Copyright 199 IEEE. Published in the Procealings of MPRV '95, October 1995 at Berlin, Germany. Personal use of this material is permitted. However,
permisson to reprint/republi sh this material for advertisng a promotional purposes or for creating rew coll edive works for resale or redistribution to servers or
ligts, or to reuse any copyrighted comporent of this work in aher works, must be obtained from the IEEE Contact: Manager, Copyrights and Permissons /
|EEE Service Center / 445Hoes Lane/ P.O. Box 1331/ Piscataway, NJ 088551331, USA. Telephore: + Intl. 732-562-3966

A Scalable Tuple Space M odel for
Structured Parallel Programming

Antonio Corradi, Franco Zambonelli

Dipartimento di Elettronica Informatica e
Sistemistica - Universita di Bologna
2, Viale Risorgimento - 40136 Bologna - ITALY
E-mail: {acorradi, fzambonelli}@deis.unibo.it

Abstract

The paper proposes and analyses a scalable model of
an associative distributed shared memory for massively
parallel architectures. The proposed model is
hierarchical and fits the modern style of structured
parallel programming. If parallel applications are
composed of a set of modules with a well-defined scope of
interaction, the proposed model can induce a memory
access latency time that only logarithmically increases
with the number of nodes. Experimental results show the
effectiveness of the model with a transputer-based
implementation

1. Introduction

The lack of any globally shared resources makes
massvely parald architedures intrinsically scalable.
However, the neal for a global space of interaction is
difficult to ke substituted for many reasons. In particular:

— global computational models are intrinsically simpler
than local ones;

— even applications based on local computation models
neel shared resources, for instance to create a unique
naming system.

The above problems can be solved by mapping onto
the physical distributed resources of a pardléd
architecure the abstraction of a globally shared space a
distributed shared memory [1].

The problem of an abstract global interaction space
is, again, non scalability: a distributed shared memory, in
particular, can produce unacceptable latency times if the
number of processors among which it is distributed is too
large.

In this paper, we follow the idea that a scalable
mode for a distributed shared memory can be
implemented by restricting the programming model to a

Letizia Leonardi

Dipartimento di Scienze dell'lngegneria -

Universita di Modena

214, Via Campi - 41100 Modena - ITALY

E-mail: leonardi@dsi.unimo.it

structured one. In general, parallel applications follow
predetermined patterns of interaction for their activities.
These patterns identify, within an application, a well-
defined spatial scope for references, in the same way as
local variables have a restricted scope in sequential
programming.

The abowe scenario leads us to a hierarchical mode
for a distributed shared memory, by alowing data to be
accesed, but only within their scope and not globally. A
shared memory is distributed across a tree of memory
nodes, whose leaves are mnneded to a set of exeaution
nodes. Shared data, tuples in our proposal, are replicated
in the treewith a given depth, depending on their scope.
This avoids batleneds in the hierarchy and achieves a
data accesstime proportional to the degree of locality of
the accessitsdlf. In any case, the memory access latency
timeislogarithmically bounded with resped to the system
size. In the shared memory we distinguish between two
roles: memory nodes are servers to implement the shared
memory, exeaition nodes host the dient applications.
Becuse of this distinction, there is no owrhead of the
shared memory implementation on the appli cation.

The paper is organised as follows. Sedion 2 shows
the roles of a shared memory abstraction and its
requirements, while the problem of implementing
distributed tuple spaces is discussd in sedion 3. The
proposed hierarchical modd is described in sedion 4 and
analysed in sedion 5. Sedion 6 and 7 dbscribe,
respedively, an extension to the model and how it meds
the modern structured parall el programming style.

2. The shared memory abstraction

Shared memory is a well -accepted concept because of
many years of experience in sequentiadl and shared-
memory supercomputers programming. Moreover,
abstract computational models based on shared memory
abstract architedures, such as the PRAM one [2],

produced and dffused know-how in parallel algorithms.

In masdvely paralle programming, the shared memory

abstraction plays new roles. It can behave as:

communication system. Communication between
distributed processes can operate on the basis of the
shared memory, making easy the implementation of
several communication modes.

store for monitoring and/or debugging information.
In alocal environment, it could be difficult and even
expensive to oliain global information about the
behaviour of the system and of the applications,
although the information is esential.

way to access I/O devices. The mapping of 1/0 in
shared memory solves the probem of sharing
external devices among dstributed activities;

virtual memory: shared memory permits a processto
accessthe amount of needed memory.

Shared memory and message passng computational
models are not mutually excluding each other [3]. As an
example, obed-oriented perall &l programming
environments, whose omputational modd defines a
message passng scenario without any shared resource
can greatly benefit of the presence of shared memory [4].

However, the physical implementation of a shared
memory presents problems [5]: it introduces a
centralisation point that limits the system scalahility,
beames the battlenedk when the system size increases. A
promising solution, not to avoid the use of a global
interaction space, is represented by distributed shared
memory, where the shared memory is implemented as a
software abstraction onto distributed memory
architedures.

In distributed shared memories, the logical shared
memory space is distributed among dfferent nodes, each
one with its local memory and autonomous exeaution
capability. The information in the memory are avail able,
wherever they are all ocated, to every node of the system
and in atransparent way. Data replication can make data
accesstime faster, by exploiting locality in a way similar
to cache based systems [6]. This introduces the probem
of coherence among dfferent replicas and the necessty
of protocols to guaranteeit [7].

A crucial point when implementing a model is to
choaose the right abstraction level, in particular to choose
the dementary unity of accessof the memory. On the one
hand, the level of variables (whose names permit them to
be "read” and "written") is too low, and it can be
confusing in a distributed environment where names do
not necessarily correspond to a defined physical address
On the other hand, shared objeds (that also define the
interface for accessng them) represent too high a level
and can lead to inefficiencies in implementation.

We doose an intermediate-level, the tuple space
memory model [8]. The unity of accessto the memory is
thetuple, an ordered set of typed fields (defining the tuple
structure), having a defined (actual) value or a not defined
(formal) one. Two tuples are said to "match” if they have
the same structure and the same value of corresponding
actual fields. The operation allowed on the tuples are
Out, In and Read. The Out operation simply stores a
tuple in the tuple space The Read operation searches in
the tuple space for a tuple matching with a spedfied
tuple. The In operation is gmilar to the Read operation
except that it removes the matching tuple from the tuple
space that is no longer available to aher Read or In
operations. Both In and Read operations can block for
the alling process if a match not found. In case of
multiple matches (an In call that matches with different
tuples or an Out call that matches with different In), a
choiceis made non-deterministically.

We amphasise the duality of In and Read operations
with the Out one. One In or a Read produces a "request
tuple", stored in tuple space and successve Out calls
must search for a match with already stored "request
tuples'. For sake of smplicity, in the following, we will
indicate the tuples produced with In, Read, Out
operations as, respedively, In-tuples, Read-tuples and
Out-tuples.

We think the tuple spaceis not also an intermediate
abstraction level but presents other advantages, being a
well-known and defined model and guaranteang bath
consistency (tuples cannot be modified in loco) and
fairness (by managing conflicts in a non-deterministic

way).
3. Distributed tuple spaces

The implementation of a distributed tuple space
requires the definition of policies (distribution palicies)
to distribute and eventuall y repli cate tuples onto different
nodes. In the @se of remnfigurable architedures, it is
also necessary to define the interconnedion topology that
best suits from the adopted dstribution policy. We
emphasise the separation between distribution policies
and matching mecdhanisms. the matching search ocaurs
localy to a node, on the basis of the tuples locally
asdgned to that node, without any knowledge of the
global didtribution policy and of the system
interconnedion topology. Since the implementation of
efficient matching medchanisms is a database management
problem, we mostly concentrate on the distribution policy
and on the system topol ogy.

The smplest distribution policy (with no data
replication and system independent) is based on a hash

solution. A tuple is alocated in one of the nodes of the
system on the basis of the value of a hash function applied
on one of its fields, assumed as “key” (it must always
have an actual value). The probem with this slution is
the difficulty in achieving a homogeneous distribution of
tuplesin the system, espedally when the number of nodes
is high with resped to the number of tuples keys.
Moreover, the hashing solution cannot exploit | ocality.

A different approach is based on a replication
technique: the replication space of the Out tuples sould
form anon-null inter section with the repli cation space of
the tuple requests. A trivial solution that follows this
approach is one where the Out-tuples are stored only on
one node whil e the In and Read-tuples sarch globally for
the match and are eventually replicated on every node of
the system [9]. At the other end of the spedrum, the dual
solution provides afull replication of the Out-tuples and a
local search and a non-replicated storage of the In and
Read-tuples. Both solutions, even if simple and system-
independent, are not effedive for large system. In fact,
they are based on a global replication strategy that is not
scalable and requires a global coherence protocol.

Hybrid solutions, where bath tuples and requests are
replicated with a limited degreg seam to provide better
performance However, their implementation and
effediveness are drictly related to the architedure
topology. The replication strategy must take into acoount
the structure of the eommunication system, that influence
the implementation costs bath of the replication strategy
and of the mherence protocols. An interesting example is
the Linda Machine [10]. The system is configures a 2-D
mesh topology: a node is identified by the row and
column numbers of its position in the mesh. Whenever a
tuple enters the tuple space via an Out operation, it is
replicated along the whole row of the mesh of the source
node. Whenever a request enters the tuple space it is
replicated along the whole olumn. The @st of the
replication policy and of the wherence protocol increases
proportionally with the square roat of the system size, and
makes the Linda Machine quite-well scalable.

When choasing the system interconnedion topology
to implement a distributed tuple space it is possble to
divide the system resources into exeaution nodes, devoted
to the applications, and memory nodes, devoted to the
implementation of the distributed shared memory. This
allows to define independently the interconnedions of
different parts. the eeaition nodes interconnedion
network, the memory nodes interconnedion network and
the @nnedion between the memory nodes and the
exeaution nodes. This lution is sitable in case one
deddes of maintaining bath the message passng and the
shared-memory paradigm [3]: the exeaution nodes can
interconned each other in application spedfic topologies

while the memory nodes can interconned to fit the
implemented memory distribution strategy. Moreover, the
lack of contention between the memory activities and the
appli cation exeaution avoids the shared memory overhead
probem and achieves more predictable performances.
This lution is adopted, for example, in the P3M
abstract machine for massvely parallel computation [11].

4. Thetree structured tuple space model

Our tuple space model follows a hybrid scheme for
tuplereplication, as ®e in sedion 3, where the exeaution
nodes are separated from the memory nodes. The main
point of the projed is to define a scalable scheme of tuple
replication, growing dowly in cost with the system size.

The system is configured in a treefashion (figure 1),
whose leaves are the exeaution nodes. Each exeaution
node is conneded to a memory node of the immediately
higher level. Each memory node is conneded, in its turn,
with another memory node of the higher level and some
nodes (L-1, if L is the mnnedivity degree of a node) of
the lower level, that can be dther memory nodes or
exeadtion nodes. The roat memory node represents the
highest level of the treeand has no higher memory nodes
to conned to. Such solution lodks like the one adopted in
hierarchical caching modd for distributed architedures
[12].

The model can be implemented in every architedure
(it requires a very limited connedion degreg at least 3),
and minimises the number of nodes dedicated to the
implementation of the tuple space We anphasise that the
exeadtion nodes can be fredy interconneded to each
other, without influencing at all the treestructure.

M

Memory Nodes

N

VNN

Execution Nodes

Figure 1. The tree distributed
shared memory model

4.1. Tupledistribution strategy

The tuple distribution strategy adopts a hybrid
replication scheme that foll ows the tree Tuples (bath In-
tuples, Read-tuples and Out-tuples) are replicated along
the whole path that starts from the exeaution node that

generated it and goes up to theroat. It is clear that such a
replication scheme presents the property of non-null
intersedion. Every tuple share with every other tuple the
nodes that start from the lowest common parent in the
treeand arrive to the roat. Any two tuples dare at least
the roa. Since the height of the tree grows
logarithmically with the system size, the levd of
replication (and so the st of the wherence protocol) also
foll ows this law, making the model scalable.

When atuple entersthe tuple space it climbsthe tree
by replicating itsedf in every node it crosses, after
verifying the dances of matching at each node.
Replication stops if a match is found (figure 2): this
optimises the replication degree since in a couple of
matching tuples, only one of them (the first that has
joined the tuple space is replicated up to the roat while
the replication of the other is blocked at the first node of
the interseding replication path. Once the tuple is found,
the Out-tuple must go down the treein diredion of the
exeadtion node that produced the matching In-tuple.

7
A
AN
N\ d
N
B DN I
04000

Figure 2. Replication and match
the tuple A enters the tuple space and it is replicated up to the
root; when the tuple B enters the tuple space match with A and stops
to replicate itself

4.2. Matching and coher ence protocols
Data repli cation introduces the problem of coherence

and the neal of granting protocols. In a tuple space we

argue that coherence @n be guaranted if:

1) any given Out-tuple is extracted by only one In
operation (note: this is meaninglessin the @ase of the
Read operations);

2) any given In operation extracts only one Out-tuple
(the same for Read operations);

The two relationships are independent and so are the
protocols to guarantee them: one @an grant one of them
without granting the other and, viceversa, the dhoice of
one @herence protocol does not influence the another;
only efficiency can be influenced.

Two protocols can be adopted to oltain the first
coherence condition, we @l it respedively UP-DOWN
and DOWN-UP.

-~

O
—— tuplesB, C \\
I,7‘T\ 71
\\ /
N /
,/F,,,,/D\,,,,,ﬂ\,,,, ?,\ ,,,,,,
b0 80D

Figure 3. Multiple matches
two tuples B and C match, on different nodes,
with replicas of the same tuple A

Let us suppose that in a node one In-tuple finds a
match with one Out-tuple. We recl that bath tuples are
stored in all lower levels of the tree following the path
down to the respedive leaves that generated them. After
the match, the Out-tuple should be asdgned to the In-
tuple and extracted from the tuple space after verifying
that no aher In-tuple has already extracted a different
replica of the same tuple. The UP-DOWN protocol
(figure 4), before assgning an Out-tuple to a given In-
tuple, explores the tree from the node of the airrent
match down to the leaf. The Out-tuple is extracted from
every node in the path of generation. If the Out-tuple is
not found in a node, this means it has been aready
extracted by another matching tuple-In. In this case, a
NOT-OK message is returned to the node where the
match has ocaured and the In-tuple is gored and
replicated up in the tree waiting for another match. If
and only if the Out-tuple extraction process proceels
down to the leaf, the match succeels. In this case, an OK
message is returned to the node of the match and the Out-
tuple is asdgned to the matching In-tuple, because no
other In-tuple @n extract the same tuple down to the leaf
leve.

When the matching protocol succeals at a given level
of the treg the Out-tuple must be necessrily extracted
also from the upper levels up to the roat. Even if this
tuple @annot be asdgned to aher In-tuples, its presencein
the tree ould cause a waste of memory resources and
Read-tuples to match with an already extracted tuple. The
Out-tuple process extraction from the upper levels of the

tree however, can be exeated in paralle with the UP-
DOWN protocol and does not cause any additional access
costs. Let us note that the protocol works corredly if
every Out-tuple replicated on a node mntains the
information of the DOWN node where it comes from.

The DOWN-UP protocal (figure 5) isthe dual of the
abowe described one. In this case, a match occured on a
given node is validated only if the Out-tuple extraction
process sicceals up to the rod. As in the abowve protocol,
the Out-tuple must be edtracted from the whole tree
again, the extraction from the lower levels can proceal in
parall e with the protocol exeaution.

NOT-OK OK

Extract Tuple

Exists ?

¢ YES

Last Level ?

YES

Extract Tuple

Figure 4. The UP-DOWN protocol on a memory
node

Extract Tuple

It is replicated
OR am I the root ?

TYES NO

Exists ?

NOT-OK OK

Extract Tuple

Figure 5. The DOWN-UP protocol on a memory
node
The second coherence condition states that an In-
tuple must extract only one Out-tuple. In other words, if
replicas of the same In-tuple on different nodes match
with different Out-tuples, only one of these Out-tuples
gets extracted from the tree This coherence ondition
must be honoured by Read-tuples too: one must not
permit a Read-tuple to match with two a more repli cas of
the same Out-tuple. The differenceis that no incoherence
can result because a Read does not modify memory.

Even in this case, two dual protocols could be
possble: an UP-DOWN protocol and a DOWN-UP one.

In the UP-DOWN protocol, once a match has been
validated by the first coherence protocol, the In-tuple
climbs down the tree trying to extract itself from every
node of its replication path. If this process sicceals, the
In-tuple joinsthe exeaution node that generated it
(carrying along the information obtained with the match
including the Out-tuple itself). If the In-tuple replicais no
longer present on a node, a match has already occurred of
the same In-tuple with ancther Out-tuple. In this case, the
carried Out-tuple should not be extracted: it is "outed"
again in the treeand made avail able to aher In-tuples. In
parallel with this protocol, In-tuple replicas are etracted
from the upper levels of the tree Therefore, as before, an
In-tuple on a node must contain the information of its
DOWN node.

The dual scheme (DOWN-UP protocal) is not viable.
Trying to extract the In-tuple up to the rod, in fact, goes
against the natural diredion for the matched In-tuple,
whose final goal is to return information down to the
exeadtion node that has generated it.

5. Evaluation of the modd

The st C of complete matching process(a successul
one), bath in case of an In-Out match and of a Read-Out
one, can determine the memory accesstime. If D is the
height of the treg i.e., the number of levels including the
roat and the exeaution nodes, and d (seefigure 1) is the
distance between the exeaution nodes and the memory
node at which the match is occurred, then:

i CRead = O(dz)

C, = O(d®) by adopting the UP-DOWN and by
adopting the DOWN-UP one in the @se the Out-
tuple joins the tuple-space before the In-tuple;

C, = O(D?) by adopting the DOWN-UP protocol
in the @se the In-tuple joins the tuple space before
the Out-tuple.

In fact, the protocols act in the diredion of the tree
extending their actions along d levels in the first two
cases, along the whole tree height in the latter. In every
memory node of action of the protocol, the matching
medhanisms cost is proportional to the distance between
the exeaution nodes and the memory node itsdf. It is
important to point out that, sincethe height D of the tree
is approximately the logarithm of the number of nodes of
the system, and since d<=D, the application cost of the
protocols increases dowly with the system size (and it is
scalable).

The abowve presented evaluation implicitely assumes
an infinite memory and exeaition capacity for each
memory node. However, when the number of tuples
increases, the memory management can require a high
number of memory and exeaution resources, making the
memory access time untolerable. Let us suppose that, in
the time unit, the memory has to manage M matches and,
for sake of simplicity, M In operations and M Out
operations. Half of the tuplesjoining the treg ether In- or
Out-tuples, are replicated upto the roat: in fact, they do
not find a partner tuple to match with. The other tuples
stop replication when they find a match. Let us call p(x)
the probahility that one tuple finds a match at a distance
from the exeaution nodes greater or equal to X. Because
every tuple that touches a node triggers a matching
medanism, and by considering also the matching
medanisms triggered by the wherence protocals, the

total exeaution load? at agiven leve x of thetreeis:
1 1
Cror () = MC(C + k) + MC(S + hyp(x) O

where C is the mst, in terms of exeaution resources,
of the matching medchanism, k and h are mnstant terms
depending on the adopted coherence protocal. In the load
Cror(X) the dominant term is the first constant item,
whil e the second item deaeases with the increasing of x.
For a given level, the load is 9lit into several nodes
whose number deaeases whil e x increases. the higher the
level in the tree the lower the number of memory nodes.
By considering that M increases with the system size (the
bigger the system the bigger the number of processes that
accessthe memory producing matches), it is clear that the
highest levels of the tree ould not be able to manage
them. A high degreeof locality in appli cations can forcea
high probability of producing matches at the lowest levels
of thetree this diminishesthe st Cyot(x) at the highest
level of the treg by reducing the probability factor, i.e.,
the second item of the (i). However, in Crot(X), the
constant factor (independent on the height where the
match ocaurs) till 1oads the highest levels of the tree
even in presence of high locality in applications. the roat
can still be the battlenedk in large sized system.

Experimental results in a T800 transputer-based
implementation of the mode confirm the abowe
considerations. The time nealed for an In-tupleto retrieve
information from the tuple-space by matching with an
already present Out-tuple, defines the memory access
time. To evaluate it, we have simulated the presence on
the exeaution nodes, of application processes accessng
the tuple space Several patterns of memory accesss have

1 The situation o the ommunication load isvery amilar andit will be
not analyzed

been smulated and with a different frequency of the
accessss to the shared memory.

Figure 6 reports the average time - in case of a tree
composed of 40 nodes distributed in four layers (1, 3, 9,
27 nodes, respedively) and 81 exeaution nodes to access
to the shared memory - depending on the level of the tree
where the match ocaurs. In case application processs are
very CPU-bound, the memory accesstime is proportional
to the leve of the treewhere the match occurs. However,
when application processs are more memory-bound, the
higher levels of the treetend to beaome overloaded. The
accesstime increases exponentialy for those matches that
ocaur at the higher level of thetree

20 +

15 1

4 3 2 1

level of the tree (1 = root

Figure 6. Tuple space access times
(arrow direction = increasing load)

To make our model viable in large systems, still
exploiting potential scalability, it is necessary to avoid the
growth of the ratio between the load at the higher levels
of the treeand the number of nodes that must support.

6. Extensonsto the mode

The previous fdion has identified the battlenedk of
the presented model: the higher levels of the treemust use
a limited number of resources for a load that increases
with the system size. One auld ignore this problem: even
if higher levels are overloaded, lower levels can always
offer good performance, all owing by efficiently exploiting
locality of the applications. However, the matches
ocaurring at the higher level of the tree - representing
interactions between very far nodes - produce higher and
higher latency times even if they are a few. Then, two
solutions arise to limit the access time for those high
levels matches:

to modify the model in order to all ow the load at
the higher levels of the treeto be shared among
the needed number of resources;

###to eiminate the wstant item in Cror, by
constraining the tuple replication level.

6.1. Releasing the tree structure

To subdivide the load of the higher levels of the tree
among a larger number of resources, one @n think to
release the physical structure of the tree while
maintaining its logical one. One @n asdgn to each
logical node of the higher levels of the treemore physical
nodes, in a number proportional to the load it must bear.
This lution, however, cannot permit a logarithmic
increase in the memory access time. The increased
number of nodes for a single logical memory node makes
the @st of bath matching medanisms and coherence
protocols increase: in fact, they must be applied to a
distributed set of items. Moreover, the implementation
would require too many memory nodes with resped to the
number of exeaution nodes.

An alternate solution can be thought. Not only the
physical structure of the tree is released at the higher
levels, but also the logical one. The higher levels of the
tree no longer able to manage their load, are substituted
with a “flat” structure, such as a ring or a mesh; this
solution can beamme dficient even for large systems.
However, asymptotically, the behaviour of the flat
structure tends to dominate the memory behaviour, with a
growth of memory accesstime, linear in case of a ring,
square roated in the ase of a mesh. In any case, the
logarithmic trend cannot be produced any longer.

6.2. Constraining tuples replication

The best solution to owercome the battlenedk of the
model and, at the same time, to maintain a logarithmic
growth in the memory access time, is to eliminate the
constant factor in Cygt. The only way to achieve that is
to avoid the replication of tuples up the roat. In general,
tupleswill bereplicated only in a given limited sub-tree

It is clear that if a tuple is not replicated up to the
roat, it will not be accessble by every exeaution node. In
fact, the replication space of tuples no longer resped the
property of non-null intersedion (see sedion 3). A tuple
will not be globally accessble but could be accesses only
by the exeaution nodes in the sub-tree whose roat is the
highest level memory node onto which the tuple is
replicated (figure 7): a tuple acquires a limited visibility
scope.

In other words, we @n dstate that tuples are not
partially replicated in the memory but fully replicated in a
sub-memory, identified by a sub-tree ©ntained in the
main shared memory. Each node of the memory identifies
a sub-treeit is the roat of, and it identifies also a tree
structured sub-memory with the same property w.r.t. the
main one. Tuples whose scope is a given sub-tree @n be
considered not to ke stored in the main memory but only
to be stored in the sub-memory identified by the sub-tree

We daim coherence protocols need not to be
modified, but they will be applied by considering the sub-
memory scheme. This lution to the battlened< problem
isviable only if the parallel programming methodology is
very structured.

Next sedion anayses the parald programming
methodology that permits tuples to constrain replication
at agiven level.

Figure 7. Sub-trees identifying different
visiblity scopes and submemories

7. Structured Parallel Programming

The restriction of the replication degree of tuples in
our memory model does not represent a limit if the
adopted progranming methodology is dgructured. A
structured approach to parale programming starts
from the idea that most parall e applications follow a few
predetermined petterns of exeaution (such as pipelines,
forms, trees) for the parald activities and their
communications [13, 14, 15]. In other words, the
components of a parallel application normally do not
interact arbitrarily but follow regular basic
communication patterns.

Most large applications can be mmposed starting
from these basic structures. The result is a structured
application and the scope of the accesses, bath to aher
proceses and to shared variables, is confined at the
internal of the parale pattern that uses it, in a way
similar to the local variables of a sequential procedure.
The temporal locality of references typical of structured
sequential programming is extended to spatial dimension
in the @ase of structured parallel programming.

In our memory model, if applications are structured,
the reduction of the visibility scope of the tuplesis not so
gtrict a limit. Once the scope of a tuple within an
application has been identified, the replication path of
this tuple @n be stopped at the wrresponding treelevel.
In thisway, only tuplesthat effedively need to be globally
accessd from the whole system are replicated up to the

roat: only these tuples are allowed to load the higher
levels of thetree

Figure 8 reports the memory access time - in the
same system configuration described in sedion 5 - when
using the above described restricted model. In particular,
we report the accesstime in the same traffic condition of
the experiments reported in sedion 5 by varying the
visibility scope of the tuples in such a way that balance
the load shared among the memory nodes of any level. In
this case, as figure 8 reports, the obtained access times
are linearly dependent on the depth of the treewhere the
match ocaurs and, consequently, logarithmically
dependent on the system size.

14 .

level of the tree (1 = root)

Figure 8. Restricted model access times
(arrow direction = increasing load)

8. Conclusions and Future Work

The paper has presented a mode for the
implementation of a distributed shared memory for
massvely parale architedures. The hierarchical
structure of the model alows a logarithmic degree of
scalability and the exploitation of the locality present in
applications.

The paper evaluates the model and identifies the
limitations that could clash with scalahility. However, the
increasing use of structured parallel programming can
produce appli cations whaose properties can overcome these
limitations and make our model not only very powerful
but very effedive.

Future work is in the diredion of testing our model
with real application in order to werify its effediveness
“on thefied".

References

1

10.

11

12

13.

14.

15.

B.Nitzberg, V.Lo, “Distributed Shared Memory: A
Survey of Isaes and Algorithms’, |EEE
Computer, Val. 24, No. 8, Aug. 1991

D.B.Skilli corn, “Architedure-lndependent Parall el
Computation”, IEEE Computer, Dec 1990

D. Kranz et dli, “Integrating Message-Passng and
Shared-Memory: Early Experience’, ACM Sigplan
Notices, Vol. 28, No. 7, July 1993

S. Matsuoka, S. Kawai, “Using Tuple Space
Communication in Distributed Objed-Oriented
Languages’, OOPS.A ‘88 Conference
Procealings, San Diego (CA), Sept. 1988
R.Duncan, “A Survey of Parald Computer
Architedures’, IEEE Computer, Feb. 1990

P. Stenstrom, “A Survey of Cache Coherence
Schemes for Multiprocessors’, |IEEE Computer,
June 199Q

M. Stumm, S. Zhou, “Algorithms Implementing
Digtributed Shared Memory”, IEEE Computer,
May 199Q

S. Ahuja, N.Carriero, D.Gelernter, “LINDA and
Friends’, IEEE Computer, Aug. 1986

N.Carriero, D.Gelernter, “The S/Netss LINDA
Kernd”, ACM Transactions on Computer Systems,
Voal. 7, No. 7, July 1985

SAhuja e dii, “Matching Language and
Hardware for Paralledl Computation in the LINDA
Machin€’, IEEE Transaction on Computers, Vol.
37, No. 8, Aug. 1988

F. Baiardi et alii, “P3M: an Abstract Architedure
for Masdvely Parallel Machines’, Workshop on
Abstract Machine Models for Highly Paralle
Computing, Ledals (UK), April 1991

E. Hagersten, A. Landin, S. Haridi, “DDM - A
Cache-Only Memory Architedure’, |EEE
Computer, Sep. 1992

J. Darlington et dlii, “Parallel Programming Using
Skeleton Functions’, Procealings of PARLE '93,
Munich (D), June 1993

A. Corradi, L. Leonardi and F. Zambondli, “How
to Structure Parallel Applications: Local Nested
Aggregates’, Procealings of the Joint Modular
Languages Conference, Ulm (D), Sept. 1994

B. Bacd et i, “A Structured High-Level Parall el
Language and its Structured Support”,
Concurrency: Practice and Experience, Val. 7, No.
3, May 1995

