Efficient Dynamic Operator Placement in a
Locally Distributed Continuous Query System

Yongluan Zhou, Beng Chin Ooi, Kian-Lee Tan, and Ji Wu

National University of Singapore

Abstract. In a distributed processing environment, the static place-
ment of query operators may result in unsatisfactory system performance
due to unpredictable factors such as changes of servers’ load, data ar-
rival rates, etc. The problem is exacerbated for continuous (and long
running) monitoring queries over data streams as any suboptimal place-
ment will affect the system for a very long time. In this paper, we for-
malize and analyze the operator placement problem in the context of a
locally distributed continuous query system. We also propose a solution,
that is asynchronous and local, to dynamically manage the load across
the system nodes. Essentially, during runtime, we migrate query opera-
tors/fragments from overloaded nodes to lightly loaded ones to achieve
better performance. Heuristics are also proposed to maintain good data
flow locality. Results of a performance study shows the effectiveness of
our technique.

1 Introduction

In many emerging monitoring applications (e.g. network management, sensor
networks, financial monitoring etc.), data occurs naturally in the form of active
continuous data streams. These applications typically require the processing of
large volumes of data in a responsive manner. In order to scale up the volumes
of streams and queries that can be processed, a distributed stream processing
system is inevitable. However, as the properties of data streams (e.g., arrival
rates) and the processing servers’ load are hard to predict, the initial place-
ment of query operators may result in unsatisfactory system performance. The
problem is exacerbated by multiple continuous queries that run long enough to
experience the changes in the environment parameters. As such, any suboptimal
performance will persist for a long time.

Clearly, a distributed stream processing system must adapt to changes in
environment parameters and servers’ load. We believe a dynamic load manage-
ment scheme is indispensable for the system to be scalable. In particular, we
expect aggressive methods such as query operator migration during runtime to
bring long term benefit (especially for long running continuous queries) even
though they may incur some short term overhead. The necessity of dynamic
load management for a scalable distributed stream processing system has also
been identified in previous work [7,11]. However, to date few complete and prac-
tical solutions have been proposed for this problem. In this paper, we offer our
solution to the problem. More specifically we make the following contributions:

— We formally define the metric Performance Ratio (PR) to measure the
relative performance of each query and the objective for the whole system (in-
formally, we want to minimize the worst relative performance among all queries).

— By building a new cost model, we identify the heuristics that can be used
to approach the objective. More specifically, the heuristics (1) balance the load
among all the processing nodes; (2) restrict the number of nodes that the opera-
tors of a query can be distributed to; (3) and minimize the total communication
cost under conditions (1) and (2).

— The design objective of a platform independent (independent on the un-
derlying stream processing engines) and non-intrusive load management scheme
distinguishes our approach from existing ones (e.g. [14]). The proposed tech-
niques are meant to allow the leveraging of existing well developed single-site
stream processing engines without much modifications. This is reflected through-
out the design of the whole system, especially the load selection strategy.

— To support heuristic (1), we focus on new architectural design that allows
us to tap on existing well studied load balancing algorithms instead of proposing
new ones. The architectural design includes constructing the load migration unit,
load management partner selection, online collection of load statistics, selection
of operators to be migrated, operator migration mechanisms.

— To reduce the overhead of employing heuristic (2), unlike existing propos-
als [7,11,14] where load (re)distribution is done at the operator level, we adopt
the notion of query fragments (a subset of operators) as the finest migration
unit. It also helps reduce the overhead of making load balancing decisions.

— To employ heuristic (3), we propose the data flow aware load selection
strategy to select the query fragments to be migrated. It effectively maintains
data flow locality so that the communication cost is minimized.

— We conducted an extensive simulation study to evaluate the proposed
strategy. Results show that the proposed strategy can effectively adapt to the
runtime changes of the system to approach our objective.

The rest of this paper is organized as follows. Section 2 formulates the prob-
lem and presents our analysis. We present the details of our system design in
Section 3. Experiment results are presented in Section 4. Finally Section 5 con-
cludes the paper.

2 Problem Formulation and Analysis

In this section, we present the system model and define the metric to measure the
system performance, followed by a formal presentation of the problem statement.
Finally, we analyze the problem by building a new cost model and present the
proposed heuristics.

2.1 Problem Formulation

Our system consists of a set of geographically distributed data stream sources
S = {s1, 82, -, 85/} and a set of distributed processing nodes N = {ny,na,---,n|y}

interconnected by a local network. As transfer cost from the sources to the
processing nodes is much higher than the one among the processing nodes,
each source stream is routed to multiple processing nodes through a delega-
tion node. We denote the delegation scheme as (2. Users impose a set of con-
tinuous queries @ = {q1,q2,---,qjo|} over the system. The set of operations
Or = {01,02,---,0/0,|} of query g might be distributed to a set of nodes
Ny C N for processing. The operators we consider include filters, window joins
and window aggregations. In addition, we denote the set of streams that a query
qr, operates on as Sf.

Like previous work on continuous processing of streams [5,11], we are con-
cerned about the delay of resulting data items, which is also one of the main
concerns of end users in terms of system performance. More formally, if the eval-
uation of query g on a source tuple tuple; from stream s; generates one or more
result tuples, then the delay of tuple; for gi is defined as dfc = tout — tin, Where
tin is the time that tuple; arrived at the system and t,,; is the time that the
result tuple is generated. If there are more than one result tuples, then t,,; is
the time that the last one is generated. A similar metric was used in [11]. We
focus on this metric because users in a continuous query system typically make
decisions based on the results arrived so far. Shorter delay of result tuples would
enable a user to make more timely decisions.

At a closer look, d% includes the time used in evaluating the query (denoted as
p,l,ﬂ), the time waiting for processing as well as the time it is transferred over the
network connections. For a specific processing model and a particular query gy,
we regard the evaluation time pl as the inherent complexity of gx. Since different
queries may have different inherent complexities, the value of dfc cannot reflect
correctly the relative performance of different queries. For example, a query may
experience a long delay because its evaluation time is long. We cannot conclude
that the relative performance of this query is worse than another one which has a
shorter evaluation time. However, in a multi-query and multi-user environment,
we wish to tell the relative performance of different queries. Hence we propose
a new metric Performance Ratio (PR) to incorporate the inherent complexity
of a query. Formally, the PRl of the processing of tuple; for ¢ is defined as

PR. = d" . And the performance ratio of ¢y is defined as PRj, = maxs,es, PRk

PRy, reﬂects the relative performance of ;. Our objective is to minimize the
worst relative performance among all the queries.

The formal problem statement is as follows: Given a set of queries Q, a set of
processing nodes N, a set of data stream sources S and a delegation scheme (2,
according to the change of system state, dynamically distribute the operators of
each query to the |N| processing nodes so that the mazimum performance ratio
PRyaz = maxi<p<|q PRy is minimized.

2.2 Problem Analysis.

In this section we develop a cost model to estimate the values of déc and pi.
Note that our cost model is meant to be simple for us to figure out the main

Fig. 1. An example query plan

factors that affect these values and to allow us to analyze the problem complexity.
Finding that the problem is NP-hard, we design some heuristics to help solve
the problem.

Cost Model. In our cost model we adopt the following simplifications and
assumptions:

1. Operators of each query compose a separate processing tree. They are
grouped into query fragments and distributed to the processing nodes. Figure 1
shows an example processing tree for a query whose operators are grouped into
two query fragments and distributed to two nodes: n; and ns. Tuples arrived at
each node are processed in a FIFO manner. Only when an input tuple! is fully
processed would a new input tuple be processed. The cost of delivering the final
results to the users is not considered.

2. For an operator oj, we assume its per-tuple evaluation time t/; is indepen-
dent of its location. And we define its average per-tuple selectivity sel; as the
average number of tuples that would be generated for a given input tuple.

3. Workload p; of a node n; is defined as the fraction of time that the node
is busy.

Given these assumptions, we now look at how to estimate p% and dfg. In
a particular execution plan of a query, for source tuples from each querying
source, there is a path composed by some operators and possibly some network
connections. For example, in Figure 1, the path for source tuples from s; consists
of 01, 02, 05 and the connection between n; and no, while the path for those
from so comprises o3, 04 and o5. Hence, roughly speaking, the pfc and dfc of a
source tuple are respectively equal to the total processing time of the operators
in its path and the total time that the tuple stays in its path. In the following
paragraphs we will compute them one by one.

For query ¢, assume the path for source tuples from s; comprises a set Ofc
of operators and some network connections. Furthermore, let Oi; be distributed
to a set N,é of nodes and Ofm C OfC be the subset of operators of Off assigned to
node n; (where n; € N, ,é) Let the average per-tuple evaluation time of operator
o, € O} be t; and its average per-tuple selectivity be sel;. Without loss of
generality, assume o, is processed before o;, ,. Note that only those source
tuples that would be output as result tuple(s) are counted in our metric (hence,
each operator’s selectivity on these particular tuples is at least 1). Assume tuple,

1 A tuple here could be a batch of individual tuples in a batch processing mode.

from s; is such a tuple, then the average processing time of o, incurred by tuple;
is t; =t [T;-} max(sely, 1). Hence we have

ph= > t (1)

o1, GOL

In our model every processing node is a queueing system. From queueing
theories, in all solvable single task queueing systems, the time that a data item
spends in a system can be calculated as t = g(p) * t5, where t4 is the processing
time of a data item and g(p) > 1 is a monotonically increasing concave function
of the system’s workload p. The exact form of g(p) depends on the type of
system, e.g. g(p) = ﬁ in an M/M/1 system.

This inspires us to model the delay of tuple; as

dy= (D (flp)x D ;) +texm, (2)

n;€N} 01, €0} ;

where t. is the communication delay of a tuple and m is the number of times
that a tuple is transferred over the network. f(p;) is a monotonically increasing
concave function. Note that f(p;) is different from g(p) mentioned above and
may have a much higher value than ¢g(p). That is because there are multiple
tasks running on each node. We assume f(p;) is identical for all nodes. Hence
the first term of the right-hand side of Equation (2) summarizes the delay in
the processing nodes while the second term summarizes the delay caused by the
communications.
Based on Equations (2.1), (1) and (2), we have

PR! = PPR! + CPR}, (3)
where
> (fle)x X ty)
I ’niENli OUEOLJ
PPR;, = S 1, , (4)
J
ozjeOg9
and .
CPR, = <2 5
>t)
ozjeOfC

We call PPR%€ the processing performance ratio (PPR) and CPng the commu-
nication performance ratio (CPR). Analogously, PPRj, = maxg,cs, PPRL and
CPRy, = maxg,es, CPRL.

Problem Complexity. Given the cost model, let us examine the complexity
of the problem. We can observe that the total number of possible allocation
schemes is | N/l where O = Ui<k<|q| Ok- Even worse, we can derive that the

problem is actually NP-hard. To see this let us first ignore the communication
cost and only consider minimizing PP Ryq: = maxy<p<|q| PPRy. It is easy to
see from Equation (4) that PPR! is a weighted sum of the f(p;) values, where
the weight for f(p;) is the fraction of evaluation time p} allocated to node n;.
Assume we can migrate the load between nodes in the finest granularity. Then
we have the following observation.

Observation 1 To minimize PPR,4., PPRy is equal for all queries and p; is
equal for all nodes. O

The intuition behind it is when PPRy of a query g is higher than the others,
we can always allocate more resources to g (i.e. reducing the workload of some
of the processing nodes for g, by load migration to the other nodes) so that
PPRy, is still the largest but is reduced. When the load is balanced then PPRy
equal to f(p) for all queries, where p is the uniform workload of all nodes.
However, we cannot migrate the load in the finest granularity in practice and
hence the best plan is to minimize the difference of loads among all the nodes.
By restricting our problem to ignore the communication cost, it is equivalent to
a MULTIPROCESSOR SCHEDULING problem which is NP-hard. Hence our
problem is NP-hard.

Heuristics. In view of the complexity of the problem, we opt to designing
heuristics instead of finding an optimal algorithm. From the estimation equation
d., we know that the extra delay is caused by the communication and the work-
load of the system. Hence, we adopt the following heuristics. (1) Dynamically
balance the workload of the processing nodes. This heuristic is inspired by Ob-
servation 1. (2) Distribute operators of a query to a restricted number of nodes
so that communication overhead of a query is limited. We call the maximum of
this number as the distribution limit of that query. Note that always distributing
all the operators of every query to a single node is impractical, because it would
incur excessive data flow over the network.(3) Minimize the communication cost
under conditions (1) and (2). In short, we have to design a dynamic load bal-
ancing scheme where the operations of each query should not be distributed to
too many nodes and the total communication traffic is minimized.

Besides employing the heuristics stated above, the scheme should also satisfy
the following objectives in the perspective of system design:

1. It is fast and scalable. Because dynamic re-balancing could happen fre-
quently at runtime, the overhead of making re-balancing decisions should be
kept low. Furthermore, a distributed scheme is preferred to enhance scalability
and avoid bottleneck.

2. It does not rely on any specific processing model. There are different single-
node processing models that are currently under development such as Tele-
graphCQ [6], Aurora [4] and STREAM [1]. Our system is not restricted to any
processing model because it separates the stream processing engine in each node
from the distributed processing details. Queries are compiled into logical query
plans which consist of logical operators. The logical operators are distributed

to the processing nodes by our placement scheme. Then the logical operators
would be mapped into physical operators by the stream processing engine for
processing. Different engines under different processing models could map a log-
ical operator into a different physical operator.

2.3 Related Work

Distributed continuous query systems attracted much research attention in the
recent years. The necessity of dynamic load management in distributed stream
processing has been identified in several published references e.g. [7,11]. However,
the authors did not propose any complete and practical strategies. In Flux [9],
a dynamic load balancing strategy for the horizontal (or intra-operator) par-
allelism was employed. While the mechanism was developed in the context of
continuous queries, a centralized synchronous controller is used to collect work-
load information and to make load balancing decisions. Our work, on the other
hand, takes a complimentary approach by focusing on allocation of operators in
the context of vertical (or pipelined) parallelism. Furthermore, our approach is
decentralized and asynchronous. More recently, Borealis system [14] also adopted
a centralized load distribution technique in the context of vertical parallel pro-
cessing. An innovative load balancing approach is presented which considers the
time correlations between the operators. On the contrary, our work does not
focus on proposing new load balancing algorithms.

Furthermore, the problems of the above two pieces of work bear a few im-
portant differences from ours. First, in their approach, stream delegation is not
employed. Hence it is possible that some sources have to communicate with
multiple processing nodes or some processing nodes may have to collect streams
from a lot of sources. Second, the network resources are assumed to be abun-
dant and hence communication cost is ignored in their techniques. How to take
the communication cost in account is still unclear. Third, without considering
the delegation scheme and the communication cost, the problem is only a par-
titioning problem which partitions the operators into balanced partitions. The
processing nodes are identical in terms of partition allocation. However, our
problem is essentially an assignment problem as assigning query operators to
different nodes would have different communication cost for a given delegation
scheme.

On the other hand, [3,8] focused on minimizing communication cost but ig-
nores load balancing. [10] studied the static operator placement in a hierarchical
stream acquisition architecture, which is much different from our system archi-
tecture. Load balancing is also ignored in this piece of work. [15] proposed an
adaptive scheme disseminate stream data to the distributed stream processors
without considering operator placement.

3 System Design

In our dynamic operator placement scheme, we adopt a local load balancing
strategy. Each node would select its load management partners and dynamically

balances the load between its partners. To implement this, there are several
issues to be addressed: (1) initial placement of operators; (2) load management
partner selection; (3) workload information collection; (4) load balance decision-
making; (5) selection of operators for migration. We address these issues in the
following subsections.

3.1 Initial Placement of Operators

In our initial placement scheme, we only consider minimizing the communication
cost and leave the load balancing task to our dynamic scheme. The scheme
generates one query fragment for each participating stream and then distributes
the query fragments to the delegation nodes of their corresponding streams.
More specifically, the scheme comprises the following steps:

1. When a query is submitted to the system, it is compiled and optimized into
a logical query plan without considering the distribution of the data streams.
The logical query plan, which is represented as a traditional query plan tree,
determines the required logical operators such as filters, joins, aggregation op-
erators and their processing orders. Existing optimization techniques [2,12] can
be applied at this step. Figure 2(a) is an example of the resulting query tree of
this step.

2. For each stream involved in the query, generate one query fragment which
is initially set to empty. Add each leaf node (i.e. the stream access operators) to
its corresponding query fragment QF; and then replace it with QFj;.

3. For each query fragment, if the parent operator is a unary operator, the
operator would be added to the query fragment and removed from the query tree.
The step is repeated until all the operators are removed or the parent operator
for every query fragment is a binary operator. Figure 2(b) is an example of the
resulting query tree of this step. The intuition is to place each stream’s filters at
its delegation node to reduce the amount of data to be transferred.

4. Now we have a query tree in which all the next-to-leaf nodes are binary
operators. Add each next-to-leaf binary operator to one of its two child query
fragments, say QF;, whose estimated resulting stream rate is higher than the
other one. Then remove the other query fragment from the tree and push QF;
up a level to replace that binary operator. A binary operator is added to the
query fragment of higher (estimated) resulting stream rate to reduce the volume
of data that needs to be transmitted through the network if the two fragments
of the two involved streams are to be evaluated at two different nodes. This
process continues until all operators are removed or the parents of one or more
of the remaining query fragments are unary operators. For the latter case, the
algorithm goes back to step (3). Figures 2(c) and (d) illustrate the procedure of
this step.

5. Distribute the query fragments to the delegation nodes of their corre-
sponding streams.

Based on the operator ordering, there is a downstream and upstream rela-
tionship between some of the query fragments. For example, in Figure 2, results
of QF5 should be further processed by the binary operator of QF; and hence we

GNP B

S\ A QR .
[0h.7 QR QR .0 QF, QF, CoF, OF,
(b) Phase 2 (c) Phase 3 (d) Phase 4

Fig. 2. Query Fragments Generation

Algorithm 1: PARTNERSELECT

sort neighbors in descending order of neighboring factor;
for (i — 0;|g1| < maz1 AND i <|neighbors|+ MazimumTry;i++) do
if ¢ < |neighbors| then n «— neighborsli];
else n < arandom node ¢ neighbors U gu;
if n € g then

| move it from g2 to g1;
else if n ¢ g1 then

send a request to n;

if the request is accepted then
| add n to gi;
endif

endif
endfor

call QF5 the upstream query fragment of QF;. Similarly, QF; is the upstream
query fragment of QFj. Symmetrically, we call QF; (or QF) the downstream
query fragment of QF, (or QFy). We call a query fragment’s downstream or up-
stream query fragments its neighbors. For instance, QF» and QF} are neighbors
of QF;. Furthermore, if a query fragment QF;’s corresponding data stream is
delegated to a node n; then QF; is called a native query fragment of n; and n;
is a native node of QF;. Otherwise, QF; is called a foreign query fragment of n;
and n; is a foreign node of QFj;.

Furthermore, the native nodes of two neighboring query fragments are called
neighbors to each other. And the number of neighboring query fragments between
two nodes is called the neighboring factor.

3.2 Partner Selection Strategy

As stated above, our dynamic load balancing scheme is a local strategy. Each
node n; has a number of load management partners (abbreviated as partners).
The partner relationship is symmetric, i.e. if n; is a partner of n;, then n; is
also a partner of n;. In this section, we discuss the partner selection strategy for
each node.

In our scheme, each node sends out requests to some other nodes to initiate
the partner relationships and receives such requests from its peers. We separate
the partners of each node into two groups : (1) g1, the relationship is created by
the (explicit) request of this node; (2) ga, the rest. There is a maximum bound for
each group of partners denoted as max; and maxs respectively. Each node would
use Algorithm 1 to send out requests. Neighbors with higher neighboring factors
with the current node have higher priority to be selected. That is to enhance the
opportunity of reducing communication cost during load redistribution, which
is can easily be seen in Section 3.5. Algorithm 1 is implemented in asynchronous
mode in our system. It does not wait for a remote response but instead returns
once all requests have been sent out. After a node receives a response message,
the algorithm is called to resume the processing. Furthermore, a node n; which
receives a request will check whether the sender n; is also being requested by n;
or is already in g1. If so, n; accepts the request and adds n; into g; if necessary.
Otherwise it adds n; into go if |ga| < maxzs or sends back a reject message
otherwise. A node will update its partners periodically.

3.3 Information Collection Strategy

The information collection strategy determines when and how workload infor-
mation of nodes in the system is collected and also what information is to be
collected.

We adopt a window based and asynchronous workload collection approach.
Time is divided into windows which have static lengths 7. Each node accumulates
the total processing time ¢ of all its physical operators within each window and
the workload with respect to a window is computed by dividing ¢t by 7. Each
node asynchronously collects its workload within each window and updates its
workload once the current time window elapsed. It broadcasts the workload
information to all its partners if its workload increases to & or decreases to 1/k
times of the last broadcast value.

The above strategy performs well only if the input rate and the processing
time are constants. But in practice they are random variables. The resulting
workload may fluctuate over time, which renders the system unstable. As stated
before, we only focus on adaptation to long term system changes which would
bring long term benefits and alleviate the short term adaptation overhead. To
prevent the system from reacting to short term fluctuations, we use a low pass
filter to remove the high frequency noises (caused by the short term changes of
stream rates, tuple processing time, etc.) in workload collection. In particular,
workload is computed as p;+1 = a x p; + (1 — a) X p¢, where p; 11 and p; are the
workload information used for load balancing after i+ 1 and ¢ time windows, and
pe 1s the collected workload within the (i 4+ 1)th time window. « is a parameter
to determine the responsiveness of the estimated value to the workload changes.
The purpose of using this formula in previous work is to give more weight to
recent collected statistics. Here we analytically show that it can also smooth out
short term fluctuations. A validation experiment can be found in [16]

We now consider how a would be set in a system. Without loss of generality,
we assume the workload is increasing. Given the initial workload py and that we
want to filter out transient workload fluctuation where the workload is changed
to Ipo (I > 1) within my7 time and last for mo7 time, we should choose «
such that the estimated workload after (mj + ms)7 time pi,, 1m, should satisfy
Pmi+ms < Kpo. In practice, the values of my, my and [reflect the typical range
and time span of short term fluctuations. They can be adaptively tuned by
collecting the characteristics of the system. In our calculation, we assume the
workload increases (I —1)pg/m; within each 7 time during the my7 period. After
(mq + mg)T time, the estimated workload pp,, +m, can be calculated as [16]:

amQ(l _ 1)00 (m1 14 am+tl _1

o™ po +
mq 11—«

)+ (1= a™)lpo.

Substitute the above equation into the inequality ppm,+m, < Kpo, we have

a™2 (] -1 amtl 1
#(mlel‘i,i
mq l—«

o™

)+ (1 —a™)l < k.

Hence we can calculate the lower bound of a by solving the above inequation
given the values of m1, mo and [. For example, given m; = mo = 1, [= 2 and
k = 1.2, we can get o > 0.9. The case for short term workload decrease can be
analyzed similarly. On the other hand, « also cannot be too close to 1, otherwise
the current workload will not be reflected. A similar upper bound analysis can
be performed [16].

3.4 Load Balance Decision Strategy

The load balance decision strategy determines whether it is beneficial to initiate
a load balance attempt and how much workload should be transmitted between
the nodes. Our strategy is adapted from the local diffusive load balancing strat-
egy introduced in [13]. It is a receiver-initiated strategy, which is found to be
more efficient in [13]. It works in rounds. The length of each round is denoted as
A. Each node maintains its own value of A. At the start of each round, Algo-
rithm 2 is run to generate one workload request if necessary. In this algorithm,
the load request is generated by the potential load receiver (i.e., the node with
smaller load initiates load balancing). Since we focus on continuous queries, load
migration can bring long term benefits. As such our decision strategy does not
consider the short term migration overhead. Once a node receives a workload
request, it satisfies the request as much as possible, provided the workload to
send out within each A time window is no more than half of its total workload
at the beginning of the current window.

It is possible that the nodes in the system are separated into several non-
overlapping groups and the workloads are not balanced between groups. Hence
once a node in our system detects that itself and all of its partners are overloaded,
it will randomly probe the other nodes until it finds an underloaded node to add
it as a partner or the probe limit is reached.

Algorithm 2: GENERATEREQUEST

compute the average workload p within itself and its partners;
if the local workload kp; < p then
find the partner n; whose workload p; is the largest;

compute the load request p» = (p;i — p1)/2;
request p, amount of workload from n;;
endif

3.5 Load Selection Strategy

As stated above, once a potential load sender receives a load request, it will
select the victim query operators to satisfy the request as far as possible. When
multiple such requests are received, the sender processes them in descending
order of the workload amount requested. The sender will estimate its resulting
workload after each migration, and if it detects that half of the workload has
been exported within the current A interval, it will stop processing any request
until the start of the next round. In this subsection, we explore how to select
the victim operators for migration and discuss how to migrate them in the next
subsection.

Migration Unit. The first question to be answered is what is the smallest task
unit used for load migration. We consider the following choices:

1. Using the whole query as the migration unit is easy to implement. However,
a good evaluation plan often distributes the operations across multiple nodes in
order to minimize the communication overheads. So migrating in the unit of
query is inappropriate.

2. Operator as another candidate is a fine-grained unit. Migrating at this
level may result in better balance state. However, it is hard to implement our
second heuristic which imposes a distribution limit on the query operators (see
Section 2.2). When we are trying to move an operator, we have to know the
location of the other operators belonging to the same query. Otherwise, we do
not know if the distribution limit is violated. This results in high update overhead
and is not compatible to our local strategy as a node cannot make decisions based
on local information.

3. Query fragments. Based on the above analysis, a good candidate for mi-
gration unit should render the maintenance of good query plans easy and allow
the separation of load balancing strategy from the underlying stream processing
engine and hence introduce less complexity to the existing processing techniques.
Furthermore, this unit should not be too coarse to restrict the adaptive ability
of the load management module. For the above purposes, we would like to find
a subset of operators that is of appropriate size and would be processed in the
same site in most cases for a good query plan. Furthermore, we consider only
candidates in the logical level. We adopt the notion of query fragment - a subset
of logical operators of a query. We set the number of query fragments of a query

as its distribution limit. This exempts the task of keeping track of the distribu-
tion of all the operators of a query while we are implementing heuristic (2). The
distribution limit would always be met no matter where we allocate the query
fragments.

While a query can be fragmented in a lot of ways, we simply use the query
fragments generated in our initial placement scheme as the migration units.
Operators in each of such query fragments would be allocated to the same pro-
cessing node in a good query plan generated by applying traditional optimization
heuristics. Furthermore, by doing so, the distribution limit of a query is set to the
number of streams involved by the query. Here, we assume that queries involving
more streams are more complicated and hence can afford a higher distribution
limit.

Data Flow Aware Load Selection. The choice of query fragments to be
migrated is critical in maintaining data flow locality. A poor choice may cause
streams to be scattered across too many nodes and result in network congestion.
In this subsection, we propose a lightweight query fragment selection strategy
which makes decisions only based on local information.

In our strategy, for each request, the sender chooses the query fragments in
the following order until the request is satisfied or half of the workload of this
node has been exported within the current A interval.

1. Query fragments that are foreign to the sender but native to the receiver.
This kind of query fragments is considered to be of highest priority to migrate
because migrating them has the potential to reduce the data flow.

2. Other query fragments that are foreign to the sender.

3. Query fragments that are native to the sender. This kind of query frag-
ments is considered of lowest priority for migration because migrating them tends
to scatter the streams delegated to this node.

The above heuristics are reasonable in maintaining data flow locality. How-
ever, its categorization is too coarse. The migrations of the query fragments
within each category may still have different effects on the data flow locality and
the delay of the queries. For example, migrating a query fragment QF; to a node
that is evaluating a neighbor of QF; may bring less increase of data flow than
migrating it to other nodes. This is because it avoids the transfer of the data
flow between QF; and its neighbor. Hence, within each of the above categories,
we further classify the query fragments into one of the following categories and
we list them in the order of descending migration priorities.

1. Query fragments that have neighbors being evaluated at the receiver but
none at the sender. The migration of this class of query fragments eliminates
the transmission of the data flow between the sender and the receiver caused by
the migrated query fragment. Figure 3(a) shows a possible situation in this case.
The situations before and after migration are plotted on the left and the right
respectively. Solid arrows in the figure indicate the data flows between the query
fragments. For brevity, the other query fragments being evaluated in the two
nodes are not shown. In this example QF} is a neighbor of QF5. n; is the sender

i 7777777 1 # l """""" e ! $ ——————————————

| QF; - QF, 7 |

Fig. 3. Query fragments migration cases

while n; is the receiver. After migration, the data flow introduced by QF; and
QF5> between n; and n; is eliminated.

2. Query fragments that have neighbors at both nodes. This class of query
fragments has lower migration priority than the above-mentioned one because
the migration eliminates one data flow but also creates another one between the
sender and the receiver. For example, in Figure 3(b), the transmission of the
data flow introduced by QFy and QF3 is eliminated while the one incurred by
QF;, and QF5 is created by the migration.

3. Query fragments have neighbors at neither node. Figure 3(c) is an example
situation.

4. Query fragments that have neighbors at the sender but none at the receiver.
This class has lower priority than the third one because the migration may
introduce extra data flow between the sender and the receiver. An example of
this case can be found in Figure 3(d). The migration in this example creates the
data flow between n; and n; caused by QF; and QF5.

If there is more than one query fragment in the above subcategories, we will
compute the migration priority for each of them and will migrate those with
higher priorities first. The migration priority of a query fragment is computed
as m7 where p is the workload it incurs, and size is its state size in
bytes. We call this value the load density of the query fragment as it means
the amount of workload will be migrated for each byte of state transmission.
Furthermore, p is estimated by summing up the estimated workload incurred by
each of its logical operator, which is estimated as 1/n of the workload caused by
its corresponding physical operator. n is the number of logical operators sharing
that physical operator.

4 A Performance Study

In our experiments, the stream processing engine in each node is an emulation
of the TelegraphCQ system. We use a simulator to simulate the communication
among the processing nodes. The simulator is implemented in JAVA using the
JavaSim discrete event simulation package. We use 32 simulation nodes and an

additional sink node as our basic configuration. Each processing node is delegated
3 streams. Tuples from every stream are of 100 bytes and consist of 10 attributes.
The bandwidth of the network connecting the nodes is modeled as 100Mbps.

We use 500 randomly generated queries and a total of 5750 logical operators,
to measure our system performance. The sliding window size for window joins
is randomly selected from 5000 to 20000. The selectivities of the operators are
from 0.5 to 0.8. We set the average data inter-arrival time to be 4ms and the
mean processing time for each filter and join operation to be 20us and 80us
respectively. Besides, we use the following algorithm parameters: the workload
collection window 7 = 100ms, the length of load management round A = 1s,
and the threshold to broadcast workload k = 1.2. The real values of p% and dfg
were collected online and the PRy values were computed by the sink node when
it received a result tuple.

4.1 Partner Selections

We have two parameters for our partner selection strategy: max; and mazxs. In
this experiment, we set mazs = [$maz;] and vary the value of maz;. To gen-
erate an imbalanced workload, the streams that a query operates on are chosen
according to a Zipfian distribution (6 = 0.95). We use the standard deviation
(STDEV) of the p; for all processing nodes to measure the load imbalance, i.e.

w. Figure 4(a) shows the final load distribution for different values of
maxy. mar; = 0 means that dynamic load balancing is disabled. We can see
when max,; >= 4 the load is well balanced. No significant improvement can
be made by using a larger maz; value. Figure 4(b) illustrates the PR,,q. af-
ter the system is stable. It is computed by averaging on the values within 10
seconds. It is clear that the PR,,,, values are also similar when maxz; >= 4.
Figure 4(c) shows the time it takes to converge to the final load distribution.
There is not much difference between small and large number of partners. The
above comparisons show that our system works well with a small maz; value.
As a larger number of partners would increase the runtime cost (such as trans-
ferring workload update messages, making load balancing decisions), we could
keep the number to a small value and hence keep the cost low. In the subsequent
experiments, we set mar; = 5 and mazs = f%maxﬂ.

4.2 Load Selection Heuristics

The first experiment examines the necessity of imposing a distribution limit.
This is done by comparing the QF-based (query fragment based) load balancing
strategy with the OP-based (operator based) strategy proposed by reference [14].
The latter approach does not impose any distribution limit. We varied the num-
ber of operators per query fragment in our experiment. We ran the experiment
under each case for 60 seconds simulation time and report the average values.
We can see from Figure 5 that with more number of query operators, the PR,,q.
value of the QF-based approach performs much better. Figure 5(b) may explain

030 180] 22

B 20
@ 025 160 8
] g 18
S 020 140 o 16
x 120 g'”
0.15 8 12
= E 100 g
< S 10

a

lorkl

>° 0.10 & 80 O g 7\7-\ PEFEPENG
8 005 '\ 60 % 6 "
1 000 B e 't 40 S~ P E ;
0 2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14
e, s, ma,
(a) Load imbalance (b) PRmax (¢) Time to Converge

Fig. 4. Effect of various partner selection parameter

90 ' ' s 50
o] 8
2 40
704 [}
60 2 5]
2
o 404 O 204
& a0]
1 ‘® 104
204 g
10-| = o
o
1 2 3 4 1 2 3 4
#Operators #Operators
(a) PRmax (b) Transfer cost

Fig. 5. QF-based vs. OP-based

this phenomenon. The data transfer volume of the OP-based scheme increases
quickly with more operators, because operators of a single query are migrated
to too many site. Therefore the data streams are scattered over the network
and leads to network congestion. On the other hand, the QF-based strategy still
maintains small transfer overhead and hence it still performs well in data delay.
Note that, by employing a distribution limit, an OP-based strategy can achieve
better performance. However, as analyzed before, the cost to maintain such a
limit would be higher than a QF strategy and such a scheme does not fit into a
local load management strategy.

The second experiment examines the effectiveness of our flow-aware load se-
lection strategy in maintaining good data flow locality. We impose an initially
balanced load distribution over the processing nodes and use a uniform distribu-
tion to choose the querying streams Sy for every query gi. At time ¢ = 20s we
randomly select 4 nodes and then increase the input rates of the streams dele-
gated to those nodes by 3 times. At ¢t = 50s, the increased input rates drop back
to their initial values. To show the effect of load selection strategy, we design
another two approaches for comparison: (1) Elementary: the query fragments
are selected in descending order of their load density. (2) Intermediate: the same
as Elementary except foreign query fragments are given higher migration priori-

—— Flow Aware
Xla —&— Elementary
x —s— Intermediate-

Transfer Overhead (MBytes)

0
0 20 40 60 80 Flow Aware Intermediate Elementary Static
Time (secs) Strategies

(a) Transfer Overhead (b) PRmax

Fig. 6. On load selection strategies

ties than the native query fragments. In previous work, such as [9,14], data flow
relationship is not considered. Hence their effects on the communication cost
can be well represented by the Elementary algorithm. We compare the transfer
overhead introduced by the three strategies against the static query fragment al-
location strategy, i.e. the initial placement scheme. The static strategy allocates
the query fragments to their native nodes, hence its data flow transfer cost is
minimum though it may incur very high data delay due to the unbalanced load
allocation. We subtract the amount of transfer cost of the static strategy from
those of the other three and then compare the extra transfer overheads of the
three dynamic strategies over the static one.

From figure 6(a), we can see that the data flow aware strategy outperforms
the other two at all stages of the experiment. Both Intermediate and Elementary
, unlike the data flow aware strategy, fail to identify the neighborhood relation-
ship of the query fragments. Intermediate is better than Elementary because it
can differentiate between foreign query fragments and native query fragments
and to some degree can help maintain data flow locality. At ¢ = 50s when the
perturbed stream rates dropped back to the original value, all three strategies’
transfer overheads are reduced. However, both Intermediate and Elementary can-
not restore back to the state prior to the change. This is because both strategies
are unable to identify their native nodes when migrating foreign query fragments.
That means they would become worse and worse with the evolution of the sys-
tem state while the data flow aware strategy is able to maintain a more stable
state over time. Figure 6(b) shows the PR, for all the four strategies. The
values are calculated by averaging over the whole simulation time. The static
strategy performed the worst simply because of the absence of load balancing
strategy. Furthermore, the three dynamic strategies performed similarly. This is
attributed to our heuristic to maintain a distribution limit for every query. Since
processing load are similar for the three dynamic strategies due to the balanced
load distribution, PR, was similar for the three strategies. However, in the
case when network traffic is so high that it approaches the bandwidth limit,
the data flow aware strategy will do much better to avoid network congestion
situation.

5

Conclusion

Distributed processing of continuous queries over data streams suffers from run
time changes of system resource availability and data characteristics. Dynamic
operator placement techniques are indispensable for a distributed stream pro-
cessing system. In this paper, we formalized the problem and analyzed it by
building a cost model. As shown in our experiments, load imbalance can cause
severe performance degradation and our proposed techniques can alleviate such
degradation by dynamic load balancing. Our data flow aware load selection strat-
egy can help restrict the scattering of data flows and lead to lower communication
cost.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

A. Arasu, et al. Stream: The stanford stream data manager. IEEE Data Eng.
Bull, 26(1):19-26, 2003.

A. Ayad and J. F. Naughton. Static optimization of conjunctive queries with
sliding windows over infinite streams. In SIGMOD, pages 419-430, 2004.

Y. Ahmad and U. Cetintemel. Networked query processing for distributed stream-
based applications. In VLDB, pages 456-467, 2004.

D. Carney, et al. Monitoring streams - a new class of data management applica-
tions. In VLDB, pages 215-226, 2002.

D. Carney, et al. Operator scheduling in a data stream manager. In VLDB, pages
838-849, 2003.

S. Chandrasekaran, et al. Telegraphcq: Continuous dataflow processing for an
uncertain world. In CIDR, 2003.

M. Cherniack, et al. Scalable distributed stream processing. In CIDR, 2003.

P. Pietzuch et al. Network-aware operator placement for stream-processing sys-
tems. In ICDE, pages 49, 2006.

M. A. Shah, et al. Flux: An adaptive partitioning operator for continuous query
systems. In ICDE, pages 25-36, 2003.

U. Srivastava, et al. Operator Placement for In-Network Stream Query Processing
In PODS, pages 250—258, 2005.

F. Tian and D. J. DeWitt. Tuple routing strategies for distributed eddies. In
VLDB, pages 333-344, 2003.

S. Viglas and J. F. Naughton. Rate-based query optimization for streaming infor-
mation sources. In SIGMOD, pages 37-48, 2002.

M. Willebeek-LeMair and A. P. Reeves. Strategies for dynamic load balancing on
highly parallel computers. IEEE Trans. Parallel Distrib. Syst, 4(9):979-993, 1993.
Y. Xing, et al. Dynamic load distribution in the Borealis stream processor. In
ICDE, pages 791-802, 2005.

Y. Zhou, et al. Adaptive reorganization of coherency-preserving dissemination tree
for streaming data. In ICDE, pages 55, 2006.

Y. Zhou, et al. Dynamic load management for distributed continuous query sys-
tems. Unpublished manuscript, 2005. http://www.comp.nus.edu.sg/~zhouyong/
papers/op.html.

