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Abstract — We analyze the error performance
of a wireless communication system employing
transmit-receive diversity in Rayleigh fading. By
focussing on the complex Gaussian statistics of the
independent and identically distributed entries of
the channel matrix, we derive a formula for the
characteristic function (c.f.) of the maximum out-
put signal-to-noise ratio (SNR). We use this c.f. to
obtain a closed-form expression of the symbol er-
ror probability (SEP) for coherent binary keying.
An approximate expression for the SEP when the
average SNR per branch is large is also obtained.
The method can be easily extended to obtain the
SEP of M-ary modulation schemes.

I. INTRODUCTION

With the rapid increase in the number of wireless services,
more and more wireless communication systems may re-
quire diversity at the transmitter in addition to diversity
at the receiver to combat the severe effects of fading. This
has motivated the study of transmit diversity along with
receive diversity. Different transmit diversity techniques,
like delay transmit diversity [1, 2] and space transmit di-
versity [3, 4, 5], have been proposed, but these are based
on objectives other than maximizing the signal-to-noise
ratio (SNR).

In [6], maximum ratio transmission, which is based on
transmit-receive space diversity, has been studied under
the assumption that the optimum complex weight vector
at the receiver, which maximizes the output SNR, has all
entries with the same modulus since the entries of the
complex channel matrix are statistically identical. An
approximate expression for the symbol error probability
(SEP) for binary phase-shift keying (BPSK) when the av-
erage SNR per branch is large and the channel matrix has
independent complex Gaussian entries, which corresponds
to Rayleigh fading, has also been obtained.

In this paper, we analyze transmit-receive diversity in
Rayleigh fading by focussing on the complex Gaussian
statistics of the independent and identically distributed
(i.i.d.) entries of the channel matrix. Without making
any assumption on the structure of the optimum com-
plex weight vector at the receiver, we derive a formula for

the characteristic function (c.f.) of the maximum output
SNR as a finite linear combination of elementary gamma
c.f.s. We use this c.f. to obtain a closed-form expression
of the SEP for coherent binary keying. An approximate
expression for the SEP when the average SNR per branch
is large is also obtained. The method can be easily ex-
tended to obtain the SEP of M-ary modulation schemes.
We present plots of the SEP versus the average SNR per
diversity branch to see the effect of different transmit and
receive diversity orders on the error performance.

II. THE CHANNEL MODEL

Consider a transmit-receive diversity system employing N
antennas for transmission and L antennas for reception.
Thus there are NL diversity branches. After sampling
at the symbol interval the Lx 1 complex signal vector
received at the L antennas is given by

r = cPsHw n , (1)

where c is the transmitted symbol satisfying |c| = 1, w the
JVxl transmit weight vector, H the L x N channel ma-
trix, Ps the signal power at each receiving antenna, and
n the Lxl additive noise vector. We assume the noise to
be temporally and spatially white with mean zero and a
multivariate complex circular Gaussian distribution. Ow-
ing to circularity of n, we have E [nn T ] = 0, where E[-]
denotes the expectation operator and (-)T denotes the
transpose operator. Since the noise is uncorrelated be-
tween the diversity branches, we have

E[nn H ] = σ2IL , (2)

where (-)H denotes the Hermitian operator, and IL is the
L x L identity matrix.

The channel matrix H can be written as

H=[Hi,j]i,jL,N=1, (3)

where Hi,j is the channel coefficient from the jth trans-
mitting antenna to the ith receiving antenna. We con-
sider Rayleigh fading, in which the channel coefficients

Hi, = 1,..., L, j = 1,..., N are i.i.d. complex cir-
cular Gaussian random variables, each with a CN(0,1)
distribution, implying

nl = 1 .
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III. T H E MAXIMUM EIGENVALUE PROBLEM

The transmit weight vector w, which we choose to be a
unit vector, can be expressed as

w =
\\HHy\\ '

where y is the weight vector at the receiver, and ||
the Euclidean norm. Substituting (4) in (1), we get

r =
HHy

\HHy\
n.

(4)

is

(5)

The decision variable for detecting the symbol c is ob-
tained by taking the dot product of y and r, resulting
in

~~ " " (6)yHn.

The output SNR, conditioned on the channel matrix
H, is given by

7 =
Ps\\Hay

Ei H

y

n M llyll'
(7)

where |f denotes the average SNR per branch. In order
to minimize the symbol error rate, we have to maximize γ
with respect to y. It is clear from (7) that this maximiza-
tion problem is the same as finding the squared-L2 norm
of the matrix HH, or alternatively, that of the matrix H.
This squared-L2 norm is the maximum eigenvalue of the
Hermitian matrix HHH, which we denote as Λmax, and
the eigenvector of HHH corresponding to Λmax is the
optimum weight vector ymax which maximizes γ to yield

γmax. Thus

Ps \\HHyf
γmax = max y (8)

For coherent reception of binary signals, the symbol er-
ror probability, conditioned on γmax, is given by

where
1 - e

9 =

(9a)

(9b)

and e is the correlation coefficient between the two sig-
naling waveforms. If C0 and c1 are the two values of the
symbol c, then

e = 3?{ClcS} , (9c)

where SR{-} denotes the real-part operator, and (•)* de-
notes the complex conjugate. Using Craig's formula of
the Q-function [7], (9a) can be rewritten as

PP\
1

exp
gγmax

" sin2 θ
dθ. (10)

The average SEP is then given by [8]

Pe=
 l- T

9
(11)

Ti" Jo V s in-

where ^~(max{j^) = E [exp(jiij^max)] denotes the c.f. of

We focus on finding the c.f. of γ m a x , which will result
in a closed-form expression for the SEP.

IV. SEP FOR COHERENT BINARY KEYING

Let hi denote the ith column vector of the channel matrix
H, which implies

H = [h1, h2, • • •, hN]

The Hermitian matrix V is defined as

V = HH
H

(12)

(13)

The L x 1 vectors h1,..., hN are i.i.d. complex Gaussian
random vectors each distributed as CN(0, I L ) .

When the transmit diversity order is no less than the
receive diversity order, that is, N > L, V has a Wishart
distribution, and its L eigenvalues Λ1, . . . , ΛL, which are
real and positive with probability one, have the joint prob-
ability density function (p.d.f.) [9]

fΛ1,...,ΛL (λ1, . . . ,

exp -

L!

n (14)

0.

On the other hand, when the transmit diversity order is
less than the receive diversity order, that is, N < L, V
has a pseudo-Wishart distribution; N of its eigenvalues,
denoted as Λ1, . . . , ΛN, are real and positive with prob-
ability one, and the remaining L — N of the eigenvalues,
denoted as Λ N + 1 , . . . , ΛL, are zero, that is

= . . . = ΛL = 0. (15)

The joint p.d.f. of Λ1, . . . , ΛN is given by

- L-N

fΛ1,...,ΛN(λ1, . . . , Λ N ) = N!

n : - A , - (16)

0,
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which has the same form as the p.d.f. (14) for N > L
with L and N exchanged.

Without loss of generality, we consider the case when
N >L.

cumulative distribution function of

By careful examination of the entries of matrix S(u),
it can be shown from (17), (18), and (19) that

The
max = max(Λ1,..., Λ is obtained from (14) as

N-L , L

exp - λ i

i=1

L! f[(L - i)!(N - i)!

" L

w
1

-i)\{N — i)!

x [ A ( A i , . . . , A L ) ] 2 d A i - - - d A L , ( 1 7 )

where A(Ai,..., λL) denotes the Vandermonde determi-
nant of λ1, • • •, λL.

We consider the evaluation of the integral I(u) given
by

I(u) = L!

L

E E
m=N-L

(21)

where ci,m is the coefficient of e luum. This can be writ-
ten as a finite linear combination of elementary gamma
p.d.f.s, each with parameter m + 1 and mean m+1 , as

y y
i=1 m=N — L

0 0 j = 1

x [ A ( A i , . . . , A L ) ] 2 d A i - - - d A L . (18)

By making use of the fact that the integrand of I(u) is
symmetric in λ1, . . . , λL, it can be shown after some alge-
bra that we can express I(u) in terms of the determinant
of a matrix function whose elements are integrals. Thus

(19a)

where the element in the kth row and the lth column of
S(U) is given by

(S(u))k,l = Sk,l(u)

u > 0,

where

im+1 - i)!(N - i)

(23)

By applying in (22) the result

A;!
(24)

a > 0, k = 0,1,2,. .., J = A/-T,

and noting from (8) that * 7 m a x ( j w ) = ΨΛmax \ju%z), the
c.f. of γmax is given by

L

E E
m=N-L

m+1. ( 2 5 )

xN-L+k+l-2 exp(—x)dx

(19b)

Thus (25) is a formula for the c.f. of γmax as a finite
linear combination of elementary gamma c.f.s.

By combining (11) and (25), the SEP for coherent re-
ception of binary signals is expressed as

the incomplete gamma function Γ(k + 1, u) for
k = 0,1, 2,... and u > 0 having the representation Pe = £

=1 m=N—L

(26)

I xkexp(-x)dx
Jo

It is known from [10] (equation (77)) that

m + 1

= k!

Note that S(u) is an L x L Hankel matrix.

(20)
(27)

l=0
I 4 l ( 1 + a ) l ,

a > 0, m = 0,1,2,
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Substituting (27) in (26), we get

ft = IE E *.»•
i=1 m=N—L

1 - =E
l = 0

. ( 2 8 )

Thus (28) is a closed-form expression of the SEP for
coherent binary keying when N > L. For different values
of N and L, the coefficients di,m can be easily computed
by employing curve-fitting on the plot of J^ det (S(u))
versus u and stored in lookup tables. Two such lookup
tables of di,m for N = 3, L = 2 and N = 5, L = 3
constitute Table 1. Note that in both the lookup tables,
the summation of di,m over M and i is unity, as expected.

When N < L, the p.d.f. fΛmax(u) is given by (21) with
L and N exchanged, such that the element in the kth row
and the lth column of the N x N Hankel matrix S(u) is
expressed as

= Sk,l(u)

(29)

As a result, the SEP has the same expression as (28) with
L and N exchanged.

To obtain a closed-form expression for Pe which is valid
for both N > L and N < L, replace N-L by \N-L\ in the
summation over m and L by min(N, L) in the summation
over i in (28).

We observe from (19b) and (26) that for any pair
(N,L), the SEP depends O N N + L, |N - L|, and
min( N , L). As a result, the SEP is symmetric in N and
L. It is also to be noted that the SEP does not depend
on NL alone. For example, the SEP for (N, L) = (4, 3)
will be different from that for (N, L) = (6, 2).

When the average SNR per branch is large, that is,
σs ^> 1, we can consider, in the SEP expression, only
the ΣM = |N — L| term in the summation over M and only
the i = min( N , L) term in the summation over i. The
p.d.f. of Λmax then approximates to a gamma p.d.f. with
parameter |N — L|+1 and mean | ,. , , , which gives rise

to the approximate SEP expression

Pe
1 (2\N-L\+2
2 | |JV-L| + 1

min(N, L)
Ps

-(|JV-L| + 1)

.(30)

Thus the SEP decreases inversely with the (|JV-
power of the average SNR per branch.

The result (30) is different from that given by equation
(25) of [6] where the SEP decreases inversely with the
(NL)th power of the average SNR per branch. The reason
is as follows. In [6], it has been assumed that each complex

(N,L) = (3,2)

TO = 1

TO = 2

TO = 3

TO = 4

i = 1

3.00

-4.00

3.00

i = 2

-0.75

-0.25

0.00

0.00

(N, L) = (5, 3)

TO = 2

TO = 3

TO = 4

TO = 5

TO = 6

TO = 7

TO = 8

TO = 9

m = 10

m = 11
m = 12

i = 1

10.5462

-31.1751
49.3378

-40.8351

15.2272

i = 2

-0.1936

0.1409
0.4666

0.0420

-0.6937

-0.0030
-0.5626

0.0005

-0.0002

i = 3

-0.3332

-0.3668
-0.2786

-0.1833

-0.0922

-0.0352
-0.0108

-0.0029

-0.0006

-0.0001
0.0000

Tab. 1: Enumeration of coefficients di,m for (N,L) = (3,2)
and (N,L) = (5,3)

entry of the Lx 1 optimum weight vector ymax at the
receiver has the same modulus since the entries of the
channel matrix H are statistically identical. In the case
of Rayleigh fading with i.i.d. complex Gaussian entries
of H, the lower bound on γmax h a s a gamma distribution
with parameter NL and mean NσP2s, and when the average
SNR per branch is large, this gives rise to the approximate
SEP expression (25) in [6], which can be written using our
notations as

( 2NL - 1
I NL

On the other hand, we consider here the p.d.f. of Λmax,

which, for Rayleigh fading with i.i.d. complex Gaus-

sian entries of H, is a weighted sum of gamma p.d.f.s

and is given by (22). When |f > 1, the p.d.f. of

γmax = ~^iΛmax approximates to a a gamma p.d.f with

parameter |N — L| + 1 and mean I |n i n (-AJ^, > |f, resulting

in the approximate SEP expression (30).

V. EXTENSION TO M-ARY MODULATION SCHEMES

In the case of M-ary modulation schemes such as M-PSK,
M-QAM, and M-AM, the SEP for coherent reception de-
pends directly on the integral P ( Θ , G M ) given by

P(Θ,gM) = 1
GM

sin 2θ
dθ, (32)

where GM is a parameter which depends on M and the
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modulation scheme, and γmax and Λmax are governed by

* s,av A

max = Λmax ,

a1

Ps,av being the signal power averaged over all M signaling
waveforms. Substituting (25) in (32), and replacing Ps by
Ps,av in the resulting expression, we get, for N > L,

P(Θ,gM) =
L

E ,gM), (33a)
m=N-L

where the integral Ji,m(Θ,gM) given by

Ji,m(Θ, GM) = 1

m+1

dθ (33b)

can be expressed in closed-form by equation (77) of [10].

VI. NUMERICAL RESULTS

Plots of the SEP Pe versus the average SNR per branch
s2 for BPSK with different values of (N, L) are shown in
Fig. 1. The coefficients di,m for each (N,L) have been
calculated by curve-fitting, and these have been used to
compute the SEP using (28). We see from the plots that
increase in N for a given L or increase in L for a given
TV improves the performance. The plots also show clearly
that the SEP does not depend on NL alone. The per-
formance with (N,L) = (6,2) in Fig. 1(a) is better than
that with (N, L) = (4, 3) in Fig. 1(b), although NL = 12
in both cases. Similarly (N,L) = (8,2) in Fig. 1(a) per-
forms better than (N,L) = (4,4) in Fig. 1(b). On the
other hand, the performance with (N, L) = (2, 2) in Fig.
1(a) is inferior to that with (N, L) = (4,1) in Fig. 1(b).
Therefore, if we have to keep NL fixed, then it is desirable
to have |N — L| as large as possible. This is consistent
with the analytical result (30) for high average SNR per
branch which indicates that the SEP decreases exponen-
tially with increase of |N — L|.

VII. CONCLUSION

We have analyzed the error performance of a transmit-
receive space diversity system in Rayleigh fading. The
channel matrix H of such a system has i.i.d. complex
Gaussian entries. The weight vector at the receiver must
be chosen to maximize the output SNR, and this results in
finding the maximum eigenvalue of HHH, which is pro-
portional to the maximum output SNR. From the joint
p.d.f. of the eigenvalues of HHH , we derive a formula
for the c.f. of the maximum output SNR as a linear com-
bination of a finite number of elementary gamma c.f.s.
We use this c.f. to obtain a closed-form expression of the
SEP.
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