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The naive Bayes classifier is known to obtain good results with a simple procedure. The method is based
on the independence of the attribute variables given the variable to be classified. In real databases, where
this hypothesis is not verified, this classifier continues to give good results. In order to improve the
accuracy of the method, various works have been carried out in an attempt to reconstruct the set of the
attributes and to join them so that there is independence between the new sets although the elements
within each set are dependent. These methods are included in the ones known as semi-naive Bayes
classifiers. In this article, we present an application of uncertainty measures on closed and convex sets of
probability distributions, also called credal sets, in classification. We represent the information obtained
from a database by a set of probability intervals (a credal set) via the imprecise Dirichlet model and we
use uncertainty measures on credal sets in order to reconstruct the set of attributes, such as those
mentioned, which shall enable us to improve the result of the naive Bayes classifier in a satisfactory way.

Keywords: Imprecise probabilities; Imprecise Dirichlet model; Uncertainty measures; Maximum
entropy; Classification; Naive Bayesian classifier

1. Introduction

Classification is an important problem in the field of machine learning where the classic
theory of probability has traditionally been used. The problem can be summarized in the
following way: we have a set of observations, called the training set and we want to obtain a
set of laws from it so that each new observation may be assigned a value of the variable to be
classified. The set used to verify the quality of this set of laws is called the test set. This
classification has considerable applications in medicine, physics, character recognition,
astronomy, economy, etc. With objectives such as disease recognition, weather forecasts,
loan concessions, etc. rules are applied that allow us to associate a possible value of a variable
to a new observation with a specific set of values of other variables. The analyzed objects (i.e.
patients, meteorological situations, fuzzy characters, stars, or bank customers) have certain
variable values that can be appreciated, observations or attribute variables and our aim is to
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predict another value of a variable that we shall call the variable to be classified or the class
variable. We shall focus on the problem where both the class variable and the attributes
variables are discrete.

For this type of problem, Duda and Hart (1973) introduced the naive Bayes classifier
which is based on the consideration that the attributes are independent given the class
variable. This supposition of independence allows them to obtain the probability of a joint
event as the product of the individual ones. In literature, this method has demonstrated that
this simple and efficient classification model obtains good results on real data sets even when
the independence condition is weak.

Looking for a condition or pseudo-condition of independence between the attribute
variables in order to improve the accuracy of the naive Bayes classifier, different procedures
have been introduced on the set of attribute variables. These procedures can basically be
divided into two groups (Zheng and Webb 2005): those that join and eliminate attributes
(Kittler 1986, Kononenko 1991, Langley and Sage 1994, Pazzani 1996) and those that
establish dependency connections between attributes (Friedman er al. 1997, Keogh and
Pazzani 1999, Zheng and Webb 2000, Webb et al. 2005).

In this article, we shall present an application of the uncertainty measures on imprecise
probabilities and shall propose a model to group attribute variables in a similar way to
Pazzani (1996). We shall join the variables that have some relation of dependency given the
class variable. In order to represent the information which each attribute variable expresses
on the class variable, we shall use the imprecise Dirichlet model (IDM) (Walley 1996)
obtaining a set of probability intervals that also can be expressed by a belief function
(Abellan 2006). In order to determine the degree of dependency between variables, we shall
consider measures of uncertainty/information” on closed and convex sets of probability
distributions (Abellan and Moral 2000, 2003, Klir 2006, Abellan et al. 2006a) (otherwise
known as credal sets) which are obtained in the IDM application. We shall use the maximum
entropy function to measure total uncertainty on the credal sets obtained. This measure
includes both types of uncertainty that all measures of total or global uncertainty must
quantify (Klir and Wierman 1998): conflict and non-specificity. Some authors have proposed
the maximum of entropy as the best measure of total uncertainty on credal sets (Klir and
Smith 2001, Abellan and Moral 2005b), but it has only been recently that this measure has
been justified and coherently separated into the parts of conflict and non-specificity (Abellan
et al. 2006a).

In order to check our proposed model, we shall apply it on a series of well-known
databases where the accuracy of the naive Bayes classifier is not totally satisfactory and shall
compare it with one of the models included within the so-called semi-naive Bayes classifiers
that obtain the best average result according to work by Zheng and Webb (2005): averaged
one-dependence estimators (AODE) of Webb et al. (2005). We will see that with our method,
the results of the naive Bayes classifier are notably improved for this sets of databases.

In Section 2 of this paper, we shall detail the necessary previous knowledge for the
development of the work and we shall briefly define the naive Bayes classifier and the

"We consider the concept of “information based on uncertainty” (Klir 2006) relating to information deficiency
(incomplete, vague, fuzzy, contradictory, deficient, etc.) that can appear from different types of uncertainty. We shall
always refer to the term “information” in the context of reduction of uncertainty, unlike its use in logic or in
computability theory.
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imprecise Dirichlet model (used to represent information from a sample) and shall outline the
development of uncertainty measures on credal sets. In Section 3, we shall present our
method for joining variables based on the IDM model and uncertainty measures. In Section
4, we shall check our procedure on well-known databases and shall compare the results with
those obtained with the AODE model. Finally, Section 5 shall summarize our conclusions
and future lines of work.

2. Previous knowledge

2.1 Naive Bayes

The success of Duda and Hart’s (1973) naive Bayes classifier is mainly due to its simplicity,
efficiency and effectiveness in classification problems. In order to present the method, we
shall previously define the problem of supervised classification on which the work focuses.
We considered a database D of values of a set £ of discrete or discretized attribute variables
{X;li=1,...,r}, where each attribute variable has a set of possible states or cases Qy, =
{xi, xb.. "x{Qxil } and a class variable C, with states in the set Q¢ = {c},c....ck}. The
objective is to obtain information from the database so that given a new observation (a set of
values of all the attribute variables), we are able to associate it with a value of the class
variable.

If we denote a new observation as X, when x = {x;l“ Xy bowith b € {1, |Qx,1}. The
naive Bayes classifier selects the value c; in the following way:

argmax,, (P(c;[x)),

and supposing that the attribute variables are independent given the class variable, this can be
expressed as:

J=1

argmax., (P(ci)ﬁ P(x/;.,j|Ci)> .

2.2 Credal sets

Various mathematical models can be used to represent the information available in a certain
situation. None of these is generally more justifiable than another, but each is more useful
than the others in specific situations. Walley (1991) compiles most of the mathematical
models for representing the absence of information through imprecise probabilities. In this
section, we shall introduce the model based on imprecise probabilities that we will use:
reachable sets of probability intervals.

2.2.1 Reachable sets of probability intervals. As an important reference on this type of
credal set, we should mention the work by Campos et al. (1994), where we can find an
excellent account of the basic operations for working with probability intervals, as well as
their relation with other models such as those of upper and lower probabilities, capacities of
order 2 and belief functions.
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The main characteristic of this model is that there are many interesting operations between
sets of probability intervals without having to leave the model, i.e. providing us with another
set of probability intervals.

They can be described as follows: let X be a variable that takes values in
Qx = {x1,x2,...,x)0,}. A system of probability intervals is a family of intervals L=
([L,w] i € {1,2,...,1Qx|}} verifying that 0 < [; < u; = 1. The credal set associated to a
set of intervals L on X can be defined as:

KY = {p € PQ|l; = p; = u;, Vi},

expressing p; as p({x;}) and P ({dy) as the set of all probability distributions on Qy.
One condition so that this set is nonempty is that

Zli =1= Zui.

Any element in the set {/;,u;|i,j € {1...|Qx|}} therefore belongs to at least one
probability distribution of K3 (which is why the set of intervals is defined as reachable) and
the following conditions must be verified:

dhi+w=1, > u+h=1,

JFi JFi

for each i. If this set of conditions is not verified, it is possible to obtain the reachable set of
intervals from the following property:

PROPOSITION 1. Given a set of probability intervals L = {[L;,u;] : i € {1,...,|Qx|}}, the set
L= {[l,u]:i€{1,...,|Qxl}} where

1
l=max{l,1 = ), uj=minf{u;,1 = L},
! i# ! i#
give us the same set of probability distributions, K¥ = K7, where this last set is a reachable
set of probability intervals.

2.3 Imprecise Dirichlet model

The IDM was introduced by Walley (1996) to infer about the probability distribution of a
categorical variable. Let us assume that Z is a variable taking values on a finite set Z and that
we have a sample of size N of independent and identically distributed outcomes of Z. If we
want to estimate the probabilities, 6, = p(z), with which Z takes its values, a common
Bayesian procedure consists in assuming a prior Dirichlet distribution for the parameter
vector (6,).e~ and then taking the posterior expectation of the parameters given the sample.
The Dirichlet distribution depends on the parameters s, a positive real value and t, a vector of
positive real numbers t = (t.).c, verifying > .. = 1. The density takes the form

F(S) set,—1
b).er) = o [ [0,
1@ = g L1

where I is the gamma function.
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If n, is the number of occurrences of value z in the sample, the expected posterior value of
parameter 6, is (n, + s-t,)/(N + s), which is also the Bayesian estimate of 6, (under
quadratic loss).

The imprecise Dirichlet model only depends on parameter s and assumes all the possible
values of t. This defines a convex set of prior distributions. It represents a much weaker
assumption than a precise prior model, but it is possible to make useful inferences. In our
particular case, where the IDM is applied to a single variable, we obtain a credal set for this
variable Z that can be represented by a system of probability intervals. For each parameter 6.,
we obtain a probability interval given by the lower and upper posterior expected values of the
parameter given the sample. These intervals can be easily computed and are given by
[n/(N + s), (n, + s)/(N + s)]. The associated credal set on X is given by all the probability
distributions p’ on Z, such that p'(z) € [n/(N + s), (n, + $)/(N + s)], Vz. The intervals are
coherent in the sense that if they are computed by taking infimum and supremum in the
credal set, then the same set of intervals is again obtained. The associate credal set can be
obtained in the same way as in the previous subsection,

Rz _nyts

K% = EPONL=pi=u, ;= ) Ui )
Liam = {P Qz)l pi= N+ . N+s

vi},

and represents a credal set from a reachable set of probability intervals.

Parameter s determines how quickly the lower and upper probabilities converge as more
data become available; larger values of s produce more cautious inferences. Walley (1996)
does not provide a definitive recommendation, but he advocates values between s = 1 and
s = 2. In Bernard (2005), we found reasons for using values greater than 1 for s and in
Abellan er al. (2006b), the value s = 1.5 is used for classification applications.

2.4 Uncertainty measures on credal sets

The study of uncertainty measures in the Dempster—Shafer theory of evidence (Dempster
1967, Shafer 1976) has been the starting point for the development of these measures on
more general theories (a study of the most important measures proposed in literature can be
seen in Klir 2006). As a reference for the definition of an uncertainty measure on credal sets,
Shannon’s entropy (Shannon 1948) has been used due to its operation on probabilities. In any
theory which is more general than the probability theory, it is essential that a measure be able
to quantify the uncertainty that a credal set represents: the parts of conflict and non-
specificity (Klir 2006).

In recent years, Klir and Smith (2001) and Abellan and Moral (2005b) justified the use of
the maximum of entropy on credal sets as a good measure of total uncertainty that verifies a
set of needed properties (Klir and Wierman 1998). The problem lies in separating this
function into others, which really do measure the parts of conflict and non-specificity,
respectively and this entails the use of a credal set to represent the information. More
recently, Abellan er al. (2006) presented a separation of the maximum of entropy into
functions which are capable of coherently measuring the conflict and non-specificity of a
credal set K on a finite variable X, as well as algorithms for facilitating its calculation in
capacities of order 2 (Abellan and Moral 2005a, 2006) and this may be expressed in the
following way:

S*(K) = S«(K) + (8" — S:)(K),
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where S * represents the maximum of entropy and S.. represents the entropy minimum on the
credal set K:

S(K) = max EX pxlog(py), S«(K)= min EX pxlog(py).

where S.(K) coherently quantifies the conflict part of the credal set K and (S™ — S.)(K)
represents the non-specificity part of K (Abellan er al. 2006a).

In order to obtain the maximum of entropy on a set of probability intervals in the
application of the IDM model from a sample, we can use the algorithm presented in Abellan
and Moral (2003) for probability intervals. When using values between 1 and 2 for the
parameter s, we can use a simpler procedure of Abellan (2006), which is a simplification of
the one presented in Abelldn and Moral (2003). Given a credal set K, defined as in the
previous section, we must first determine the set H = {xj|n,, = min;{n,}}. Let |H| be
the cardinal of the set H. If we use p to denote the distribution where the maximum of
entropy will be reached, the procedure of Abellan (2006) can be expressed in the following
way:

Case 1. |H > 1ors=1

Ny, )
N+s & H
Px) = < o 4/1H]
Nts xi € H.

Case 2. |H =1 and s > 1.

Assign:
ny < ny + 1 (where H = {x;}),
s—s— 1.

Obtain new H.
Obtain p as in Case 1.

3. Presentation of the method for combine variables

In a similar way to Pazzani (1996), we shall introduce a method that obtains Cartesian
products of attribute variables as a prior step to the application of the naive Bayes classifier.
We shall use the maximum entropy as the total measure of uncertainty or information* on the
obtained probability intervals of the IDM application. The general concept is very simple: we
shall join the attribute variables that are more informative jointly than separately. In order to
prevent the set of new attribute variables being too complex (i.e. it does not produce an
excessive number of variables), we shall limit the number of variables that can contain a new
variable as Huang et al. (2002) did, establishing an informative threshold (which is no more
than a value that the joint information to the sum of the individual information should not

*Considering an uncertainty measurement U we can express the measurement of information associated as — U.
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exceed). We call this value as u. Consequently, the number of attribute variables in each new
attribute variable will not surpass a value that will depend on the chosen threshold (n(u)).

Formally, we have a set of attribute variables {Xj, ..., X,} and we want to obtain another
set {Wy, ..., W,.} with v = r, such that:
d;

W; = UXj,» d; = n(u), Vj,
=

u

W,NW, =0, Vi#j, ij€({l,..., 0},

UW] = {X17"'7Xr}7
=1

therefore applying the naive Bayes as usual

argmax,, <P(c,~>H P(w,{].lc») :
=1
with w’};j being the elements of the Cartesian product of the variables X, that comprise the
new variable W;.

In order to describe the procedure for obtaining the set of the new variablesW = {W,..., W}
from a data set D, we shall use Inf(A, B|C) to denote the value of the information gain that gives
the attribute variables A, B on the class variable C and we shall use Inf(A|C) and Inf(B|C) to
denote the equivalent information for A and B, respectively. Starting from W; = X;, Vi, the
procedure can be expressed of the following form:

Procedure New-Variables (W,u)

1. For all j # k obtain Inf(W;, W,|C), Inf(W;|C), Inf(W,|C).
2. For all j > k obtain

F(Wi7 Wk) = IIIf(VVj7 Wk|C) —u—- IIlf(W]|C) - Inf(Wle)
3. If max;= {F(W;, W)} = 0 Exit
4. Else

5. Let {Wq, Wg} = argmaxj>i {F(W;, Wi)}

6. Assign W, — W, U Wg

7. W—W — Wg
8. Call New-Variables (W,u)

It is now necessary to describe how we shall obtain the functions Inf(W;|C) and
Inf(W;, W|C), or equivalently the functions F (W;, W), for all the attribute variables W;,W,.

3.1 Obtaining the information gain measure

As can be seen from its description, the previous procedure for acquiring new variables
allows us to use different measures of uncertainty/information of the attribute variables on
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the class variable. Our proposal is to use the IDM model to represent the information by
means of a credal set and to obtain the value of the uncertainty by applying the maximum
entropy function on the obtained credal set. For the formal description, the following
configuration concept was necessary:

DEFINITION 1. A configuration, o, on a set of variables W is an assignment of values for a
subset of variables: Y =y, where Y C W.

In order to obtain the function Inf(A|C) for an attribute variable A with values in
({:jf*:“‘} to denote the frequency of the configuration {A = a;,
C = ¢;} in the data set D. From the set of frequencies obtained using the variables A and C,
we can have a credal set for each value A = a; by applying the IDM model:

Oy ={a... a4, }, wewillusen

{A=a;} ng:“:aj} +5
=pis———
N+s

n

K](_:idm({A = aj}) ={pe P(Qc)l ]\C;+ "

. Vi)

By considering only the values n,,, Vj, we can obtain the set K, () in the same way. We
therefore defined the information gain function of the attribute variable A on the class
variable C as:

Inf(A|C) = > "py,S™ (Kfign(1A = ;1)) = S™(K {4y (0)),
J

where pia—,,) is the relative frequency of the configuration {A = g;} in the data set D.
Similarly, the values Inf(A, B|C) can be obtained for all the pairs of attribute variables A, B.

Using the same notation, we would obtain a credal set for each configuration
ojx = {A=a;, B=Db}:

ng* nl* +s .
Kfiam(oi0) = {p € 73(QC)|N+ . =p; = NS Vi}.

Hence:

Inf(A, BIC) = > g, S (K4 (071)) = 8™ (K {4 (0)),
J

with p,,, being the relative frequency of the configuration oj; in the data set D.
Finally, the function F(A, B), on the attribute variables A, B, used in the new variables
procedure would be:

FAB) =Y 00, (K igm(10) + S (Ko@) = 0 =Y ppaca) S KumA = a;)))
Jik J

= 858" K gm(B = i)
k

4. Experimentation

As we can see in the extensive work of Webb et al. (2005) on 37 databases, the naive Bayes
classifier obtains better results than J48 method of classification, that corresponds to an
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Table 1. Description of the databases.

Databases N r k
Car 1728 6 4
Monks1 556 6 2
Tic-tac-toe 958 9 2
Corral 160 6 2

improved version of the C4.5 method of Quinlan (1993), based on the ID3 method
(Quinlan 1986), which uses a classification tree with classic probabilitiesﬂ. Also, in this
work, we can see that the AODE of Webb er al. (2005) obtains the best average result
compared with others similar methods.

In order to check the improvement obtained with naive Bayes classifier using the method
presented above, we have used 4 well-known databases where J48 obtains notable better
results than the naive Bayes classifier motivated by the relations between the attribute
variables. These databases can be found in the UCI repository of machine learning databases
which can be obtained directly from ftp:ftp.ics.uci.edu/pub/machine-learning-databases.
In order not to benefit any classification method with a discretization procedure, we have
used only databases with discrete variables. In some cases, some variables have missing
values that were eliminated. In table 1, there is a brief description of these databases. We can
see the number of cases in the database (&), the number of attribute variables in the database
(r) and the number of different states of the class variable (k).

The algorithms for the process of creating new variables were implemented using the Java
language version 1.5. We have used the parameter s = 1.5 for the IDM model for the reasons
stated in Abellan et al. (2006b). The u value of 0.001 has been taken so that the number of
variables to be joined into a new variable is not higher than 4. There is in fact only one
database (Tic-tac-toe) which joins 4 variables and in all the remaining ones we have unions
of only 2 attribute variables.

In order to obtain the results we have used weka software. The following methods have
been applied on the databases: naive Bayes before (NB) and after (NB-NV) the creation of
the new attribute variables; AODE, also available at weka and the J48 method (J48).
In order to evaluate the predictive performance of the classifiers, we have used the
experimental scheme of k — 10 folds cross validation for all the databases except for
the artificial database Monks1. For this database, we have used (as usually Monksl1 is used)
a fixed little training set (20% of the total database) and the remaining for the test set.
The results can be seen in table 2.

Observing the displayed table 2, we can say that for these databases the application of
the procedure of new variables (NB-NV) allow us to improve notably the naive Bayes
classifier results. This difference is more important seeing the results obtained with AODE
method.

For those databases where J48 is notably superior to the naive Bayes classifier, we can see
that the results obtained by NB-NV are generally better than those of the J48 method, with the
average obtained with the NB-NV method being greater than that of the J48 method, mainly
as a result of the value obtained with the Monks1 database.

1348 method can be obtained via weka software, available in http://www.cs.waikato.ac.nz/ml/weka/
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Table 2. Percentage of good results with & — 10 folds cross validation on the databases.

Databases NB NB-NV AODE J48
Car 85.6 90.0 91.6 92.2
Monks1 72.4 100 82.0 81.6
Tic-tac-toe 69.8 82.8 74.0 86.4
Corral 86.9 100 90.6 100
Average 78.7 93.1 84.2 88.4

5. Conclusions and future work

In this paper, we have presented a new method which combines variables in the form of a
Cartesian product as a prior step to the application of the naive Bayes classifier. The main
idea behind our method is to obtain a new set of attribute variables by combining subsets of
variables so that the new attribute variables are independent given the class variable, although
there may be dependences in each subset. With this procedure, we obtain better results with
the application of the naive Bayes classifier. We have used a concept of independence based
on uncertainty/information functions: two attribute variables are independent given the class
variable if they provide more information about the class variable individually than jointly.

In this method, combination is carried out using the IDM model to represent the
information that an attribute variable provides about the class variable from a database,
thereby obtaining a credal set, really a set of probability intervals that represents a belief
function. On this set, we applied a well-established total uncertainty function such as
Shannon’s maximum of entropy for credal sets which is simple to calculate due to the
existence of fast algorithms for calculating it on the type of probability interval obtained with
the IDM model. The result is an information gain function which enables us to join the
variables that are more informative jointly than individually.

One important characteristic of the proposed method is that the difference between the
joint information and the sum of the individual pieces of information can be limited in order
to prevent unions being made between an excessive number of attribute variables. In our
experimental work, we have seen that with the established limitation, there are only 1 union
of 4 attribute variable, with the remainder being unions of 2 attribute variables. A few unions
have been sufficient in order to obtain good results with respect to one of the best known
semi-naive model (AODE) when we use databases where naive Bayes classifier is in
disadvantage with respect to others classification methods motivated by the relations between
the attribute variables.

Analyzing this first work on the application of credal sets and uncertainty measures for the
improvement of the naive Bayes classifier, we considered that perhaps this model needs a
greater experimental study of the used parameters in order to obtain an improvement. This
will be one of our future lines of research.

In the line of this future work, we shall also consider the use of credal sets and information
measures to complete data preprocessing prior to the application of a classification method
that can help improve the results of this method. This preprocessing shall include operations
such as the elimination of attribute variables with little or no information about the class
variable, union of the attribute variables (such as in this article) and grouping of equally
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informative cases of each attribute variable. All of this work is encapsulated within what
Kononenko and Zupan (1999) have called attribute mining.
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