
IEEE Communications Surveys & Tutorials • Fourth Quarter 200546

wireless ad hoc network is characterized by a dis-
tributed, dynamic, self-organizing architecture. Each
node in the network is capable of independently

adapting its operation based on the current environment
according to predetermined algorithms and protocols. Analyti-
cal models to evaluate the performance of ad hoc networks
have been scarce due to the distributed and dynamic nature of
such networks. Game theory offers a suite of tools that may
be used effectively in modeling the interaction among inde-
pendent nodes in an ad hoc network. In this article we
describe how such games can be set up and discuss recent
advances in this area.

BASICS OF GAME THEORY

Game theory is a field of applied mathematics that describes
and analyzes interactive decision situations. It provides analyt-
ical tools to predict the outcome of complex interactions
among rational entities, where rationality demands strict
adherence to a strategy based on perceived or measured
results. The main areas of application of game theory are eco-
nomics, political science, biology, and sociology. Since the
early 1990s, engineering and computer science have been
added to this list.

We limit our discussion to non-cooperative models that

address the interaction among individual rational decision
makers. Such models are called “games” and the rational
decision makers are referred to as “players.” In the most
straightforward approach, players select a single action from a
set of feasible actions. Interaction between the players is rep-
resented by the influence that each player has on the resulting
outcome after all players have selected their actions. Each
player evaluates the resulting outcome through a payoff or
“utility” function representing her objectives. There are two
ways of representing different components (players, actions,
and payoffs) of a game: normal or strategic form, and exten-
sive form. Here we will focus on the normal form representa-
tion. Formally, a normal form of a game G is given by G =
〈N, A, {ui}〉 where N = {1, 2, …, n} is the set of players (deci-
sion makers), Ai is the action set for player i, A = A1 × A2 ×
… × An is the Cartesian product of the sets of actions avail-
able to each player, and {ui} = {u1, …, un} is the set of utility
functions that each player i wishes to maximize, where 
ui: A → R. For every player i, the utility function is a function
of the action chosen by player i, ai, and the actions chosen by
all the players in the game other than player i, denoted as a–i.
Together, ai and a–i make up the action tuple a. An action
tuple is a unique choice of actions by each player. From this
model, steady-state conditions known as Nash equilibria can
be identified. Before describing the Nash equilibrium we
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define the best response of a player as an action that maxi-
mizes her utility function for a given action tuple of the other
players. Mathematically, a– is a best response by player i to a–i
if

a– ∈ {argmax ui(ai, a–i)}

A Nash equilibrium (NE) is an action tuple that corresponds
to the mutual best response: for each player i, the action
selected is a best response to the actions of all others. Equiva-
lently, a NE is an action tuple where no individual player can
benefit from unilateral deviation. Formally, the action tuple
a* = (a1*, a2*, a3*, … an*) is a NE if ui(ai*, a–i* ) ≥ ui(ai*, a–i* )for ∀ai
∈ Ai and for ∀i∈N. The action tuples corresponding to the
Nash equilibria are a consistent prediction of the outcome of
the game, in the sense that if all players predict that a Nash
equilibrium will occur then no player has any incentive to
choose a different strategy. There are issues with using the
Nash equilibrium as a prediction of likely outcomes (for
instance, what happens when multiple such equilibria exist?).
There are also refinements to the concept of Nash equilibri-
um tailored to certain classes of games. A detailed discussion
of these is outside the scope of this article.

There is no guarantee that a Nash equilibrium, when one
exists, will correspond to an efficient or desirable outcome for
a game (indeed, sometimes the opposite is true). Pareto opti-
mality is often used as a measure of the efficiency of an out-
come. An outcome is Pareto optimal if there is no other
outcome that makes every player at least as well off while
making at least one player better off. Mathematically, we can
say that an action tuple a = (a1, a2, a3, …, an) is Pareto-opti-
mal if and only if there exists no other action tuple b = (b1,
b2, b3, …, bn) such that ui(b) ≥ ui (a) for ∀i∈N, and for some
k ∈ N, uk(b) > uk(a).

To illustrate these basic concepts, consider a peer-to-peer
file sharing network modeled as a normal form game. The
players of the game are individual users who experience a
trade-off in sharing their files with others. For simplicity con-
sider a network of three users. Each user has the option of
either sharing their files or not sharing. Thus, the action set of
each player is {Share, Not share}. The payoff to each user is
given by the sum of the benefits she experiences when other
users share their files, and the cost she incurs by sharing her
own files. We assume the users to be limited in resources. We
assign the payoffs such that each user benefits by 1 unit for
each other user that shares files and incurs a cost of 1.5 units
in sharing her own files. The payoff matrix can be represented

as in Table 1. In the payoff matrix, the payoff for user 1 is list-
ed first, the payoff for user 2 is listed second, and the payoff
for user 3 is listed third. Rather than attempting to represent
the three-dimensional action space as a single object, we have
presented the action space in two two-dimensional slices.

From the payoffs we observe that the best response of
each user irrespective of other users’ actions is to not share.
The unique NE is the action tuple (Not share, Not share, Not
share). Also, it is evident that no user accrues any benefit by
unilaterally deviating and sharing her files. One should note
that the Nash equilibrium is not Pareto optimal in this case.
The outcome (Share, Share, Share) would make all three
players better off than the NE action tuple. Those familiar
with game theory will recognize this formulation as a three-
player version to the Prisoners’ Dilemma game [1].

WHY GAME THEORY?

For over a decade game theory has been used as a tool to
study different aspects of computer and telecommunication
networks, primarily as applied to problems in traditional wired
networks. In the past three to four years there has been
renewed interest in developing networking games, this time to
analyze the performance of wireless ad hoc networks. Since
the game theoretic models developed for ad hoc networks
focus on distributed systems, results and conclusions general-
ize well as the number of players (nodes) is increased. It is
also of interest to investigate how selfish behavior by individu-
al nodes may affect the performance of the network as a
whole.

Consider, as an example, an ad hoc network implementing
a pure slotted Aloha protocol. Nodes are constantly entering
and leaving the network, so the number of nodes in the net-
work, n, is not generally known. As such, the optimal retrans-
mit probability, p = 1/n, cannot be globally set to maximize
throughput. Each node must then adapt its retransmit proba-
bility to current network conditions to maximize its through-
put, perhaps guided by channel observations and channel
occupancy estimations. In this way we can devise an algorithm
for a node to attempt to predict the response of the other
nodes in the network without precise knowledge of the total
number of nodes. An important question is whether the algo-
rithm that governs this dynamic adaptation has a desirable
steady-state. Even if it does, how can we be certain that the
network behavior will converge to this steady-state? Will small
perturbations to the system dramatically alter behavior? Will
increasing the number of nodes past some point result in
undesirable drift? These are the type of questions that game
theory has been utilized to answer, not just with respect to
Medium Access Control (MAC) protocols, but also distribut-
ed adaptations at the physical, network, and transport layers.

As seen from Table 1, selfish behavior may lead to a NE
that is socially undesirable. Therefore, from a system design-
er’s perspective it is imperative to make the network robust to
selfish behavior, perhaps by providing mechanisms that render
selfish behavior unprofitable to the nodes that employ it.
Game theory can be used to better understand the expected
behavior of nodes and engineer ways to induce a socially
desirable equilibrium.

Our main contributions in the article are:
• To develop a case for the applicability of game theory to

ad hoc networks.
• To list the benefits and challenges of applying game theo-

ry to ad hoc networks.
• To survey the recent literature on game-theoretic analysis

of ad hoc networks and summarize its general conclu-
sions.

n Table 1. A payoff matrix for a three-player peer-
to-peer file sharing game.

User 3 = Share

User 2
User 1 Share Not share

Share 0.5, 0.5, 0.5 –0.5, 2, –0.5

Not share 2, –0.5, –0.5 1, 1, –1.5

User 3 = Not share

User 2
User 1 Share Not share

Share –0.5, –0.5, 2 –1.5, 1, 1

Not share 1, –1.5, 1 0, 0, 0
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• To provide a game theoretic perspective on incentive
schemes for ad hoc networks.

• To illustrate the application of game theory to different
layers in the protocol stack by means of game formula-
tions.
We structure the remainder of the article as follows. We

describe the components of an ad hoc network game and
highlight benefits of game theory and challenges in the
parameterization of the game. We describe the current state
of research in the development of game theoretic models for
solving problems at different protocol layers. We provide a
brief description of existing incentive mechanisms for ad hoc
networks and the use of game theory in analyzing them. We
point to additional research issues in the application of game
theory to ad hoc networks.

MODELING AD HOC NETWORKS AS GAMES

In a game, players are independent decision makers whose
payoffs depend on other players’ actions. Nodes in an ad hoc
network are characterized by the same feature. This similarity
leads to a strong mapping between traditional game theory
components and elements of an ad hoc network. Table 2
shows typical components of an ad hoc networking game.

Game theory can be applied to the modeling of an ad hoc
network at the physical layer (distributed power control and
waveform adaptation), link layer (medium access control),
and network layer (packet forwarding). Applications at the
transport layer and above exist also, although less pervasive in
the literature. A question of interest in all those cases is that
of how to provide the appropriate incentives to discourage
selfish behavior. Selfishness is generally detrimental to overall
network performance; examples include a node’s increasing its
power without regard for interference it may cause on its
neighbors (layer 1), a node’s immediately retransmitting a
frame in case of collisions without going through a backoff
phase (layer 2), or a node’s refusing to forward packets for its
neighbors (layer 3). In the next section we outline game-theo-
retic models for these three layers. Before that, however, we
discuss some of the benefits and common challenges in apply-
ing game theory to the study of ad hoc networks.

BENEFITS OF APPLYING GAME THEORY TO
AD HOC NETWORKS

Game theory offers certain benefits as a tool to analyze dis-
tributed algorithms and protocols for ad hoc networks. We
highlight three of those benefits:

Analysis of distributed systems: Game theory allows us to
investigate the existence, uniqueness, and convergence to a
steady state operating point when network nodes perform
independent adaptations. Hence it serves as a strong tool for
a rigorous analysis of distributed protocols.

Cross layer optimization: Often in ad hoc net-
working games, node decisions at a particular
layer are made with the objective of optimizing
performance at some of the other layers. With an
appropriate formulation of the action space,
game-theoretic analysis can provide insight into
approaches for cross layer optimization.

Design of incentive schemes: Mechanism
design is an area of game theory that addresses
the engineering of incentive mechanisms that will
lead independent, self-interested participants
toward outcomes that are desirable from a sys-
tem-wide perspective. This may prove especially

helpful in the design of incentive schemes for ad hoc net-
works. We provide further discussion of incentive schemes
later.

CHALLENGES IN APPLICATION OF GAME THEORY TO
AD HOC NETWORKS

The use of game theory to analyze the performance of ad hoc
networks is not without its challenges. We point out three par-
ticularly challenging areas:

Assumption of rationality: Game theory is founded on the
hypothesis that players act rationally, in the sense that each
player has an objective function that she tries to optimize
given imposed constraints on its choices of actions by condi-
tions in the game. Although nodes in an ad hoc network can
be programmed to act in a rational manner, the steady-state
outcome of rational behavior need not be socially desirable.
Indeed, a major contribution of game theory is that it formally
shows that individually rational, objective-maximizing behavior
does not necessarily lead to socially optimal states.

The assumption of perfect rationality, on some practical
occasions, does not accurately reflect empirically observed
behavior (e.g., widespread existence of peer-to-peer file shar-
ing networks in the absence of any punishment/reward
schemes). The work in [2] considers an extension of the NE
concept in order to accurately model nodes that deviate
slightly from their expected optimal behavior. This form of
weakened rationality is known as near-rationality.

Realistic scenarios require complex models: The dynamic
nature of ad hoc networks leads to imperfection or noise in
actions observed by a node. Such imperfections need to be
modeled with reasonably complex games of imperfect infor-
mation and/or games of imperfect monitoring. In addition,
modeling of wireless channel models and interactions between
protocols at the different layers involves complex and, at
times, non-linear mathematical analysis.

Choice of utility functions: It is difficult to assess how a
node will value different levels of performance and what
trade-offs it is willing to make. The problem is exacerbated by
a lack of analytical models that map each node’s available
actions to higher-layer metrics such as throughput.

GAME THEORY IN AD HOC NETWORKS: 
A LAYERED PERSPECTIVE

In this section we summarize potential applications of game
theory to ad hoc networks, discussing issues at each layer in
the protocol stack.

PHYSICAL LAYER

Distributed power control and selection of an appropriate sig-
naling waveform are physical layer adaptations that may be

n Table 2. Typical mapping of ad hoc network components to a game.

Components of a game Elements of an ad hoc network

Players Nodes in the network

Strategy

Action related to the functionality being studied
(e.g., the decision to forward packets or not, the
setting of power levels, the selection of wave-
form/modulation scheme)

Utility function Performance metrics (e.g., throughput, delay,
target signal-to-noise ratio)
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adopted by a node. From a physical layer perspective, perfor-
mance is generally a function of the effective signal-to-inter-
ference-plus-noise ratio (SINR) at the node(s) of interest.
When the nodes in a network respond to changes in perceived
SINR by adapting their signal, a physical layer interactive
decision making process occurs. This signal adaptation can
occur in the transmit power level and the signaling waveform
(modulation, frequency, and bandwidth). The exact structure
of this adaptation is also impacted by a variety of factors not
directly controllable at the physical layer, including environ-
mental path losses and the processing capabilities of the
node(s) of interest. A game theoretic model for narrowband
physical layer adaptations can be formed using the parameters
listed in Table 3.

From Table 3, the stage game for interactive physical-layer
adaptations can be modeled as

G = 〈N, {Pj × Ωj}, {p, ωω, H)}〉

For a general physical layer adaptation game, each node, j,
selects a power level, pj, and a waveform, ωj, based on its cur-
rent observations and decision making process. Restricted ver-
sions of this game are commonly encountered in the literature.
Distributed power control systems permit each radio to select
pj, but restrict Ωj to a singleton set; distributed waveform
adaptation systems (adaptive interference avoidance) restrict
the choice of pj, but allow ωj to be chosen by the physical
layer.

Power Control — Power control, though closely associated
with cellular networks, is frequently implemented in ad hoc
networks due to the potentially significant performance gains
achieved when nodes limit their power level [3]. The following
discussion applies to several proposed distributed power con-
trol schemes. Although not all of these works adopt a game
theoretic approach, the distributed nature of different pro-
posed algorithms lends itself to the application of game theo-
ry.

In [4] an algorithm for performing distributed power con-
trol in 802.11 networks is described. The authors permit the
use of ten different power levels and incorporate the neces-
sary signaling into the exchange of RTS-CTS-DATA-ACK

frames. Each node communicates with its neighbor nodes and
chooses a transmit level for each neighbor in such a way that
the minimum signal power required for acceptable perfor-
mance is achieved. In this scenario each node can be modeled
as attempting to achieve a target SINR. Although not consid-
ered in [4], this could be modeled using multiple connection
reception scenarios as suggested by [5], or each connection
could be treated as a unique entity in the fixed assignment
scenario.

A similar algorithm has been proposed by [6], wherein an
additional channel is included for power control. Likewise, in
[7] the authors introduce “Noise Tolerance Channels” that
are analogous to a power control channel, but instead permit
each node to announce its amount of “noise” tolerance, i.e.
the additional interference that can be afforded without losing
a currently received signal. Other authors, such as in [8] and
[9], have further refined the ad hoc power control problem by
introducing beam forming considerations. 

We now model the power control algorithm suggested in
[4] as a normal form game. Note that a similar approach can
be followed to model the other distributed algorithms as
games, with each game involving a different utility function.
We adopt the notation in Table 3. Here, we are assuming that
each node, i, in the set of nodes, N, is maintaining a single
link to its node of interest, vi. As each node is attempting to
maintain a target SINR, an appropriate utility function for it
is given by:

where σvi is the noise at vi and γ̂ i is the target SINR of player
i. A game model for this algorithm is thus given by G = 〈N, P,
{ui}〉.

We can quickly verify that G has at least one NE by apply-
ing the Glicksberg-Fan fixed point theorem [10, 11]. Assuming
the target SINRs are feasible, then the power vector corre-
sponding to G’s unique NE can be found by solving the linear
program given by

u
h p

h pi i
iv i

v jv j
j N j i

i

i i

( ) ˆ

,

p = − −
+















∈ ≠
∑

γ
σ 



2

n Table 3. Game theoretic model for physical layer adaptations in ad hoc networks.

Symbol Meaning Symbol Meaning

N The set of decision making nodes in the network;
{1, 2,…, n}. P

The power space (R ) formed from the Cartesian
product of all Pj.
P = P1 × P2 × … × Pn

hij
The link gain from i to j. Note this may be a function
of the waveform selected. p

A power profile (vector) from P formed as
p = (p1, p2, …, pn).

H

The network link gain matrix. ΩΩ j The set of waveforms known by node j.

ω j A waveform chosen by j from ΩΩ j.

ΩΩ
The waveform space formed from the Cartesian
product of all ΩΩ j. ΩΩ = × j∈N ΩΩ j.

P j
The set of power levels available to node j. This is
presumed to be a subset of the real number line.

ωω
A waveform profile (vector) from ΩΩ formed as
ωω = (ω1, ω2, …, ωn).

pj A power level chosen by j from P j. uj (p, ωω, H ) The utility derived by j.
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Zp– = γγ–

where

While the surveyed algorithms are for ad hoc networks, most
power control games, except recent work in [12] and [13],
consider infrastructure-based wireless networks. When choos-
ing a distributed algorithm for a network, several factors
should be considered, including steady-state performance,
convergence, complexity, stability, and interaction with other
layers’ behavior. These form some of the active areas of
research within the field of distributed power control and
game theory.

Waveform Adaptation — Waveform adaptation in ad hoc
networks involves the selection of a waveform by a node such
that the interference at its receiver is reduced. The interfer-
ence at the receiver is a function of the correlation of a user’s
waveform with the waveforms of the other users in the net-
work. Also, in general, the individual nodes involved in trans-
mission have no or very little information about the receiver’s
interference environment. Hence, to minimize the adaptation
overhead, distributed waveform adaptation algorithms that
require a minimal amount of feedback between receivers and
transmitters need to be developed for these networks. Game
theory can provide useful insights into this scenario.

Past work on interference avoidance has concentrated on
single-receiver systems. A distributed interference avoidance
algorithm for the uplink of a synchronous CDMA system with
a single base-station is proposed in [14]. In this algorithm,
each node sequentially updates its signature sequence to
improve its SINR at the base-station. The signature sequences
represent code-on-pulse spreading codes with chips taking any
value in the complex plane. This iterative algorithm (wherein
users greedily increase their SINR) converges to a set of
sequences that maximize the sum capacity of the system [15].
Further, this approach is generalized to the situation where
nodes can adapt their modulation/demodulation methods
using a general signal space approach. Other extensions
include sequence adaptation in asynchronous CDMA systems
[16], multipath channels [17], and multi-carrier systems [18]. 

The use of game theory provides us with a better analysis
of the greedy signature update mechanism and helps us derive
convergence conditions. Game theory has been used to show
that for a single receiver system with two players, any combi-
nation of the metric (such as Mean Square Error or SINR)
and receiver types (such as a correlator or MSINR receiver)
results in a game with convergent Nash equilibrium solutions
[19]. A game-theoretic framework to analyze power control
and signature sequence adaptation in synchronous CDMA
systems is also presented in [20]. Properties of the utility func-
tion associated with each user in the network that ensure the
existence of a Nash equilibrium for the power and waveform
adaptation game are identified, with Signal to Interference
and Noise Ratio (SINR) possessing these properties.

Convergent Nash equilibria are thus seen to exist in greedy
waveform adaptation games in a single centralized receiver

scenario. However, in networks with multiple distributed
receivers, application of the same greedy interference avoid-
ance techniques does not lead to a stable NE ([21, 22]) due to
the asymmetry of the mutual interference between users at
different receivers (for instance, a user causes more interfer-
ence at a nearby receiver than at a receiver that is farther
away). This leads to users’ adapting their sequences in con-
flicting ways. This shows that greedy interference schemes
cannot be directly extended to ad hoc networks. A framework
based on potential game theory such as the one described
here can be used to construct convergent waveform adapta-
tion games in such a scenario. We refer the reader to [23] for
a detailed discussion.

A potential game [24] is a normal form game such that any
change in the utility function of any player due to a unilateral
deviation by that player is correspondingly reflected in a glob-
al function, referred to as the potential function. The exis-
tence of a potential function makes this type of game easy to
analyze and provides a framework in which users can serve
the greater good by following their own best interest, i.e.,
maximize a global utility by only trying to maximize their own
utilities. Hence, it can lead to simple game formulations
where maximizing the utility of users also improves a global
network performance measure. There are a number of differ-
ent types of potential games, of which exact and ordinal
potential games are considered in this section.

Exact and ordinal potential games possess a useful conver-
gence property: players of the game are guaranteed to con-
verge to a NE by playing their best response. This assures that
the waveform adaptation games constructed according to the
framework described below always converge. We will derive a
potential function for the waveform adaptation scenario to
formulate it as a potential game. Again, we adopt the notation
in Table 3. Let the utility associated with a particular user be
given by

where: f1 quantifies the benefit associated with a particular
choice of signature sequence; f2 is the interference measure
for user i perceived at its associated receiver due to the other
users present in the system; I is a function of two signature
sequences ωi and ωj (for instance, the correlation between
sequences); and function f3 is the interference caused by a
particular user i at the receivers associated with other users.
In this framework, the transmit power of a user is assumed to
be fixed and independent of the waveform adaptation process.

Let ω—i be the new signature sequence chosen by user i.
Then by the definition the game is an exact potential game if
there exists a potential function Pot(ωω) such that

ui (ωi, ωω–i) – ui (ω—i, ωω–i) = Pot(ωi, ωω–i) – Pot(ω—i, ωω–i)∀i

A candidate potential function, if f2(•) = f3(•), is given by

The game is an ordinal potential game if

ui(ωi, ωω–i) ≥ ui (ω—i, ωω–i) ⇔ Pot(ωi, ωω–i) ≥ Pot(ω—i, ωω–i)∀i
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Let the utility function for a user for an ordinal potential
game formulation be given by

where f2i is the interference measure for user i perceived at its
associated receiver due to the other users present in the sys-
tem, and function f3i is the interference caused by user i at the
receivers associated with other users. Note that functions f2i
and f3i can be different for different users. 

The condition for an ordinal potential game is satisfied if
f2i(•) = f3i(•) and f2i(•) and is any ordinal (monotonically
increasing) transformation of fpot(•) where the potential func-
tion is given by

This ordinal potential game formulation can be used to con-
struct convergent adaptation games with each user trying to
maximize a different utility function, as long as the utility
functions are ordinal transformations of each other.

The authors in [21] present a distributed sequence adapta-
tion algorithm for networks with no centralized receiver. The
user’s utility function is defined in terms of a new interference
measure. This interference measure is the weighted sum of
the interference caused by the particular user at all the
receivers in the system. It is shown that an increase in the util-
ity of any user also results in the increase of a social function
(similar to the potential function), which is the sum of the
utilities of all the users in the system, proving the existence of
NE for the system. It can be shown that this adaptation algo-
rithm is a specific instance of the family of waveform adapta-
tion games represented by the above mentioned
game-theoretic framework.

Feedback is also a significant issue in the implementation
of distributed interference avoidance algorithms. The signa-
ture sequence (in the case of the centralized receiver model)
or the signature correlation matrix (in the case of multiple
uncoordinated receivers) is required to provide feedback to
each user. This could place a prohibitively expensive burden
on network overhead. The work in [25] proposes that restrict-
ing each user’s waveform to a subspace of the waveform’s
original signal space may relieve this burden. Alternately,
properties of games such as better response convergence of
potential games can be used to design reduced feedback
schemes [26].

It is not difficult to envision that many more complex sys-
tems for reducing interference by appropriate selection of
waveforms could help. However, for each new proposed sys-
tem, the same issues of convergence and stability will need to
be considered. Game theory has the potential to address these
questions in a formal manner.

MEDIUM ACCESS LAYER

The medium access control problem, with many users con-
tending for access to a shared communications medium, lends
itself naturally to a game theoretic formulation. In these
medium access control games, selfish users seek to maximize

their utility by obtaining an unfair share of access to the chan-
nel. This action, though, decreases the ability of other users to
access the channel.

One of the earliest applications of game theory to a medi-
um access control problem is the work of Zander in [27] and
[28]. However, the game considered is cooperative in nature
and does not consider contention between selfish nodes them-
selves. MacKenzie and Wicker pose the slotted Aloha medi-
um access control protocol itself as a game between users
contending for the channel in [29, 30], and [31]. In their work,
users receive a one unit payoff when they transmit successfully
and attempt to maximize the discounted sum of their payoffs
over time; the infinite users’ model is adopted with a finite
arrival rate. If transmissions are costless, then users jam the
channel with transmission attempts, resulting in extremely low
throughput. If there is a transmission cost that must be paid in
order to transmit (e.g., energy from a battery), then the maxi-
mum throughput that can be supported by the system can be
computed. The authors concluded that, for optimal values of
the cost parameter, the throughput of a slotted-Aloha system
with non-cooperative users may be as high as the throughput
that can be obtained with cooperative users. This work was
expanded to CSMA and CSMA/CD in [32] and forthcoming
papers.

Here we will briefly examine the analysis of slotted Aloha;
for more details the reader should refer to [31]. In a given
slot, each user has two possible actions: the user can transmit
or wait. If exactly one user chooses to transmit in a given slot,
then that user’s transmission is successful. If multiple users
transmit in a slot, then all of their transmissions are unsuc-
cessful. We assume that the payoff associated with a success-
ful transmission is 1, while the cost of transmission (whether
successful or unsuccessful) is c, where 0 < c < 1. A user who
waits will receive a payoff of 0; a user who transmits will
receive a payoff of either 1 – c (if the transmission is success-
ful) or –c (if the transmission is unsuccessful). It is also
assumed that each user has a discount factor 0 < δ < 1 that is
used to discount future payoffs. So, the present value of wait-
ing for 10 slots and then transmitting with certain success is 
(1 – c)δ10. The goal of a user is to maximize the expected dis-
counted value of her payoff.

A strategy in this game is then a mapping from the number
of backlogged users (assumed to be known) to a transmit
probability; that is, a strategy is a function p: Z+→[0,1]. Given
a particular Poisson packet arrival rate λ, a current backlog n,
and a strategy q being followed by all other users, a user can
compute an expected payoff to a particular strategy p. In
order for a strategy p to be an equilibrium strategy, it must be
the case that p maximizes the expected payoff for a player if
all other players are also playing p. This assumes that all play-
ers are indistinguishable. The Glicksberg-Fan fixed point the-
orem [10, 11] can be invoked to prove that such an equilibrium
must exist. In order to apply the theorem, the following condi-
tions must be satisfied: a finite player set; a compact and con-
vex action space; and continuous utility functions for each
player that are quasi-concave. While quasi-concavity may not
be a familiar concept, it is just a generalization of the more
familiar concavity concept, as all concave functions are also
quasi-concave.

It is easy to see that if there are at least two users back-
logged (n ≥ 2) then neither “always transmit” nor “always
wait” can be equilibrium strategies p. In other words, for 
n ≥ 2, 0 < p(n) < 1. It is also well known, though, that in
order for a mixed strategy to be played in a given scenario, it
must be the case that the expected payoffs must be equal
from all of the pure strategies in support of the mixed strate-
gy. Hence, for n ≥ 2 the payoff from transmitting must equal
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the payoff from waiting. If the value of the backlog is large,
then obviously the expected payoff of an equilibrium strategy
must be near zero. Glossing over some mathematical details
presented in [31], it is then possible to prove the intuitively
appealing result that the expected payoff when transmitting
(which is the probability of transmission success) is equal to
the transmission cost. That is, in the limit as n → ∞ for an
equilibrium strategy p we must have:

(1 – p(n))n–1 → c

In other words, for large n we must have:

It follows immediately that the throughput of the slotted
Aloha system (equal to np(n)(1 – p(n))n–1) will go to –clnc
as n → ∞. A drift analysis can formalize this argument to
show that the slotted Aloha system will be stable whenever 
λ < –clnc. It follows that if c = e–1, then the system will be
stable for arrival rates up to e–1. In other words, for the right
value of c, the throughput of a slotted Aloha system with self-
ish users is exactly the same as the throughput of a system in
which the users work together to maximize system through-
put.

This result has been generalized in [31] to show that the
same result holds for other channels (e.g., when capture is
possible in the presence of two or more transmissions). The
result suggests that it may not, in fact, be necessary to assume
that nodes are cooperative in order to design an efficient ran-
dom access protocol.

One of the main criticisms of the work of MacKenzie and
Wicker is their assumption that the number of backlogged
users is known. The work in [33] considers an alternative
model in which the number of backlogged users is unknown,
but the total number of users in the system is known and the
users’ retransmit probabilities are static rather than dynamic.
They also show that if transmissions are costly, then the non-
cooperative equilibrium throughput may coincide with the
throughput obtained by cooperative users.

In an alternative model, [34] considers heterogeneous
users who attempt to obtain a target throughput by updating
their transmit probabilities in response to observed activity.
Once the users’ targets are fixed, potential methods are used
to show that the updating process will converge to a vector of
equilibrium transmit probabilities. They also investigate the
question of when the users are able to attain their throughput
targets. Furthermore, the authors in [35] assume that users’
throughput targets depend on their utility functions and their
willingness to pay, and they describe a pricing strategy to con-
trol the behavior of the users (in order to bring their targets
within the feasibility region).

The work in [36] considers the problem that arises when
non-cooperative nodes are introduced into a network of most-
ly cooperative users. Specifically, a MAC protocol called Ran-
dom Token with Extraneous Collision Detection (RT/ECD) is
considered, which is quite similar to the CSMA/CA protocol
utilized by the distributed coordination function of IEEE
802.11. That work also proposes a variant of RT/ECD, denot-
ed RT/ECD-1s, which enables cooperative nodes to maintain
a higher share of the bandwidth in the presence of non-coop-
erative nodes. Recent work in [37] proposes a game-theoretic
model to address the problem of selfish node behavior in
CSMA/CA with nodes adjusting the random back-off timers
to increase throughput. The authors derive a Pareto optimal
point of operation for such a network and apply a repeated

game approach to transform the Pareto optimal point into a
Nash equilibrium.

As one can observe, the papers address a variety of differ-
ent problems using several different game-theoretic models
and approaches. It can also be seen that there are many areas
open for future work. Specifically, the issue of imperfect
information with a reasonable feedback model such as ternary
feedback (0, 1, e) has not been suitably addressed. While ran-
dom access protocols such as those typically used in LANs
have been modeled, scheduled access problems such as chan-
nel or time-slot assignment have not been adequately
addressed.

NETWORK LAYER

Functionalities of the network layer include the establishment
and updating of routes and the forwarding of packets along
those routes. Issues such as the presence of selfish nodes in a
network, convergence of different routing techniques as the
network changes, and the effects of different node behavior
on routing, have been analyzed using game theory. We discuss
these next.

Modeling of Traditional Routing Techniques Incorporat-
ing Ad Hoc Network Characteristics — A recent applica-
tion of game theory to ad hoc routing [38] focuses on the
analysis of the effectiveness of three ad hoc routing tech-
niques, namely link state routing, distance vector routing, and
multicast routing (reverse path forwarding), in the event of
frequent route changes. The objective of the analysis is to
compare and contrast the techniques in an ad hoc setting.
These techniques are evaluated in terms of:
• Soundness: whether routers have a correct view of the

network to make the correct routing decisions under fre-
quent network changes.

• Convergence: the length of time taken by the routers to
have a correct view of the network topology as nodes
move.

• Network overhead: the amount of data exchanged among
routers to achieve convergence.
Routing is modeled as a zero sum game between two play-

ers — the set of routers and the network itself. In a zero-sum
game [1] the utility function of one player (minimizing player)
is the negative of the other’s (maximizing player). The game
has an equilibrium when the minmax value of any player’s
payoff is equal to its maxmin value. In a zero sum game, the
maxmin value is defined as the maximum value that the maxi-
mizing player can get under the assumption that the minimiz-
ing player’s objective is to minimize the payoff to the
maximizing player. In other words, the maxmin value repre-
sents the maximum among the lowest possible payoffs that the
maximizing player can get; this is also called the safe or secure
payoff.

In the routing game the payoff to each player consists of
two cost components, one being the amount of network over-
head and the other varying with the performance metric
under consideration. For example, for evaluating soundness
the cost to the routers is 0 if all routers have a correct view of
the topology when the game ends, and 1 if any one router
does not. The objective of the routers is to minimize the cost
function. The action for the routers involved is to send rout-
ing control messages as dictated by the routing technique and
update their routing information, and for the network to
change the state of existing links from up to down and vice
versa. The game is solved to determine the minmax value of
the cost function. It serves to compare the different routing
techniques in terms of the amount of routing control traffic

p n
c

n
( )

ln→ −

                                                    



IEEE Communications Surveys & Tutorials • Fourth Quarter 2005 53

required to achieve convergence and the soundness of the
routing protocol to network changes. One of the main conclu-
sions reached in the comparative analysis was that reverse
path forwarding requires less control traffic to achieve conver-
gence, against traditional link state routing.

Another issue related to routing involves studying the
effect of selfish nodes on the forwarding operation, as dis-
cussed next.

Selfish Behavior in Forwarding Packets — The establish-
ment of multi-hop routes in an ad hoc network relies on
nodes’ forwarding packets for one another. However, a selfish
node, in order to conserve its limited energy resources, could
decide not to participate in the forwarding process by switch-
ing off its interface. If all nodes decide to alter their behavior
in this way, acting selfishly, this may lead to the collapse of
the network. The works of [39–44] develop game theoretic
models for analyzing selfishness in forwarding packets. Under
general energy-constraint assumptions, the equilibrium solu-
tion for the single-stage game results in none of the nodes’
cooperating to forward packets. A typical game theoretic
model that leads to such an equilibrium is parameterized in
Table 4. Now, consider strategy s– = {s–1, s–2, s–3, … s–n} and let 
σ = {k ∈ N |s–k = 1}. The utility of any node k ∈ σ is given by

uk(s–) = (|σ| – 1) – sk = |σ| – 2

Let us consider that node k unilaterally deviates to a strategy
of not participating. The utility of node k is given by uk(sk′, s–k)
= |σ| – 1. Since uk(sk′, s––k) > uk (s–), strategy s– can only be a
Nash equilibrium when σ = φ.

However, in practical scenarios ad hoc networks involve
multiple interactions among nodes/players with a need for
nodes to participate. In order to account for such interactions,
the basic game is extended to a repeated game model. Differ-
ent repeated game mechanisms such as tit-for-tat [45] and
generous tit-for-tat are investigated in [40, 42] and [43] to
determine conditions for a desirable NE, one in which all
nodes would forward packets for one another leading to a
high network-wide social welfare. The tit-for-tat-based mecha-
nisms provide an intrinsic incentive scheme where a node is

served by its peers based on its past behavioral
history. As a result, a node tends to behave in a
socially beneficial manner in order to receive any
benefit in the later stages.

The work in [46] extends this concept of
exploiting the intrinsic “fear” among nodes of
being punished in the later stages of the game
by deriving the conditions under which a grim-
trigger strategy is a Nash equilibrium in a game
where nodes are asked to voluntarily provide
services for others. (Examples of these include
peer-to-peer networks and distributed clusters,
as well as ad hoc networks.) A node following
the grim trigger strategy in a repeated game is
characterized by a behavior wherein it contin-
ues to cooperate with other nodes until a single
defection by any of its peers, following which it
ceases to cooperate for all subsequent stages.
The sustainability of the equilibrium for this
strategy depends on the number of nodes in the
network and the exogenous beliefs that the
nodes have regarding the possible repetitions
of the game. The authors conclude that the
greater the number of nodes in the network the
higher the chances of achieving a desirable
equilibrium, even if the likelihood that the

game will be repeated is low. These games are different
from those analyzed in [41] and [44] as the decisions of the
nodes are not based on an external incentive scheme such
as reputation.

Other functions related to the network layer or to the
management plane, such as service discovery and policy-based
network management, are also amenable to a game-theoretic
analysis. There is scarce literature on those issues, with the
notable exception of [47], which studies management in a sen-
sor network.

TRANSPORT LAYER

At the transport layer, game-theoretic models have been
developed to analyze the robustness of congestion control
algorithms to the presence of selfish nodes in the network.
However, the bulk of the research has been focused on wired
networks [48–50]. That research could serve as a starting point
in the development of a game-theoretic model to analyze con-
gestion control for ad hoc networks, but it is important to take
into consideration the de-centralized nature of the network
and the trade-offs that accompany it.

Focusing the research on a completely independent
node set-up, the game formulated in [50] comprises nodes
capable of individually varying their congestion window
additive increase and multiplicative decrease parameters
with the objective of increasing their throughput. The effect
of such behavior in conjunction with buffer management
policies implemented at the routers is studied for conges-
tion control algorithms such as TCP-Reno, TCP-Tahoe,
and TCP-SACK. However, when applying the conclusions
to wireless ad hoc networks it is necessary to consider the
impact of the wireless medium on TCP. Link failures due
to mobility and packet losses caused by impairments of the
wireless medium could inadvertently trigger a change in the
congestion window. Therefore in the development of a TCP
congestion control game it will be necessary for a node to
consider this effect before making its decision on setting
the congestion control parameters. This could lead to a
change in the model parameters and also affect the out-
come of the game.

n Table 4. Game theoretic model for node participation in ad hoc networks.

Symbol Meaning

N The set of nodes in the ad hoc network; {1, 2, … n}

Sk Action set for node k; Sk = {0,1}.

sk
Action of node k:
sk = 0 (not participate) and sk = 1 (participate).

S Joint action set; S = × k∈N Sk.

s s = {s1, s2, …, sn}; s ∈ S.

α k(s )

Benefit accrued when other nodes participate;

βk(s) Benefit (or cost) to node k when it participates; for energy 
constrained nodes it is negative (e.g., βk(s) = –sk).

uk(s) Utility of the node; uk(s) = αk(s) + βk(s).
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INCENTIVE MECHANISMS

Selfish behavior by nodes in an ad hoc network may lead to a
suboptimal equilibrium [39, 40, 51] where nodes, through
their actions, reach an undesirable steady state from a net-
work perspective (in addition to often not being Pareto-opti-
mal). Hence, incentive mechanisms are proposed to steer
nodes toward constructive behavior (i.e., toward a desirable
equilibrium). Incentive mechanisms are broadly divided into
two categories based on their technique of incentivizing
nodes: credit-exchange-based systems and reputation systems.
We will briefly mention some of the incentive mechanisms
proposed in the literature and describe how game theory has
been applied to analyze the effectiveness of these incentive
schemes.

CREDIT EXCHANGE

One of the techniques for providing incentives for nodes to
behave in ways that are socially efficient (i.e., beneficial to the
network as a whole) is to adopt a mechanism of charge and
reward [52–56]. In such a scheme, a node is credited for coop-
erating with the other nodes toward a common network goal,
and is debited when requesting service from others. One way
of implementing the charge and reward scheme is by the
introduction of “virtual currency” as in [52]. In this method
each node is rewarded with “tokens” for providing service,
which are then used by the node for seeking services from
others. One criticism of this method is that it requires a tam-
per-proof hardware module to prevent nodes from cheating
during “token” exchange. In addition, such techniques may be
cumbersome to implement as charges and rewards are calcu-
lated on a per-packet basis [57].

In order to address the security vulnerability of nodes
falsely reporting credit, the concept of algorithmic mechanism
design is leveraged to design pricing policies that lead to
truthful reporting. The authors in [53–56] develop incentive-
compatible, cheat-proof mechanisms that apply the principles
of mechanism design to enforce node collaboration for rout-
ing in ad hoc networks, with the suthors in [58] focusing on
multicast routing. In addition, different pricing schemes (such
as in [59, 60]) are often used to engineer an equilibrium that
is desirable from the network’s perspective. A detailed survey
of various pricing schemes is outside the scope of this article.

REPUTATION-BASED MECHANISMS

Another technique for creating incentives is in the form of the
reputation that each node gains through providing services to
others. Each node builds a positive reputation for itself by
cooperating with others and is tagged as “misbehaving” other-
wise. The nodes that gain a bad reputation are then isolated
from the network over time. Several reputation mechanisms
can be found in the recent literature (such as in [41, 61–64]).
Game theory has been used in [41] for the analysis of a repu-
tation exchange mechanism. According to this mechanism, a
node assigns reputation values to its neighbors based on its
direct interactions with them and on indirect reputation infor-
mation obtained from other nodes. Further, this reputation
mechanism is modeled as a complex node strategy in a repeat-
ed game model. The analysis of the game helps to assess the
robustness of the reputation scheme against different node
strategies and derive conditions for cooperation.

There exist other mechanisms that do not involve any logi-
cal object (reputation, virtual currency) in inducing an optimal
equilibrium. This includes the generous tit-for-tat mechanism
(GTFT) [45], which has been proposed to solve the problem

of misbehaving nodes in routing and forwarding. The authors
in [42] employ the GTFT technique as a node strategy in a
repeated game for forwarding packets, and conditions are
derived for it to achieve a socially optimal Nash equilibrium.

A different approach to inducing a desirable equilibrium
requires a centralized authority, i.e. a referee, to ensure that
the nodes’ behavior converges to an optimal operating point
([29] provides an application to wireless networks). This cen-
tralized controller is not a player and is external to the game.
Typically, the external entity evaluates the strategy that will
result in system-wide benefit and informs the nodes about it.
In addition, it may also change the rules of the game dynami-
cally during play to ensure optimality in the system. Such an
approach is of limited applicability to an ad hoc environment,
due to the assumption of central control. However, it may be
possible to utilize existing cluster head selection algorithms to
select the appropriate referees and thereby adapt this external
equilibrium inducing mechanism to ad hoc networks.

CONCLUDING REMARKS

The application of mathematical analysis to wireless ad hoc
networks has met with limited success, due to the complexity
of mobility and traffic models, coupled with the dynamic
topology and the unpredictability of link quality that charac-
terize such networks. Emerging research in game theory
applied to ad hoc networks shows much promise to help
understand the complex interactions between nodes in this
highly dynamic and distributed environment.

The application of game theory to analyze problems at dif-
ferent protocol layers in an ad hoc network is at a nascent
stage, with the bulk of the work done in the past few years.
The focus has been on maximizing throughput using random
access techniques for the wireless medium, and on developing
robust techniques to deal with selfish behavior of nodes in
forwarding packets. Other areas to which game theory has
been applied include distributed power control and interfer-
ence avoidance.

There is significant interest in cross-layer optimizations for
wireless networks. Game theory offers a tool to model adapta-
tions that may occur at different layers of the protocol stack
and to study convergence properties of such adaptations.
Recently developed games such as potential games are finding
a larger audience due to their properties regarding the exis-
tence of and convergence to a NE. Also, the employment of
game theory in modeling dynamic situations for ad hoc net-
works where nodes have incomplete information has led to
the application of largely unexplored games such as games of
imperfect monitoring.

Some problems in ad hoc network security are good candi-
dates for analysis employing game theory. Examples include
the modeling of trust and reputation management schemes,
and denial of service attacks and counter-measures. With
recent interest in cognitive radios, we believe that game theo-
ry also has a strong role to play in the development and analy-
sis of protocols for ad hoc networks equipped with such
radios.
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