f D =rgf f®=f®Ff®f, and so on. The
sub-additive closure of S is the largest sub-additive function
that is point-wise smaller than or equal to S and the super-
additive closure of S is the smallest super-additive function
that is point-wise greater than or equal to S. If a function is
sub-additive then it equals its sub-additive closure and if it
is super-additive it equals its super-additive closure. If S is
not sub-additive then there exists a tighter upper bound of
S than S namely the sub-additive closure of S. In the same
way if S is not super-additive then its super-additive clo-
sure is a better lower bound of S than S. Consequently we
consider only sub-additive respectively super-additive max-
imum and minimum scaling curves.

ProoF. Def. [3.2] yields for all b > 0 and all @ > 0 that

S(b) > S(b+a) — S(a).

It also follows for all ¢ > b > 0 and all @ > 0 that

S(c—1b) > S(c+a)—S(b+a).
Addition of the two inequalities yields

S(c—b) +5(b) > S(c+a) - S(a)

for all ¢ > b > 0 and all a > 0. Consequently it also holds
for all ¢ > 0 that

inf {S(c—b)+ S(b)}> sup {S(c+a)—S(a)}
be(0,c] a€[0,00)
which is immediately equivalent to (S ® S)(c) > (S @ S)(c),
such that given a maximum scaling curve S(c) > (S©S)(c) it
follows that (S®S)(c) is a valid maximum scaling curve, too.
Repeating this step infinitely and taking the infimum over
all maximum scaling curves yields the sub-additive closure.
The super-additive closure of S follows analogously. []

3.2 Scaled Server

For end-to-end concatenation of systems with scaling func-
tions the following scaling of servers is of major importance.

F |||' F 5 Fs F 5 Fs ||| 55 Fs
_ S

Server Scaling

(a) (b)

Scaling Server

Figure 2: Scaling of servers

Theorem 3.1 (Scaled Server) Consider the two systems
in Fig. @ and let F(t) be the input arrival function. System
(a) consists of a server with minimum and mazimum service
curve B(t) and v(t) respectively whose output is scaled with
scaling function S and system (b) consists of a scaling func-
tion S whose output is input to a server with minimum and
mazimum service curve Bs(t) and vs(t) respectively. Given
system (a), the lower and upper bounds of the output ar-
rival function of system (b), that are (S(F) ® Bs)(t) and
(S(F) ® vs)(t) respectively, are also valid lower and upper
bounds of the output arrival function of system (a) if

Bs(t) = S(B(t))
vs(t) = S((1))

where S and S are the respective scaling curves of S. Given
system (b), the lower and upper bounds for the output arrival
function of system (a), that are S((F ® B)(t)) and S((F ®
¥)(t)) respectively, hold also for system (b) if S is bijective
and

where S~* and S—1 are the respective scaling curves of S™1.

PrOOF. From Def. it is known that the output process
of the server in system (a) is lower bounded by

F'(t) > (F® B)(1).
Since S is wide-sense increasing it holds that
S(F'(1) = S((F @ B)(1))

as well as

S (inf {F(s)+ B(t— s)}) = inf {S(F(s)+ B(t—s))}.

s€[0,t] s€[0,1]

With S(F'(t)) = F5(t) and S(F(t)) = Fs(t) we have
PO 2 it {S(F(5) + (0~ 9)

= inf]{Fs(s) + S(F(s)+B(t—s))—S(F(s))}

s€(0,t

> inf]{Fs(s) +8(B(t—s))}

s€(0,t
=(Fs @ S(8))(t)

which proves that the lower bound of the output arrival
function obtained from system (b), that is (S(F) ® 8s)(t),
is a lower bound of the output arrival function of system
(1), if Bs(t) = S(B(1)):

For system (b) it holds by Def. that

F&(t) > (Fs @ Bs)(t).

We use the same reasoning as above now for S~', which
is also wide-sense increasing, and with S™!(F5(t)) = F'(t)
and S™!(Fs(t)) = F(t) we find that

F%w)zsé%h{S‘%Fs@)++%xt—s»}

= inf {F(s) + 57 (Fs(s) + Bs(t =) = 57 (Fs(s)}

Y

inf {F(s)+S~'(Bs(t—s))}

s€[0,t]
=(F® S5~ (8s))(1)

Since S is bijective we obtain in a final step that
Fg(t) > S((F ® S~(Bs))(t))

which proves that the lower bound of the output arrival
function obtained from system (a), that is S((F ® 3)(t)), is
a lower bound of the output arrival function of system (b),
if 3(t) = 5~ 1(Bs (1)),

The proof for the maximum service curve follows as an
immediate variation. [J

The particular advantage of such scaled servers becomes im-
mediately obvious when considering end-to-end performance
analysis of heterogenous systems as in the end-to-end con-
catenation examples in Sect.

3.3 Performance Bounds

Def. [2.3]defines performance measures which, however, are
not generally applicable in the context of scaling functions.
While they are still meaningful if a single server is analyzed,
we require adapted definitions for end-to-end backlog and
delay which account for scaling functions to be able to ad-
dress such systems as shown in Fig[2]

Definition 3.3 (Backlog and Delay) Consider a system
with input arrival function F(¢) and output arrival func-
tion Fg(t), where the system implements a bijective scaling
function S. The backlog of the system is defined as

b(t) = F(t) — S™(Fs(t)).

Assuming first-in first-out data delivery the delay of the sys-
tem is defined as

d(t) = inf{r > 0: F(t) < ST (F&(t+ 7))}
In the presence of scaling functions there exists no single

definition of backlog. By convention we use Def. [3.3] which
states backlog as it can be seen from the data source. Note

that due to scaling the actual amount of backlogged data
within the system can be smaller but also larger. For ex-
ample for the system in Fig|2| (b) the end-to-end backlog is
b(t) = F(t) — ST (F&(t)), whereas the server sees a backlog
of bs(t) = Fs(t) — F5(t) according to Def.

The alert reader will notice that transforming the system
in Fig. [2[(b) into the system in Fig. [2| (a) simplifies the
derivation of end-to-end backlog and delay bounds accord-
ing to Def. [3.3] significantly. If S is bijective the quantity
STHF&(t)) = F'(t) is the output of the server in Fig. [2] (a).
Consequently backlog and delay bounds according to Def.
can be derived by applying Th.[2.2]to the server in Fig.[2(a).

Corollary 3.4 (Bounds for Scaling Functions) Let
F(t) be an arrival function which is input to a scaling func-
tion S with mazimum scaling curve S and let a(t) be an
arrival curve of F(t). An arrival curve of the scaled output
arrival function Fs(t) is

as(t) = S(a(t)).

Since o, S € F it follows that S(a(t)) € F. If in addition «
and S are sub-additive then S(a(t)) is sub-additive, too.

If S is bijective and S~ has mazimum scaling curve S—1
the same holds for S=1. Given an arrival curve of the scaled
output process as(t) an arrival curve for the input is

a(t) = S~H(as(t)).
Backlog and delay of scaling functions are zero.

ProoF. From Def. B2l and with Def. [2.4] we have for all
t >0 and s > 0 that

Fs(s+t) — Fs(s) =S(F(s+t)) — S(F(s))

which proves that S(a(t)) is an arrival curve of Fs(t). The
proof that S—1(as(t)) is an arrival curve of F(t) follows by
substitution of S by S™! and Fs, as by F, o and vice versa.

The closure S(a(t)) € F is obvious. If S is sub-additive
we have that S(a(t) + a(s)) < S(a(t)) + S(a(s)). For sub-
additive a(t) and since S is wide-sense increasing this implies
that S(a(t+ s)) < S(a(t)) + S(a(s)). The same follows for
the inverse maximum scaling curve S—1.

With Def. 33 backlog and delay follow to be zero. [J

Corollary 3.5 (Crosswise Validity of Bounds) Con-
sider the systems in Fig. @ Given system (a), output ar-
rival curves, end-to-end backlog bounds, and end-to-end de-
lay bounds derived for the alternative system (b) from Th.
are valid performance bounds for system (a). Conversely
given system (b), respective bounds derived with Th. for
system (a) are valid performance bounds for system (b).

PRrROOF. The crosswise validity of end-to-end performance
bounds follows immediately from Th. Recall that Th.
allows deriving a lower respectively upper bound for the out-
put arrival function Fg(t) for system (a) respectively sys-
tem (b) using either of the two systems and the input ar-
rival function F(¢). An alternative, trivial upper bound for
the output arrival function follows from the causality of the
systems as F§(t) < S(F(t)). Output arrival curves, back-
log bounds, and delay bounds are, however, defined only in

terms of input and output arrival functions for which Th.
provides the above mentioned bounds. [

For illustrative purposes we exemplarily show the derivation
of end-to-end backlog and delay bounds for system (b) using
the alternative system (a) from Th. The output arrival
function of system (a) F§(t) is lower bounded according to

Fs(t) > S((F @ B)(t)).

With Th. the same lower bound holds for the output
arrival function of system (b) if 8(t) = S”(Bs(t)). With
Def. B3

b(t) =F(t) — S~ (F5(t))
<F(t) — ST S((F ® B)(1)))

is a backlog bound derived for system (a) which under the
condition of Th. holds also for system (b). In Def. S
is assumed to be bijective. With this property we obtain

b(t) < F(t) — (F & B)(D).

The rest is an application of a well-known network calculus
result. With a(s) > F(t) — F(t — s) it follows that

b{t) SF() — inf {F(t =)+ (s))

= sup {F(t) — F(t—s)—8(s)}

s€[0,t]

< sup {a(s) — B(s)}

s€[0,1]
<(a@ B)(0).
Regarding the delay it follows with Def. [3.3] that
d(t) =inf{r >0: F(t) < S " (F&(t + 7))}
<inf{r > 0: F(t) < ST (S((F @ B)(t + 7))}

~—

is a delay bound derived for system (a) which under the

condition of Th. holds also for system (b). Since S is

assumed to be bijective we have

d(t) <inf{r >0: F(t) < (F® B)(t+ 1)}

With a(s — 1) > F(t) — F(t + 7 — s) and using a known

network calculus result we conclude that

d(t) <inf{r >0: F(t) < [%nf]{F(t +7—38)+08(s)}}
se[0,t+T

=inf{r >0: sup {F(@t)—F({t+7—s)—p0(s)} <0}
s€[0,t+7]

<inf{r >0: sup {a(s—7)—0B(s)} <0}
s€(0,t+7]

<inf{r >0: (@ B)(—7) < 0}.

The performance bounds in Th. have been shown to
be tight in [12], that is they are attained in case of greedy
sources and lazy servers. Concerning the tightness of per-
formance bounds derived for systems with scaling functions
we make the following important conclusions.

Corollary 3.6 (Tightness of Bounds from Cor.
The output arrival curve as(t) in Cor. is tight, that
is it is attained for a certain sample path, if the input ar-
rival curve a(t) and the mazimum scaling curve S are sub-
additive and simultaneously tight. Conversely, if as(t) and
S—1 are sub-additive and simultaneously tight then «a(t) is
tight. The backlog and delay bounds of scaling functions are
zero and thus trivially tight.

Proor. Consider a greedy source with arrival function
F(t) = «a(t) and let F(t) be input to a scaling function
S which is greedy, that is S(F(t)) = S(F(t)). Then the
output arrival function of the scaling function is Fs(t) =
S(F(t)) = S(F(t)) = S(a(t)) and the output arrival curve
as(t) = S(a(t)) is attained. The converse follows as an
immediate variation. []

Corollary 3.7 (Tightness of Bounds from Cor.
Consider the system in Fig. @ (a). Let the input arrival func-
tion F(t) be upper bounded by an arrival curve a(t) and the
scaling function S by a mazimum scaling curve S. Assume
that the conditions of Th. [2.3, Def. [5. and Cor. [5. are
fulfilled. The following output arrival curve, backlog bound,
and delay bound of the system are tight, that is there exists
a sample path such that the bounds hold with equality:

as(t) = S((e@p)(t)
b < (@2 p)(0)
d < inf{t>0:(a@pB)(—t) <0}

Now consider the system in Fig. |4 (b). Further on, as-
sume that the conditions of Th. are fulfilled for as(t) =
S(a(t)) and Bs(t). The following output arrival curve, back-
log bound, and delay bound of the system, which follow with

Cor.[3.4 and Th. are tight:
as(t) = (S(a) @ Bs)(t)
b < (@0S (5s))0)
d < inf{t >0: (a8 '(8s))(~t) <0}
PRrROOF. We start with the system in Fig. [2| (a). The
output arrival curve of the server o’ (t) = (o @ B)(t) is tight
according to Th. Since o'(t) is tight it follows from
Cor. [3.6/ that S(a/(t)) is tight, too. From Th. [2.3|it is also
known that b and d are tight backlog and delay bounds
for the server in system (a). Since backlog and delay of
scaling functions are zero, see Cor. these bounds apply
immediately as tight end-to-end bounds for the system.
Regarding the system in Fig.[2| (b) the output of the scal-
ing function has an arrival curve as(t) = S(a(t)) which
under the conditions of Cor. is tight. If as(¢) and Bs(t)
fulfill the additional conditions of Th. then the output
arrival curve as(t) = (as @ Bs)(t) is tight, too. It is known
from Cor. that as € F is sub-additive if a, S € F are
sub-additive.

The backlog and delay bound are derived using the scaled

server with service curve S~* (8s(t)) as established by Th.
With Cor. we choose S”! to be 5 ' Since § e Fis
wide-sense increasing it follows that its inverse S s also
wide-sense increasing, which is required in the sequel.

We start with the delay bound. As before assume the
output of the scaling function as(t) = S(a(t)) is tight and
sub-additive. With Th. and Th. B3 it follows that
inf{t > 0 : (S(a) @ Bs)(—t) < 0} is a tight delay bound
for the server and with Cor. [3.6] also for the system. Thus,
it is sufficient to show that the same delay bound can be
found applying the alternative system in Fig. [2[(a) from
Th. The delay bound in Th. can be restated to be
the smallest d > 0 such that

IN

S(a(t)) < Bs(t+d) vt >0
& S'S@®) < §(Bst+d) V>0
S0 < S '(Bs(t+d) Vt>0

which shows the equivalence and thus proves the tightness.
Note that Cor. [3:2] which has been used before, assumes
that S is bijective.

The proof of the backlog bound uses a sample path argu-
ment as in [12]. Let the input to the system be F(t) = a(t)
and let the maximum scaling curve of the scaling function
be attained, that is S(a(t)) = S(a(t)), such that its output
is Fs(t) = as(t) = S(a(t)). If the server is lazy, that is
its service curve (s(t) is attained, the output of the server
becomes

Fst) = minfas(t), fs(t)}
& 5 (Fs()) = 5§ (minfas(t), fs(1)})
& 5 (Fs() = min{a(t), 5 (Bs())}

S' = S for the investigated sample path, we find
that S~ (F5(t) = STY(F4(L)). Wlth F() = a(t) and
STYHFL(t) = 1([35(t)) if a(t) > (s(t)) the back-
log becomes F() — STHFL(1) = ot) S~ !(Bs(t)) which
proves that the bound is attained. [

Cor. shows how the alternative systems in Fig. can be
used efficiently to derive tight performance bounds. Note,
however, that alternative systems have to be selected care-
fully. An example of an unfavorable choice is transform-
ing the system in Fig. [2| (a) into the one in Fig. [2 (b). In
this case the output bound becomes (S(a) @ S(8))(t). The
problem of this choice becomes immediately obvious since
S can generally not attain S and S simultaneously. Conse-
quently, the bound is conservative and will usually not be
tight. Tab. [I| summarizes recommendations for proper use
of scaled servers such that tight performance bounds can be
derived as established by Cor. 37

Table 1: Use of systems according to Cor.

bounds original system
Def. [3.3] [Fig. P[(a) [Fig. P[(b)
output | use (a) use (b)
backlog | use (a) use (a)
delay | wuse (a) (a) or (b)

3.4 Packetizer

This section investigates packetizers in the presence of
scaling functions and develops the notion of sub- and super-
packetizer to incorporate packetization at different levels.

_F> pt FP; S &) _F> S FS: p%ﬁ,

Packetizer Scaling

(® (b)

Scaling Packetizer

Figure 3: Scaling of packetizers

Corollary 3.8 (Scaled Packetizer) Consider the two sys-
tems in Fig. System (a) consists of an L-packetizer P*
with mazimum packet size lmax whose output is scaled with

scaling function S and system (b) consists of a scaling func-
tion S whose output is input to a Lg-packetizer PLS with
maximum packet size ls max-

Given system (a), system (b) is equivalent, if Ls = S(L).
For the mazimum packet size it follows that ls max < g(lmax),
where S is the corresponding mazimum scaling curve of S.

Given system (b), system (a) is equivalent, if S is bijective
and L = S~* (Ls). For the mazimum packet size it follows
that lmax < ST Y(ls,max), where S—1 is the corresponding
mazimum scaling curve of S~1.

PROOF. Let F(t) be the input arrival function. Since S
is wide-sense increasing we have

S(P(F (1)) :s(sup {L(n)

nef0,00)

1L<n>§F<t>})

= Ssup {5)1L(n)<F(t)}

nef0,00)

for the system displayed in Fig. 3| (a). For the system in
Fig. [3] (b) we find

PLS(S(F(t))): sup {Ls

)Lg(ny<s(r () }-
ne(0,00)

Letting Ls = S(L) respectively L = S™*(Ls
wide-sense increasing it follows that

PES(S(F) = sup {S(L(

nelo

= sup {S

ne(0,00)

) and since S is

1) Ls(L(n)<s(F () }
) rmy<r) }

which establishes the equivalence of the two systems ex-
pressed by S(PY(F(t))) = PLs(S(F(t))).
Next we investigate the maximum sized packets. Since

lmax = sup {L(n+1)—L(n)}

n€f0,00)
Ismax = sup {S(L(n+1))—S(L(n))}

nel0,00)

with Lg = S(L). It follows that s max < S(lmax). We also

have
ls,max = sup {Ls(n+1)— Ls(n)}
ne(0,00)
lnax = sup {S™'(Ls(n+1)) —S ' (Ls(n))}
ne(0,00)
with L = S7!(Ls). Consequently lmax < S~ (lg,max). [

Definition 3.4 (Sub- and Super-Packetizer) Let L1 (n),
Ly(m) € F with n,m € Ny be discrete sequences of cumula-
tive packet lengths. Lo(m) is a sub-packetized sequence of
Li(n) and Li(n) is a super-packetized sequence of La(m) if
for all n > 0 there exists an m > 0 such that Li(n) = La(m),
which implies m > n. The corresponding packetizers follow
according to Def.

Lemma 3.1 (Sub- and Super-Packetizer in Series)
Let Li(n) and La(m) be a super- and a sub-packetized se-
quence according to Def. |3./ - respectively and let PY' and
PL2 characterize the corresponding packetizers. Consider
the series of the two packetizers and let F(t) be the input
arriwal function. It follows for all t > 0 that

PR (P2 (F (1)) =P" (F(1))
P™2 (PM(F (1)) =P" (F(1)).

ProOOF. From Def. we have for all ¢ > 0 that

sup {La(m)lp,my<r(e)}

sup {Li(n)lr,m)y<re} < w
me|0,00

ne(0,00)
and it follows for all n > 0 and ¢ > 0 that
Li(n) < F(1)

&Li(n) < sup {La(m)lp,omy<r} = PP (F(1).
me[0,00)

Consequently we have

PYY(PR2(F(t) = sup){Ll(n)lLl(n)gPL2(F(t))}

nef0,00

= sup {Li(n)lr,(my<ran}
ne€(0,00)

=P"(F(t))

which proves the first part. Also we immediately have from
Def. 34 that

PL2(PL1(F(t))) = sup {LQ(m)ng(m)SPLl(F(t))}
me[0,00)

= PHY(F(1)
since there generally exists an m > 0 such that La(m) =

PEI(F(t)) is attained. [

Corollary 3.9 (Impact of Sub-Packetizer) Consider a
server with minimum service curve B(t) and mazimum ser-
vice curve y(t) and Li-packetized input. Let the output of the
server be input to an La-packetizer and let l2 max be the cor-
responding mazimum packet size. If Lo is a sub-packetized
sequence of L1 the combined system offers a minimum re-
spectively mazximum service curve

B(1) = [B(1) — lomas]
¥ (£) = (8)

The proof is a variation of the proof of Th. in [4l [12].
ProoF. First note that generally

F(t) > PY(F(t) 2 F(t) = limax. (3)

Let F(t) and F’(t) be the input and output arrival functions
of the server respectively, where F'(t) > (F ® §8)(t). Since
PLi ¢ F is wide-sense increasing we have

P™2(F'(t)) > P** ((FopB)(t) = Sér[})ft]{PLQ (F(s)+B(t=s))}.

With (3) it follows for all ¢ > 0 and s € [0, ¢] that
plz (F(s)+ B(t—38)) > F(s)+ B(t — 8) — l2,max-

Since F(t) is Li-packetized we have F(t) = P¥1(F(t)). Fur-
ther on, since Lz is a sub-packetized sequence of L; we have
from Lem. for all t > 0 and s € [0, t] that

PP2(F(s) + B(t — 8)) =P"2(P™ (F(s)) + B(t — 5))
>P"2 (P (F(s)))
=P (F(s))
=F(s)

which proves the [.]T condition of the minimum service curve.
Concerning the maximum service curve we immediately have
from that for all ¢ > 0

P2 ((F ®7)(1) < (F @7)(t)
which completes the proof. [

4. VIDEO CODING EXAMPLE

For illustrative purposes let us consider a video encoder
with scaling function S and maximum scaling curve S whose
output is transmitted across a network which is represented
by a rate-latency service curve §s(t) = R[t — T]". The sys-
tem is for example shown in Fig. [2| (b). Assume that the
input to the scaling function is a constant bit rate stream
of raw video data with arrival curve a(t) = rt. The ef-
fects which are for example due to the granularity of raw
video frames can be easily incorporated using the concept
of packetizer in Def. Related aspects are, however, ex-
cluded here for ease of presentation. An output arrival curve
of the scaling function is S(a(t)) such that a delay bound
for the system becomes inf{t > 0: (S(a) @ 8s)(—t) < 0}.

Alternatively we can investigate the system in Fig. |2 (a)
where the server offers a service curve S ' (Bs(t)) according
to Th.[3:Iand Cor. The corresponding delay bound for
the system is inf{t > 0 : (o« @ (S~ '(8:))(—t) < 0} which
according to Cor. is a valid delay bound for the original
system, too.

We use a conservative approximation of the maximum
scaling curve applying affine functions with parameters p;, ¢;
which correspond to a series of n leaky buckets given by

S(a) = iér[lli{;]{pi +qia} > (S @ 5)(a) (4)

where @ is the cumulated raw video data. The inverse max-
imum scaling curve follows as

S0 = max {b-pl*fa} < (ST TSHO) 6)

where b is the cumulated encoded video data. Given (4) the
inequality in holds due to Cor. An example of such
a multiple affine approximation of a scaling curve and its
inverse is illustrated in Fig. [

raw data

~Qa

encoded data

°
T
L}
\
\
3

P34= 7
~la, /) 0
/7 //
P2 /~qu Sl
g |
. raw data t f ‘V
Pr P2 Ps Pa

encoded data

Figure 4: Affine maximum scaling curve and inverse

Fig. [5| shows the accordingly scaled arrival curve S(a(t))
with a(t) = 7t and the service curve 3s(t) = R[t — T]" as
well as the arrival curve a(t) = rt and the scaled service
curve 371([35(15)) with 3s(t) = R[t — T]" of the alternative
system.

The corresponding delay bound d is identical for both sys-
tems, whereas the backlog bound is not, which is due to the
fact that bs represents the backlog obtained at the server in
terms of scaled data, whereas b is the backlog as seen from
the point of view of the data source according to Def.
in terms of raw data. Note that the scaling curve in Fig. [
exhibits a compression gain for large amounts of raw data,
but not for small amounts. As a consequence Fig. [5] shows
that bs > b.

raw data

encoded data

S(a(t)) Bs(t) =R [t-T]"
4 d

a(t)=rt

bs

T
T t T t

Figure 5: Backlog and delay for alternative systems

Let us exemplify the approximation in for the first
2000 frames of the news video sequence from [10]. The raw
sequence is in QCIF YUV format with 176 x 144 pixel resolu-
tion, 8 bit depths, and luminance chrominance sub-sampling
of 4:2:0, resulting in a raw video frame size of 38.016 kB.
The frame rate is 25 frames/s. The sequence is MPEG-4
encoded using Intracoded (I)-frames, Predicted (P)-frames,
and Bi-directionally predicted (B)-frames, and a fixed Group
of Pictures (GOP) which is IBBPBBPBBP. The largest en-
coded frame is 12.55 kB. The encoded sequence is shown in

Fig. [6]

14

encoded frame size [kB]

500 1000 1500 2000
video frame number

Figure 6: News video sequence

Fig. [7| shows the corresponding scaling function S, whose
domain has been extended to RT using linear interpolation,
the tightest maximum scaling curve, that is S @ S, and a
multiple affine maximum scaling curve according to . The
corresponding parameters of a quick estimation are given in
Tab.Bl For an elaborate overview on the characterization of
video traffic using deterministic arrival curves and multiple
leaky bucket descriptors see for example |13} 17].

Table 2: Affine upper bounds on S© S
[] Di | @ |

1 0 kB | 0.331

2 2.55 kB | 0.263

3| 138.55 kB | 0.221

4 | 4230.55 kB | 0.079

10

-~ scaling function
— — —maximum scaling curve
8 | — affine approximation

encoded video data[MB]

0 10 20 30 40 50 60 70
raw video data [MB]

Figure 7: News video sequence scaling curves

5. END-TO-END CONCATENATION

This section demonstrates how the theory from Sect.
can be efficiently used to derive single server representa-
tions of tandem servers in the presence of scaling functions
and heterogeneous packetizers. The concatenation property
of service curves is of significant importance when deriving
end-to-end performance bounds. As established by Ex.
end-to-end delay bounds scale linearly in the number of con-
catenated servers, compared to quadratic scaling, if bounds
are derived iteratively for each server and summed up after-
wards. We start with an investigation of symmetric scaling
functions before analyzing the general case. Finally we take
effects which are due to packetization into account and add
sub- and super-packetizers to the scenario.

5.1 Symmetric Scaling Functions

Consider the system in Fig. 8] which consists of an en-
coder, a two-node network, and a symmetric decoder in se-
ries. Each of the system elements is abstracted by a ser-
vice curve where Bg(t) and Bp(t) correspond to the pro-
cessing units of encoder and decoder respectively and G1(t)
and (2(t) are the service curves of the two network nodes.
For ease of presentation effects due to packetization are not
yet considered.

OO0 IO

Figure 8: Symmetric scaling functions

Owing to the renowned network calculus concatenation
theorem the network can be represented by a single server
system with service curve O (t) = (61 ® B2)(t) as shown in
Fig. step (1). It is worthwhile to repeat this step and lump
encoder, network, and decoder into one single server system,

however, since encoder and decoder alter the amount of data
that is transmitted, this is not possible.

With Th. we can substitute the subsystem consisting
of the scaling function S in the encoder and the network by
an alternative system where data is first input to the network
which is described by an accordingly scaled service curve
S~1(Bn(t)) before the scaling with S applies, as shown in
step (2). In the alternative system the output of the scaling
function S is immediately input to the scaling function S~*
and the two scaling functions cancel out each other, see step
(3). Thus, the end-to-end service curve can be derived to be

B(t) = (Be ® S_'(Bn) ® Bp)(1).

Note that the same result is obtained if the scaling function
S~ is shifted from the egress to the ingress of the network.
The concatenated service curve immediately allows deriving
end-to-end backlog and delay bounds according to Def.
by applying Th. 22

Let us now come back to the motivating example in Fig.
The system in Fig. [§] corresponds to the example, if the
transcoder is not used, which can also be expressed by set-
ting the scaling function of the transcoder to Sr(a) = a.
Differing from Fig. |8 we denote the scaling function of the
encoder Sg and the one of the decoder Sp. Under the
assumption that the raw video stream is recovered at the
decoder we have Sp(Sg(a)) = a. In the presence of the
transcoder Sp(St(Se(a))) = a can be assumed. Thus, the
scaling functions Sg, St, and Sp in series cancel out each
other in the same way as Sg and Sp did before. The scaling
function of the transcoder St is located within the network.
It can be easily shifted to the egress of the network using
Th. [3.1] before Fig. [§]step (1) is carried out.

5.2 General Scaling Functions

Consider the system in Fig. |§| which consists of a scaling
function Si, a two-node network, a scaling function Sz, and
another two-node network in sequence. Each of the queuing
stations is represented by a service curve where the service
curve of the network in the left becomes Oy, (t) = (B11 ®

(12)(t) and the service curve of the one in the right 8w, (t) =
) and step (2).

(B21 ® B22)(t), as shown in Fig. [9] step (1

Scahng 1

Figure 9: General scaling functions

With Th. [3:I]and following the recommendations in Tab.
we have the option of deriving an alternative system where
all scaling functions apply at the egress of the system. In a
first step we shift the scaling function Sz from the ingress
of network two to its egress resulting in a correspondingly
scaled service curve Sy '(Bn,(t)), see step (3). After con-
catenation of the network service curves of network one and
two we obtain (8n, ® Sy (ﬂNQ))(t) and after shifting the

scaling function S; to the egress of the system the end-to-
end service curve of the system becomes

B(t) = ST (B ® S5 (Bx,))(1)).

Note that it is also pos31ble to shift the scaling function S; to
the egress of the system before the service curves of network
one and network two are concatenated. Doing so is, how-
ever, unfavorable since S7 ! is assumed to be super-additive
according to Cor. That is, it is generally better to apply
St to a sum rather than to the summands. Another alter-
native is to shift S2 to the egress of the system and leave
S1 at the ingress or to shift Sz to the ingress of the system.
However, a careful selection of alternative systems has to
be made regarding the tightness of bounds as established
by Cor. 3.7 and summarized in Tab. [[] where it usually is
advantageous to move scaling functions to the egress of the
system when deriving end-to-end backlog and delay bounds.

5.3 Sub- and Super-Packetizer

Let us exemplify the end-to-end concatenation of sys-
tems with sub- and super-packetizers on the basis of the
system displayed in Fig. [I0] The input to the system is
Li-packetized, scaled by S, and afterwards Lo, s-packetized,
before it is transmitted across a network with service curve
Bn. The network may already consist of a number of con-
catenated nodes including further Lo s-packetizers. The
output of the network is again L s-packetized, then Li s-
packetized and finally scaled by S~!. Assume that L, =
S7(La,s) is a sub-packetized sequence of Ly and let I3 max
respectively l2 max be the corresponding maximum packet
sizes. It follows that Lo s is a sub-packetized sequence of
Ly,s = S(Ly).

As an example consider a sequence of video frames L1
where each raw video frame is encoded using the scaling
function S and individually packetized into a series of data-
grams Lo ¢ which are transmitted across a packet network.
At the egress of the network the packetizer L s groups pack-
ets that belong to the same encoded video frame and the
complete encoded frame is decoded using the scaling func-
tion S~ to recover the raw video frame.

Figure 10: Sub- and Super-Packetizer

With Cor. we can replace the series of S and PL2.s
by the tandem of P2 and S, as shown in Fig. [10|step (1).
Since Lo s and Lo are sub-packetized sequences of L1,s and
L1 respectively, we can apply Lem. to replace the series
of P25 and P15 by PY1s | see step (2), and the series
of PX1 and P™2 by P! as in step (3). In step (4) the
scaling function S~! is shifted to the ingress of the network
using Cor. and Th. where the packetizer P15 be-
comes Pt and the service curve of the network is derived

as S”'(Bn). Finally the scaling functions S and S™! cancel
each other out. Since the input to the server S™'(8y) is
L;-packetized we can apply Th. and collapse the server
and the subsequent packetizer. If further on the input to the
system is assumed to be Li-packetized the Li-packetizer at
the ingress of the system is redundant and the end-to-end
service curve of the system becomes

B(t) = [STL(Bn () — lmax]

Fig. [§] and [I0] each concern relevant aspects of the exam-
ple in Fig.[l}] Their combination, that is adding servers with
service curve Og and (p at the ingress respectively egress
of the system in Fig. provides a detailed model for the
end-to-end video delivery system in Fig. [1| including pack-
etization effects which are due to the granularity of video
frames and network datagrams.

6. CONCLUSION

We extended the framework of network calculus from net-
works with pure forwarding to distributed systems with vari-
ous kinds of data processing. To this end we introduced the
concept of scaling functions and developed a concise net-
work calculus with data scaling. In particular we showed
the existence of alternative systems which make the reloca-
tion of scaling functions along the data path possible. These
systems lay the foundation for end-to-end concatenation of
servers with data scaling and potentiate the derivation of
tight performance bounds.

Scaling functions constitute a fundamental concept for
modelling system elements beyond forwarding. The gen-
eral definition yields a universal framework for analysis of
distributed systems. The developed methodology for data
scaling widens the applicability of network calculus signifi-
cantly and finally incorporates many basic aspects of com-
munications, such as source and channel coding.

7. REFERENCES

[1] R. Agrawal, R. L. Cruz, C. Okino, and R. Rajan.
Performance bounds for flow control protocols.
IEEE/ACM Trans. Networking, 7(3):310-323, June
1999.

[2] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P.
Quadrat. Synchronization and Linearity: An Algebra
for Discrete Event Systems. Probability and
Mathematical Statistics. John Wiley & Sons Ltd.,
West Sussex, Great Britain, 1992.

[3] C.-S. Chang. On deterministic traffic regulation and
service guarantees: A systematic approach by filtering.
IEEE Trans. Inform. Theory, 44(3):1097-1110, May
1998.

[4] C.-S. Chang. Performance Guarantees in
Communication Networks. Telecommunication
Networks and Computer Systems. Springer-Verlag,
London, Great Britain, 2000.

[5] F. Ciucu, A. Burchard, and J. Liebeherr. A network
service curve approach for the stochastic analysis of
networks. In Proc. ACM SIGMETRICS, pages
279-290, June 2005.

[6] R. L. Cruz. A calculus for network delay, Part I:
Network elements in isolation. IEEE Trans. Inform.
Theory, 37(1):114-131, January 1991.

[7] R. L. Cruz. A calculus for network delay, Part II:
Network analysis. IEEE Trans. Inform. Theory,
37(1):132-141, January 1991.

[8] R. L. Cruz. Quality of service guarantees in virtual
circuit switched networks. IEEE J. Select. Areas
Commun., 13(6):1048-1056, August 1995.

[9] R. L. Cruz. SCED+: Efficient management of quality
of service guarantees. In Proc. IEEE INFOCOM,
volume 2, pages 625—634, March 1998.

[10] F. H. P. Fitzek and M. Reisslein. MPEG—4 and H.263
video traces for network performance evaluation. IEEE
Network, 15(6):40-54, November/December 2001.

[11] J.-Y. Le Boudec. Application of network calculus to
guaranteed service networks. IEEE Trans. Inform.
Theory, 44(3):1087-1096, May 1998.

[12] J.-Y. Le Boudec and P. Thiran. Network Calculus A
Theory of Deterministic Queuing Systems for the
Internet. Number 2050 in Lecture Notes in Computer
Science. Springer-Verlag, Berlin, Germany, 2001.

[13] J. Liebeherr and D. E. Wrege. An efficient solution to
traffic characterization of VBR video in
quality-of-service networks. ACM/Springer
Multimedia Systems Journal, 6(4):271-284, July 1998.

[14] A. K. Parekh and R. G. Gallager. A generalized
processor sharing approach to flow control in
integrated services networks: The single-node case.
IEEE/ACM Trans. Networking, 1(3):344-357, June
1993.

[15] A. K. Parekh and R. G. Gallager. A generalized
processor sharing approach to flow control in
integrated services networks: The multiple-node case.
IEEE/ACM Trans. Networking, 2(2):137-150, April
1994.

[16] H. Sariowan, R. L. Cruz, and G. C. Polyzos.
Scheduling for quality of service guarantees via service
curves. In Proc. IEEE ICCCN, pages 512-520,
September 1995.

[17] D. E. Wrege and J. Liebeherr. Video traffic
characterization for multimedia networks with a
deterministic service. In Proc. IEEE INFOCOM,
pages 537-544, March 1996.

	Introduction
	Network Calculus Basics
	A Calculus with Data Scaling
	Scaling Functions and Curves
	Scaled Server
	Performance Bounds
	Packetizer

	Video Coding Example
	End-to-End Concatenation
	Symmetric Scaling Functions
	General Scaling Functions
	Sub- and Super-Packetizer

	Conclusion
	REFERENCES -9pt

