
Copyright 1995 IEEE. Published in the Proceedings of MPPM '95, October 1995 at Berlin, Germany. Personal use of this material is permitted. However,

permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or

lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions /

IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 732-562-3966.

A Scalable Tuple Space Model for
Structured Parallel Programming

Antonio Corradi, Franco Zambonelli

Dipartimento di Elettronica Informatica e
Sistemistica - Università di Bologna

2, Viale Risorgimento - 40136 Bologna - ITALY
E-mail: {acorradi, fzambonelli}@deis.unibo.it

Letizia Leonardi

Dipartimento di Scienze dell’Ingegneria -
Università di Modena

214, Via Campi - 41100 Modena - ITALY
E-mail: leonardi@dsi.unimo.it

Abstract
The paper proposes and analyses a scalable model of

an associative distributed shared memory for massively
parallel architectures. The proposed model is
hierarchical and fits the modern style of structured
parallel programming. If parallel applications are
composed of a set of modules with a well-defined scope of
interaction, the proposed model can induce a memory
access latency time that only logarithmically increases
with the number of nodes. Experimental results show the
effectiveness of the model with a transputer-based
implementation

1. Introduction

The lack of any globally shared resources makes
massively parallel architectures intrinsicall y scalable.
However, the need for a global space of interaction is
diff icult to be substituted for many reasons. In particular:

− global computational models are intrinsicall y simpler
than local ones;

− even applications based on local computation models
need shared resources, for instance to create a unique
naming system.
The above problems can be solved by mapping onto

the physical distributed resources of a parallel
architecture the abstraction of a globally shared space, a
distributed shared memory [1].

The problem of an abstract global interaction space
is, again, non scalabilit y: a distributed shared memory, in
particular, can produce unacceptable latency times if the
number of processors among which it is distributed is too
large.

In this paper, we follow the idea that a scalable
model for a distributed shared memory can be
implemented by restricting the programming model to a

structured one. In general, parallel applications follow
predetermined patterns of interaction for their activities.
These patterns identify, within an application, a well -
defined spatial scope for references, in the same way as
local variables have a restricted scope in sequential
programming.

The above scenario leads us to a hierarchical model
for a distributed shared memory, by allowing data to be
accessed, but only within their scope and not globally. A
shared memory is distributed across a tree of memory
nodes, whose leaves are connected to a set of execution
nodes. Shared data, tuples in our proposal, are repli cated
in the tree with a given depth, depending on their scope.
This avoids bottlenecks in the hierarchy and achieves a
data access time proportional to the degree of locality of
the access itself. In any case, the memory access latency
time is logarithmicall y bounded with respect to the system
size. In the shared memory we distinguish between two
roles: memory nodes are servers to implement the shared
memory, execution nodes host the client applications.
Because of this distinction, there is no overhead of the
shared memory implementation on the application.

The paper is organised as follows. Section 2 shows
the roles of a shared memory abstraction and its
requirements, while the problem of implementing
distributed tuple spaces is discussed in section 3. The
proposed hierarchical model is described in section 4 and
analysed in section 5. Section 6 and 7 describe,
respectively, an extension to the model and how it meets
the modern structured parallel programming style.

2. The shared memory abstraction

Shared memory is a well -accepted concept because of
many years of experience in sequential and shared-
memory supercomputers programming. Moreover,
abstract computational models based on shared memory
abstract architectures, such as the PRAM one [2],

produced and diffused know-how in parallel algorithms.
In massively parallel programming, the shared memory
abstraction plays new roles. It can behave as:
communication system. Communication between

distributed processes can operate on the basis of the
shared memory, making easy the implementation of
several communication modes.

store for monitoring and/or debugging information.
In a local environment, it could be diff icult and even
expensive to obtain global information about the
behaviour of the system and of the applications,
although the information is essential.

way to access I/O devices. The mapping of I/O in
shared memory solves the problem of sharing
external devices among distributed activities;

virtual memory: shared memory permits a process to
access the amount of needed memory.
Shared memory and message passing computational

models are not mutually excluding each other [3]. As an
example, object-oriented parallel programming
environments, whose computational model defines a
message passing scenario without any shared resource,
can greatly benefit of the presence of shared memory [4].

However, the physical implementation of a shared
memory presents problems [5]: it introduces a
centrali sation point that limits the system scalabilit y,
becomes the bottleneck when the system size increases. A
promising solution, not to avoid the use of a global
interaction space, is represented by distributed shared
memory, where the shared memory is implemented as a
software abstraction onto distributed memory
architectures.

In distributed shared memories, the logical shared
memory space is distributed among different nodes, each
one with its local memory and autonomous execution
capabilit y. The information in the memory are available,
wherever they are allocated, to every node of the system
and in a transparent way. Data replication can make data
access time faster, by exploiting localit y in a way similar
to cache based systems [6]. This introduces the problem
of coherence among different repli cas and the necessity
of protocols to guarantee it [7].

A crucial point when implementing a model is to
choose the right abstraction level, in particular to choose
the elementary unity of access of the memory. On the one
hand, the level of variables (whose names permit them to
be "read" and "written") is too low, and it can be
confusing in a distributed environment where names do
not necessaril y correspond to a defined physical address.
On the other hand, shared objects (that also define the
interface for accessing them) represent too high a level
and can lead to ineff iciencies in implementation.

We choose an intermediate-level, the tuple space
memory model [8]. The unity of access to the memory is
the tuple, an ordered set of typed fields (defining the tuple
structure), having a defined (actual) value or a not defined
(formal) one. Two tuples are said to "match" if they have
the same structure and the same value of corresponding
actual fields. The operation allowed on the tuples are
Out, In and Read. The Out operation simply stores a
tuple in the tuple space. The Read operation searches in
the tuple space for a tuple matching with a specified
tuple. The In operation is similar to the Read operation
except that it removes the matching tuple from the tuple
space that is no longer available to other Read or In
operations. Both In and Read operations can block for
the calli ng process, if a match not found. In case of
multiple matches (an In call that matches with different
tuples or an Out call that matches with different In), a
choice is made non-deterministicall y.

We emphasise the dualit y of In and Read operations
with the Out one. One In or a Read produces a "request
tuple", stored in tuple space, and successive Out call s
must search for a match with already stored "request
tuples". For sake of simplicity, in the following, we will
indicate the tuples produced with In, Read, Out
operations as, respectively, In-tuples, Read-tuples and
Out-tuples.

We think the tuple space is not also an intermediate
abstraction level but presents other advantages, being a
well -known and defined model and guaranteeing both
consistency (tuples cannot be modified in loco) and
fairness (by managing confli cts in a non-deterministic
way).

3. Distributed tuple spaces

The implementation of a distributed tuple space
requires the definition of poli cies (distribution policies)
to distribute and eventually repli cate tuples onto different
nodes. In the case of reconfigurable architectures, it is
also necessary to define the interconnection topology that
best suits from the adopted distribution poli cy. We
emphasise the separation between distribution poli cies
and matching mechanisms: the matching search occurs
locall y to a node, on the basis of the tuples locall y
assigned to that node, without any knowledge of the
global distribution poli cy and of the system
interconnection topology. Since the implementation of
eff icient matching mechanisms is a database management
problem, we mostly concentrate on the distribution poli cy
and on the system topology.

The simplest distribution policy (with no data
replication and system independent) is based on a hash

solution. A tuple is allocated in one of the nodes of the
system on the basis of the value of a hash function applied
on one of its fields, assumed as “key” (it must always
have an actual value). The problem with this solution is
the diff iculty in achieving a homogeneous distribution of
tuples in the system, especiall y when the number of nodes
is high with respect to the number of tuples keys.
Moreover, the hashing solution cannot exploit localit y.

A different approach is based on a repli cation
technique: the repli cation space of the Out tuples should
form a non-null intersection with the repli cation space of
the tuple requests. A trivial solution that follows this
approach is one where the Out-tuples are stored only on
one node while the In and Read-tuples search globally for
the match and are eventually repli cated on every node of
the system [9]. At the other end of the spectrum, the dual
solution provides a full repli cation of the Out-tuples and a
local search and a non-repli cated storage of the In and
Read-tuples. Both solutions, even if simple and system-
independent, are not effective for large system. In fact,
they are based on a global repli cation strategy that is not
scalable and requires a global coherence protocol.

Hybrid solutions, where both tuples and requests are
replicated with a limited degree, seem to provide better
performance. However, their implementation and
effectiveness are strictly related to the architecture
topology. The repli cation strategy must take into account
the structure of the communication system, that influence
the implementation costs both of the repli cation strategy
and of the coherence protocols. An interesting example is
the Linda Machine [10]. The system is configures a 2-D
mesh topology: a node is identified by the row and
column numbers of its position in the mesh. Whenever a
tuple enters the tuple space via an Out operation, it is
repli cated along the whole row of the mesh of the source
node. Whenever a request enters the tuple space it is
repli cated along the whole column. The cost of the
replication poli cy and of the coherence protocol increases
proportionally with the square root of the system size, and
makes the Linda Machine quite-well scalable.

When choosing the system interconnection topology
to implement a distributed tuple space, it is possible to
divide the system resources into execution nodes, devoted
to the applications, and memory nodes, devoted to the
implementation of the distributed shared memory. This
allows to define independently the interconnections of
different parts: the execution nodes interconnection
network, the memory nodes interconnection network and
the connection between the memory nodes and the
execution nodes. This solution is suitable in case one
decides of maintaining both the message passing and the
shared-memory paradigm [3]: the execution nodes can
interconnect each other in application specific topologies

while the memory nodes can interconnect to fit the
implemented memory distribution strategy. Moreover, the
lack of contention between the memory activities and the
application execution avoids the shared memory overhead
problem and achieves more predictable performances.
This solution is adopted, for example, in the P3M
abstract machine for massively parallel computation [11].

4. The tree structured tuple space model

Our tuple space model follows a hybrid scheme for
tuple repli cation, as seen in section 3, where the execution
nodes are separated from the memory nodes. The main
point of the project is to define a scalable scheme of tuple
repli cation, growing slowly in cost with the system size.

The system is configured in a tree fashion (figure 1),
whose leaves are the execution nodes. Each execution
node is connected to a memory node of the immediately
higher level. Each memory node is connected, in its turn,
with another memory node of the higher level and some
nodes (L-1, if L is the connectivity degree of a node) of
the lower level, that can be either memory nodes or
execution nodes. The root memory node represents the
highest level of the tree and has no higher memory nodes
to connect to. Such solution looks li ke the one adopted in
hierarchical caching model for distributed architectures
[12].

The model can be implemented in every architecture
(it requires a very limited connection degree, at least 3),
and minimises the number of nodes dedicated to the
implementation of the tuple space. We emphasise that the
execution nodes can be freely interconnected to each
other, without influencing at all the tree structure.

�

� �� � �� � ��

� ��

� � � � � � � � � � 	

�
 � � � � � � � � � � 	

Figure 1. The tree distributed
shared memory model

4.1. Tuple distribution strategy
The tuple distribution strategy adopts a hybrid

repli cation scheme that follows the tree. Tuples (both In-
tuples, Read-tuples and Out-tuples) are repli cated along
the whole path that starts from the execution node that

generated it and goes up to the root. It is clear that such a
replication scheme presents the property of non-null
intersection. Every tuple share with every other tuple the
nodes that start from the lowest common parent in the
tree and arrive to the root. Any two tuples share at least
the root. Since the height of the tree grows
logarithmicall y with the system size, the level of
repli cation (and so the cost of the coherence protocol) also
follows this law, making the model scalable.

When a tuple enters the tuple space, it climbs the tree
by repli cating itself in every node it crosses, after
verifying the chances of matching at each node.
Replication stops if a match is found (figure 2): this
optimises the repli cation degree since, in a couple of
matching tuples, only one of them (the first that has
joined the tuple space, is repli cated up to the root while
the repli cation of the other is blocked at the first node of
the intersecting repli cation path. Once the tuple is found,
the Out-tuple must go down the tree in direction of the
execution node that produced the matching In-tuple.

� � � � � �

�

� � � � � �
� � � � � �

Figure 2. Replication and match
the tuple A enters the tuple space and it is replicated up to the

root; when the tuple B enters the tuple space match with A and stops
to replicate itself

4.2. Matching and coherence protocols
Data repli cation introduces the problem of coherence

and the need of granting protocols. In a tuple space, we
argue that coherence can be guaranteed if:
1) any given Out-tuple is extracted by only one In

operation (note: this is meaningless in the case of the
Read operations);

2) any given In operation extracts only one Out-tuple
(the same for Read operations);
The two relationships are independent and so are the

protocols to guarantee them: one can grant one of them
without granting the other and, viceversa, the choice of
one coherence protocol does not influence the another;
only eff iciency can be influenced.

Two protocols can be adopted to obtain the first
coherence condition, we call it respectively UP-DOWN
and DOWN-UP.

� � � !

" # $ % & ' () *
" # $ % & +

Figure 3. Multiple matches
two tuples B and C match, on different nodes,

with replicas of the same tuple A

Let us suppose that in a node one In-tuple finds a
match with one Out-tuple. We recall that both tuples are
stored in all l ower levels of the tree following the path
down to the respective leaves that generated them. After
the match, the Out-tuple should be assigned to the In-
tuple and extracted from the tuple space after verifying
that no other In-tuple has already extracted a different
repli ca of the same tuple. The UP-DOWN protocol
(figure 4), before assigning an Out-tuple to a given In-
tuple, explores the tree from the node of the current
match down to the leaf. The Out-tuple is extracted from
every node in the path of generation. If the Out-tuple is
not found in a node, this means it has been already
extracted by another matching tuple-In. In this case, a
NOT-OK message is returned to the node where the
match has occured and the In-tuple is stored and
replicated up in the tree, waiting for another match. If
and only if the Out-tuple extraction process proceeds
down to the leaf, the match succeeds. In this case, an OK
message is returned to the node of the match and the Out-
tuple is assigned to the matching In-tuple, because no
other In-tuple can extract the same tuple down to the leaf
level.

When the matching protocol succeeds at a given level
of the tree, the Out-tuple must be necessaril y extracted
also from the upper levels up to the root. Even if this
tuple cannot be assigned to other In-tuples, its presence in
the tree could cause a waste of memory resources and
Read-tuples to match with an already extracted tuple. The
Out-tuple process extraction from the upper levels of the

tree, however, can be executed in parallel with the UP-
DOWN protocol and does not cause any additional access
costs. Let us note that the protocol works correctly if
every Out-tuple repli cated on a node contains the
information of the DOWN node where it comes from.

The DOWN-UP protocol (figure 5) is the dual of the
above described one. In this case, a match occured on a
given node is validated only if the Out-tuple extraction
process succeeds up to the root. As in the above protocol,
the Out-tuple must be extracted from the whole tree:
again, the extraction from the lower levels can proceed in
parallel with the protocol execution.

, - . / - 0

, -

- 0

, -

1 2 3 4 5 4 6

7 8 4 5 7 9 : 9 ; 6

1 2 5 < 8 = 5 . > ? ; 9

1 2 5 < 8 = 5 . > ? ; 9

@ 1 A

@ 1 A

Figure 4. The UP-DOWN protocol on a memory
node

B C D E C F

B C

C F

B C

G H I J K J L

G H K M N O K D P Q R S

G H K M N O K D P Q R S

T K I J M S Q R I O N K S U
C V N W T K X S M Y Y K L

Z G [

Z G [

Figure 5. The DOWN-UP protocol on a memory
node

The second coherence condition states that an In-
tuple must extract only one Out-tuple. In other words, if
repli cas of the same In-tuple on different nodes match
with different Out-tuples, only one of these Out-tuples
gets extracted from the tree. This coherence condition
must be honoured by Read-tuples too: one must not
permit a Read-tuple to match with two or more repli cas of
the same Out-tuple. The difference is that no incoherence
can result because a Read does not modify memory.

Even in this case, two dual protocols could be
possible: an UP-DOWN protocol and a DOWN-UP one.

In the UP-DOWN protocol, once a match has been
validated by the first coherence protocol, the In-tuple
climbs down the tree trying to extract itself from every
node of its repli cation path. If this process succeeds, the
In-tuple joinsthe execution node that generated it
(carrying along the information obtained with the match
including the Out-tuple itself). If the In-tuple repli ca is no
longer present on a node, a match has already occurred of
the same In-tuple with another Out-tuple. In this case, the
carried Out-tuple should not be extracted: it is "outed"
again in the tree and made available to other In-tuples. In
parallel with this protocol, In-tuple repli cas are extracted
from the upper levels of the tree. Therefore, as before, an
In-tuple on a node must contain the information of its
DOWN node.

The dual scheme (DOWN-UP protocol) is not viable.
Trying to extract the In-tuple up to the root, in fact, goes
against the natural direction for the matched In-tuple,
whose final goal is to return information down to the
execution node that has generated it.

5. Evaluation of the model

The cost C of complete matching process (a successful
one), both in case of an In-Out match and of a Read-Out
one, can determine the memory access time. If D is the
height of the tree, i.e., the number of levels including the
root and the execution nodes, and d (see figure 1) is the
distance between the execution nodes and the memory
node at which the match is occurred, then:

C O dadRe ()= 2

C O dIn = ()2 by adopting the UP-DOWN and by
adopting the DOWN-UP one in the case the Out-
tuple joins the tuple-space before the In-tuple;

C O DIn = ()2 by adopting the DOWN-UP protocol
in the case the In-tuple joins the tuple space before
the Out-tuple.

In fact, the protocols act in the direction of the tree,
extending their actions along d levels in the first two
cases, along the whole tree height in the latter. In every
memory node of action of the protocol, the matching
mechanisms cost is proportional to the distance between
the execution nodes and the memory node itself. It is
important to point out that, since the height D of the tree
is approximately the logarithm of the number of nodes of
the system, and since d<=D, the application cost of the
protocols increases slowly with the system size (and it is
scalable).

The above presented evaluation implicitely assumes
an infinite memory and execution capacity for each
memory node. However, when the number of tuples
increases, the memory management can require a high
number of memory and execution resources, making the
memory access time untolerable. Let us suppose that, in
the time unit, the memory has to manage M matches and,
for sake of simplicity, M In operations and M Out
operations. Half of the tuples joining the tree, either In- or
Out-tuples, are repli cated up to the root: in fact, they do
not find a partner tuple to match with. The other tuples
stop repli cation when they find a match. Let us call p(x)
the probabilit y that one tuple finds a match at a distance
from the execution nodes greater or equal to x. Because
every tuple that touches a node triggers a matching
mechanism, and by considering also the matching
mechanisms triggered by the coherence protocols, the

total execution load1 at a given level x of the tree is:

 C x MC k MC h p xTOT () () () ()= + + +1

2

1

2
 (i)

where C is the cost, in terms of execution resources,
of the matching mechanism, k and h are constant terms
depending on the adopted coherence protocol. In the load
CTOT(x) the dominant term is the first constant item,
while the second item decreases with the increasing of x.
For a given level, the load is split i nto several nodes
whose number decreases while x increases: the higher the
level in the tree, the lower the number of memory nodes.
By considering that M increases with the system size (the
bigger the system the bigger the number of processes that
access the memory producing matches), it is clear that the
highest levels of the tree could not be able to manage
them. A high degree of localit y in applications can force a
high probabilit y of producing matches at the lowest levels
of the tree: this diminishes the cost CTOT(x) at the highest
level of the tree, by reducing the probabilit y factor, i.e.,
the second item of the (i). However, in CTOT(x), the
constant factor (independent on the height where the
match occurs) still l oads the highest levels of the tree
even in presence of high localit y in applications: the root
can still be the bottleneck in large sized system.

Experimental results in a T800 transputer-based
implementation of the model confirm the above
considerations. The time needed for an In-tuple to retrieve
information from the tuple-space by matching with an
already present Out-tuple, defines the memory access
time. To evaluate it, we have simulated the presence, on
the execution nodes, of application processes accessing
the tuple space. Several patterns of memory accesses have

1 The situation of the communication load is very similar and it will be

not analyzed

been simulated and with a different frequency of the
accesses to the shared memory.

Figure 6 reports the average time - in case of a tree
composed of 40 nodes distributed in four layers (1, 3, 9,
27 nodes, respectively) and 81 execution nodes to access
to the shared memory - depending on the level of the tree
where the match occurs. In case application processes are
very CPU-bound, the memory access time is proportional
to the level of the tree where the match occurs. However,
when application processes are more memory-bound, the
higher levels of the tree tend to become overloaded. The
access time increases exponentiall y for those matches that
occur at the higher level of the tree.

level of the tree (1 = root)

0

5

10

15

20

4 3 2 1

Figure 6. Tuple space access times
(arrow direction = increasing load)

To make our model viable in large systems, still
exploiting potential scalabilit y, it is necessary to avoid the
growth of the ratio between the load at the higher levels
of the tree and the number of nodes that must support.

6. Extensions to the model

The previous section has identified the bottleneck of
the presented model: the higher levels of the tree must use
a limited number of resources for a load that increases
with the system size. One could ignore this problem: even
if higher levels are overloaded, lower levels can always
offer good performance, allowing by eff iciently exploiting
localit y of the applications. However, the matches
occurring at the higher level of the tree - representing
interactions between very far nodes - produce higher and
higher latency times even if they are a few. Then, two
solutions arise to limit the access time for those high
levels matches:

to modify the model in order to allow the load at
the higher levels of the tree to be shared among
the needed number of resources;

to eliminate the costant item in CTOT, by
constraining the tuple repli cation level.

6.1. Releasing the tree structure
To subdivide the load of the higher levels of the tree

among a larger number of resources, one can think to
release the physical structure of the tree while
maintaining its logical one. One can assign to each
logical node of the higher levels of the tree more physical
nodes, in a number proportional to the load it must bear.
This solution, however, cannot permit a logarithmic
increase in the memory access time. The increased
number of nodes for a single logical memory node makes
the cost of both matching mechanisms and coherence
protocols increase: in fact, they must be applied to a
distributed set of items. Moreover, the implementation
would require too many memory nodes with respect to the
number of execution nodes.

An alternate solution can be thought. Not only the
physical structure of the tree is released at the higher
levels, but also the logical one. The higher levels of the
tree, no longer able to manage their load, are substituted
with a “ flat” structure, such as a ring or a mesh; this
solution can become eff icient even for large systems.
However, asymptoticall y, the behaviour of the flat
structure tends to dominate the memory behaviour, with a
growth of memory access time, linear in case of a ring,
square rooted in the case of a mesh. In any case, the
logarithmic trend cannot be produced any longer.

6.2. Constraining tuples replication
The best solution to overcome the bottleneck of the

model and, at the same time, to maintain a logarithmic
growth in the memory access time, is to eliminate the
constant factor in CTOT. The only way to achieve that is
to avoid the repli cation of tuples up the root. In general,
tuples will be repli cated only in a given limited sub-tree.

It is clear that if a tuple is not repli cated up to the
root, it will not be accessible by every execution node. In
fact, the repli cation space of tuples no longer respect the
property of non-null i ntersection (see section 3). A tuple
will not be globally accessible but could be accesses only
by the execution nodes in the sub-tree whose root is the
highest level memory node onto which the tuple is
repli cated (figure 7): a tuple acquires a limited visibility
scope.

In other words, we can state that tuples are not
partiall y repli cated in the memory but full y repli cated in a
sub-memory, identified by a sub-tree contained in the
main shared memory. Each node of the memory identifies
a sub-tree it is the root of, and it identifies also a tree-
structured sub-memory with the same property w.r.t. the
main one. Tuples whose scope is a given sub-tree can be
considered not to be stored in the main memory but only
to be stored in the sub-memory identified by the sub-tree.

We claim coherence protocols need not to be
modified, but they will be applied by considering the sub-
memory scheme. This solution to the bottleneck problem
is viable only if the parallel programming methodology is
very structured.

Next section analyses the parallel programming
methodology that permits tuples to constrain repli cation
at a given level.

Figure 7. Sub-trees identifying different
visiblity scopes and submemories

7. Structured Parallel Programming

The restriction of the repli cation degree of tuples in
our memory model does not represent a limit i f the
adopted programming methodology is structured. A
structured approach to parallel programming starts
from the idea that most parallel applications follow a few
predetermined patterns of execution (such as pipelines,
forms, trees) for the parallel activities and their
communications [13, 14, 15]. In other words, the
components of a parallel application normally do not
interact arbitraril y but follow regular basic
communication patterns.

Most large applications can be composed starting
from these basic structures. The result is a structured
application and the scope of the accesses, both to other
processes and to shared variables, is confined at the
internal of the parallel pattern that uses it, in a way
similar to the local variables of a sequential procedure.
The temporal localit y of references typical of structured
sequential programming is extended to spatial dimension
in the case of structured parallel programming.

In our memory model, if applications are structured,
the reduction of the visibilit y scope of the tuples is not so
strict a limit . Once the scope of a tuple within an
application has been identified, the repli cation path of
this tuple can be stopped at the corresponding tree level.
In this way, only tuples that effectively need to be globally
accessed from the whole system are repli cated up to the

root: only these tuples are allowed to load the higher
levels of the tree.

Figure 8 reports the memory access time - in the
same system configuration described in section 5 - when
using the above described restricted model. In particular,
we report the access time in the same traff ic condition of
the experiments reported in section 5 by varying the
visibilit y scope of the tuples in such a way that balance
the load shared among the memory nodes of any level. In
this case, as figure 8 reports, the obtained access times
are linearly dependent on the depth of the tree where the
match occurs and, consequently, logarithmicall y
dependent on the system size.

level of the tree (1 = root)

0
2
4
6
8

10
12
14

4 3 2 1

Figure 8. Restricted model access times
(arrow direction = increasing load)

 8. Conclusions and Future Work

The paper has presented a model for the
implementation of a distributed shared memory for
massively parallel architectures. The hierarchical
structure of the model allows a logarithmic degree of
scalabilit y and the exploitation of the localit y present in
applications.

The paper evaluates the model and identifies the
limitations that could clash with scalabilit y. However, the
increasing use of structured parallel programming can
produce applications whose properties can overcome these
limitations and make our model not only very powerful
but very effective.

Future work is in the direction of testing our model
with real application in order to verify its effectiveness
“on the field” .

References

1. B.Nitzberg, V.Lo, “Distributed Shared Memory: A
Survey of Issues and Algorithms” , IEEE
Computer, Vol. 24, No. 8, Aug. 1991.

2. D.B.Skilli corn, “Architecture-Independent Parallel
Computation” , IEEE Computer, Dec. 1990.

3. D. Kranz et alii , “ Integrating Message-Passing and
Shared-Memory: Early Experience” , ACM Sigplan
Notices, Vol. 28, No. 7, July 1993.

4. S. Matsuoka, S. Kawai, “Using Tuple Space
Communication in Distributed Object-Oriented
Languages” , OOPSLA '88 Conference
Proceedings, San Diego (CA), Sept. 1988.

5. R.Duncan, “A Survey of Parallel Computer
Architectures” , IEEE Computer, Feb. 1990.

6. P. Stenstrom, “A Survey of Cache Coherence
Schemes for Multiprocessors” , IEEE Computer,
June 1990.

7. M. Stumm, S. Zhou, “Algorithms Implementing
Distributed Shared Memory” , IEEE Computer,
May 1990.

8. S. Ahuja, N.Carriero, D.Gelernter, “LINDA and
Friends” , IEEE Computer, Aug. 1986.

9. N.Carriero, D.Gelernter, “The S/Nets's LINDA
Kernel” , ACM Transactions on Computer Systems,
Vol. 7, No. 7, July 1985.

10. S.Ahuja et alii , “Matching Language and
Hardware for Parallel Computation in the LINDA
Machine” , IEEE Transaction on Computers, Vol.
37, No. 8, Aug. 1988.

11. F. Baiardi et alii , “P3M: an Abstract Architecture
for Massively Parallel Machines” , Workshop on
Abstract Machine Models for Highly Parallel
Computing, Leeds (UK), April 1991.

12. E. Hagersten, A. Landin, S. Haridi, “DDM - A
Cache-Only Memory Architecture” , IEEE
Computer, Sep. 1992.

13. J. Darlington et alii , “Parallel Programming Using
Skeleton Functions” , Proceedings of PARLE '93,
Munich (D), June 1993.

14. A. Corradi, L. Leonardi and F. Zambonelli , “How
to Structure Parallel Applications: Local Nested
Aggregates” , Proceedings of the Joint Modular
Languages Conference, Ulm (D), Sept. 1994.

15. B. Bacci et alii , “A Structured High-Level Parallel
Language and its Structured Support” ,
Concurrency: Practice and Experience, Vol. 7, No.
3, May 1995.

