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Representation of Coordination Mechanisms in IMS LD  
 
 

ABSTRACT 
 
Group interaction has to be meticulously designed to foster effective and efficient 
collaborative learning. The IMS Learning Design specification (IMS LD) can be used to 
create a formal representation of group interaction and the model can then be used to 
scaffold group interaction by means of coordination support at run-time. In this chapter, 
we investigate the expressiveness of IMS LD in representing coordination mechanisms 
by using coordination theory as an analytical framework. We have found that IMS LD 
can represent almost all the basic coordination mechanisms. We have also identified 
some hurdles to be overcome in representing certain coordination mechanisms. 
According to coordination theory, common coordination mechanisms can be reused in 
different settings. We briefly explore the feasibility of representing coordination 
mechanisms at a high-level of abstraction, which will be easier for instruction designers 
and teachers to understand and use.  

 

INTRODUCTION 
 
Group-based learning is an instructional strategy that provides a group of learners with 
intensive group interaction that can deepen individual learners’ understanding. Well-
organized group-based learning may result in collaboratively produced knowledge 
objects or conceptual artifacts which could not be created by any individual learner in the 
group acting alone. However, the benefits of this instructional strategy have a cost, 
because additional coordination activities have to be carried out while learners perform 
learning activities. Examples of such coordination activities are allocating tasks, 
distributing and exchanging information, and managing work sequences. Although 
coordination activities do not directly contribute to the production of knowledge objects 
or conceptual artifacts, they have an influence on the effectiveness and efficiency of 
group-based learning, and sometimes on its success or failure. 
 
In face-to-face learning rich communication channels are available to support group 
interaction. These are lost in computer-based learning, and so in this environment there is 
a need to provide computational coordination mechanisms. One promising technical 
solution is to provide a formal model of a well-designed group interaction by using a 
process modeling language, and then to coordinate learners’ interactions according to this 
model in a language-compatible execution environment. This enables learners to focus on 
learning activities without having to pay too much attention to coordination problems, 
and so supports enhanced effectiveness and efficiency of group-based learning in 
computer-based environments. 
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IMS Learning Design (IMSLD 2003) is an educational process modeling language which 
can be used to model a wider range of pedagogical strategies, including collaborative 
learning (Koper and Olivier 2004). A basic introduction to IMS LD is available in the 
chapter (Using the IMS LD Standard to Describe Learning Designs, Koper and Miao, this 
book). The purpose of this present chapter is to systematically investigate the 
expressiveness of IMS LD in representing coordination mechanisms which support group 
interaction, and the approach taken is to use coordination theory as an analytical 
framework. We also provide XML (Extensible Markup Language) code, to illustrate how 
group interaction can be represented in IMS LD. 
 
It is important to note that characteristics of group-based learning processes vary from 
well-structured to highly fluid. Highly fluid collaborative processes, in which it is 
unpredictable who will take which action when, and how other group members will 
respond, are not well suited to coordination using computational mechanisms. The 
attempt to specify a fluid collaborative process in detail often raises the so-called “over-
scripting” problem (Dillenbourg, 2002), which may restrict group interaction to some 
extent. Some fluid collaborations are suited to coordination by human users. These may 
be defined in IMS LD, for example, as a collaborative activity with a conference service 
(e.g., an audio/video conferencing, text-based chat tool, or a discussion forum). The users 
(e.g., tutors and students) are expected to solve their coordination problems by using 
functions offered by the service. It may be seen that using this approach the coordination 
within an activity is not specified at the process level in the learning design, and that 
responsibility for process control is shifted to the user at execution time. This is, 
therefore, outside the scope of this chapter, which focuses on how computational 
mechanisms can be represented in IMS LD. 
 

BACKGROUND 
 
This section briefly introduces group-based learning and coordination theory. 

Group-based Learning and Collaboration Scripts 
 
Learning in small groups has been intensively researched since the 1970s. According to 
Tribe (1994) there are two main types of purpose for group-based learning in higher 
education: those related to skills acquisition and those related to academic aims. As Tribe 
(1994) summarized, the skills acquired in group-based learning cover such interpersonal 
competences as oral communication, active listening, group leadership, group 
membership, the ability to examine assumptions, and the ability to tolerate ambiguities. 
All of these skills are highly valued in employment. The academic objectives which build 
on these employment skills include the ability to understand a text, question a line of 
argument, follow up a lecture, and gauge an individual's progress on a particular course 
or evaluate a course.  
 
According to (Strijbos & Martens 2001, Strijbos, Martens, et. al. 2004) there is agreement 
on five components of ‘group-based learning’. As Strijbos el. al. summarize, firstly, 
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groups are composed of either a minimum of two up to six participants. Secondly, group-
based learning is characterized by ‘positive interdependence’, which refers to the degree 
to which the performance of a single member is dependent on the performance of all 
others (Johnson, 1981). A third component is the task, which must be a genuine group 
task, in which the effort of all group members is needed. A fourth component is 
‘individual accountability’. This refers to each student’s individual responsibility for a 
specific aspect of the group process or group performance (or both). Individual 
accountability is enhanced through grading students for their individual effort or 
performance, as well as the group’s performance. The fifth and final component is a shift 
from ‘teacher centered’ to ‘student centered’. 
 
Early studies on group-based learning focused on the role of independent variables that 
might influence the learning outcome, e.g. group size and group dynamics. Recent 
studies, however, analyse group interactions in order to ground the design of the support 
to be provided. According to Dillenbourg (1999), the key to understanding collaborative 
learning is to gain an understanding of the interactions among individuals. Recently in the 
Computer-supported collaborative learning (CSCL) community, the design of 
collaboration scripts has been a new focus area. The basic idea is to formally describe 
group interaction by using a scripting language and then to coordinate group members 
and their actions by executing collaboration scripts (O’Donnell and Dansereau 1992; 
Dillenbourg 2002; Kollar, Fischer et al. 2005; Miao, Hoeksema et al. 2005; Weinberger, 
Stegmann et al. 2005, Fischer, et. al. 2007). Some efforts (e.g., Caeiro et al. 2003; 
Hernandez et al. 2004; Miao, Hoeksema et al. 2005; Van Es and Koper 2006) have been 
made to investigate whether IMS LD is sufficiently expressive to represent collaborative 
learning processes effectively, usually by analyzing special cases. The most serious 
research in this direction was done by Van Es and Koper (2006), which investigated 
many examples, randomly selected from 6034 lesson plans. In the research described in 
this chapter, not only a case study method (the case used here is mainly for the purpose of 
explanation), but also a theory-based analysis method is adopted to systematically test the 
capacity of IMS LD in representing coordination mechanisms.  
 

Coordination Theory 
 
Coordination theory concerns the interdisciplinary study of coordination, which is 
defined as the process of managing dependencies between activities. Malone and 
Crowston (1994) analyzed processes in terms of actors performing interdependent tasks. 
These tasks might require or create resources of various types. Coordination theory 
provides a theoretical framework for analyzing coordination in complex processes, thus 
contributing to user task analysis and modeling. It has been applied in many fields, 
including computer science, organization theory, economics, management science, 
sociology, social psychology, anthropology, linguistics, law, political science, and so on. 
The research reported here is the first time that coordination theory has been applied to 
education. 
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One of the most powerful contributions of coordination theory is to systematically 
identify and analyze a wide variety of dependencies. Three elementary dependency types 
are identified in coordination theory: 1. Sharing, 2. Flow, and 3. Fit. In sharing 
dependencies two or more activities share the same resource(s). Sharing dependency 
frequently occurs when one resource is used by a number of people or activities, whether 
that resource is a machine on a factory floor, a budget, or a room, or anything else which 
is used in multiple activities. In flow dependencies resources produced by one activity are 
consumed by one or more subsequent activities. The concept of flow is intuitive and 
ubiquitous, emerging from the succession of events in human activity. In fit dependencies 
two activities concurrently produce the components of the same resource, and these have 
to fit together. A good example of fit is the design of a car, where one engineer designs 
the engine, another designs the body, and so forth. Dependencies arise between the 
activities because all the parts have to fit together in the same car.  
 
It is important to note that these three dependency types can be further specialized. For 
example, the flow dependency can be divided into three sub-dependencies: precedence, 
transfer and usability. Precedence dependency indicates that the actor performing the 
second task has to know when the resource is available and the task can be started. 
Transfer dependency indicates that the resource must be moved from the activity in 
which it was created to the activity in which it is consumed. Finally, usability dependency 
indicates that the resource created by the first task must be appropriate for the needs of 
the second task. The fit dependency can be further specified as a decomposition 
dependency between task and sub-task.  
 
According to coordination theory, all dependencies in any relationship can be analyzed as 
either combinations of, or more specialized types of, these three elementary types or their 
sub-types. The theory describes how these dependencies can present actors in 
organizations with coordination problems which constrain the efficiency of task 
performance. To overcome coordination problems, actors must perform additional 
activities such as allocating tasks and control workflow and information-flow, which 
Malone and Crowston called coordination mechanisms or coordination activities 
(Malone and Crowston, 1994). Many such mechanisms to manage dependencies have 
been identified in organizations. Different organizations which have similar goals and 
achieve them using more or less the same set of coordination activities will have to 
manage the same dependencies. Nevertheless, they may choose to use different 
coordination mechanisms, thus resulting in different processes (Crowston and Osborn 
1998). The best process to use depends on situational factors and often involves trade 
offs. 
 

REPRESENTATION OF COORDINATION MECHANISMS 
IN IMS LD: A CASE STUDY OF GROUP_BASED 
LEARNING 
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In this section, based on coordination theory, we analyze the coordination problems 
which arise in group-based learning processes, and also systematically explore the degree 
to which IMS LD can represent possible coordination mechanisms for supporting group 
interaction, either directly or indirectly. The investigation is conducted and explained 
using the “Knowledge Convergence Script” use case, which is briefly introduced at the 
beginning of this section. 
 

Knowledge Convergence Script 
 
We have chosen to model an example of group-based learning which is well documented 
in the literature (Weinberger, Fischer et al. 2004). This was conducted in a web-based 
environment, with a small group of three learners who were required to write three 
reports about three cases. Following the original design the whole process is carried out 
in four stages.  
 

1. Case reporting: Each learner reads a different case and writes a report about the 
case which they have read. When all three learners have finished their reports, 
they pass them on to designated co-learners the first round of a pre-defined 
pattern of rotation.  

2. Criticizing 1: Each learner comments on the report which they have received. 
When all three have finished the first round of comments, they rotate the reports 
again, together with the first round comments.  

3. Criticizing 2: Each learner comments on the newly transferred report and the 
associated comment. When all three have finished the second round of comments, 
they rotate the reports again, together with the first and second round comments. 

4. Finalizing the report: Each report returns to the original author together with two 
comments. Each learner revises their own report (writes a synthesis to merge the 
ideas of other learners) in the light of their comments. 

 
The “Knowledge Convergence Script” has been implemented in a web-based 
collaborative learning environment, and it is reported that this group-based learning 
strategy is effective and efficient (Weinberger, Fischer et al. 2004). In supporting this 
group-based learning strategy we use process modeling and execution approach, rather 
than a software development approach. Figure 1 illustrates the process model, using the 
following conventions: 

• light-gray rectangles represent stages 
• dark-gray rectangles represent activities 
• white rectangles represent artifacts 
• solid arrows indicates workflows 
• dashed arrows indicate information-flows.  

Three learners are shown: learner1, learner2, and learner3, who work through a four-
stage work procedure including Case reporting, Criticizing 1, Criticizing 2, and 
Finalizing the report. At each stage, three learners perform activities in parallel to 
produce artifacts which will be used as input of succeeding activities carried out by their 
peers. For example, at the first stage learner1 performs activity reporting1. He/she reads 
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Case1 and produces artifact InitialReport1, which is then transferred to the activity 
criticizing2-1 at the second stage. Learner2 produces artifact comment2-1, which is then 
transferred together with Case1 and InitialReport1 to learner3. At the third stage 
learner3 reads Case1, InitialReport1, and Comment2-1 and writes Comment3-1. Finally, 
all documents associated with Report1 are transferred to learner1. He/she improves 
Report1 based on the received comments, and then produces a final version of the case 
report FinalReport1.  
 

 
 

Figure 1. An activity diagram of “Knowledge Convergence Script”. 
 
We use IMS LD to specify this strategy in the form of XML. The resulting model (KCS 
uol, 2007) can be executed in any IMS LD compliant run-time environment, such as 
CopperCore (Vogten, et al., 2006). Figure 2 shows a screenshot of CopperCore used to 
run this script when learner1 is writing the final report. The top-left pane shows the work 
procedure of the user. The bottom-left part shows all environments associated with the 
activity currently being performed, which include the documents to be accessed by the 
user. When the user clicks a learning object (such as a case and a comment made 
available in the environment), the content of the learning object is presented in the right 
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part of the window. In the screen shown below the user has selected the final activity 
write final report. The main area of the window presents the activity-description of write 
final report activity, in which the user writes the final version of his/her case report as 
shown in figure 2. It is important to note that the main goal of this research is not to study 
whether this group-based learning strategy is effective or efficient, but to investigate and 
demonstrate the expressiveness of IMS LD in modeling group-based learning strategy. 
Moreover, we observe that various group-based learning strategies can be adopted to 
achieve the same learning goal, and that no single strategy is ideal for all situations. 
Accordingly we designed some alternatives, which are not intended to improve this 
group-based learning process, but rather to provide the basis for a discussion of possible 
coordination mechanisms. 
 

  
 

Figure 2. A screenshot of CopperCore running the “Knowledge Convergence 
Script”. 

 

Analyses of dependencies and possible coordination 
mechanisms in group-based learning processes 
 
In this section, we investigate various forms of dependences in group-based learning 
processes from the perspective of coordination theory. The “Knowledge Convergence 
Script” and its alternatives are used as examples to analyze and explain the coordination 
mechanisms to manage various dependencies in group-based learning processes.  
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Sharing dependencies 
 
In the activities carried out in this use case each learner has to read three cases and make 
contributions to each report. Thus the resources shared by the activities are three learners 
and three cases. If learners work without any coordination mechanism for managing the 
sharing dependencies described above, the result will be disorder, with each learner 
performing any task at any time.  
 
The coordination mechanism used in the original design is to pre-define the allocation of 
learners and cases to activities, so that some are carried out concurrently, and others at 
different times. In order to support this coordination mechanism it is necessary to 
represent the bindings between the actors and the activities which they will carry out, 
either concurrently or at different times. It is also necessary to ensure that actors have 
access to the appropriate cases when they have to carry out a particular activity. Another 
possible coordination mechanism for managing sharing dependencies is that three 
learners and one case will be allocated to individual activities in turn. Each activity is 
itself a collaborative task. In order to support this coordination mechanism, it is necessary 
to represent the binding between the multiple actors and the same activity at the same 
time, and to represent the use of the communication tools used to exchange their ideas 
and create the report. 
 
These two strategies are static coordination mechanisms, which manage the sharing 
dependencies in a pre-defined manner. If it is not decided in advance which learner will 
be responsible for reporting on which case then a dynamic coordination process will be 
required which responds to the dynamics of the learning process. An example of a 
dynamic coordination mechanism is “first come, first served”, and this mechanism can be 
applied to determining the pattern of rotation. For example, we could add a register 
activity for each role, but not allocate any activity to any role in design time. At run-time, 
three users will register to carry out the process, and according to the sequence of their 
registrations, the activities will be allocated and the artifacts rotated. 
 
Flow dependencies 
 
As mentioned before, the flow dependency has three sub-dependencies: 1) precedence, 2) 
transfer and 3) usability. We now analyze these types of dependencies in the group-based 
learning.  
 
1) Precedence: In the use case, there are precedence dependencies between some 
activities. For example, when one learner has finished the activity of creating an initial 
report, the other two can comment on it in turn. Only after other two learners provide 
their comments can the first learner write a synthesis.  
 
Normally, the coordination mechanism used to manage precedence dependencies is 
event-driven. This means that an event (e.g., the termination of an activity and the 
available of a resource) triggers the start the succeeding activity. In complex learning 
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process, branching, forking, and joining are possible coordination mechanisms. 
Branching means a control that only one succeeding activity will be triggered among 
several candidates according to a condition. Forking refers to the control that two or more 
succeeding activities will start in parallel after the termination of an activity. Joining is a 
control that the termination of all preceding activities triggers the start of a succeeding 
activity. 
 
In the original “Knowledge Convergence Script” design, a four-step process is used. In 
each phase, three activities are performed in parallel. Only when all activities in one step 
are finished will all the activities in the next step be triggered. This is a synchronization 
coordination mechanism. However, if the concurrent tasks performed within a step are 
not balanced, the efficiency of this coordination mechanism is not high. For example, if 
one of the three cases is more difficult and takes longer to understand and to develop 
ideas, then at each step the activity handling this case will take longer. Using 
synchronization each step takes as long as the most difficult case takes to resolve.  
 
In order to enhance the efficiency a task-driven approach can be used, so that when a 
learner finishes the current task s/he can perform her/his succeeding activity without 
having to wait. When there are unbalanced tasks this coordination mechanism can reduce 
the total learning time. Another possible coordination mechanism is to trigger an activity 
by an event indicating that all necessary resources are available (data-driven). For 
example, each learner is responsible for performing four activities: creating an initial 
report, commenting on two other reports, and writing a final report. Using this approach 
whenever an initial report written becomes available, the corresponding activity for 
commenting on it is triggered, even if the learner who will carry it out is still working on 
her/his initial report. 
   
2) Transfer: In group-based learning, an artifact is usually employed as a means of 
coordinating group interaction and constitutes a collaboratively produced knowledge 
object. In the use case, there are transfer dependencies between some activities. For 
example, artifacts such as initial reports and comments produced in an activity are 
transferred to other activities.  
 
The basic coordination mechanism for managing transfer dependencies is to capture the 
artifact produced in the activity and to present the captured artifact in other activities.  
 
3) Usability: In the use case, there are usability dependencies between activities. For 
example, an initial report of a case should transfer to an activity which has the aim of 
commenting on this report.  
 
As mentioned above, in e-learning processes, the objects to be transferred are information 
objects. The coordination mechanisms for managing usability dependencies should check 
whether the class of the artifacts, data type, size, and other constraints meet the 
requirements. 
 
Fit dependencies 
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In the use case each final report is a synthesis of ideas from all the learners, while the 
production of each report is split into four activities. The use case could be extended so 
that the three cases are specified as behaviorism, cognitivism, and constructivism, with 
the three reports being assembled into a general report about learning theories. In this 
extended case the activities of writing the three reports would have fit dependencies.  
 
A basic coordination mechanism for managing fit dependencies is to check whether the 
classes of the artifacts, data types, sizes, and other constraints are compatible. A basic 
coordination mechanism for managing decomposition dependencies between task and 
sub-task is also needed. 
 

Representation of coordination mechanisms in IMS LD 
 
In this section, we analyze whether IMS LD can represent the coordination mechanisms 
for managing various dependencies within group-based learning processes which we 
have identified above.  
 
There are two kinds of activities defined in IMS LD: learning activity and support 
activity. It is not necessary to distinguish them for our present purpose, and so we simply 
use the term activity. The notations representing resources in IMS LD are role, 
environment, learning object, and learning service. For the sake of clarity, we discuss 
these in turn for fit, flow, and sharing.  
 
Representation of Coordination Mechanisms to Manage Fit Dependencies 
 
IMS LD has no notation which explicitly represents artifacts, and so no computational 
coordination mechanism is available to check whether the components of an artifact fit 
together. In IMS LD, a general notation property can be used to represent a variety of 
concepts including artifacts created in the learning processes. Depending on its scope, an 
artifact can be defined as a global property or a local property (run property). Similarly, 
an artifact can be defined as a personal property, a role property, or a general property, 
depending on its owners. A property cannot represent complex, structured information 
objects because it can only have a primitive data type such as integer, real, string text, 
URL, file, time, and so on. Consequently IMS LD provides no computational mechanism 
for coordinating the assembly of components produced simultaneously in different 
activities. As shown in the use case, the merging work is performed without 
computational support. Of course, as a general process modeling language, IMS LD 
should not and cannot directly support any specific artifact. One possible solution is to 
use a file type suitable for the representation of structured information (e.g., XML files). 
If external learning services were integrated which checked and assembled components 
and handled specific artifacts, then the IMS LD engine could communicate with these 
mechanisms in order to manage the specific fit dependencies. This is a complicated 
technical issue, however, and so we do not discuss it in detail in this chapter. 
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Although IMS LD can only manage artifact decomposition dependencies indirectly, it 
provides several coordination mechanisms which can be used to directly manage task 
decomposition dependency. In IMS LD a learning process can be decomposed into plays, 
acts, and role-parts. Each role-part consists of a role and an activity or an activity-
structure that is recursively decomposable. All these notations can be used to represent a 
set of tasks with a variety of granularities as a hierarchical structure. However, the 
restriction to activity-structure in which all activities have to be performed by the same 
role makes it inconvenient to represent a sequence of activities performed, for example, 
by different roles in turn. If IMS LD had a construct corresponding to a role-part-
sequence, then it would be easier to represent a group-interaction sequence involving 
various roles.    
 
In IMS LD, a role can be decomposed into sub-roles at arbitrary levels. For each role, 
some attributes can be used to restrict the role, such as max-members, min-members, 
inclusive/exclusive, and so on. However, no constraint specifies how a role should be 
composed of sub-roles. As a result it is sometimes difficult to define the formation of a 
group when it is modeled using role notation. For example, if a group must be formed by 
three (two female and one male) learners with backgrounds in pedagogy, psychology and 
computer science respectively, it is difficult to represent such a constraint in IMS LD. As 
a consequence, no computational mechanism can be used to check whether the group has 
been correctly formed. We do not go into this in greater detail because there is no a 
simple method to resolve the issue, and in any event the case under discussion does not 
raise this particular problem.  
 
In order to provide clarify how to model group interaction in IMS LD without going into 
too much technical detail, we now introduce a restricted pseudo-code, based on IMS LD. 
Figure 3 illustrates some definitions of the structure of roles, properties representing 
artifacts, and activity decompositions. Figure 3a defines three learners: learner1, 
learner2, and learner3. The constraints for each role are that one and only one user can 
play a role, and a user cannot have more than one role in this process. The code shown in 
figure 3b specifies several properties InitialReport1, Comment1-2, Comment1-3, and 
FinalReport1, which represent artifacts produced by learner1. Figure 3c defines four 
activities performed by learner1. Each activity will be carried out in an associated 
environment. Note that the corresponding set of properties and activities relevant to 
learner2 and learner3 are omitted. 
 
    <learner create-new="not-allowed" identifier="learner1" match-persons="exclusively-in-roles" max-

persons="1" min-persons="1"> 

        <title>Learner1</title> 

    </learner> 
    <learner create-new="not-allowed" identifier="learner2" match-persons="exclusively-in-roles" max-

persons="1" min-persons="1"> 

        <title>Learner2</title> 

    </learner> 

    <learner create-new="not-allowed" identifier="learner3" match-persons="exclusively-in-roles" max-

persons="1" min-persons="1"> 

        <title>Learner3</title> 

    </learner> 

Figure 3a. the definitions of three roles.  
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<!— the definition of the property representing the initial report written by learner1 --> 

    <loc-property identifier="InitialReport1"> 

        <title>Initial Report1</title> 

    </loc-property> 

<!— the definition of the property representing the comment written by learner1 on the initial 

report2 written by learner2 --> 

    <loc-property identifier="Comment1-2"> 

        <title>Comment1-2</title> 

    </loc-property> 

<!— the definition of the property representing the comment written by learner1 on the initial 

report3 written by learner3 --> 

    <loc-property identifier="Comment1-3"> 

        <title>Comment1-3</title> 

    </loc-property> 

<!— the definition of the property representing the final report written by learner1 --> 

    <loc-property identifier="FinalReport1"> 

        <title>Final Report1</title> 

    </loc-property> 

Figure 3b. the definitions of properties relevant to learner1. 
 

<!—the definitions of an activity arranged for learner1 to write a case report --> 

<learning-activity identifier="LA-write-initial-report1"> 

    <title>Write Report1</title> 

    <environment-ref ref="ENV-for-report1"/> 

    <activity-description> 

        <title>Write Report</title> 

        <item identifier="ITEM-write-report1" identifierref="RESO-write-report1" /> 

    </activity-description> 

</learning-activity> 
<!—the definitions of an activity arranged for learner1 to comment on the InitialReport2 

written by learner2 --> 

<learning-activity identifier="LA-comment-1-2"> 

    <title>Learner1 comments on report2</title> 

    <environment-ref ref="ENV-for-report2"/> 

    <activity-description> 

        <title>Commenting</title> 

        <item identifier="ITEM-write-comment-1-2" identifierref="RESO-comment-1-2" /> 

    </activity-description> 

</learning-activity> 

<!—the definitions of an activity arranged for learner1 to comment on the InitialReport3 

written by learner3 --> 

<learning-activity identifier="LA-comment-1-3"> 

    <title>Learner1 comments on report3</title> 

    <environment-ref ref="ENV-for-report3"/> 

    <activity-description> 

        <title>Commenting</title> 

        <item identifier="ITEM-write-comment-1-3" identifierref="RESO-comment-1-3" /> 

    </activity-description> 

</learning-activity> 

<!—the definitions of an activity arranged for learner1 to write the FinalReport1 --> 

<learning-activity identifier="LA-write-final-report1"> 

    <title>Write Final Report1</title> 

    <environment-ref ref="ENV-for-report1"/> 

    <activity-description> 
        <title>Write Final Report</title> 

        <item identifier="ITEM-AD-write-final-report1" identifierref="RESO-write-final-report1" /> 

    </activity-description> 

</learning-activity> 

Figure 3c. the definitions of activities relevant to learner1. 
 

Figure 3. the definitions of roles, properties, activities. 
 
Representation of Coordination Mechanisms to Manage Flow Dependencies 
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Precedence: IMS LD provides several built-in mechanisms to manage the precedence 
dependencies, such as acts in a play and activity-structure with a sequence type. Note that 
such sequences are weak coordination mechanisms, because the sequences are no more 
than suggestions. The users can work following the sequences or vary them, because all 
acts and activities are accessible at any time. They can even access completed activities. 
This has advantages, because it provides flexibility for the users to carry out tasks as they 
wish. It is sometimes difficult to judge if an activity has really terminated, especially in 
learning processes. For example, when learners work on reading and understanding an 
article and after a period of time they think the task has been finished, they terminate the 
activity and move on to the next one. However, they may recognize that they did not fully 
understand the article and go back to read it again. Weak sequence control mechanisms 
make it possible for users to carry out such tasks flexibly and handle exceptions 
manually. On the other hand, users have to pay attention to coordination problems, to a 
greater or lesser extent. Moreover, such freedom for users to decide the actual work 
sequence may create problems, especially in situations where a strictly defined route is 
required. Fortunately, IMS LD provides additional mechanisms to support strong controls 
for sequence of acts and sequence of activities. The following paragraphs will present 
how weak and strong sequencing mechanisms can be represented in IMS LD.  
 
As shown in Figure 4, the work procedure of this group-based learning is modeled as four 
acts titled Case Reporting, Criticizing 1, Criticizing 1, and Finalizing reports. Each act 
represents a stage, in which who is responsible for doing which activity is specified as a 
role-part. In the first act titled Case Reporting, for example, learner1 is assigned to 
perform the activity titled Write report1, which is defined in figure 3 using identifier LA-
write-initial-report1. Using a weak sequencing mechanism, we can represent four acts in 
sequence without control as shown in figure 3. However, it is possible to represent a 
strong sequencing mechanism in IMS LD in a way to specify the completion condition 
for an act. One such a condition is that an act will be terminated automatically by the 
system when all role-parts in the act are completed. For example, the first act completes 
when all learners finish the activities to create their initial reports, and then the activities 
in the succeeding act titled Criticizing 1 become accessible.  
 
<!—the definitions of four acts in a play --> 

<play identifier="PL-work-procedure"> 

    <title>work-procedure</title> 

    <!—the definitions of the first act--> 

    <act identifier="ACT-case-reporting"> 

        <title>Case Reporting</title> 

        <role-part identifier="RP-write-report1"> 

            <title>learner1 writes report1</title> 

            <role-ref ref="learner1"/> 

            <learning-activity-ref ref="LA-write-initial-report1"/> 

        </role-part> 

        <role-part identifier="RP-write-report2"> 
            <title>learner2 writes report2</title> 

            <role-ref ref="learner2"/> 

            <learning-activity-ref ref="LA-write-initial-report2"/> 

        </role-part> 

        <role-part identifier="RP-write-report3"> 

            <title>learner3 writes report3</title> 

            <role-ref ref="learner3"/> 
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            <learning-activity-ref ref="LA-write-initial-report3"/> 

        </role-part> 

    </act> 

    <!—the definitions of the second act --> 

    <act identifier="ACT-criticizing1"> 

        <title>Criticizing 1</title> 

        <role-part identifier="RP-comment-1-3"> 
            <title>learner1 comments on report3</title> 

            <role-ref ref="learner1"/> 

            <learning-activity-ref ref="LA-comment-1-3"/> 

        </role-part> 

        <role-part identifier="RP-comment-2-1"> 

            <title>learner2 comments on report1</title> 

            <role-ref ref="learner2"/> 

            <learning-activity-ref ref="LA-comment-2-1"/> 

        </role-part> 

        <role-part identifier="RP-comment-3-2"> 

            <title>learner3 comments on report2</title> 

            <role-ref ref="learner3"/> 
            <learning-activity-ref ref="LA-comment-3-2"/> 

        </role-part> 

    </act> 

    <!—the definitions of the third act --> 

    <act identifier="ACT-criticizing2"> 

        <title>Criticizing 2</title> 

        <role-part identifier="RP-comment-1-2"> 

            <title>learner1 comments on report2</title> 

            <role-ref ref="learner1"/> 

            <learning-activity-ref ref="LA-comment-1-2"/> 

        </role-part> 

        <role-part identifier="RP-comment-2-3"> 

            <title>learner2 comments on report3</title> 

            <role-ref ref="learner2"/> 

            <learning-activity-ref ref="LA-comment-2-3"/> 

        </role-part> 

        <role-part identifier="RP-comment-3-1"> 

            <title>learner3 comments on report1</title> 

            <role-ref ref="learner3"/> 

            <learning-activity-ref ref="LA-comment-3-1"/> 

        </role-part> 

    </act> 

    <!—the definitions of the final act --> 

    <act identifier="ACT-finalizing-report"> 

        <title>Finalizing reports</title> 
        <role-part identifier="RP-write-final-report1"> 

            <title>learner1 writes the final report</title> 

            <role-ref ref="learner1"/> 

            <learning-activity-ref ref="LA-write-final-report1"/> 

        </role-part> 

        <role-part identifier="RP-write-final-report2"> 

            <title>learner2 writes the final report</title> 

            <role-ref ref="learner2"/> 

            <learning-activity-ref ref="LA-write-final-report2"/> 

        </role-part> 

        <role-part identifier="RP-write-final-report3"> 

            <title>learner3 writes the final report</title> 

            <role-ref ref="learner3"/> 

            <learning-activity-ref ref="LA-write-final-report3"/> 

        </role-part> 

    </act> 

</play> 

Figure 4. the definition of a sequence of acts in a play. 
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In order to support strong precedence dependencies between activities, we can represent 
the sequence by using conditions to set the visibility of activities. Figure 5 shows an 
example which supports strong precedence dependency between two activities using a 
condition. As shown in figure 5, if and only if the first activity, which identifier is LA-
write-initial-report1, is completed, the second activity, which identifier is LA-comment-1-
3, becomes accessible. Meanwhile, the first activity becomes inaccessible unless it is 
specifically set to be visible in other conditions.  
 
<if> 

    <complete> 

        <learning-activity-ref ref="LA-write-initial-report1"/> 
    </complete> 

</if> 

<then> 

    <hide> 

        <learning-activity-ref ref="LA-write-initial-report1"/> 

    </hide> 

    <show> 

        <learning-activity-ref ref="LA-comment-1-3"/> 

    </show> 

</then> 

<else> 

    <hide> 

        <learning-activity-ref ref="LA-comment-1-3"/> 

    </hide> 

</else> 

Figure 5. the definition of a condition managing a strong precedence dependency 
between two activities. 

 
The coordination mechanisms discussed above for managing precedence dependencies 
are task-driven mechanisms. In IMS LD conditions can also be used to represent data-
driven mechanisms. For example, if learner1 submits his/her initial case report, learner2 
can start to perform the activity (its identifier is LA-comment-2-1). Otherwise, this 
activity will be kept hidden from its actor. Figure 6 illustrates this example. 
 
<if> 

    <not> 

        <no-value> 

            <property-ref ref="InitialReport1"/> 

        </no-value> 

    </not> 

</if> 

<then> 

    <show> 

        <learning-activity-ref ref="LA-comment-2-1"/> 
    </show> 

</then> 

<else> 

    <hide> 

        <learning-activity-ref ref="LA-comment-2-1"/> 

    </hide> 

</else> 

Figure 6. the definition of a condition representing a data-driven coordination 
mechanism. 
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 Transfer: IMS LD has no notation which explicitly represents the transference of an 
artifact produced in an activity and consumed by other activities. However, the 
transference of an artifact can be represented indirectly. Figure 7 shows an example 
which transfers an initial report created by learner1 in the activity Write Report1 to the 
activity Learner2 comments on report1. Figure 7a shows the definition of the first 
activity Write Report1, in which learner1 writes initial report1 using the information item 
ITEM-write-report1 that refers to a resource RESO-write-report1. Figure 7b shows the 
content of resource file RESO-write-report1, in which a global element set-property is 
used to input the initial report1 captured by the property InitialReport1. Figure 7c defines 
the second activity titled Learner2 comments on report1 which is associated with the 
environment ENV-for-report1, defined in figure 7d. This environment contains a learning 
object LO-information-about-report1, which has an information item ITEM-report1. This 
item refers to the resource RESO-presentation-of-report1 and it will become visible when 
the InitialReport1 is made available. Figure 7e shows the content of resource file RESO-
presentation-of-report1, in which a global element view-property is used to view the 
initial report1. In fact the rotation of artifacts is implemented through rotationally binding 
environments with activities in the original design.  
 
<learning-activity identifier="LA-write-initial-report1"> 

    <title>Write Report1</title> 

    <environment-ref ref="ENV-for-report1"/> 

    <activity-description> 

        <title>Write Report</title> 

        <item identifier="ITEM-write-report1" identifierref="RESO-write-report1" /> 

    </activity-description> 

</learning-activity> 

Figure 7a. The definition of the activity, in which learner1 creates the initial report1. 
 

<p>Please write the initial report.</p> 

<ld:set-property ref="InitialReport1" property-of="self" /> 

Figure 7b. the content of the resource file “RESO-write-report1”. 
 

<learning-activity identifier="LA-comment-2-1"> 

    <title>Learner2 comments on report1</title> 

    <environment-ref ref="ENV-for-report1"/> 

    <activity-description> 

        <title>Commenting</title> 

        <item identifier="ITEM-write-comment-2-1" identifierref="RESO-comment-2-1" /> 

    </activity-description> 

</learning-activity> 

Figure 7c. The definition of the activity that is associated with an environment. 
 

<environment identifier="ENV-for-report1"> 

    <title>working environment for report1</title> 

    …… 

    <learning-object identifier="LO-information-about-report1"> 

        …… 

        <item identifier="ITEM-report1" identifierref="RESO-presentation-of-report1" isvisible="false"> 

            <title>report1</title> 

        </item> 

        ...... 

    </learning-object> 

</environment> 

Figure 7d. The definition of the environment storing the initial report1. 
 

<h3>Initial Report 1:</h3> 
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<ld:view-property ref="InitialReport1" view="value"/> 

Figure 7e. the content of the resource file “RESO-presentation-of-report1”. 
  

Figure 7. Transference of an artifact via an environment. 
 
Another solution is to present all imported artifacts in the same information item of the 
activity which consumes the artifacts. Rather than using an environment, the artifact is 
transferred by means of the activity-descriptions of the activities which produce and 
consume the artifact. Because of the limited space available here we omit the code 
illustrating this approach.  
 
Usability: as mentioned above, in IMS LD a property can be used to represent artifacts. 
Because a property in IMS LD has a primitive data type such as integer, string, duration, 
etc. the coordination mechanism for managing usability dependency is simply to check 
the data type and constraints of the property. In this use case, all properties should be 
defined as type text. 
 
Representation of Coordination Mechanisms to Manage Sharing Dependencies 
 
In IMS LD task allocation is represented as a role-part. As shown in figure 4, a set of 
role-parts are defined to represent three learners who are assigned to perform different 
activities. These activities share the labor resources at different times.  
 
We can represent another coordination mechanism for managing sharing dependencies in 
IMS LD: three sequential activities in each of which three learners work together. Each 
activity is designed as a collaborative activity leading to the production of a report. Each 
activity has an environment containing certain learning services such as chat, forum, 
shared text editor, shared whiteboard, audio/video conferencing, and so on. As mentioned 
before, in a fluid collaboration learners can use these collaborative tools to coordinate 
their actions at a finer-grained level and produce shared artifacts. Because the code 
representing this coordination mechanism is extensive it is not included here. 
 
IMS LD provides static coordination mechanisms for managing sharing dependencies, 
but it is difficult to support dynamic coordination mechanisms, for example, the “first 
come, first served” mechanism. We can investigate how to model an alternative design, 
in which tasks are assigned to roles according to the time sequence that users register to 
the execution. Using this approach it is unpredictable at design time who will come first 
in an actual execution, unlike a pre-defined allocation of tasks as role-parts described in 
figure 4. Because the XML code to implement this mechanism is too extensive we 
describe and explain it using pseudo-code as shown in figure 8.  
 
In order to control the execution of activities at the right time, data-driven mechanisms 
(similar to the code shown in figure 6) are needed as a complete coordination mechanism. 
Figure 8a declares three roles: learner1, learner2, and learner3 and fifteen activities: 
three registering and twelve activities illustrated in figure 1. Figure 8b declares three 
activity-structures and each activity-structure consists of four sequential activities: 
writing the initial report, commenting on the reports of two peers, and creating the final 
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report. Figure 8c defines three properties representing the time when learners finish the 
registration. Figure 8d specifies how the values of three properties are assigned. Because 
three learners may complete registration at different points of time, the current time 
assigned by the system will have different values for different learners. In figure 8e, the 
first statement specifies that if learner1 and learner2 have registered and learner3 has not 
finished registration, and learner1 registered before learner2 did (or they registered at the 
same time) then learner1 will be assigned to perform activity-structure1, learner2 will be 
responsible for doing activity-structure2, and activity-structure3 will be carried out by 
learner3. The following five statements specify the allocation tasks in the other five 
situations, in which three learners finish the registrations in different time sequences. 
 
<!— the three roles and twelve activities are defined as those defined in the original design. --> 

Role: learner1, learner2, learner3; 

Activity: registering1, registering2, registering3, reporting1, ......, revising3; 

Figure 8a. the declaration of  three roles and twelve activities. 
 

<!— the four activities performed by the same learner are defined as a sequence activity-

structure. Therefore, three activity-structures are defined --> 

Activity-structure: activity-structure1 := reporting1 + criticizing1-3 + criticizing1-2 + revising1; 

              activity-structure2 := reporting2 + criticizing2-1 + criticizing2-3 + revising2; 

              activity-structure3 := reporting3 + criticizing3-2 + criticizing3-1 + revising3; 

Figure 8b. three properties are defined for representing when each learner registers.  
 

<!— three properties are defined for representing when each learner registers --> 

Property: T1 := 0, T2 := 0, T3 := 0; 

Figure 8c. when a learner has finished registration, the registration time will be 
recorded. 

 
<!— when a learner has finished registration, the registration time will be recorded --> 

If (registering1 complete) then T1 := current time; 

If (registering2 complete) then T2 := current time; 

If (registering3 complete) then T3 := current time; 

Figure 8d. according to the sequence in which three learners register, the activity 
structures will be assign to the learners in the way first-come-first-served. 

 
<!— according to the sequence in which three learners register, the activity structures will be 

assign to the learners in the way first-come-first-served --> 

If ((T1 is not 0) and (T2 is not 0) and (T3 is 0) and (T1<=T2)) then notification (learner1 activity-

structure1), notification (learner2 activity-structure2), notification (learner3 activity-structure3); 

 

If ((T1 is not 0) and (T2 is not 0) and (T3 is 0) and (T1>T2)) then notification (learner1 activity-

structure2), notification (learner2 activity-structure1), notification (learner3 activity-structure3); 

 

If ((T1 is not 0) and (T2 is 0) and (T3 is not 0) and (T1<=T3)) then notification (learner1 activity-

structure1), notification (learner2 activity-structure3), notification (learner3 activity-structure2); 

 

If ((T1 is not 0) and (T2 is 0) and (T3 is not 0) and (T1>T3)) then notification (learner1 activity-

structure2), notification (learner2 activity-structure3), notification (learner3 activity-structure1); 

 
If ((T1 is 0) and (T2 is not 0) and (T3 is not 0) and (T2<=T3)) then notification (learner1 activity-

structure3), notification (learner2 activity-structure1), notification (learner3 activity-structure2); 

 

If ((T1 is 0) and (T2 is not 0) and (T3 is not 0) and (T2>T3)) then notification (learner1 activity-

structure3), notification (learner2 activity-structure2), notification (learner3 activity-structure1); 

Figure 8e. notifications are used to allocate tasks dynamically.  
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Figure 8. an example of dynamic coordination mechanism.  

 
If notification is not used, it is necessary to enumerate all possible role-parts in the same 
act (the total number of turples is the combination of the number of roles and the number 
of activities, 3*12=36 in this use case), and set them to invisible. After the rotation 
pattern is determined, 12 activities are set to visible to make 12 associated role-parts 
active. If the number of users and cases increases, the complexities of the process model 
increase accordingly. The difficulties in representing dynamic coordination mechanisms 
are ascribed to a) no identifier data type and no collection data type specified for the 
property and b) insufficient operations such as ‘find a person whose personal property 
meets a condition’, ‘add a person as an active role’, ‘add a role-part within an act’, and so 
on. 
 

FUTURE TRENDS: THE REUSE OF COORDINATION 
MECHANISMS  
 
As we have seen, representing coordination mechanisms is a time-consuming and error-
prone task. It is necessary to explore whether coordination mechanisms can be 
represented at a more abstract level than XML, that is to say at a higher level than the 
executable code. It is expected that the abstract representation could be more intuitively 
understood and used by practitioners (e.g., instruction designers and teachers) who do not 
have sophisticated technical knowledge and skills. The system would then automatically 
transform such an abstract representation into XML code. This process provides a means 
whereby coordination mechanisms could be reused without requiring users to understand 
how the executable code works. In this section we discuss issues related to such reuse. 

Identifying common dependencies and the mechanisms for 
managing them  
 
According to coordination theory, dependencies and the mechanisms for managing them 
are general, which means that a given dependency and a mechanism to manage it will be 
found in a variety of settings. For example, a common coordination problem appears 
when certain activities require specialized competences, thus constraining which persons 
can work on them. This kind of dependency arises in many situations and there is a 
generic set of coordination mechanisms (managing this dependency) which appear over 
and over in different processes. Coordination theory also describes how several 
coordination mechanisms can often be used to manage a dependency. For example, 
mechanisms to manage sharing a dependency between roles and activities can include 
qualification-checking, priority-comparing, first-come-first-served, and so on. Because of 
this it is valuable to identify and study common dependencies and their related 
coordination mechanisms, in order to facilitate reuse. 
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Reusing computational coordination mechanisms 
 
Once the dependencies and corresponding coordination mechanisms have been identified, 
the next step is to represent the coordination mechanisms in IMS LD. As we have seen, 
the representation of some coordination mechanisms in IMS LD is a very complex task, 
even for users with sound technical knowledge. It is therefore desirable to make the 
representation of coordination mechanisms reusable. Through an analysis of the IMS LD 
manifest file and resource files, we have found that some parts of code are static and 
some parts of code are replaceable and related to particular elements. We can therefore 
store a fragment of code as an executable component in a library of an IMS LD authoring 
environment. We can refer to this using an abstract representation, which can have 
parameters with values which are assigned by the user in design-time. For example, if a 
user wants to model the transference of a document from one activity to another, s/he can 
use an abstract representation: transfer a document (parameter1) from an activity 
(parameter2) to another activity (parameter3). The constraints for the parameters are that 
parameter1 must be a property reference representing a document to be transferred, 
parameter2 and parameter3 must be activity references. Once the user has applied a 
coordination mechanism (by choosing the corresponding abstract representation and 
assigning the values to parameters) the system automatically maps the abstract 
representation to the component.  
 
In the same way, more complex coordination mechanisms needed in the ‘Knowledge 
Convergence Script’ can be represented as well. For instance, the abstract representation: 
distribute documents (document1, document2, document3) within activities (activity1, 
activity2, activity3) indicates the one-to-one distribution of three documents between 
three activities. Similarly the abstract representation: rotate documents (document1, 
document2, document3) from activities (activity1, activity2, activity3) to succeeding 
activities (activity4, activity5, activity6) means to transfer three documents produced in 
three activities to three succeeding activities as follows:  

• transferring document1 produced in activity1 to activity5 
• transferring document2 produced in activity2 to activity6 
• transferring document3 produced in activity3 to activity4.  

It is clear that a high-level representation of coordination mechanisms of this kind is 
much easier to understand and use than a concrete representation codified using IMS LD 
and expressed in XML (see figure 5), or using a programming language (e.g., JAVA). 
Currently, we are working on developing a high-level modeling language and mapping 
algorithms to transform a group-based learning design represented in the high-level 
modeling language to an executable model represented in IMS LD. This work is technical 
in nature, and so we do not discuss the details in this chapter. 
 

CONCLUSIONS 
 
This research is a theory-based analysis. First, we briefly introduce group-based learning 
and coordination theory. Using coordination theory as an analytical framework we 
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analyze dependencies and possible coordination mechanisms for managing them in 
group-based learning. We identify a variety of dependencies and some related 
coordination mechanisms through the investigation of a use case and some of its variants. 
We then analyze the expressiveness of IMS LD in representing the identified 
coordination mechanisms. We conclude that in supporting group interaction it is possible 
to represent almost all basic coordination mechanisms in IMS LD. In particular, IMS LD 
provides sufficient mechanisms to manage: task and role decomposition dependencies, 
weak and strong precedence dependencies, and static resource sharing dependencies. 
However, we have also recognized that the representation of certain coordination 
mechanisms presents some challenges. Specifically it is complex to represent: the 
coordination of the assembly of components, transference of artifacts in some 
complicated distribution patterns, complicated group formation and group dynamics, and 
allocation of tasks and resources using some dynamic coordination mechanisms. The 
reasons for these difficulties are briefly analyzed and possible solutions are also 
discussed. 
 
Based on this analysis, we have briefly explored the feasibility of reusing coordination 
mechanisms in modeling group-based learning processes. In comparison with IMS LD 
code in the form of XML, a representation of common coordination mechanisms at a 
high-level of abstraction may be more intuitively understood and used by practitioners. 
We are currently identifying and codifying generic coordination mechanisms which will 
be archived as a library in the IMS LD authoring environment for reuse on future 
occasions. We will implement an advanced IMS LD authoring environment in which the 
user can design group-based learning processes using the abstract representation. The 
system will then automatically generate IMS LD code based on abstract representations 
and the executable components in the library. 
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Definitions of Key Words 
 
Group-based learning is an instructional strategy in which a small group of learners work 
together in a series of activities in order to achieve a shared learning objective.  
 
Coordination is the process of managing dependencies between activities (Malone and 
Crowston, 1994). 
 
A coordination mechanism refers to additional activities that can be used to manage 
dependencies (Malone and Crowston 1994).  
 
IMS LD is an open e-learning technical standard used to model teaching and learning 
processes. 
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Learning design is a description of a series of activities aiming at achieving learning 
objectives. In this chapter the term learning design normally refers to the description of 
the learning process in IMS LD 
 
CSCL script is a formal description of an online collaborative learning design. 
 


