
Algorithmica (2008) 50: 120–158
DOI 10.1007/s00453-007-9079-5

Symbolic Graphs: Linear Solutions to Connectivity
Related Problems

Raffaella Gentilini · Carla Piazza · Alberto Policriti

Received: 15 June 2006 / Accepted: 19 June 2006 / Published online: 8 December 2007
© Springer Science+Business Media, LLC 2007

Abstract The importance of symbolic data structures such as Ordered Binary De-
cision Diagrams (OBDD) is rapidly growing in many areas of Computer Science
where the large dimensions of the input models is a challenging feature: OBDD
based graph representations allowed to define truly new standards in the achievable
dimensions for the Model Checking verification technique. However, OBDD repre-
sentations pose strict constraints in the algorithm design issue. For example, Depth-
First Search (DFS) is not feasible in a symbolic framework and, consequently, many
state-of-the-art DFS based algorithms (e.g., connectivity procedures) cannot be easily
rearranged to work on symbolically represented graphs. We devise here a symbolic
algorithmic strategy, based on the new notion of spine-set, that is general enough to
be the engine of linear symbolic step algorithms for both strongly connected compo-
nents and biconnected components. Our procedures improve on previously designed
connectivity symbolic algorithms. Moreover, by an application to the so-called “bad

This work is a revised and extended version of [22, 23]. It is partially supported by the projects
PRIN 2005015491 and BIOCHECK.

R. Gentilini · C. Piazza · A. Policriti (�)
Università di Udine (DIMI), Via Le Scienze 206, 33100 Udine, Italy
e-mail: policriti@dimi.uniud.it

R. Gentilini
e-mail: gentilin@dimi.uniud.it

C. Piazza
e-mail: piazza@dimi.uniud.it

R. Gentilini
Department of Computer Science Reactive Systems Group, Kaiserslautern University,
Kaiserslautern, Germany

A. Policriti
Institute of Applied Geonomics, Odine, Italy

Algorithmica (2008) 50: 120–158 121

cycle detection problem”, our technique can be used to efficiently solve the emptiness
problem for various kinds of ω-automata.

Keywords Strongly connected components · Biconnected components · Ordered
binary decision diagrams · Model checking · Massive graphs

1 Introduction

The problems tackled in this paper are two (very) classical ones: strongly connected
components computation for directed graphs and biconnected components computa-
tion for undirected graphs [13, 26, 39]. The new ingredient motivating and justifying
our efforts is the use of a specific symbolic data structure representing the input data
and somehow forcing the basic operations performed by our algorithms. The impor-
tance of symbolic data structures such as the one we use, Ordered Binary Decision
Diagrams (OBDD) [9, 10, 43], is rapidly growing in many areas of Computer Sci-
ence where the large dimensions of the input models is a challenging feature: OBDD
based graph representations allowed to achieve truly new standards in the dimensions
for the Model Checking verification technique [12, 28, 35].

Many authors have taken into account the problem of precisely characterizing the
kind of speed-up which an OBDD-based representation can give. We discuss in some
detail such studies and the relative position of our contribution with respect to those
works in Sect. 3.2. We point out here that the cost model we use is based on counting
the number of symbolic steps (see [37]) and that the main motivation for using such a
model is the practical observation that in applications (for example Model Checking)
such cost is coherent with experimental results [4, 5, 12, 28, 37]. At a higher level
of abstraction, we observe that when working with succinct representations (e.g., cir-
cuits, boolean formulae, OBDD, etc.) it is rather natural to consider basic operations
different from the standard ones. In particular, if succinctness is obtained via a shar-
ing mechanism (as in the case of the “Reduce” routine collapsing nodes in Binary
Decision Trees to produce OBDDs [9, 10]), the natural operations to be used in es-
timating costs must operate on more than one represented object at a time. The post
and pre operations—introduced in Sect. 3.1 and producing the set of nodes reachable
in one forward or backward step, respectively, from a set of nodes—are natural in the
above sense.

From an algorithmic point of view, OBDD representations pose strict constraints
on the design techniques. For example, Depth-First Search (DFS) is not feasible (i.e.,
is not efficient) in a symbolic framework [4, 5, 12, 28, 37] and, consequently, many
state-of-the art DFS based algorithms (e.g., connectivity procedures [13, 26, 39])
cannot be easily rearranged to work on symbolically represented graphs. We devise
here a symbolic algorithmic strategy—based on the new notion of spine-set—that is
general enough to be the engine of linear symbolic step algorithms for both strongly
connected components and biconnected components. As the algorithms we present
here exemplify, the notion of spine-set is a sort of a symbolic way to introduce an
ordering among (set of) nodes. Exploiting such an order is easy and the complex-
ity analysis results in a linear number of symbolic steps on the ground of a natural
amortization of such steps’ cost on the output production (see Sects. 5 and 6). An

122 Algorithmica (2008) 50: 120–158

additional feature of our approach—which we consider fundamental to obtain good
practical performances and to determine a cost model based on symbolic steps—is
the fact that the number of variables involved in the OBDDs used by our algorithms
is small and remains constant throughout the entire execution (see Sect. 3.2).

The validity of our approach, which is mainly of theoretical interest for the mo-
ment, is witnessed by the lower complexity of our symbolic algorithm for computing
strongly connected components (SCC) with respect to the existing symbolic proce-
dures for the same problem [4, 5, 15, 41, 45]. More specifically, our O(V) sym-
bolic steps SCC algorithm improves on the previous state-of-the-art SCC procedure
in [4, 5], performing O(V log(V)) symbolic steps. We also provide, here, an O(V)

symbolic steps solution to the biconnectivity problem, thereby proving the non sin-
gularity of our spine-set based approach. To the best of our knowledge there are not
other symbolic algorithms for the biconnectivity problem, despite of its growing im-
portance in areas such as Networks Design, where huge graphs are involved (see,
e.g., [46]). Moreover, our procedures can be used to check the emptiness of various
ω-automata and hence to solve the bad cycle detection problem in Model Checking
in a linear number of symbolic steps (see Sect. 7).

The paper is organized as follows: Sect. 2 reviews some basic notions concern-
ing graph connectivity. In Sect. 3 we present preliminary material on symbolic graph
algorithms and we discuss some related works. In Sect. 4 we introduce the central no-
tion, with respect to our approach, of spine-set. Sections 5 and 6 develop linear sym-
bolic steps procedures for strongly connected and biconnected components analysis,
respectively. Finally, in Sect. 7, we reuse spine-sets to solve the bad cycle detection
problem for various ω-automata in a linear number of symbolic steps. Preliminary
versions of some results presented in this work appeared in [22, 23].

2 Preliminaries

This section collects preliminary notions and notations, used in the rest of the paper,
concerning graphs and connectivity.

Definition 1 (Graph) Let V be a finite set of vertices (vertex set) and E ⊆ V × V

be a binary relation on V (edge set). The structure G = 〈V,E〉 is a directed graph
(digraph). Moreover, if E is symmetric the structure G = (V ,E) is an undirected
graph.

In undirected graphs the edges (u, v) and (v,u) are considered to be the same
edge. We will simply write G to denote a graph that can be either directed or
undirected. Given G having vertices in V and edges in E and given a set of ver-
tices U ⊆ V we use the notations post(U) and pre(U) to denote the set of nodes
post(U) = {v | ∃u ∈ U(u,v) ∈ E} and pre(U) = {v | ∃u ∈ U(v,u) ∈ E}, respec-
tively. If G is undirected, then post(U) and pre(U) always coincide and we denote
them by img(U). When U = {u} is a singleton, with an abuse of notation, we will
write post(u) (pre(u) and img(u)) instead of post({u}) (pre({u}) and img({u}), re-
spectively).

Algorithmica (2008) 50: 120–158 123

Given a graph G having V as set of vertices and edges in E and a subset U of V

we use E � U to denote the set of edges incident onto U , i.e., E � U = {(u, v) |
u,v ∈ U ∧ (u, v) ∈ E}. A subgraph G′ of G is a graph whose set of vertices is a
subset U of V and whose set of edges is E � U . A path p in G of length n ≥ 0
is a sequence p = (v0, v1, . . . , vn) of elements of V such that for each 0 ≤ i < n

it holds that (vi, vi+1) ∈ E. The edges of the path p are the edges (vi, vi+1) with
0 ≤ i < n. A subpath of p is a subsequence of p. A (simple) cycle of G is a path
p = (v0, v1, . . . , vn) such that n > 0 and v0 = vn. A path p = (v0, v1, . . . , vn) is said
to be simple if it does not contain a subpath which is a cycle. A node u reaches a
node v (v is reachable from u) if there exists a path p whose first node is u and
whose last node is v. The notion of reachability can be immediately extended to set
of nodes.

Definition 2 (Backward and Forward Sets) Let G = 〈V,E〉 be a digraph and U ⊆ V

be a set of nodes. We define the backward set of U , denoted by BWG(U), as the
set of nodes that reach U . Conversely, we define the forward set of U , denoted by
FWG(U), as the set of nodes reachable from U .

When U = {v} is a singleton we also use the notation BWG(v) (FWG(v)) to de-
note BWG(U) (FWG(U), respectively).

2.1 Strong Connectivity of Digraphs

In a digraph G = 〈V,E〉 two nodes u and v are said to be mutually reachable, denoted
by u � v, if both u reaches v and vice versa. The relation � of mutual reachability
is an equivalence relation over V .

Definition 3 (Strongly Connected Components) Given G = 〈V,E〉, consider the par-
tition {V1, . . . , Vk} of V induced by �. The strongly connected components of G are
the subgraphs 〈V1,E � V1〉, . . . , 〈Vk,E � Vk〉.

A graph is said to be strongly connected if it consists of a unique strongly con-
nected component. In the rest of this paper we use the notation sccG(v) (or simply
scc(v)) to refer to the set of vertices U such that v ∈ U and 〈U,E � U 〉 is a strongly
connected component of G. sccG(v) is said to be trivial if it is equal to {v} and
(v, v) /∈ E.

Definition 4 (Scc-Closed Vertex Set) Given G = 〈V,E〉, let U ⊆ V . U is said to be
scc closed if, for each vertex v ∈ V , either scc(v) ∩ U = ∅ or scc(v) ⊆ U .

Boolean combinations of scc-closed sets are scc closed. Lemma 1, whose proof
is immediate (see [45]), relates some of the above defined notions and ensures the
correctness of the symbolic scc-algorithms in [4, 5, 45].

Lemma 1 Let G = 〈V,E〉 be a digraph and consider the subgraph G′ = 〈U,E � U 〉
where U ⊆ V is scc closed. For all v ∈ U , both FWG′(v) and BWG′(v) are scc closed
and

sccG(v) = FWG′(v) ∩ BWG′(v).

124 Algorithmica (2008) 50: 120–158

2.2 Biconnectivity of Undirected Graphs

The notion of biconnectivity is the counterpart, in an undirected graph, of the notion
of strong connectivity.

Consider G = (V ,E) and, from now on, assume that |E| ≥ 1 and that G contains
no self loops. Moreover, we suppose that G is connected. A vertex a ∈ V is said to
be an articulation point of G if there exist two distinct vertices v
= a and w
= a such
that every path between v and w contains a. In other words, a is an articulation point
if the removal of a splits G into two or more parts. G = (V ,E) is biconnected if it
contains no articulation point. The biconnected components of G = (V ,E) can be
defined upon the following equivalence relation � on E.

Definition 5 Let G = (V ,E). Two edges e1, e2 ∈ E are in relation � if and only
if either they are the same edge or there is a simple cycle in G containing both e1
and e2.

Definition 6 (Biconnected Components) Given G = (V ,E), consider the partition
{E1, . . . ,Ek} of E induced by �. For each 1 ≤ i ≤ k, let Vi be the set of nodes
occurring in the edges of Ei . The biconnected components of G are the subgraphs
(V1,E1), . . . , (Vk,Ek).

In the rest of this paper we use the notation bccG(v,u) (or simply bcc(v,u)) to in-
dicate the biconnected component containing the edge (v,u) in G. Lemma 2, whose
proof is immediate (see e.g., [1, 20]), gives useful information on biconnectivity.

Lemma 2 For 1 ≤ i ≤ k, let Gi = (Vi,Ei) be the biconnected components of G =
(V ,E). Then:

1. Gi is biconnected;
2. for all i
= j , Vi ∩ Vj contains at most one vertex;
3. a is an articulation point of G if and only if a ∈ Vi ∩ Vj for some i
= j .

Definition 7 (Bcc-Closed Subgraph) Let G′ = (V ′,E′) be a subgraph of G =
(V ,E). G′ is said bcc closed if, for each biconnected component of G, (Vi,Ei),
either Ei ∩ E′ = ∅ or Ei ⊆ E′.

3 Symbolic Graph Algorithms

We review here some basic notions on OBDDs and symbolic graph algorithms. We
then discuss a number of issues concerning both the design and the analysis of algo-
rithms manipulating OBDD represented graphs.

Ordered Binary Decision Diagrams (OBDDs) [2, 9, 10, 27] are a fundamental data
structure originally developed for efficiently storing and manipulating boolean func-
tions. Any boolean function f (x1, . . . , xk) can be naturally represented by a Binary
Decision Tree (BDT) of height k. In the BDT for f (x1, . . . , xk) each path defines a
boolean assignment, b1 . . . bk , for the variables of f and the leaves are labelled with

Algorithmica (2008) 50: 120–158 125

the boolean value f (b1, . . . , bk). Processing a BDT bottom up, we obtain a directed
acyclic graph which compactly stores the same information through node-sharing
[2, 27, 29, 43]. By introducing an ordering over the node labelling variables in such
diagrams, Bryant [9, 10] showed how to produce a canonical representation and, con-
sequently, a manipulation framework for boolean functions (the OBDDs). OBDDs
can be used to symbolically represent each notion which is expressible as a boolean
function, e.g., in Symbolic Model Checking [28] they are used to represent Kripke
structures (graphs). Besides Model Checking, other typical areas of applications of
OBDD techniques are logic synthesis [9, 10], VLSI design and CAD problems [29]
and many others.

3.1 Symbolic Representation and Manipulation of Graphs

The way OBDDs are usually employed to represent a graph G, having vertices in V

and edges in E, is based on the following observations:

• Each node is encoded as a binary number, i.e., V = {0,1}v . Hence, a set U ⊆
V is a set of binary strings of length v whose characteristic (boolean) function,
χU(u1, . . . , uv), can be represented by an OBDD;

• E ⊆ V × V is a set of binary strings of length 2v whose characteristic (boolean)
function, χE(x1, . . . , xv, y1, . . . , yv), can be represented by an OBDD.

The actual number of nodes of an OBDD greatly varies and strongly depends on
the variable ordering (see [29]). Indeed, even if there exist a number of effective
heuristics to rearrange a given OBDD variable ordering [14], the problem of obtaining
the best variable ordering has been proved NP-complete [6, 36].

Example 1 Consider the graph in Fig. 1. To give an OBDD representation of such a
graph, we need to encode its nodes with a three variables boolean code, 〈x1, x2, x3〉.
Accordingly, six variables, namely 〈x1, x2, x3, x

′
1, x

′
2, x

′
3〉, are necessary to give a

symbolic representation of the graph relation.
We depict in Fig. 1, on the right, the OBDD encoding of the graph relation, with

respect to the variable ordering 〈x3, x
′
3, x1, x2, x

′
1, x

′
2〉. Using the alternative variable

ordering 〈x1, x
′
1, x2, x

′
2, x3, x

′
3〉, we would obtain a worst-case size OBDD for this

example, having a number of nodes (edges) exponential in the number of variables

Fig. 1 A graph and the OBDD
representation of its relation,
with respect to the variable
ordering 〈x3, x′

3, x1, x2, x′
1, x′

2〉

126 Algorithmica (2008) 50: 120–158

(or, equivalently, linear with respect to |V | + |E|). In fact, the first three levels of the
resulting OBDD would be a complete binary tree. In [30, 34], the authors discuss a
number of graph topologies for which there exists a variable ordering that guarantees
an OBDD representation having logarithmic size with respect to the graph size.

Various packages have been developed to manipulate OBDDs: Somenzi’s CUDD
at Colorado University [38], Lind-Nielsen’s BuDDy, Biere’s ABCD package,
Janssen’s OBDD package from Eindhoven University of Technology, Yang’s PBF
package, Carnegie Mellon’s OBDD package, the Berkeley’s CAL [32], and K.
Milvang-Jensen’s parallel package BDDNOW. All these packages are endowed with
a number of built-in operations such as equality test and the boolean operations
∪,∩,\.

Canonicity guarantees that equality tests can be considered constant time opera-
tions: if f and g are represented by two OBDDs in the unique table (a table providing
access to a unique representation for each OBDD used), then the functions are equal
if and only if the variables associated to f and g are two pointers to the same location
in the table.

Let us assume that B1 and B2 are the OBDDs representing the boolean functions
f1(x1, . . . , xk) and f2(x1, . . . , xk), respectively. Then B1 ∪ B2 is an OBDD that rep-
resents the function f1(x1, . . . , xk) ∨ f2(x1, . . . , xk) and can be computed in time
O(|B1||B2|) using dynamic programming [10] (if B is an OBDD, then |B| denotes
the number of its nodes). The same cost (linear in the size of the input OBDDs) is
achieved by the other set-composition operations and by the operation pick(U) that
picks an element from the set U [4, 5].

The digraph operations of post-image computation (post) and pre-image compu-
tation (pre), are usually programmed on top of the OBDD packages. Consider the
boolean functions χU(y1, . . . , yv) and χE(x1, . . . , xv, y1, . . . , yv), representing the
set of nodes U ⊆ V and the relation E of the graph G = (V ,E). Then, the ex-
pression ∃x1 . . . xv(χU (x1 . . . xv) ∧ χE(x1, . . . , xv, y1, . . . , yv)) gives the set of nodes
reachable in one step from U . Similarly, the nodes reaching U in one step satisfy
∃y1, . . . , yv(χU (y1, . . . , yv)∧χE(x1, . . . , xv, y1, . . . , yv)). Both the formulas defined
above allow us to obtain, in an undirected graph, the image-set of a given set of
nodes U , img(U). Computing these expressions, also called relational products, has
a worst-case complexity which is exponential in the number of variables of the OB-
DDs representing χU and χE [28, 37].

In practical cases the cost of the operations of (post/pre) image computation, even
thought acceptable, is the crucial one. Hence, in the area of the symbolic algorithms,
the operations post, pre, and img are referred as symbolic steps [37].

3.2 Symbolic Graph Algorithms Analysis

To take advantage of OBDD space-saving features, symbolic graph algorithms should
operate on sets of nodes and/or edges, rather than on single graph elements. In fact,
in this way every OBDD operation (hopefully) processes many nodes and edges in
simultaneously. Moreover, computing the successors of one node has the same worst-
case cost as computing the successors of a set of nodes. Operating on sets of graph

Algorithmica (2008) 50: 120–158 127

elements should be somehow inherent to a proper definition of symbolic algorithms
and poses strict constraints on the possibility of rearranging classical algorithms in
the symbolic setting.

Apart from the agreement on the above general suggestion [3, 37, 43], there is no
definite assessment, in the literature, of what a good symbolic algorithm is, on how
to evaluate complexity of symbolic procedures, as well as on how to compare sym-
bolic algorithms. To this purpose, a natural question arising when graph problems are
taken into consideration assuming a symbolic data representation, is the following:
what is the complexity of the graph problem with respect to the dimension of the
symbolic input representation? This issue was considered in [16] with respect to a
very simple graph problem: the graph accessibility problem, consisting in determin-
ing the existence of a path connecting two given nodes in a graph. The authors of [16]
showed that it is possible to encode every decision problem on a polynomial space
bounded Turing machine into a GAP problem. The graph underling the encoding
represents all possible configurations and transitions of the Turing machine and it is
shown to have a succinct (polynomial in the number of variables) OBDD representa-
tion: hence the GAP problem is PSPACE complete with respect to the dimensions of
a symbolic input representation. However, if the number of nodes of the manipulated
(explicit) graph are considered, the above result simply assesses that it is very diffi-
cult to use OBDDs to define poly-logarithmic algorithms for GAP as well as more
complex graph problems. It remains possible to devise OBDD-based algorithms that
solve polynomially the above problems and “often” with sublinear space and/or time
(with respect to the explicit graph dimension). In fact, these characteristics are shared
by all the symbolic graph algorithms defined, to date, in the verification field.

Seen from a different perspective, the result in [16] suggests the inadequacy of
classical complexity analysis, when dealing with symbolic procedures, due to the
great distance between best and worst cases. For instance the GAP problem is poly-
logarithmic in the best case and polynomial in the worst case, with respect to the
dimensions of the explicitly represented graph. The need for new parameters to eval-
uate relative merits of symbolic algorithms have been considered by various authors.
We review some of them below and, finally, we set the framework used in this paper
to evaluate and compare symbolic algorithms.

Current Trends in Comparing Symbolic Algorithms Most of the authors in the ver-
ification and Model Checking communities, evaluate a symbolic algorithm counting
the number of OBDD operations performed [11, 12, 18, 28]. In [4, 5, 37] the notion of
symbolic steps was introduced, capturing the fact that symbolic operations based on
relational product can cause an explosion of the input OBDD size. Thus, the asymp-
totic number of symbolic steps, i.e., of the operations based on relational product, is
taken as a measure of symbolic algorithms performance.

Indeed, comparing symbolic procedures exclusively on the ground of bounds on
the number of general, as well as specific, OBDD operations is not fair since the
sizes of the manipulated OBDD are not taken into account. To consider OBDD sizes
as well, it is possible to use, as a performance parameter, also the number of variables
of intermediate OBDDs manipulated. The importance of having the variables number
as low as possible was recognized by various authors [3, 18, 25, 37]. As a matter of

128 Algorithmica (2008) 50: 120–158

fact multiplying by a constant k the number of variables on which an OBDD depends,
means exploding its worst case size S to Sk . The algorithms defined in this paper
will use at most 2n variables, were n is the number of variables needed to encode the
graph vertex set. Employing 2n variables allows us to compute on sets of nodes using
pre and post operations and leaving the edge relation untouched. In a certain sense,
hence, this is the minimum number of variables needed to get some information from
the graph relation.

In [33, 34, 44] Sawitzki and Woelfel do not pose any restriction to the number of
variables in the computed OBDD. As an example, the topological sort algorithm in
[44] requires 4n variables and relies on computing the transitive closure of the in-
put graph relation. The main aim of [33, 34, 44] is that of exploiting the power of
graph relation composition to which it is possible to apply speedup strategies such as
iterative squaring [11]. However, to avoid the problems related to the (likely) huge
intermediate OBDD sizes, largely experimentally recognized in the verification com-
munity [4, 5, 37], [33, 34, 44] must impose strict constraints on their graph topology
(only very regular graphs such as grids are considered). Computing on such regular
graphs guarantees to have all intermediate OBDDs of size polynomial in the number
of variables: the complexity analysis is then carried on in the classical way and the
costs obtained are poly-logarithmic.

In this paper, we take seriously into account suggestions coming from the great
deal of experimental work done in symbolic model checking. In fact, we do not want
pose constraints on graph topologies. Following [4, 5, 12, 18, 28, 37], our graph
connectivity symbolic algorithms will work on sets of nodes, rather than edges, thus
minimizing the number of variables in intermediate OBDDs (as well as their worst
case sizes). Being the number of variables fixed, we will use the asymptotic number
of symbolic steps [4, 5] to compare algorithms.

3.3 Related Work on Symbolic Algorithms

As we already observed, since symbolic graph algorithms should work on sets of
graph elements, it is not always possible to translate classical algorithms into effi-
cient symbolic procedures. The simple problem of exploring a graph is significant to
this phenomenon. Symbolically, the problem can be efficiently tackled in a breadth-
first manner: sets of nodes having increasing distance from the source-node are con-
sidered and the diameter of the graph is a bound on the number of symbolic steps
necessary to complete the visit. To perform Depth-First Search (DFS) instead, an or-
der over the nodes must be computed. This order is associated to depth of nodes in the
paths subsequently discovered. Thus, it is necessary to maintain a global vertex la-
belling discovering time and to subsequently take into consideration a node at a time
according to such a labelling. As a result, DFS is intractable in a symbolic setting
[4, 5, 37]. Recently, the strongly connected components computation (which, in the
explicit setting, is linearly solved starting from a DFS visit) has been tackled in the
area of verification. Motivated by the possibility of speeding up some model check-
ing algorithms, the authors of [4, 5, 45] proposed two symbolic algorithms to find the
strongly connected components of a directed graph. Both the algorithms compute the
strongly connected component of a node, v, by breadth-first discovering, and then

Algorithmica (2008) 50: 120–158 129

intersecting, the forward-set and the backward-set of v. Moreover, both algorithms
need the same number of variables, in that they both manipulate sets of nodes: the
procedure in [4, 5] outperforms the one in [45], since it needs O(V log(V)) rather
than O(V 2) symbolic steps.

The design of symbolic graph algorithms for bisimulation reduction has also been
proposed in the area of Model Checking [7, 12, 17, 35]. The first symbolic bisimula-
tion algorithms [7, 12] obtained the bisimulation equivalence of a graph by computing
a minimum fix-point binary relation over the nodes. Later, [18] proposed bisimulation
symbolic algorithms that do not manipulate relations but, rather, partitions of vertex
sets: this way the number of variables involved in the computation is cut in half.

All the above symbolic procedures were deeply experimentally analyzed on a
data set derived from graphs modeling systems in verification. A data set of ran-
dom graphs, besides that of graphs deriving from Model Checking, was used to test
the algorithm in [24]. The procedure symbolically solves the max-flow problem on
0-1 networks on graphs having more than 1030 nodes.

Finally, the authors in [33, 34, 44], developed a number of symbolic graph algo-
rithms (topological sorting [44], max-flow on 0-1 networks, all pair shortest paths
problem [34]) all relying on symbolic computation of transitive closure of graph re-
lation. Transitive closure computation is well known, in Model Checking, to likely
lead to huge intermediate OBDDs. Hence, even if it requires only log(n) iterations
by iterative squaring it is usually avoided.

4 Spine-sets as Symbolic Counterpart to DFS

In this section we introduce the notion of spine-set. A spine-set allows us to im-
plicitly encode an ordering, suitable for the efficient symbolic computation of both
biconnected components and strongly connected components. In this sense, spine-
sets are, in the design of connectivity algorithms, a sort of symbolic counterpart to
the use of DFS.

A path (v0, . . . , vp) in a graph G is said a chordless path if and only if for all
0 ≤ i < j ≤ p such that j − i > 1, there is no edge from vi to vj in G.

Definition 8 (Spine-set) Consider a graph G having vertices in V and edges in E.
Let S ⊆ V . The pair 〈S, v〉 is a spine-set of G if and only if G contains a chordless
path whose set of vertices is S that ends at v. The node v is called the spine-anchor
of the spine-set 〈S, v〉.

Example 2 In Fig. 2 we provide a pictorial representation of a spine-set S and its
anchor v in the case of a digraph.

Fig. 2 A Spine-set 〈S, v〉

130 Algorithmica (2008) 50: 120–158

It is immediate to verify that a spine-set is associated to a unique chordless path.

On this ground, we use the notation
−−−−

v0 . . . vp to express the fact that 〈{v0, . . . , vp}, vp〉
is a spine-set of G associated to the chordless path (v0, . . . , vp). Though simple,
Lemma 3 is significant in that it allows us to view a spine-set as an implicitly ordered
set.

Lemma 3 If
−−−−

v0 . . . vp and p > 0, then pre(vp) ∩ {v0, . . . , vp} = {vp−1} and
−−−−

v0 . . . vp−1.

Proof Each subpath of a chordless path is clearly a chordless path. Hence,
−−−−

v0 . . . vp−1
and {vp−1} ⊆ pre(vp)∩{v0, . . . , vp}. Moreover, {vp−1} ⊇ pre(vp)∩{v0, . . . , vp} also
holds in that, otherwise, there would be some edge from a spine-set node vj to vp ,
with p − j > 1. �

Section 4.1 relates spine-sets to the strongly connected components of a digraph.
Similarly Sect. 4.2 relates spine-sets to the biconnected components of an undirected
graph.

4.1 Spine-sets and Strongly Connected Components

In this section we consider a digraph G = 〈V,E〉.

Lemma 4 Given the spine-set
−−−−

v0 . . . vp there is a minimum 0 ≤ t ≤ p and a maximum
0 ≤ l ≤ p such that:

1. scc(vp) ∩ {v0, . . . , vp} = {vt , . . . , vp} and scc(v0) ∩ {v0, . . . , vp} = {v0, . . . , vl};
2. If t
= 0, then

−−−−
v0 . . . vt−1 and {vt−1} = pre(scc(vp) ∩ {v0, . . . , vp}) ∩ {v0, . . . , vp};

3. If l
= p, then
−−−−

vl+1 . . . vp .

Proof We prove Item 1. Let scc(vp) to contain the spine-set node vj . We prove that,
for all j < k < p, vk ∈ scc(vp). Let j < k < p. By definition of spine-set, there is a
path from vk to vp . By vj ∈ scc(vp), there is a path from vp to vj and hence, using
again the definition of spine-set, there is a path from vp to vk .

An analogous reasoning schema allows us to conclude that there exists a maximum
0 ≤ l ≤ p such that scc(v0) ∩ {v0, . . . , vp} = {v0, . . . , vl}.

Item 2 follows from Item 1, from definition of spine-set, and from the fact that
each subpath of a chordless path is a chordless path.

Item 3 follows from Item 1 and from the fact that each subpath of a chordless path
is a chordless path. �

By the above lemma, in a digraph the nodes of a spine-set can be assigned to
their strongly connected components in the order induced on them by the spine-set.
In the next section we state an analogous result in the framework of the biconnected
components of an undirected graph. This does not come by chance: it depends on
the fact that the order induced by a spine-set gives information on the depth of the

Algorithmica (2008) 50: 120–158 131

Fig. 3 A Skeleton 〈S, u〉 in
FW(v)

spine-set nodes in a path of the graph. Both the symbolic connectivity algorithms pre-
sented in the rest of this paper use spine-sets to drive the computation on opportune
breadth-first discovered scc-closed (bcc-closed) subgraphs. Thus, although the ver-
tex set is always explored in a breadth-first manner, globally the strongly connected
components (biconnected components) are produced in a piecewise depth-first order.

In the symbolic scc-algorithm, the scc-closed sets computed are forward-sets of a
spine-anchor. Some important properties about such sets are stated in Lemma 5.

Lemma 5 Let 〈S, u〉 be a spine-set and scc(〈S, u〉) = ⋃
w∈S scc(w). Then, FW(u)∩

scc(〈S, u〉) = scc(u).

Proof Clearly FW(u)∩ scc(〈S, u〉) ⊇ scc(u). To prove the opposite inclusion, notice
that since both FW(u) and scc(〈S, u〉) are scc closed, FW(u) ∩ scc(〈S, u〉) is scc
closed. Let w be such that scc(w) ⊆ FW(u) ∩ scc(〈S, u〉). We prove that scc(w) =
scc(u). From the fact that scc(w) ⊆ FW(u) we have that w is reachable from u. By
scc(w) ⊆ scc(〈S, u〉), there exists w′ such that w′ ∈ S and scc(w) = scc(w′). u is
reachable from w′ since w′ ∈ S and 〈S, u〉 is a spine-set. By scc(w) = scc(w′), we
conclude that u is reachable from w. �

The notion of skeleton of a forward set, introduced below, relates spine-sets and
forward-sets. In particular, a skeleton is a spine-set that will be used to drive the
computation, in our symbolic scc-algorithm.

Definition 9 (Skeleton of FW(v)) Let FW(v) be the forward-set of the vertex v ∈ V .
〈S, u〉 is a skeleton of FW(v) iff u is a node in FW(v) whose distance from v is
maximum and S is the set of nodes on a shortest path from v to u.

Example 3 In Fig. 3 we represent a skeleton of a forward-set.

Lemma 6 Let FW(v) be the forward-set of v ∈ V . If 〈S, u〉 is a skeleton of FW(v),
then 〈S, u〉 is a spine-set in G = 〈V,E〉.
Proof It immediately follows from the definition of spine-set. �

4.2 Spine-sets and Biconnected Components

The results in the previous section establish a relationship over digraphs among spine-
sets, strongly connected components, and forward-sets. Given G = (V ,E), in this

132 Algorithmica (2008) 50: 120–158

Fig. 4 Graphs G(V∗, a),
G(V∗, a)

section we relate spine-sets, biconnected components, and the bcc-closed subgraphs
introduced in Definition 10. More specifically Definition 10, below, introduces a
canonical way of splitting G into two bcc-closed subgraphs. Consider an articulation
point a. By Lemma 2 there are at least two biconnected components containing a.
Our splitting will take place around one of them, say (V∗,E∗), with a ∈ V∗. As de-
picted in Fig. 4, one of the two subgraphs into which G gets split contains (V∗,E∗)
(and it is called G(V∗, a)). The other subgraph includes all the remaining biconnected

components containing a (and is called G(V∗, a)). We denote by
G� (the nodes in) a

simple path in the graph G.

Definition 10 Let (V∗,E∗) be a biconnected component of G = (V ,E). If a ∈ V∗
is an articulation point of G, then G(V∗, a) and G(V∗, a) are the subgraphs of G

induced by the sets of nodes W and (V \ W) ∪ {a}, respectively, where:

W = {a} ∪ {v|∃ G� (a
G� v∧ G� ∩(V∗ \ {a})
= ∅}.

Lemma 7 Consider a biconnected component (V∗,E∗) of G = (V ,E). If a ∈ V∗ is
an articulation point of G, then:

1. The two subgraphs G(V∗, a) and G(V∗, a) are bcc closed;
2. (V∗,E∗) is a subgraph of G(V∗, a).

Proof Let W be the vertex set of G(V∗, a). There cannot be any edge (w, s) in G with
w ∈ W \{a} and s ∈ V \W , otherwise there would be a simple path traversing V∗ \{a}
from a to s ∈ V \ W . Hence, assume by contradiction that there exists a biconnected
component in G, (V ′,E′), such that V ′ ∩ (W \ {a})
= ∅ and V ′ ∩ (V \ W)
= ∅. As
(V ′,E′) is biconnected, for all z, t with z ∈ V ′ ∩ (W \ {a}), t ∈ V \ W , there exists a
path between z and t not containing a. We get to the contradiction that there exists an
edge between a node in W \ {a} and a vertex in V \ W . Item 2 directly follows from
Definition 10. �

Algorithmica (2008) 50: 120–158 133

Lemma 8 is the counterpart of Lemmas 4 and 5 stated in the previous section for
strongly connected components.

Lemma 8 Given
−−−−

v0 . . . vp in G = (V ,E), let V∗ be the vertex set of a biconnected
component containing vp . There is a minimum 0 ≤ t ≤ p such that:

1. V∗ ∩ {v0, . . . , vp} = {vi | t ≤ i ≤ p};
2. If vt is an articulation point, then

−−−−
v0 . . . vt is a spine-set in G(V∗, vt);

3. If a
= vt , a ∈ V∗ is an articulation point and V ′ is the vertex set of G(V∗, a), then
V ′ ∩ {v0, . . . , vp} ⊆ {a}.

Proof Let us prove Item 1. By contradiction, suppose that there exists a sub-path
of the chordless path (v1, . . . , vp), p = (vi, . . . , vj) with |j − i| > 1, in which the
endpoints vj and vi belong to V∗ and all the internal nodes do not belong to V∗. As
V∗ is connected, V∗ contains a path from vi to vj , say q . By concatenating the paths
p and q we obtain a simple cycle containing vi+1, . . . , vj−1. This ensures that all the
nodes in p belongs to V∗ and contradicts our hypothesis.

Item 2 immediately follows from the fact that each prefix of a chordless path is a
chordless path.

Item 3. By Definition of vt , since a ∈ V ∗, a cannot be a vi for i < t . More-
over, since vt ∈ V ∗ and a is an articulation point, from Definition 10 it follows that
{v0 . . . vt } ⊆ G(V ∗, a). Hence {v0 . . . vp} ⊆ G(V ∗, a). Being a the unique vertex in
common to G(V ∗, a) and G(V ∗, a), we conclude that {v0 . . . vp} ∩ V ′ ⊆ {a}. �

A skeleton of G(V∗, a), introduced below, is a particular spine-set in G(V∗, a) that
will drive the computation in our symbolic bcc-algorithm.

Definition 11 (Skeleton of G(V∗, a)) Consider G = (V ,E), a biconnected compo-
nent (V∗,E∗) in G and an articulation point a ∈ V∗. 〈S, u〉 is a skeleton of G(V∗, a)

iff u is a node in G(V∗, a) having maximum distance from a and S is the set of nodes
on a shortest path from a to u.

Lemma 9 If 〈S, u〉 is a skeleton of G(V∗, a), then 〈S, u〉 is a spine-set in G(V∗, a).

Proof It immediately follows from the definition of spine-set. �

5 Strong Connectivity on Symbolic Graphs

In this section we show how the notions introduced in Sects. 4 and 4.1 allow us to
design a symbolic scc-algorithm performing a linear number of symbolic steps. Sim-
ilarly to the other scc-algorithms in the literature, our algorithm does not provide
as output the strongly connected component subgraphs, but their vertex sets, i.e., if
〈V1,E � V1〉, . . . , 〈Vk,E � Vk〉 are the strongly connected components of 〈V,E〉 our
output is V1, . . . , Vk . From now on with a slight abuse of notation we refer to the sets
V1, . . . , Vk as strongly connected components. We start by giving some intuitions

134 Algorithmica (2008) 50: 120–158

about the procedure we are going to present. In each iteration the strongly connected
component of a node, v, is simply determined by first computing FW(v) and then
identifying those vertices in FW(v) having a path to v. The choice of the node to be
processed in any given iteration is driven by the implicit order associated to an oppor-
tune spine-set. More specifically, whenever a forward-set FW(v) is built, a skeleton

of such a forward-set,
−−−−

v0 . . . vp with v = v0, is also computed. The order induced
by the skeleton is then used for the subsequent computations. Stated in other words,
scc(vp) will be the first strongly connected component isolated in the scc-closed sub-
set FW(v) \ scc(v). In this way, the cost of the symbolic steps performed to produce
FW(v) is distributed over the computation of the strongly connected components of
the nodes in the skeleton of FW(v). This amortized analysis is the key point for the
linear complexity of the algorithm.

5.1 The Linear Symbolic SCC Algorithm

With the above intuition, we outline in Table 1 the pseudo-code for our linear sym-
bolic scc-algorithm. The parameters of the procedure depicted in Table 1 are a graph
G = 〈V,E〉 and a pair 〈S,N〉. 〈S,N〉 is either 〈∅,∅〉 or S = {v0, . . . , vp} ⊆ V ,

N = {vp}, with
−−−−

v0 . . . vp (i.e., 〈{v0, . . . , vp}, vp〉 is a spine-set in 〈V,E〉).
In case V is empty the routine terminates, otherwise the vertex for which the next

strongly connected component is to be computed is chosen.
In case S
= ∅ and N = {vp}, vp is chosen. Otherwise (S = ∅) an arbitrary element

v ∈ V is picked (assigning the singleton {v} to N). Then the subprocedure SKEL-
FORWARD is called to compute the forward-set of the singleton N and a skeleton,
〈S ′, u′〉, of such a forward-set. The local variable FW maintains the just mentioned
forward-set whereas newS and newN maintain S ′ and {u′}, respectively. In line (6)

the local variable SCC is initialized to be the singleton N and then it is augmented
with the elements of the strongly connected component containing N (loop of lines
(7), (8)). In line (9) the partition of scc’s is updated and finally the procedure is
recursively called over:

1. The subgraph of 〈V,E〉 induced by V \ FW and the spine-set of such a subgraph
obtained from 〈S,N〉 by subtracting SCC (cf. Item 2 in Lemma 4);

2. The subgraph of 〈V,E〉 induced by FW \SCC and the spine-set of such a subgraph
obtained from 〈newS,newN〉 by subtracting SCC (cf. Item 3 in Lemma 4).

In Table 2 the pseudo-code of the subprocedure SKEL-FORWARD is presented. It is
used during the execution of SYMBOLIC-SCC to obtain the forward-set of a node
together with a skeleton of such a forward-set.

The parameters of such a routine are a graph G = 〈V,E〉 and a singleton N =
{v} ⊆ V . The forward-set of the node given as input, v, is simply computed with a
symbolic breadth-first search [31, 37], i.e., by a loop that discovers, in each iteration i,
all the nodes of V having distance i from v. In [31] the just mentioned sets, that are
often referred as onion-rings [31, 37] in the verification area, are enqueued onto a
set-priority-queue to produce a counterexample of minimum length. In this context,
they are pushed onto a stack to produce a skeleton of FW(v).

Algorithmica (2008) 50: 120–158 135

Table 1 The scc-algorithm
performing a linear number of
symbolic steps

SYMBOLIC-SCC(V ,E, 〈S,N〉)

(1) if V = ∅

(2) then return;

� Determine the node for which the scc is computed

(3) if S = ∅

(4) then N ← pick(V);

� Compute the forward-set of the singleton N and a skeleton

(5) 〈FW,newS,newN〉 ← SKEL-FORWARD(V ,E,N);

� Determine the scc containing N

(6) SCC ← N;
(7) while ((pre(SCC) ∩ FW) \ SCC)
= ∅ do

(8) SCC ← SCC ∪ (pre(SCC) ∩ FW);

� Insert the scc in the scc-Partition

(9) SCC-Partition ← SCC-Partition ∪ {SCC}

� First recursive call: computation of the scc’s in V \ FW

(10) V ′ ← V \ FW;E′ ← E � V ′;
(11) S ′ ← S \ SCC;N ′ ← pre(SCC ∩ S) ∩ (S \ SCC);
(12) SYMBOLIC-SCC(V ′,E′, 〈S ′,N ′〉)

� Second recursive call: computation of the scc’s in FW \ SCC

(13) V ′ ← FW \ SCC;E′ ← E � V ′;
(14) S ′ ← newS \ SCC;N ′ ← newN \ SCC;
(15) SYMBOLIC-SCC(V ′,E′, 〈S ′,N ′〉)

Notice that the restriction of the edge relation in the two recursive calls is intro-
duced only for the sake of clarity. As done in [4, 5] the results of the image and
pre-image computations can be intersected with V ′, so that only the original edge
relation needs to be stored.

5.2 Correctness and Complexity

The soundness and completeness of the algorithm in Table 1 are stated in Theorems 1
and 2, respectively. Throughout this section we will use the notation V l

c to indicate the
variable V on the entering of line l in the c-th execution of SYMBOLIC-SCC. Vc will
denote the value of the parameter V to the c-th call to SYMBOLIC-SCC. An analogous
notation will be adopted for all the variables in SYMBOLIC-SCC. Lemma 10, below,
states that the subprocedure SKEL-FORWARD(V ,E, {v}) computes the forward-set of
v and a skeleton of FW(v).

136 Algorithmica (2008) 50: 120–158

Table 2 The procedure which computes the forward-set of a node and a skeleton

SKEL-FORWARD (V ,E,N)

(1) Let stack be an empty stack of sets of nodes

(2) L ← N

� Compute the Forward-set of N and push onto stack the onion rings

(3) while (L
= ∅) do

(4) push(stack,L);
(5) FW ← FW ∪ L;
(6) L ← post(L) \ FW;

� Determine a Skeleton of the Forward-set of N

(7) L ← pop(stack);
(8) S ′ ← N ′ ← pick(L);
(9) while stack
= ∅ do

(10) L ← pop(stack);
(11) S ′ ← S ′ ∪ pick(pre(S ′) ∩ L);
(12) return〈FW,S ′,N ′〉;

Lemma 10 Let G = 〈V,E〉. Given v ∈ V , SKEL-FORWARD(V ,E, {v}) returns the
triple of sets 〈FW(v),S ′, {u}〉 where 〈S ′, u〉 is a skeleton of FW(v).

Proof Upon the termination of each iteration, i, of the first loop in SKEL-FORWARD,
it holds that:

– L maintains the set of nodes at distance i from {v};
– L is pushed onto the stack of sets of nodes, stack, and it is merged with FW .

It follows that the first loop in SKEL-FORWARD is executed dv times, where dv is the
maximum distance, from v, of a vertex in V .

Upon termination of this loop, FW maintains the forward-set of {v}. Moreover,
stack has length dv and w belongs to the set in position i of stack if and only if
w has distance i from v. Thus line (8) assigns, to both N ′ and S ′, a singleton {u},
where u is a node having maximum distance from v. Then, the while loop of lines
(9)–(11) augments S ′ with the set of nodes on a minimum distance path from v to u.
By Definition 9 we conclude that 〈S ′, u〉 is a skeleton of FW(v). �

Lemma 11 Let G = 〈V,E〉. Consider the execution of SYMBOLIC-SCC on
(V ,E, 〈∅,∅〉). In each recursive call, c, to SYMBOLIC-SCC:

(a) 〈Vc,Ec〉 is a subgraph of 〈V,E〉 and Vc is scc closed;
(b) N5

c = {v} ⊆ V and if Sc
= ∅, then 〈Sc,Nc〉 is a spine-set of 〈Vc,Ec〉;
(c) sccG(v) is assigned to SCC9

c and 〈SCC9
c,V

9
c \ FW9

c,FW9
c \ SCC9

c〉 is a partition
of Vc .

Algorithmica (2008) 50: 120–158 137

Proof By induction on the number of recursive calls to SYMBOLIC-SCC within
SYMBOLIC-SCC(V ,E, 〈∅,∅〉). The base case is immediate. We assume our lemma
true for the first c recursive calls and we sketch here the inductive step. Let
SYMBOLIC-SCC(Vc′,Ec′, 〈Sc′ ,Nc′ 〉) be the recursive call from which the (c + 1)-st
call to SYMBOLIC-SCC is executed (hence c′ ≤ c).

Inductive Step (Item (a)) V 9
c+1 is either V 9

c′ \ FW9
c′ or FW9

c′ \ SCC9
c′ . Hence, by

inductive hypothesis, 〈Vc+1,Ec+1〉 is a subgraph of 〈V,E〉 and Vc+1 is a scc-closed
subset of V .

Inductive Step (Item (b)) The values of Sc+1 and Nc+1 depend on whether the
(c + 1)-st call to SYMBOLIC-SCC corresponds to the first or to the second recur-
sive call within SYMBOLIC-SCC(Vc′,Ec′, 〈Sc′ ,Nc′ 〉). In the first case, if Sc′ = ∅,
then line (11) initializes 〈Sc+1,Nc+1〉 to 〈∅,∅〉. Otherwise, by inductive hypothesis,
〈Sc′ ,Nc′ = {v}〉 is a spine-set in 〈Vc′ ,Ec′ 〉 and SCC9

c′ = sccG(v). Hence, by Lemma 4
(Item 2) and Lemma 5, lines (10)–(11) in SYMBOLIC-SCC initialize 〈Sc+1,Nc+1〉 to
a spine-set in 〈Vc+1,Ec+1〉. In the second case, the inductive hypothesis, Lemma 4
(Item 3), Lemma 6, and Lemma 10 ensure that lines (13)–(14) in SYMBOLIC-SCC

initialize 〈Sc+1,Nc+1〉 to a spine-set in 〈Vc+1,Ec+1〉.
Inductive Step (Item (c)) By Lemma 10 and by inductive hypothesis, we have

that the strongly connected component of v in G is assigned to SCC9
c+1 and the

forward-set of v in 〈Vc+1,Ec+1〉 is assigned to FW9
c+1. Thus, 〈SCC9

c+1,V
9
c+1 \

FW9
c+1,FW9

c+1 \ SCC9
c+1〉 is a partition of Vc+1. �

Theorem 1 (Soundness) Consider G = 〈V,E〉. If SCC ⊆ V is added to SCC-
Partition within SYMBOLIC-SCC(V,E, 〈∅,∅〉), then SCC is a scc of G.

Proof It directly follows from Lemma 11 and Lemma 1. �

Theorem 2 (Completeness) Let G = 〈V,E〉. If v ∈ V , then upon termination of
SYMBOLIC-SCC(V,E, 〈∅,∅〉), all the scc’s of G belong to SCC-Partition.

Proof By Lemma 11, in each recursive call, SYMBOLIC-SCC(Vc,Ec, 〈Sc,Nc〉),
within SYMBOLIC-SCC(V ,E, 〈∅,∅〉):
– Vc ⊂ V ;
– A strongly connected component of G, scc(v), is computed;
– SYMBOLIC-SCC is called over (V ′,E′, 〈S ′,N ′〉) and (V ′′,E′′, 〈S ′′,N ′′〉), where

〈V ′,V ′′, scc(v)〉 is a partition of V .

The thesis immediately follows. �

Lemma 12, below, shows that each node can be inserted at most two times into a
spine-set, within the execution of SYMBOLIC-SCC(V ,E, 〈∅,∅〉). Lemma 12 is pre-
liminary to Theorem 3 assessing the complexity of SYMBOLIC-SCC.

Lemma 12 Consider G = 〈V,E〉. Within SYMBOLIC-SCC(V ,E, 〈∅,∅〉), each v ∈
V is inserted at most two times into a spine-set.

138 Algorithmica (2008) 50: 120–158

Proof Consider the c-th recursive call, SYMBOLIC-SCC(Vc,Ec, 〈Sc,Nc〉), within
SYMBOLIC-SCC(V ,E,∅,∅). We proceed by induction on the number of recursive
calls and we prove that, ∀v ∈ Vc:

(a) If v ∈ Vc \ Sc, then v has never been inserted into a spine-set in the first c − 1
recursive calls;

(b) If v ∈ Sc, then v has been inserted exactly once into a spine-set;
(c) In lines (1)–(9) of SYMBOLIC-SCC(Vc,Ec, 〈Sc,Nc〉), v ∈ Vc is inserted into a

spine-set at most once;
(d) If v ∈ Sc is inserted into a spine-set in lines (1)–(9) of SYMBOLIC-SCC(Vc,Ec,

〈Sc,Nc〉), then SCC9
c = scc(v).

The thesis immediately follows from Items (a)–(d). We sketch here the proof of the
inductive step for Items (a)–(d) (the base case is immediate).

Consider v ∈ Vc , with c > 1. Item (c) follows from the fact that a node can be in-
serted into a spine-set only in line (4) of SKEL-FORWARD; it follows from Lemma 10
that the sets considered on such lines are mutually disjoint.

To prove the inductive step for Items (a)–(b), assume that the c-th recursive call
to SYMBOLIC-SCC was called by the c′-th execution of the procedure. If c = c′ + 1,
then, by Lemma 11, Vc = Vc′ \FW(u) and Sc = Sc′ \scc(u), where {u} = N5

c′ . Hence,
Items (a)–(b), for the inductive step, directly follow from the inductive hypothesis
and from the fact that the nodes inserted into a spine-set, within the c′-th execu-
tion of SKEL-FORWARD, belong to FW(u). Otherwise (c > c′ + 1), the c-th execu-
tion of SYMBOLIC-SCC corresponds to the second recursive call within SYMBOLIC-
SCC(Vc′,Ec′ , 〈Sc′ ,Nc′ 〉)). In this case, note that the two sets of vertices considered
by the two recursive calls within SYMBOLIC-SCC(Vc′,Ec′ , 〈Sc′ ,Nc′ 〉) are disjoint.
Hence, for all c′′ with c′ < c′′ < c, v cannot be inserted into a spine-set within
SYMBOLIC-SCC(Vc′′,Ec′′ , 〈Sc′′ ,Nc′′ 〉) (as v /∈ Vc′′). By Lemma 4, FW(N5

c′) ∩ Sc′ ⊆
scc(N5

c′), i.e., Vc = FW(N5
c′) \ scc(N5

c′) is disjoint from Sc′ . Moreover, the nodes
in 〈Sc,Nc〉 are nodes inserted into a spine by the c′-th recursive call, and not yet
assigned to their scc’s . Thus, by inductive hypothesis, we have the validity of
Items (a)–(b) for the inductive step.

We finally obtain the inductive step for Item (d). By Lemma 10, if 〈Sc′ ,Nc′ 〉 is
not an empty spine-set, then 〈newS5

c ,newN5
c〉 is a spine set in FW(Nc′). Hence, by

Lemma 5, Sc′ ∩ newS5
c ⊆ scc(N5

c) and we obtain the validity of Item (d) for the c-th
recursive call. �

By the previous lemma, the linear number of symbolic steps performed by
SYMBOLIC-SCC is immediate. In fact, each symbolic step in the loop of lines (7)–(8)

of SYMBOLIC-SCC assigns a set of nodes to its scc. Hence the global number of these
symbolic steps is O(|V |). The remaining symbolic steps, within SKEL-FORWARD,
are proportional to the number of insertions into a spine-set. By Lemma 12 the num-
ber of these insertions is bounded by O(|V |).

Theorem 3 (Complexity) Let G = 〈V,E〉. SYMBOLIC-SCC(V ,E, 〈∅,∅〉) runs in
O(|V |) symbolic steps.

Algorithmica (2008) 50: 120–158 139

Proof Lines (1)–(4) and (9)–(15) of SYMBOLIC-SCC perform a constant number
of symbolic steps. Since each recursive call produces a strongly connected compo-
nent, lines (1)–(4) and (9)–(15) of SYMBOLIC-SCC perform, globally, O(|V |) sym-
bolic steps. Each symbolic step in the loop of lines (7)–(8) in the main procedure
assigns a set of nodes to its scc. Hence the global number of these symbolic steps
is O(|V |). The remaining symbolic steps are performed by the procedure SKEL-
FORWARD. Within an execution of SKEL-FORWARD, the number of symbolic steps
is proportional to the number of sets popped from the stack upon the second loop
termination. Whenever a set is popped from the stack, an insertion into a spine is
performed. Hence, by Lemma 12, the global cost (in term of symbolic steps) of ex-
ecuting SKEL-FORWARD within SYMBOLIC-SCC(V ,E, 〈∅,∅〉), is linear in the size
of V . �

Corollary 1, below, strengthens the complexity result stated in Theorem 3. In par-
ticular, rather than considering only symbolic steps, all OBDD operations are con-
sidered and parameters such as the diameter of the graph and the number of strongly
connected components are used in the analysis.

Corollary 1 SYMBOLIC-SCC(V ,E, 〈∅,∅〉) requires O(min(|V |, dN)) symbolic op-
erations, where d is the diameter of G = 〈V,E〉 and N is the number of scc’s in G.

Proof Each recursive call to SYMBOLIC-SCC produces a new strongly connected
component, hence the number of recursive calls is bounded by N . We prove that
each recursive call requires at most O(d) symbolic steps. By an inductive argument
on the number of recursive calls we can easily show that for each recursive call,
SYMBOLIC-SCC(Vc,Ec, 〈Sc,Nc〉), dc ≤ d , where dc is the diameter of 〈Vc,Ec〉. The
base case is immediate, for the inductive step there are two cases to be considered:

1. Vc+1 = FW〈Vc,Ec〉(v), v ∈ Vc;
2. Vc+1 = Vc \ FW〈Vc,Ec〉(v), v ∈ Vc .

In both cases it can be easily proved that, if a, b ∈ Vc+1 and z is a node in a path of
〈Vc,Ec〉 from a to b, then z ∈ Vc+1. From the above property it immediately follows
that dc+1 ≤ dc since, given any pair of nodes, a, b ∈ Vc+1, each path connecting a

and b in 〈Vc,Ec〉 belongs to 〈Vc+1,Ec+1〉.
Since the main loops in SYMBOLIC-SCC and SKEL-FORWARD roughly perform

a reachability analysis, a bound of O(d) symbolic steps for each recursive call to
SYMBOLIC-SCC immediately follows. A global bound of O(dN) symbolic steps can
be further derived and strengthened, by Theorem 3, to O(min(|V |, dN)) symbolic
steps.

We finally observe that each iteration of each loop both in SYMBOLIC-SCC and
in SKEL-FORWARD contains at least one symbolic step. Hence, the global num-
ber of OBDD operations in SYMBOLIC-SCC is asymptotically bounded by the
global number of symbolic steps in SYMBOLIC-SCC. We conclude that SYMBOLIC-
SCC(V ,E, 〈∅,∅〉) requires O(min(|V |, dN)) symbolic operations. �

140 Algorithmica (2008) 50: 120–158

Fig. 5 Relative sizes of the
computed forward-sets

Similar results have been proved in [4, 5] where it is shown that the complexity
of their algorithm is O(min(|V | log(V), dN)) while the complexity of the algorithm
presented in [45] can be bounded by O(min(|V |2, dN)).

Figure 5 shows the relative sizes of the computed forward-sets and scc’s. FW(v1)

and scc(v1) are already computed when SYMBOLIC-SCC(V ,E, {vl, . . . , vp}, vp) is
called and subsequently, FW(vp) is computed and scc(vp) is given in output.

We conclude this section by observing that several heuristics to optimize the im-
plicit algorithm in Table 1 are possible. In particular, as done in [4, 5, 31], the set
T ⊆ V of nodes belonging to trivial scc’s which do not reach any non trivial scc
could be quickly determined by the following fix-point pre-computation:

while (V
= pre(V)) do {V ← pre(V);T ← (V \ pre(V)) ∪ T }.
Each node in T is a trivial scc of the graph in input, thus a non-expensive preprocess-
ing determining T a-priori (alternative to an explicit enumeration of each node in
T in the main procedure), would make the algorithm in Table 1 somehow “more
symbolic”.

6 Biconnectivity on Symbolic Graphs

In this section we focus on biconnectivity. Relying again on spine-sets, we outline a
symbolic bcc-algorithm performing a linear number of symbolic steps for computing
biconnected components. The algorithm we propose uses a rather simple strategy
to find the nodes of each biconnected component in an OBDD-represented graph
G = (V ,E). Yet, this strategy would have a quadratic performance (in the size of the
set of vertices) if not properly combined with the notion of spine-set. Note how this
is perfectly symmetric to what happens in the symbolic scc-algorithm in Sect. 5.

Given an edge (u∗, v∗) ∈ E, let V∗ be the vertex set of the biconnected component
containing the edge (u∗, v∗) ∈ E. The strategy for building V∗ relies on extending the
set of vertices B , initialized as B = {u∗, v∗}, maintaining the invariant below:

∀v ∈ B(v ∈ {u∗, v∗} ∨ ∃ a cycle linking v,u∗, and v∗ in B). (1)

Invariant (1) ensures that B ⊇ {u∗, v∗} induces a biconnected subgraph with
B ⊆ V∗. Under the above mentioned invariant, a safe increasing of B is obtained

Algorithmica (2008) 50: 120–158 141

Table 3 Augmenting B under invariant (1)

by adding to B all nodes on simple paths between two nodes of B (simple paths
reaching back B). The search for these paths could naturally take place from a node
x ∈ B linked to some node outside B: an exploration point for B .

We depict in Table 3 a successful attempt of augmenting B ⊆ V∗ looking for paths
that source from the exploration point x ∈ B , cross V \ B , and terminate in a node
of B other than x. First, the set L1 containing the successors of {x} in V \ B is
computed and then levels at increasing distance from L1 are discovered. If a level
Lp intersecting B \ {x} is encountered, this guarantees the existence of at least one
simple path between two nodes of B .

If the overall process allows discovering only vertices outside B or equal to the
exploration point, the attempt to grow B ⊇ {u∗, v∗} fails. In this case, invariant (1)
ensures that the exploration point involved in the visit is an articulation point of G.
This situation is sketched in the bottom of Table 3, if we choose the node a as the
next exploration point for B . Always in Table 3, the set of nodes that can be retrieved
using a as exploration point is the vertex set of the bcc-closed subgraph G(V∗, a).
This set of nodes can be ignored while extending B to compute V ∗, but it can be
used to localize the (recursive) computation of subsequent biconnected components.

Summarizing, the above ideas lead to a recursive procedure in which the process
of building the vertex set of each biconnected component (V∗,E∗) roughly results
in subsequent breadth-first visits from a node of B ⊆ V∗. Each visit either augments
B ⊆ V∗ or discovers a bcc-closed subgraph not containing (V∗,E∗) on which a re-
cursive call can be made.

The problem, with the above approach, is that the global number of symbolic steps
performed exploring the graph from the articulation points, is �(|V |2) in the worst
case.

Spine-sets allow us to discover the biconnected components in a depth-first search
order and hence to have a linear global number of symbolic steps. The way spines
are involved in the strategy described above is the following. Whenever the visit from
an exploration point {a} of B results in a set of p levels outside B , these levels are

142 Algorithmica (2008) 50: 120–158

used to build a skeleton of the graph G(V∗, a). This skeleton, say
−−−−−−
av1 . . . vp , keeps

track of the number of symbolic steps necessary to compute G(V∗, a). The order im-
plicitly maintained in it can be used for subsequent computation, so that the cost of

computing G(V∗, a) is amortized onto the cost of assigning each node in
−−−−−−
av1 . . . vp

to its biconnected components. The linear performance of the full algorithm is a con-
sequence of the following two facts:

1. The spine-driven order in which biconnected components are computed ensures
that the global number of symbolic steps necessary to obtain the subgraphs for the
recursive calls is O(|V |) (i.e., the spine-sets generated during the entire algorithm
collect at most O(|V |) nodes);

2. The remaining symbolic steps assign at least one node to its biconnected compo-
nents.

We conclude this section preamble observing that even though the use of spine-set
is central with respect to the computational complexity of both our symbolic scc and
bcc algorithms, the latter turns out slightly more complicated.

Example 4 Consider the graph depicted in Table 4, and its biconnected components,
〈V1,E1〉, 〈V2,E2〉, 〈V3,E3〉,〈V4,E4〉. We illustrate in Tables 5(a)–(c) and 6(d)–(i)
the use of spine-sets in our algorithm. In the above mentioned tables, we will use the
symbol X to mark the nodes which subsequently play the role of exploration points;
the white vertices will represent nodes inserted into a spine. In Table5(a) the edge
(e, d) is chosen to initialize the vertex set of the first biconnected component. The
node d is selected as the exploration point to extend B = {e, d}. In Table 5(b) the
simple path reaching back B , 〈d, c, b, e〉, is added to B and the only remaining ex-
ploration point is the vertex d . There is no simple path reaching back B = {d, c, b, e}
from d and 5 symbolic steps are necessary to discover G(V1, d): one to determine
the only exploration point d and four to determine nodes at distance one, two, three,

Table 4 A graph and its
biconnected components

Table 5 Application of the linear symbolic bcc algorithm (part 1)

Algorithmica (2008) 50: 120–158 143

Table 6 Application of the linear symbolic bcc algorithm (part 2)

and four from d , respectively (see Table 5(b)). Thus, a spine-set in G(V1, d) is built
by selecting nodes on a path traversing levels L1,L2,L3,L4. In Table 5(c) a recur-
sive call to the procedure is made over the graph G(V1, d) coupled with its spine
〈{d,g, i,m,n}, {n}〉 and the computation of the biconnected component containing
{d, c, b, e} is localized onto G(V1, d) (finishing immediately because there are no
exploration points). Tables 6(d)–(i) show how subsequent biconnected components
computation is driven by the spine-set generated. In Table 6(d) the edge (n, q), whose
endpoint n is the spine-anchor, is used to initialize the vertex set of a new biconnected
component, B = {n,q}. The node q is chosen as the exploration-point. Note that,
during the subsequent processing, the spine-set represents a chordless path having in
common with B only the last node (until it gets empty). Moreover, we are careful
to choose an exploration point other than the spine-anchor and we extend B in two
phases: first, we detect simple paths reaching back either B or a node in the spine;
then we extend B with the maximum “spine suffix” which is a simple path reaching
back B . These technicalities ensure that, once a node is inserted in a spine-set, it is
involved in some symbolic step if and only if it is assigned to a biconnected compo-
nent. Note that, without the latter property, we would not be able to guarantee that
a global linear number of symbolic steps is sufficient to manipulate spine-sets (i.e.
to obtain the subgraphs for the recursive calls). In Table 6(e), B is augmented with
the nodes internal to the paths 〈n,q, o, i〉 and 〈n,q,p, i〉 between the exploration
point n and the spine-anchor i. The spine suffix {i,m,n} is also added to B and the
spine-set is updated to 〈{d,g, i}, {i}〉. At this point, there are no further potential ex-
ploration points other than the spine-anchor. This ensures that B is the vertex set of
a biconnected component and that the spine-anchor, i, is an articulation point. More-
over the remaining spine is a spine in G(V4, k). Thus, in Table 6(f) a recursive call
on G(V4, k) coupled with the spine-set 〈{d,g, i}, {i}〉 is made. During this recursive
call the biconnected component 〈V2,E2〉 is isolated. The last recursive call produces
〈V3,E3〉.

Example 4 should suggest how the use of spine-sets allows us to avoid redis-
covering again and again the same �-closed subgraphs while isolating each bi-
connected components. In particular in the proposed example, the �-closed sub-
graph having vertices {i,m,n, o,p, q} would be explored three times (from some

144 Algorithmica (2008) 50: 120–158

exploration point) if the biconnected components were produced in the order
〈V1,E1〉, 〈V2,E2〉, 〈V3,E3〉, 〈V4,E4〉.

6.1 The Linear Symbolic Biconnectivity Algorithm

The algorithm SYMBOLIC-BCC in Table 7 implements the ideas outlined in the pre-
vious section and efficiently retrieves the vertex set of each biconnected component
in a symbolically represented graph.

SYMBOLIC-BCC is a recursive procedure that takes as input a graph, G = (V ,E),
and a pair of sets of nodes 〈S,N〉. The pair 〈S,N〉 is either composed of empty

sets or S = {v0, . . . , vp} and N = {vp}, with
−−−−

v0 . . . vp a spine in G. If V
= ∅, lines
(1)–(4) initialize the vertex set of a biconnected component, B , to the endpoints of
an edge, {v∗, u∗}. If the spine is not empty, then one of the endpoints of this edge

is the spine-anchor. Line (5) updates the spine to
−−−−

v0 . . . vp−1 in the case in which
B = {vp−1, vp}. This ensures the property that the spine represents a chordless path
sharing only its last node with B . Maintaining this property allows us to extend B

in two phases, involving the nodes in the spine-set only to add them to B . The first
phase consists essentially of the procedure VISIT: the detection of paths reaching back
B ∪ S. The procedure EAT-SPINE realizes the second phase. Both the procedures are
called within the main loop of SYMBOLIC-BCC in line (7). Each iteration of such
a loop operates on a bcc-closed subgraph that contains B = {v∗, u∗}, whose nodes
are maintained in the variable V . Precisely, each loop execution either refines V or
augments B . The refinement of V is done in case a bcc-closed subgraph disjoint
from B is discovered; the augmentation of B is performed in case paths connecting
two nodes in B are retrieved. Hence, in line (8) an exploration point, X, is chosen;
the procedure VISIT is then called (line (9)) to explore V from X, obtaining exactly
either a set, C, to augment B , or the set of vertices, V ′, of a bcc-closed subgraph and
a spine-set in it 〈S ′,N ′〉 (line (9)). In the first case, the else branch of the if statement
in line (10) is executed. Otherwise, the then branch is entered and a new recursive
call on 〈V ′,E � V ′〉 is made on line 11. The loop terminates when B contains at most
the spine-anchor, N , as a node linked to some vertex outside B . The latter condition
ensures that B , plus at most the nodes on a spine-suffix, represents a bcc. If necessary,
a spine-suffix is used to complete B in line (14), and the bcc built is finally added
to the bcc partition (line (15)). Lines (16)–(17) perform a final conclusive recursive
call in case V
= B .

6.1.1 The subprocedure VISIT

The subprocedure VISIT, in Table 8, gets as input the exploration point X = {x} se-
lected in line (5) in SYMBOLIC-BCC, the set B , the graph (V ,E) and its spine 〈S,N〉.
The procedure uses a stack of vertex sets to keep track of the levels at increasing dis-
tance from the set of nodes, outside B∪S , linked to the exploration point. Within each
iteration of the loop in lines (8)–(10) of VISIT, a new level is pushed onto stack
while either no new node can be discovered or a level intersecting B ∪ S is detected.
In the first case the set of vertices discovered is that of a bcc-closed subgraph used
for the next recursive call.

Algorithmica (2008) 50: 120–158 145

Table 7 The bcc-algorithm performing a linear number of symbolic steps

SYMBOLIC-BCC(V ,E, 〈S,N〉)

� Initialize the vertex set of a bcc with the endpoints of an edge

(1) if N
= ∅
(2) then B ← N

(3) else B ← pick(V)

(4) B ← pick(img(B)) ∪ B

� Ensure that B ∩ S = N

(5) if (B \ S = ∅)

(6) then S ← S \ N;N ← img(N) ∩ S

� Extend the vertex set B

(7) while (∃ an exploration-point other then the spine-anchor) do

� Choose an exploration point other than the spine-anchor

(8) X ← pick(img(img(B) ∩ (V \ B)) ∩ (B \ N))

� Explore outside B from X. Obtain a set, C, of new nodes for B or

� the vertex set V ′
� B of a bcc-closed graph and a spine in it, 〈S ′,N ′〉

(9) 〈C,V ′, 〈S ′,N ′〉〉 ← VISIT(V ,E, 〈S,N〉,B,X)

(10) if (V ′
= ∅)

� X = {x} contains an articulation point

� Recursive call on G(B,x) coupled with a skeleton

(11) then SYMBOLIC-BCC(V ′,E � V ′, 〈S ′,N ′〉)
(12) V ← (V \ V ′) ∪ X; E ← E � V

� Else augment B with nodes on paths reaching back B ∪ S

(13) else B ← B ∪ C

� Extend B with a spine-suffix

(14) 〈B, 〈S,N〉〉 ← EAT-SPINE(V ,E, 〈S,N〉,B)

(15) Return the vertex set of the biconnected component built in B

� Recursive call in case B
= V

(16) if (V \ B
= ∅)

(17) then V ← (V \ B) ∪ N;E ← E � V ; SYMBOLIC-BCC(V ,E, 〈S,N〉)

Lines (16)–(18) build a spine-set in such a subgraph by suitably selecting a node
for each level popped out from stack. In the second case, the set of vertices discov-
ered contains at least one simple path between the exploration point and a vertex in
B ∪ S . The loop at lines (12)–(13) detects the vertex sets of those paths containing
exactly one node for each level pushed onto stack and whose last node belong to
B ∪ S . These nodes are assigned to the set C (line (13)) that will be added to B in
line (13) of the main algorithm.

146 Algorithmica (2008) 50: 120–158

Table 8 The subprocedure VISIT used within the linear symbolic bcc-algorithm

VISIT(V ,E, 〈S,N〉,B,X)

� Initialization

(1) Let stack be an empty stack of vertex sets

(2) L ← img(X) ∩ (V \ (B ∪ S)) �Initialize frontier of vertex set discovered from X

(3) if (L = ∅)

(4) then return (∅,∅, 〈∅,∅〉)

� Explore the vertex set from X

(5) U ← V \ (X ∪ L); �Initialize the undiscovered nodes’ set

(6) C ← ∅; �Initialize nodes on simple paths reaching back B ∪ S
(8) while (C = ∅ ∧ L
= ∅) do � Stop as soon as (B ∪ S) \ X is intersected

(9) push(L,stack); L ← img(L) ∩ U ; U ← U \ L;
(10) C ← L ∩ ((B ∪ S) \ X))

� Return either a nodes’ set to augment the bcc partially collected in B,

� or a bcc-closed subgraph for a new recursive call

(11) if (C
= ∅)

� Case 1. The bcc can be augmented: collect in C paths reaching back B ∪ S
(12) then while (Notempty(stack)) do

(13) C ← img(C) ∩ pop(stack)

(14) return (C,∅, 〈∅,∅〉)
� Case 2. X is an articulation point: prepare the next recursive call

(15) else V ′ ← X ∪ (V \ (B ∪ U))

� Build spine in the bcc-closed subgraph discovered

(16) pick(pop(stack))

(17) while (NotEmpty(stack)) do

(18) S ′ ∪ pick(img(S ′) ∩ (pop(stack)))

(19) return ∅,V ′, 〈S ′ ∪ X,N ′〉)

6.1.2 The subprocedure EAT-SPINE

The purpose of the subprocedure EAT-SPINE, in Table 9, is that of augmenting B

with the maximum spine-set that reaches back B . This ensures invariant (1) upon
the termination of each SYMBOLIC-BCC loop iteration. EAT-SPINE gets as input a
bcc-closed subgraph, 〈V,E〉, a bcc subset B ⊆ V , and a spine-set in 〈V,E〉, 〈S,N〉,
such that B ∩ S = N . Precisely, the procedure adds to B the spine-suffix, vi, . . . , vp ,
having maximum length and such that vi ∈ B .

6.2 Correctness and Complexity

The soundness and completeness of the algorithm in Table 7 are stated in Theorems 4
and 5, respectively. Throughout this section we will use the notation V l

c to indicate
the variable V within the c-th recursive call to SYMBOLIC-BCC, on line l. We will

Algorithmica (2008) 50: 120–158 147

Table 9 The subprocedure EAT-SPINE

EAT-SPINE(V ,E, 〈S,N〉,B)

(1) C ← img(B \ N) ∩ S
(2) while (C
= ∅) do � Update B with maximum spine suffix reaching back B

(3) B ← B ∪ (img(N) ∩ S)

(4) C ← C \ N; S ← S \ N; N ← img(N) ∩ S;
(5) return (B,V ′, 〈S ′ ∪ X,N ′〉)

denote Vc the value of the parameter V to the c-th recursive call to SYMBOLIC-
BCC. Whenever it will be also necessary to specify the loop iteration number, j , in
SYMBOLIC-BCC, we will write V l

〈c,j〉. An analogous notation will be adopted for all
the variables in SYMBOLIC-BCC.

The framework for the following Lemma is the execution of the subprocedure
VISIT(V ,E, 〈S,N〉,B, {x}), where:

– 〈S,N〉 is a spine in G = (V ,E);
– B ⊆ V induces a biconnected subgraph of G such that B ∩ S = N ;
– {x} ⊂ B is an exploration point of B .

Lemma 13 Let V ′, 〈S ′,N ′〉,C be the sets returned by VISIT(V ,E, 〈S,N〉,B, {x}),
where G = (V ,E). Assume that V∗ is the vertex set of the biconnected component
containing B . Then, only one of the following three cases is possible:

1. x is an articulation point, V ′
= ∅ is the vertex set of G(V∗, x) and 〈S ′,N ′〉 is a
spine-set in G(V∗, x);

2. C
= ∅ and the nodes in C belong to some simple paths from X to B ∪S traversing
V \ (B ∪ S);

3. V ′ = C = S ′ = N ′ = ∅ and img({x}) ⊆ (B ∪ S).

Proof Consider the pseudo-code for VISIT in Table 8. Line (2) initializes the set of
vertices, say L1, having distance 1 from x and which neither belong to B nor to the
spine. If L0 = ∅, then img({x}) ⊆ (B ∪ S) and VISIT returns only empty sets (line
(4)). Hence, case 3 applies.

If L1
= ∅, then the loop in lines (8)–(10) is executed. This loop discovers, level by
level in a breadth-first manner, nodes at increasing distance from L1, without using
the exploration point x. The loop stops when, either from the last level of discovered
nodes, say Lp , no new vertex can be reached, or it holds that Lp ∩(B ∪S)
= ∅. On the
first condition, we obtain that all the nodes that can be discovered from L1, without
using x, belong to V \B: thus x is an articulation point and the set of nodes discovered
is the vertex set of G(V∗, x). In this case the else branch of the if statement in line
(11) is executed and the just mentioned set of vertices is assigned to V ′ (line (15)).
Lines (16)–(18) build a spine-set in G(V∗, x) using a (chordless) path which traverses
each level discovered and reaches a node of maximal distance from x. Hence, case 1
applies.

Suppose instead that the loop in lines (8)–(10) finishes discovering a level of nodes
Lp with Lp ∩ (S ∪ B)
= ∅. In such a case C is equal to Lp ∩ (B ∪ S) on the end

148 Algorithmica (2008) 50: 120–158

of the loop. Hence, the then branch of the if statement is executed. Lines (12)–(13)

complete C with the nodes on all the paths (of length p) from x to Lp ∩ (S ∪ B)

traversing all the levels discovered by breadth-first search. Thus, case 2 applies. �

Relying on Lemma 13, Lemma 14 provides four invariants for SYMBOLIC-BCC

ensuring its correctness.

Lemma 14 Consider the c-th recursive call within SYMBOLIC-BCC(V,E, 〈∅,∅〉),
SYMBOLIC-BCC(Vc,Ec, 〈Sc,Nc〉). If the guard of the loop in line (7) is checked jc

times within SYMBOLIC-BCC(Vc,Ec, 〈Sc,Nc〉), then for all 1 ≤ j ≤ jc:

1. (V 7
〈c,j〉,E

7
〈c,j〉) is a connected and bcc-closed subgraph of (V ,E);

2. (B7〈c,j〉,E � B7〈c,j〉) is biconnected;

3. If j > 1, then either |B7〈c,j〉| > |B7
〈c,j−1〉| or |V 7〈c,j〉 \ V∗| < |V 7

〈c,j−1〉 \ V∗|, where

(V∗,E � V∗) is the biconnected component of (V ,E) such that B7〈c,j〉 ⊆ V∗;

4. 〈S7
〈c,j〉,N

7
〈c,j〉〉 is a spine-set in the graph (V 7

〈c,j〉,E
7
〈c,j〉) and, if S7

〈c,j〉
= ∅, then

S7
〈c,j〉 ∩ B7

〈c,j〉 = N7
〈c,j〉.

Proof We follow an inductive argument on 〈c, j 〉, where the usual lexicographical
order is used to compare pairs. The base case (〈c, j 〉 = 〈1,1〉) is immediate, we sketch
below the inductive step.

Let us assume Items (a)–(d) true for all (consistent) pairs 〈1,1〉 ≤ 〈c′, j ′〉 ≤ 〈c, j 〉.
There are two cases to be considered depending on which is the minimum consistent
pair greater than 〈c, j 〉.

In the first case 〈c, j + 1〉 is the minimum consistent pair greater than 〈c, j 〉 (i.e.,
the while-guard is checked more than j times in the c-th recursive call to SYMBOLIC-
BCC). Within each iteration of the loop in SYMBOLIC-BCC the procedure VISIT is
executed. We consider each of the three possible cases, by Lemma 13, for the triple
returned by VISIT: C,V ′, 〈S ′,N ′〉. If all the sets are empty, then, by Lemma 13,
img(X10

〈c,j〉) ⊆ S10
〈c,j〉 ∪ B10

〈c,j〉. By the choice of X = {x} in line (8), some node of the
spine-set other than the spine-anchor is linked to x. The procedure EAT-SPINE detects
the least spine-set node, vl , with the above property, subtracts {vl + 1, . . . , vp} from
the spine-set, and adds {vl, . . . , vp} to B . Hence, B7

〈c,j+1〉 = B ∪ {vl . . . vp} is bicon-

nected, B7
〈c,j+1〉 ∩ S7

〈c,j+1〉 = N7
〈c,j+1〉 and Items (a)–(d) are satisfied for 〈c, j + 1〉

when VISIT returns only empty sets. We can also easily handle the case in which the
set V ′〈c,j〉 returned by VISIT is not empty. By Lemma 13 if V ′10〈c,j〉 is not empty, then

X7〈c,j〉 = {x} is an articulation point and V ′10〈c,j〉 is the vertex set of G(V∗, x). Line (12)

in SYMBOLIC-BCC subtracts this set of vertices from V . This way Items 1(a), 1(c)
get satisfied for 〈c, j + 1〉. Items 1(b), 1(d) also hold since B and the spine-set can
be modified only within EAT-SPINE which, as already discussed, maintains them. Fi-
nally, if VISIT returns only the set C10

〈c,j〉 not empty, line (13) in SYMBOLIC-BCC adds

C10
〈c,j〉 to B7

〈c,j〉. Thus, B gets enlarged and Lemma 13 ensures that B is added of the
nodes on some simple paths from X to B ∪ S traversing V \ (B ∪ S). At this point,
EAT-SPINE completes B with the maximal suffix of the chordless path defined by
〈S,N〉 reaching back B \ N . It follows that B7

〈c,j+1〉 induces a biconnected subgraph
and all the items in the lemma are satisfied.

Algorithmica (2008) 50: 120–158 149

In the second case the minimum consistent pair greater than 〈c, j 〉 is 〈c + 1,1〉
and we must consider the c′-th recursive execution of SYMBOLIC-BCC from which
the c-th execution was called (c′ ≤ c). If the just mentioned invocation was made
during j ′-th iteration in the loop of c′-th call to SYMBOLIC-BCC, then V 7

〈c+1,1〉 and

〈S7
〈c+1,1〉,N

7
〈c+1,1〉〉 were built within the procedure VISIT. Thus, by Lemma 13, the

graph induced by V 7
〈c+1,1〉 is connected and bcc closed and 〈S7

〈c+1,1〉,N
7
〈c+1,1〉〉 is a

spine in it. The subgraph (B7
〈c+1,1〉,E � B7

〈c+1,1〉) is biconnected, since in lines (1)–
(4) of each recursive call to SYMBOLIC-BCC the set B is initialized to the endpoints
of an edge. Otherwise, the (c + 1)-st recursive call to SYMBOLIC-BCC must be done
in line 11 in the c′-th execution of SYMBOLIC-BCC. Hence, the validity of Items
(a)–(d) on 〈c + 1,1〉 easily follows from inductive hypothesis. �

Theorem 4 (Correctness) The algorithm SYMBOLIC-BCC(V ,E, 〈∅,∅〉) computes
the vertex sets of the biconnected components in G = (V ,E).

Proof Soundness follows directly from Lemma 14. Precisely, items 1–3 in Lemma 14
ensure that, upon termination of the loop in line (7) of each recursive call to
SYMBOLIC-BCC, the vertex set of a biconnected component in G = (V ,E) is col-
lected in B . Completeness follows from the fact that lines (16)–(17) and line (11)

perform all the recursive calls necessary to have the entire graph considered for bcc
partitioning. �

Theorem 5 states that SYMBOLIC-BCC(V ,E, 〈∅,∅〉) needs O(|V |) symbolic steps
to compute {V1, . . . , Vn}, where {〈V1,E1〉 · · · 〈Vn,En〉} are the biconnected com-
ponents in G = (V ,E). As already anticipated, the complexity result is a conse-
quence of the following considerations. First, the global number of symbolic steps
spent to detect simple paths reaching back a partial biconnected component is
O(|V1| + · · · + |Vn|). Moreover, the global number of symbolic steps spent to ob-
tain the subgraphs for the recursive calls is proportional to the number of inser-
tions of nodes in a spine. By Lemma 16 also the global number of insertions of
nodes into a spine is O(|V1| + · · · + |Vn|). Note that (|V1| + · · · + |Vn|) ≥ |V | be-
cause of the articulation points, however, by Lemma 15, given below, it holds that
(|V1| + · · · + |Vn|) = O(|V |).

Lemma 15 Consider the set AG of articulation points of G = (V ,E). Given a ∈ AG

let mG(a) (the multiplicity of the articulation point a) be the number of biconnected
components of G that contain a. Then

∑

a∈A

mG(a) ≤ 2|V | − 4.

Proof By induction on the number of biconnected components of G, n. If n = 1,
there are no articulation points and 2|V | − 4 ≥ 2 ∗ 2 − 4 = 0. Otherwise, by item 3 in
Lemma 2, there is at least one articulation point in G. Let a be an articulation point
of G and let 〈V∗,E∗〉 be a biconnected component of G such that a ∈ V∗. We use
the inductive hypothesis on the two subgraphs G1 = 〈V1,E1〉 = G(V∗, a) and G2 =

150 Algorithmica (2008) 50: 120–158

〈V2,E2〉 = G(V∗, a). By Definition 10 and Lemma 7 it follows that V1 ∩ V2 = {a}
and:

∀w ∈ Vi \ {a}(w ∈ AGi
∧ mGi

(w) = k) ⇔ (w ∈ AG ∧ mG(w) = k),

for i = 1,2. By definition of G(V∗, a) = G1, a cannot be an articulation point in G1.
If a is an articulation point in G2, mG(a) = mG2(a)+1. Otherwise mG(a) = 2. Thus:

∑

a∈A

mG(a) ≤
∑

a∈AG1

mG1(a) +
∑

a∈AG2

mG2(a) + 2

≤ (2|V1| − 4) + (2|V2| − 4) + 2 = 2|V | + 2 − 8 + 2 = 2|V | − 4. �

Lemma 16 Let v be a node belonging to m biconnected components of G = (V ,E).
During the entire execution of SYMBOLIC-BCC(V ,E, 〈∅,∅〉), v is inserted at most
m times in a spine-set.

Proof Consider the c-th recursive call to SYMBOLIC-BCC within execution of
SYMBOLIC-BCC(V ,E, 〈∅,∅〉). By induction on the number of recursive calls, we
prove that ∀v ∈ Vc , in the first c − 1 (recursive) calls to SYMBOLIC-BCC:

– v ∈ Vc has been inserted at least once in a spine if and only if v ∈ Sc;
– If v ∈ Vc has been inserted m times in a spine then v belongs to at least m distinct

biconnected components. Moreover, in this case m − 1 biconnected components
containing v have been already produced in output.

Base: Immediate as 〈S1,N1〉 = 〈∅,∅〉 .
Inductive Step: Let c > 1 and v ∈ Vc. Assume that the c-th call to SYMBOLIC-BCC

was done during the c′-th execution of SYMBOLIC-BCC, which builds the bicon-
nected component set of vertices V(∗,c′). Let a1, . . . , al be the articulation points of
(Vc′ ,Ec′) that are contained in V(∗,c′). By Lemmas 13 and 14, the subgraphs of Gc′ =
(Vc′ ,Ec′) involved in the recursive calls of SYMBOLIC-BCC(Vc′,Ec′ , 〈Sc′ ,Nc′ 〉), are
Gc′(V(∗,c′), ak), where ak ∈ {a1, . . . , al}. These subgraphs have no vertex in common,
thus ∀c′ < c′′ < c, v /∈ Vc′′ and we can safely avoid considering the recursive calls be-
tween the c′-th one and the c-th one for the inductive step. If the c-th recursive call to
SYMBOLIC-BCC was made after the loop of the c′-th execution of SYMBOLIC-BCC,
then 〈Sc,Nc〉 is a “prefix” of 〈Sc′ ,Nc′ 〉 and v was not involved in any operation of
insertion into a spine-set in the c′-th execution of SYMBOLIC-BCC. In this case the
inductive hypothesis (on c′) ensures the inductive step.

Otherwise, the c-th recursive call to SYMBOLIC-BCC must be done within an it-
eration of the loop internal to the c′-th execution of SYMBOLIC-BCC. In this case
〈Sc,Nc〉 must have been produced within VISIT, in the process of exploring from an
articulation point of V(∗,c′). By Lemma 8, there is at most one vertex in Sc′ ∩ Vc .
Thus, we can conclude what follows on the ground of the inductive hypothesis on c′.
If v ∈ Vc \ Sc , then, when the c-th recursive call is done, v has not yet been inserted
in any spine. If v ∈ Sc ∧ v /∈ Sc′ , then when the c-th recursive call is done v has
been inserted only once in a spine-set. Finally, in case v ∈ Sc′ ∩ Sc we have that
{v} = Sc′ ∩ Sc: if v has been inserted m times in a spine-set upon the c′-th execution

Algorithmica (2008) 50: 120–158 151

of SYMBOLIC-BCC, then v has been inserted m + 1 times in a spine-set upon the
c′-th execution of SYMBOLIC-BCC. Moreover, as the c′-th recursive call produces
V(∗,c′) ⊇ {v} we have that m biconnected components containing v have been already
been produced in output upon the execution of SYMBOLIC-BCC(Vc,Ec, 〈Sc,Nc〉). �

Theorem 5 (Complexity) The algorithm SYMBOLIC-BCC(V ,E, 〈∅,∅〉) runs in
O(|V |) symbolic steps.

Proof The complexity of the algorithm can be computed by counting the global num-
ber of iterations of the loops in the subprocedures VISIT and EAT-SPINE. As far as
EAT-SPINE is concerned, each time an iteration of its loop is performed a new node
is assigned to a biconnected component. Thus the global number of iterations of the
EAT-SPINE loop is O(|V1| + · · · + |Vn|), where {〈V1,E1〉 · · · 〈Vn,En〉} are the bicon-
nected components of G.

During each execution of VISIT the number of iterations of the first loop is the
same as the number of iterations of the second loop. This number, say p, corresponds
to the number of disjoint levels of nodes pushed onto the stack used within VISIT.
Upon the termination of VISIT, either, for each level in the stack, some nodes are as-
signed to a biconnected component, or, for each level in the stack, a vertex is inserted
into a spine-set. It follows, by Lemma 16, that the global number of iterations of the
VISIT loop is O(|V1| + · · · + |Vn|), where {〈V1,E1〉 · · · 〈Vn,En〉} are the biconnected
components of G.

By Lemma 15 O(|V1| + · · · + |Vn|) = (O|V |). �

Remark 1 Notice that also the global number of operations on OBDDs, performed by
SYMBOLIC-BCC, is O(|V |). In fact, each iteration in each loop of SYMBOLIC-BCC

contains at least one symbolic step. Thus the global number of symbolic operations
is asymptotically bounded by the global number of symbolic steps. Since each bicon-
nected component is built performing possibly more than one reachability analysis
within the procedure VISIT it is not possible, instead, to obtain a bound of O(Nd)

symbolic operations, where N is the number of biconnected components in G and d

is the diameter of G.

7 Applications to Model Checking

Model checking [12] is an automatic verification technique used to formally prove
properties of both hardware and software systems. In Model Checking the system cor-
rectness specification is represented as a temporal logic formula and the verification
algorithm checks whether the formula is true in the model representing the system.
The latter can be given either as a labeled transition system (a Kripke structure) or
as an automaton (automata-based Model Checking [42]). Different algorithms have
been developed depending on the temporal logic language and on the—either explicit
or symbolic—representation of the model. For a complete introduction to Model
Checking we refer the reader to [12] which presents all the basic techniques. With
our respect, Model Checking can be seen as both an hopeful departure point and a

152 Algorithmica (2008) 50: 120–158

sure final arrival land for applicability of symbolic graph algorithms. In fact, on the
one hand the success of symbolic Model Checking [11, 28] inspires the possibility
of achieving similar outstanding new standard problem dimensions in other areas
dealing with graph computation. On the other hand, Model Checking can be an ap-
plication field of symbolic algorithmic solutions to classical graph problems.

In this section, we exactly discuss how our SYMBOLIC-SCC algorithm, as well
as the spine-set tool introduced, can be applied to symbolic model checking. In par-
ticular, we will develop some variants of the procedure SYMBOLIC-SCC targeted to
solve, in a linear number of symbolic steps, the emptiness language problem on var-
ious kinds of ω-automata [40]. Both linear temporal logic (LTL) Model Checking
and fair computational tree temporal logic (CTL) Model Checking can be reduced
to some kind of ω-automata language emptiness problem (cf. Sects. 7.1 and 7.2).
Hence, our final achievement is a set of scc-based algorithms for fair CTL and LTL
Model Checking, performing in a linear number of symbolic steps. A strategy similar
to our was recently exploited by Bloem et al. in [4, 5] to design O(V log(V)) sym-
bolic steps algorithms for the same purposes, based on their O(V log(V)) symbolic
steps SCCs procedure. With respect to the number of symbolic steps, the above re-
sults outperform on symbolic algorithms currently implemented in symbolic model
checkers tools, such as VIS and SMV [8, 28]. In fact, the latter procedures are base
on an algorithm by Emerson and Lie [15], that uses a nested alternate fix-point com-
putation, and performs �(V 2) symbolic steps in the worst case [4, 5]. We finally
point out that, despite we believe that our results have an intrinsic theoretical interest,
whether the number of symbolic steps is the “right” parameter to consider in com-
paring symbolic algorithms practical performances, is a problem deserving a major
experimental effort.

7.1 Symbolic Model Checking, Büchi Language Emptiness, and Spine-sets

In the automata based approach to LTL Model Checking [42], both the model of the
system and the negation of the LTL formula encoding the correctness requirement,
¬φ, are translated into Büchi automata, A and A¬φ . Then, the language emptiness of
the Büchi automaton A×A¬φ is checked: in fact, the composed automaton accepts
an input if and only if the system does not satisfy the correctness specification. The
Büchi emptiness problem is in turn equivalent to the detection of a cycle, reachable
from the initial states and containing a final state: for this reason, in the above context
the algorithmic task of determining the language emptiness for A × A¬φ is called
bad cycle detection.

More precisely, (the language of) a Büchi automaton is defined as follows:

Definition 12 A Büchi Automaton, A = 〈�,V,�,V0,F 〉, is a tuple in which:

– � is a finite alphabet;
– V is a finite set of states;
– � : V × � × V is the transition relation;
– V0 is the set of initial states;
– F ⊆ V is a set of nodes that represents the acceptance condition.

Algorithmica (2008) 50: 120–158 153

A run of the automaton A = 〈�,V,�,V0,F 〉, on the infinite word α ∈ �ω,
is a mapping ρ : {0,1, . . . ,ω} �→ V , such that ρ(0) ∈ V0 ∧ ∀i ≥ 0((ρ(i), α[i],
ρ(i + 1)) ∈ �). In a Büchi automaton A = 〈�,V,�,V0,F 〉 a run is accepting if and
only if inf (ρ) ∩ F
= ∅, where inf (ρ) represents the set of states infinitely occur-
ring as images in ρ. The language of A = 〈�,V,�,V0,F 〉 consists of those words
α ∈ �ω for which there exists an accepting run.

Lemma 17 [40] The language of A = 〈�,V,�,V0,F ⊆ V 〉 is not empty if and
only if the graph, 〈V,E = ∪a∈��(a)〉, contains a cycle of states that can be reached
through a path starting from an initial state, q ∈ V0.

In the explicit case the characterization in Lemma 17 allows us to use SCC de-
composition to design an explicit Büchi language emptiness algorithm, linear in the
size of A × A¬φ . Let V ′ be the set of states reachable from V0 using the relation
E = ⋃

a∈� �(a). Once obtained the scc’s in 〈V ′,E〉, using, e.g., linear Tarjan algo-
rithm [39], it is only necessary to check if there is a non trivial strongly connected
component containing a final state.

As stated in the preamble to this section, the symbolic bad cycle detection algo-
rithms integrated in most tools for symbolic Model Checking are based on a pro-
cedure by Emerson and Lie [15] performing in �(V 2) symbolic steps in the worst
case [4, 5]. Lemma 17, combined with our symbolic linear algorithm for scc’s de-
composition can be used to cut down to O(V) the number of symbolic steps required
to perform symbolic bad cycle detection, with a final strategy resembling the one
used in the explicit case. More precisely, it is possible to obtain a linear symbolic
algorithm for Büchi language emptiness detection by simply substituting line (9) of
SYMBOLIC-SCC, with the following instruction, that checks if the outlined strongly
connected component is not trivial and contains a final state:

(9′) if (post(F ∩ SCC) ∩ SCC
= ∅) then return “language NOT EMPTY”

Line (9′) performs a constant number of symbolic steps and thus, clearly, it does
not change the complexity of SYMBOLIC-SCC.

7.2 Spine-sets Applied to Fair Model Checking: Generalized Büchi and Street
Automata Language Emptiness

Fairness is a crucial assumption in the context of correctness analysis of many sys-
tems. Fairness constraints are usually classified into weak fairness constraints and
strong fairness constraints [19, 21]. Weak fairness guarantees that no enabled tran-
sition is postponed forever. For example, when verifying a communication protocol
over reliable channels only fair execution paths, in which no message happens to be
continuously sent but never received, should be considered. Strong fairness imposes
that if an action is infinitely often enabled, then it will be infinitely often taken and it
is used, for example, in the analysis of synchronous interactions.

As far as weak fairness is concerned, CTL Model Checking considers weak
fairness by modeling systems with a variant of Büchi automata (introducing just

154 Algorithmica (2008) 50: 120–158

enough of second order expressivity). Namely, weak fairness constraints are in-
troduced by means of a family of sets of states F = 〈F1, . . . ,Fp〉, that represent
the acceptance condition of a generalized Büchi automaton A = 〈�,V,�,V0,F =
〈F1, . . . ,Fk〉〉. A run in a generalized Büchi automaton is accepting if and only if
∀i = 1, . . . , k (inf(ρ) ∩ Fi
= ∅). Restricting the evaluation of CTL formulas to weak
fair paths, corresponds to solve a generalized Büchi emptiness problem. In turn, non
emptiness language of a generalized Büchi automaton can be characterized as the
presence of a reachable cycle of states, containing at least one element for each
Fi ∈ F . Symbolic CTL model checkers as VIS and SMV [8, 28], use, again, the
procedure by Emerson and Lie [15] to solve the above problem in O(V 2) symbolic
steps. It is possible to obtain a linear symbolic algorithm for generalized Büchi empti-
ness algorithm by simply substituting line (9) of SYMBOLIC-SCC, with the following
group of instructions:

(9*) if (for all Fi ∈ F (Fi ∩ SCC
= ∅)) ∧ (post(SCC) ∩ SCC
= ∅)

then return “language not empty”

Line (9*) performs a constant number of symbolic steps and thus, clearly, it does not
change the complexity of SYMBOLIC-SCC.

Moving from weak to strong fairness constraints, in CTL model checking, cor-
responds to solve a language emptiness problem for Street automata. A Street au-
tomaton differs from a generalized Büchi one only in the acceptance condition
F = 〈(P1,V1), . . . , (Pn,Vn)〉, constituted by a family of pairs of vertices sets. A run
ρ of a Street automaton is accepting if for each pair of subsets in the acceptance con-
dition, (Pi,Vi), it holds that inf(ρ) ∩ Pi
= ∅ → inf(ρ) ∩ Vi
= ∅. The language of a
Street automaton, A, is not empty if and only if A contains a cycle, C = 〈s1 . . . sn〉,
such that for each pair (Pi,Vi) of subsets in the acceptance condition it holds that
({s1, . . . , sn} ∩ Pi
= ∅ → {s1, . . . , sn} ∩ Vi
= ∅).

On this ground, once a strongly connected component of a Street automaton is
computed, determining whether it witnesses language non emptiness is a bit more
tricky than in the case of Büchi automata. In fact, given a pair of subsets in the accep-
tance condition, (Pi,Vi), if a strongly connected component, S, intersects only Pi it is
still possible that it witnesses language not emptiness: the reason is that a cycle which
does not intersect neither Pi nor Vi can be contained in such strongly connected com-
ponent. If there exists such a cycle, it should be searched recursively in the strongly
connected components of S \ Pi . The authors of [4, 5] combined the above ideas
with their strategies to obtain scc decomposition in O(V log(V)) symbolic steps: the
result is a symbolic algorithm to check language emptiness for Street automata per-
forming O(V log(V)) symbolic steps. Adapting the overall approach to deal with
our scc symbolic algorithm allows us to design a procedure which solves the same
problem in a linear number of symbolic steps. More precisely, it is only necessary to
substitute line (9), in our SYMBOLIC-SCC algorithm, with a call to the subprocedure
depicted in Table 11, that implements the recursive scc analysis outlined above. The
final linear symbolic algorithm checking language emptiness for Street automata is
reported in Table 10. Given a Street automaton A = 〈�,V,�,V0,F〉, the procedure
SYMSA takes in input the induced graph G = 〈V,E〉, where E = ⋃

a∈� �(a), a

Algorithmica (2008) 50: 120–158 155

Table 10 The algorithm
SYMSA, determining in a linear
number of symbolic steps if the
language accepted by a given
Street automaton is empty

SYMSA(V ,E, 〈S,N〉,F = 〈(P1,V1), . . . , (Pk,Vk)〉)

(1) if V = ∅

(2) then return;

� Determine the node for which the scc is computed

(3) if S = ∅

(4) then N ← pick(V);

� Compute the forward-set of the singleton N and a skeleton

(5) 〈FW,newS,newN〉 ← SKEL-FORWARD(V ,E,N);

� Determine the scc containing N

(6) SCC ← N;
(7) while ((pre(SCC) ∩ FW) \ SCC)
= ∅ do

(8) SCC ← SCC ∪ (pre(SCC) ∩ FW);

� Check the computed scc to determine language emptiness

(9) CHECKSCC(SCC,V ,E,F = 〈(P1,V1), . . . , (Pk,Vk)〉)

� First recursive call: computation of the scc’s in V \ FW

(10) V ′ ← V \ FW;E′ ← E � V ′;
(11) S ′ ← S \ SCC;N ′ ← pre(SCC ∩ S) ∩ (S \ SCC);
(12) SYMSA(V ′,E′, 〈S ′,N ′〉)

� Second recursive call: computation of the scc’s in FW \ SCC

(13) V ′ ← FW \ SCC;E′ ← E � V ′;
(14) S ′ ← newS \ SCC;N ′ ← newN \ SCC;
(15) SYMSA(V ′,E′, 〈S ′,N ′〉)

Table 11 The subroutine
CHECKSCC, called by the
procedure SYMSA

CHECKSCC(SCC,V ,E,F = 〈(P1,V1), . . . , (Pk,Vk)〉)

(1) if (for all(Pi ,Vi) ∈ F(SCC ∩ Pi
= ∅ → SCC ∩ Vi
= ∅))

(2) then return “language not empty”

(3) C ← SCC;
(4) for each (Pi ,Vi) ∈ F(Pi ∩ SCC
= ∅ ∧ Vi ∩ SCC = ∅) do

(5) C ← C \ Pi ;
(6) if (C
= ∅) then SYMSA(C,E � C,F , 〈∅,∅〉);

spine-set in G, and the family F = 〈(P1,V1), . . . , (Pk,Vk)〉 defining the automaton
acceptance conditions.

Assuming that the number of fairness constraints is a constant with respect to the
automaton states space, the linear number of symbolic steps required in the worst

156 Algorithmica (2008) 50: 120–158

case by the algorithm SYMSA is proved on the ground of the following considera-
tions:

1. Each line in the subroutine CHECKSCC, but line 6 requires at most a O(k) sym-
bolic steps, where k is the number of fairness constraints;

2. Given a strongly connected component of the automaton, SCC, line 6 is executed
at most O(k) times on (a subset) of it: in fact, each recursive call subtracts at least
one vertex from it (in line 5). Thus, given a strongly connected component of the
automaton, SCC, line 6 globally requires O(SCC) symbolic steps.

8 Conclusions

In this paper, we tackled the problem of designing efficient graph connectivity algo-
rithms, assuming a symbolic data representation by means of OBDDs. We devised a
symbolic algorithmic strategy, based on the so called spine-set notion, that is general
enough to be the engine of linear symbolic steps algorithms for both strongly con-
nected components and biconnected components. Thus, to some extent, spine-sets
can be viewed as the symbolic counterpart of the well known DFS preprocessing
speedup, fundamental in various classical algorithms. We see our work only as a first
step in a wider research, aiming at understanding the relationships between explicit
and symbolic algorithms, and at defining a whole set of tools and methods to both
analyzing and designing efficient symbolic algorithms.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison–
Wesley, Reading (1974)

2. Akers, S.B.: Binary decision diagrams. IEEE Trans. Comput. C-27(6), 509–516 (1978)
3. Bloem, R.P.: Search Techniques and Automata for Symbolic Model Checking. University of Colorado

(2001)
4. Bloem, R.P., Gabow, H.N., Somenzi, F.: An algorithm for strongly connected component analysis in

n logn symbolic steps. In: Hunt, W.A. Jr., Johnson, S.D. (eds.) Proc. of Int. Conference on Formal
Methods in Computer-Aided Design (FMCAD’00). LNCS, vol. 1954, pp. 37–54. Springer, Berlin
(2000)

5. Bloem, R.P., Gabow, H.N., Somenzi, F.: An algorithm for strongly connected component analysis in
n logn symbolic steps. Form. Methods Syst. Des. 28, 1–20 (2005)

6. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete. IEEE Trans.
Comput. 45(9), 993–1002 (1996)

7. Bouali, A., de Simone, R.: Symbolic bisimulation minimization. In: von Bochmann, G., Probst, D.K.
(eds.) Proc. of Int. Conference on Computer Aided Verification (CAV’92). LNCS, vol. 663, pp. 96–
108. Springer, Berlin (1992)

8. Brayton, R.K., Hachtel, G.D., Sangiovanni-Vincentelli, A., Somenzi, F., Aziz, A., Cheng, S.T., Ed-
wards, S., Khatri, S., Kukimoto, Y., Pardo, A., Qadeer, S., Ranjan, R.K., Sarwary, S., Shiple, T.R.,
Swamy, G., Villa, T.: VIS: a system for verification and synthesis. In: Alur, R., Henzinger, T.A. (eds.)
Proc. of Int. Conference on Computer Aided Verification (CAV’96). LNCS, vol. 1102, pp. 428–432.
Springer, Berlin (1996)

9. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Comput. C-
35(8), 677–691 (1986)

10. Bryant, R.E.: Symbolic boolean manipulation with ordered binary decision diagrams. ACM Comput.
Surv. 24(3), 293–318 (1992)

Algorithmica (2008) 50: 120–158 157

11. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: 1020

states and beyond. In: Proc. of IEEE Symp. on Logic in Computer Science (LICS’90), pp. 1–33. IEEE
Computer Society, Los Alamitos (1990)

12. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)
13. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press, Cambridge

(1990)
14. Drechsler, R., Sieling, D.: Binary decision diagrams in theory and practice. Softw. Tools Technol.

Transf. 3, 103–112 (2001)
15. Emerson, E.A., Lei, C.L.: Efficient model checking in fragments of the propositional mu-calculus. In:

Proc. of IEEE Symp. on Logic in Comuter Science (LICS’86), pp. 267–278. IEEE Computer Society,
Los Alamitos (1986)

16. Feigenbaum, J., Kannan, S., Vardi, M.Y., Viswanathan, M.: The complexity of problems on graphs
represented as OBDDs. Chic. J. Theor. Comput. Sci. 47, 1–25 (1999)

17. Fisler, K., Vardi, M.Y.: Bisimulation and model checking. In: Pierre, L., Kropf, T. (eds.) Proc. of
Correct Hardware Design and Verification Methods (CHARME’99). LNCS, vol. 1703, pp. 338–341.
Springer, Berlin (1999)

18. Fisler, K., Vardi, M.Y.: Bisimulation minimization and symbolic model checking. Form. Methods
Syst. Des. 21(1), 39–78 (2002)

19. Francez, N.: Fairness. Springer, Berlin (1986)
20. Frank, A.: Connectivity and network flows. In: Handbook of combinatorics, vol. 1, pp. 875–917.

Elsevier, Amsterdam (1995)
21. Gabbay, D.M., Pnueli, A., Shelah, S., Stavi, J.: On the temporal basis of fairness. In: Proc. of ACM

Sym. on Principles of Programming Languages (POPL’80), pp. 163–173. ACM, New York (1980)
22. Gentilini, R., Policriti, A.: Biconnectivity on symbolically represented graphs: a linear solution. In:

Proc. of Int. Symposium on Algorithms and Computation (ISAAC’03). LNCS, vol. 2906, pp. 554–
564. Springer, Berlin (2003)

23. Gentilini, R., Piazza, C., Policriti, A.: Computing strongly connected components in a linear number
of symbolic steps. In: Proc. of Int. Symposium on Discrete Algorithms (SODA’03), pp. 573–582.
ACM, New York (2003)

24. Hachtel, G.D., Somenzi, F.: A symbolic algorithms for maximum flow in 0-1 networks. Form. Meth-
ods Syst. Des. 10(2/3), 207–219 (1997)

25. Hojati, R., Touati, H.J., Kurshan, R.P., Brayton, R.K.: Efficient mega-regular language containment.
In: von Bochmann, G., Probst, D.K. (eds.) Proc of Int. Conference on Computer Aided Verification
(CAV’92). LNCS, vol. 663, pp. 396–409. Springer, Berlin (1992)

26. Hopcroft, J.E., Tarjan, R.E.: Efficient algorithms for graph manipulation [h] (algorithm 447). Com-
mun. ACM 16(6), 372–378 (1973)

27. Lei, C.Y.: Representation of switching circuits by binary-decision programs. Bell Syst. Tech. J. 38,
985–999 (1959)

28. McMillan, K.L.: Symbolic Model Checking: An Approach to the State Explosion Problem. Kluwer
Academic, Dordrecht (1993)

29. Meinel, C., Theobald, T.: Algorithms and Data Structures in VLSI Design. OBDD—Foundations and
Applications. Springer, Berlin (1998)

30. Nunkesser, R., Woelfel, P.: Representation of Graphs by OBDDs. In: Proc. of Int. Symposium on
Algorithms and Computation (ISAAC’05). LNCS, vol. 3827, pp. 1132–1142. Springer, Berlin (2005)

31. Ravi, K., Bloem, R.P., Somenzi, F.: A comparative study of symbolic algorithms for the computation
of fair cycles. In: Hunt, W.A. Jr., Johnson, S.D. (eds.) Proc. of Int. Conference on Formal Methods in
Computer-Aided Design (FMCAD’00). LNCS, vol. 1954, pp. 143–160. Springer, Berlin (2000)

32. Sanghavi, J.V., Ranjan, R.K., Brayton, R.K., Sangiovanni-Vincentelli, A.: High performance BDD
package based on exploiting memory hierarchy. In: Proc. of ACM/IEEE Design Automation Confer-
ence, 1996

33. Sawitzki, D.: Implicit flow maximization by iterative squaring. In: Proc. of Int. Conference on Current
Trends in Theory and Practice of Computer Science (SOFSEM2004). LNCS, vol. 2932, pp. 301–313.
Springer, Berlin (2004)

34. Sawitzki, D.: A symbolic approach to the all-pairs shortest-paths problem. In: Proc. of Int. Confer-
ence on Graph-Theoretic Concepts in Computer Science (WG 2004). LNCS, vol. 3357, pp. 154–167.
Springer, Berlin (2004)

35. Schneider, K.: Verification of Reactive Systems. Springer, Berlin (2004)
36. Sieling, D.: The nonapproximability of OBDD minimization. Inf. Comput. 172(2), 103–138 (2002)

158 Algorithmica (2008) 50: 120–158

37. Somenzi, F.: Binary decision diagrams. In: Calculational System Design, Nato Science Series F: Com-
puter and Systems Sciences, vol. 173, pp. 303–366. IOS Press, Amsterdam (1999)

38. Somenzi, F.: CUDD: CU Decision Diagram Package Release 2.3.1 (2001). Available at http://vlsi.
colorado.edu/~fabio/CUDD/cuddIntro.html

39. Tarjan, R.E.: Depth first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)
40. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer Science, vol. B,

pp. 133–191. MIT Press, Cambridge (1990)
41. Touati, J.H., Brayton, R.K., Kurshan, R.P.: Testing language containment for omega-automata using

BDD’s. Inf. Comput. 118(1), 101–109 (1995)
42. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Logics for Concurrency:

Structure versus Automata. LNCS, vol. 1043, pp. 238–266. Springer, Berlin (1996)
43. Wegener, I.: BDDs design, analysis, complexity, and applications. Discrete Appl. Math. 138, 229–251

(2004)
44. Woelfel, R.: Symbolic topological sorting with OBDDs. J. Discrete Algorithms (2006, to appear) (also

in MFCS’03, LNCS, vol. 2747, pp. 671–680)
45. Xie, A., Beerel, P.: Implicit enumeration of strongly connected components and an application to for-

mal verification. IEEE Trans. Comput. Aided Design Integrated Circuits Syst. 19, 1225–1230 (2000)
46. Yuan, L., Gui, C., Chuah, C., Mohapatra, P.: Applications and design of heterogeneous and or broad-

band sensor networks. In: Proc. of IEEE First Workshop on Broadband Advanced Sensor Networks.
IEEE Press, New York (2003)

	Symbolic Graphs: Linear Solutions to Connectivity Related Problems
	Abstract
	Introduction
	Preliminaries
	Strong Connectivity of Digraphs
	Biconnectivity of Undirected Graphs

	Symbolic Graph Algorithms
	Symbolic Representation and Manipulation of Graphs
	Symbolic Graph Algorithms Analysis
	Current Trends in Comparing Symbolic Algorithms

	Related Work on Symbolic Algorithms

	Spine-sets as Symbolic Counterpart to DFS
	Spine-sets and Strongly Connected Components
	Spine-sets and Biconnected Components

	Strong Connectivity on Symbolic Graphs
	The Linear Symbolic SCC Algorithm
	Correctness and Complexity

	Biconnectivity on Symbolic Graphs
	The Linear Symbolic Biconnectivity Algorithm
	The subprocedure Visit
	The subprocedure eat-spine

	 Correctness and Complexity

	Applications to Model Checking
	Symbolic Model Checking, Büchi Language Emptiness, and Spine-sets
	Spine-sets Applied to Fair Model Checking: Generalized Büchi and Street Automata Language Emptiness

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

