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From Side-Scan Sonar Images
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Abstract—In this paper, a new method for the estimation of
seabed elevation maps from side-scan sonar images is presented.
The side-scan image formation process is represented by a Lam-
bertian diffuse model, which is then inverted by a multiresolution
optimization procedure inspired by expectation–maximization to
account for the characteristics of the imaged seafloor region. On
convergence of the model, approximations for seabed reflectivity,
side-scan beam pattern, and seabed altitude are obtained. The
performance of the system is evaluated against a real structure of
known dimensions. Reconstruction results for images acquired by
different sonar sensors are presented. Applications to augmented
reality for the simulation of targets in sonar imagery are also
discussed.

Index Terms—Augmented reality, expectation–maximization,
multiresolution, shape from shading, side-scan sonar, 3-D recon-
struction.

I. INTRODUCTION

ACOUSTIC sensing is the imaging modality of choice for
the analysis of underwater environments. Acoustic waves

propagate well in water—as opposed to electro-magnetic
waves, which are quickly attenuated—and several acoustic
sensors (sonars) are routinely used to study the underwater
environment, with side-scan and multibeam [1] sonars being
the most common. To obtain images of the seafloor, side-scan
is the most widely used system, while multibeam is the pre-
ferred choice for the production of seabed elevation maps
(bathymetry). Side-scan sonars provide high resolution images
(typically 10 5 cm resolution) and reasonably large coverage
(up to 70-m range) at high frequency (500 KHz). Emerging
synthetic aperture sonar (SAS) technology will provide in
the near future even better resolution ( 15 mm) at longer
ranges ( 300 m). However, side-scan sonars remain, and
should remain some years for economic reasons, the sensors of
choice for seabed imagery. Although they do not provide direct
measures of seabed elevation, the images they produce are
related to seabed topography—as well as seafloor composition
and direction of observation. Furthermore, the visual analysis
of side-scan imagery suggests that it should be possible to
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establish a correspondence between image pixel intensities and
the local surface slope at any given point of the seafloor. Of
more interest to the image processing and computer graphics
communities is the fact that the side-scan sonar imaging process
is well approximated by the Lambertian image model [2]–[4],
which permits the use of standard digital image processing
techniques both for synthesis and analysis of sonar images.

Bathymetry maps are usually constructed using multibeam
systems, which are expensive and require powerful sensor plat-
forms. Side-scan systems are comparatively cheap, easier to de-
ploy, and provide wider area coverage, which makes the possi-
bility of employing them as a substitutive mean for acquiring
elevation maps an extremely interesting proposition.

This is particularly true for offshore and military applications
where autonomous underwater vehicles are becoming widely
spread for inspection tasks (offshore) and Mines and Counter
Measure Tasks (military). The ability to simulate the appearance
of underwater structures (pipelines, mines) in real environments
(augmented reality) will be the key to the development of reli-
able autonomous systems able to interpret the environment ro-
bustly. This has been recently demonstrated in the mine warfare
context [5].

II. BACKGROUND

Efforts oriented to the utilization of side-scan sonar for the
indirect determination of seabed topography have been scarce
[2], [6]–[8], [10], the main reasons being the complexity of the
full mathematical projection model and the high number of pro-
cedures required for preprocessing the original source data be-
fore it can be effectively used. In most cases where acquisi-
tion of seabed topography is important, attention is driven to
more straightforward solutions such as multibeam bathymetric
systems.

Most existing work on seabed reconstruction from side-scan
has been mainly qualitative and oriented to obstacle avoidance
for underwater vehicles [2], [7]–[9]. Other works focus on
seabed texture classification or object recognition [10]–[13].
In all these situations precise descriptions of the seabed topog-
raphy are not critical.

In general, the fundamental idea behind the reconstruction
methods is to determine a model for the ensonification process
that is simple enough for the image formation problem to
be inverted, obtaining an approximation to the surface gradi-
ents, which can be globally described as shape-from-shading
methods [3], [4], [6], [14]. Our goal is to apply and extend these
methods using a multiresolution statistical approach to deter-
mine the most probable configuration of the seabed topography
compatible with the side-scan image actually observed.
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Fig. 1. Side-scan image formation.

The special case of side-scan images is particularly advan-
tageous when attempting shape from shading. The two main
reasons are the position of the light source (here transducer) is
known (it coincides with the position of the camera, here the re-
ceivers), and the Lambertian model is a very good approxima-
tion for the sonar scattering produced by the materials usually
found on the seabed (rocks, sand, etc.) [15]–[17]. Radiosity ef-
fects (interreflections) on sonar images are also much smaller
than those found in visual images, since the illuminating sonar
pulses are time gated, as opposed to standard light sources.

Shape from shading is generally an underconstrained
problem in the sense that, usually, just a single sample for
every scene point is available (in the form of a line-scan pixel)
and that most of the model parameters cannot be directly
inferred from that observation alone. Additional constraints
and an optimization method have to be used in order to solve
the problem. Our particular approach uses a multiresolution
implementation, starting from a coarse subsampled version of
the image, and then working out more details at finer scales.
At each scale, a statistical framework is used to select the
most probable set of parameters from the solution space and,
in our case, is implemented as an iterative procedure inspired
by the expectation–maximization method [18], [19]. At every
iteration, the estimated solution is used to simulate a side-scan
image of the observed scene, which is then compared to the
side-scan image actually observed; solution parameters are
finally refined using gradient descent [20] as the optimization
method. The process is repeated until convergence is achieved
up to a given degree.

III. IMAGE FORMATION

A. Side-Scan Sonar

The side-scan image formation process is briefly sketched in
Fig. 1. The sensor’s acoustic source at produces an ensonifi-
cation pulse that illuminates the seafloor. Some of the acoustic
energy reaching any seabed point is scattered back and can be
measured by the sensor. The intensity of the corresponding pixel
of the side-scan image will depend on the amount of energy scat-
tered back from the surface point. The pulse is not isotropic, but
follows a particular beam-profile that depends on the grazing
angle subtended by the vector from to . The amount of
energy scattered back also depends on the seabed reflectivity
at the point. Statistically, side-scan backscatter images present
a Rayleigh distribution [21].

B. Scattering Model

In order to model the scattering process, we use the tradi-
tional Lambertian model [2]–[4], which permits us to derive
the returned intensity from the parameters defining the observed
scene. This simple model for diffuse scattering assumes that the
returned intensity depends only on the angle of incidence of the
illuminating sound pulse, and not on the angle of observation or
on the frequency of the pulse. Under this assumption, the inten-
sity returned from a seabed point can be represented by the
following expression:

(1)

where represents the intensity of the illuminating sound wave
at point , is the reflectivity of the seafloor, is the incidence
angle of the wave front, and is a normalization constant. Since
most logged side-scan images already include a time-varying
gain (TVG) correction [22], [23] for compensation of the inten-
sity decay with distance and grazing angle, no dependence on
radial decay has been included in the model (this would oth-
erwise appear as a term on ). Therefore, in order to
simplify the model, all the intensity variations caused by the
sensor’s beam profile, the radial decay and the corrections are
supposed to be grouped under the beam-pattern .

The dependence on the seafloor’s elevation is implicit in
the incidence angle , which depends on the grazing angle

from the acoustic source and the orientation of the surface
normal . This dependence can be made explicit by first
expanding the cosine in (1) as follows:

(2)

and then by representing and on a coordinate system rela-
tive to the sensor (Fig. 1). Expressing as —with

being the across distance from the sensor and pointing along
its direction of movement—gives

(3)

where the coordinate in is 0 because the side-scan sonar
pulse is shaped so that only the points contained in the
plane are illuminated.

A combination of expressions (1)–(3) gives the forward
model for the computation of the intensity at any point ,
given the model parameters , , and

(4)

where the gradients and can be approximated by
finite differences, yielding an expression that depends directly
on .
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C. Determination of

The values of the model parameters are limited to partic-
ular ranges, which have to be observed during the optimization
process.

Reflectivity values, by definition, have to lie between 0 and
1, but to avoid the model from collapsing in the darker areas,
a lower bound greater than 0 is chosen on initialization
(with a typical value of 0.1). Intensity values for the incident
sound wave are assumed to lie between 0 and 1, which would
normally mean bounding within that range. However, because

includes the unknown applied TVG, values greater than 1 are
allowed. In practice, this amounts to just a little overshoot for
the bigger angles, which naturally correspond to points of the
seabed farther away from the sensor and, therefore, requiring
higher TVG corrections.

Completion of the forward model (4), therefore, requires a
normalization constant to account for the fact that most of
the source image intensity values are being affected by some
kind of scaling (because of the TVG, the radial decay, etc.).
Our approach to determine is to use the maximum achievable
returns at every surface point to normalize the computed pixel
values. Under the diffuse reflectance model and the selected pa-
rameter ranges, the maximum intensity return at any sur-
face point is 1 (for reflectivity and incident intensity values both
1 and for the optimal surface orientation with respect to the in-
cident illumination). Assuming the part of the surface normal
depending on is kept constant, the surface orientation with
maximal return can be obtained by differentiation of (4) with
respect to and equating to 0, checking the second deriva-
tive is negative to ensure the extremum is a maximum. Solving
for and substituting in (4) gives the following expres-
sion for the computation of the maximal intensity return at any
surface point:

(5)
where explicit dependences of on have been removed
for clarity. Note that is always positive because the sensor
is always above the seafloor, which means is always
negative according to our choice of coordinates (Fig. 1). It is
also clear from the expression that is always between 0
and 1.

Expression (5) results in the following normalization for the
forward model (1):

(6)

IV. SONAR INVERSION

A. Methodology

Equation (4) provides a direct formula for estimating the re-
turned intensity given the model parameters. However, the in-
verse problem—obtaining the model parameters from the ob-
served intensities—is clearly underdetermined, since we only
have one observation (of ) at each point to compute the values
of the three model parameters.

In order to solve this problem, we propose to take a least
mean-squares (LMS) approach and try to minimize the sum
of the squared differences between the points of the observed
image and those of the model

(7)

Therefore, the following optimization problem needs to be
tackled:

(8)

There are a number of ways to approach such an optimization
problem. For convex problems, gradient descent or conjugate
gradient techniques are the natural choices. For nonconvex
problems with possibly a large number of local minima, other
techniques such as stochastic techniques (simulated annealing,
stochastic expectation maximization) or evolutionary tech-
niques (genetic algorithms, particle swarm optimization) are
preferable [24]. These techniques are broadly performing two
main tasks: exploration of the parameter space and exploitation
of the promising areas. For these techniques to perform well,
the exploration phase needs to be effective (both in computation
time and precision) at locating promising areas. Our functional
is likely to yield a large number of local minima due to the
underconstrained nature of the problem. This would favor the
use of global optimization techniques with strong exploratory
component such as genetic algorithms or evolutionary com-
puting. However, those techniques can be prohibitive in terms
of convergence time if the parameter space is large. This is the
case here for two reasons:

First, we are dealing images which are typically 1000 1000
pixels. For each pixel, three parameters have to be determined.
The overall search space is, therefore, in . This is a
huge parameter space which cannot be realistically tackled by
global techniques if true convergence criteria (stochastic con-
vergence for simulated annealing [25]) are to be met.

Second, it is important to note that in the case of our func-
tional, several combinations will yield the same error
metric while possibly being in very different places in the pa-
rameter space. Therefore, the functional will present numerous
local minima and possibly several global minima. Therefore,
even the application of global techniques would not guarantee
the convergence to the true global minimum (out of all the po-
tential possible ones).

To alleviate the problem one solution would be to reduce the
parameter space by representing the problem differently (spline
surfaces for and , polynomials for ). This solution has been
envisaged and discarded as the level of details that needs to be
recovered (high frequencies) would require a very large number
of parameters for the models making the models difficult to use
and probably unstable.

The solution we have chosen is to use a standard gradient
descent, thus converging to the next local minimum. To en-
sure convergence to a realistic minimum, great care is taken in
the initial starting point by introducing prior knowledge on the
scene and image formation process. The cost function is also
smoothed by using a multiresolution approach, hence avoiding
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Fig. 2. Outline of the optimization procedure.

obvious local minimum in the vicinity of the starting point. Fi-
nally, we introduce an iterative process where regularization
conditions are enforced globally on the parameter space after
each local optimization phase. The details of the process are de-
scribed in the next section.

B. Optimization Process

In order to solve this optimization problem, we propose the
use of a method inspired by expectation–maximization [18],
[19] (Fig. 2), which will iteratively converge to an optimal set
of modeling parameters given a source side-scan image .

In the expectation stage, the current estimates for the model
parameters are used to compute an estimation of the intensity

. This is achieved by substituting the parameters ,
, and from the previous iteration in the forward

model presented in expression (4).
In the maximization stage, a straightforward gradient descent

approach [20] is used to minimize by updating the model
parameters as follows:

(9)

where is a small constant value used to control the rate of
change. The expressions are iterated until the variation in the
error is below a given threshold. The particular value chosen
for lambda does not seem to be very relevant for the final 3-D
reconstruction results, but we found to be a good
compromise between final optimization error and computation
time.

Direct operation in (9) yields the following expressions for
updating the model parameters:

(10)

where the explicit dependence of the parameters on has
been removed in the last equation for clarity.

C. Regularization

As our method is pixel based, a regularization scheme is
needed to maintain coherence between neighboring surface
points. Regularization is performed at the end of every iteration
by filtering the estimated reflectivity and beam-pattern maps.
Reflectivity values for the points in shadowed areas are set to
that of their nearest illuminated neighbors by hexadecagonal
dilation [26] of nonshadowed areas. Whereas values of for
all the points subtending the same angle to the sensor are set
to their median value, since the beam profile of the sensor is
supposed to be constant

(11)

Other simple regularization techniques were tested. For
instance, inspired on simulated annealing methods, we tried
smoothing reflectivity and elevation maps on logarithmic
iterations (less frequent as numbers of iterations increased).
This slightly reduced the convergence error in exchange for
slightly longer convergence times, but did not produce clearly
noticeable differences in the resulting 3-D reconstructions.

D. Initialization

The optimization procedure starts by initialization of the ,
, and maps. The reflectivity map is set to a constant value

(typically 0.9, although the particular value does not seem to be
especially relevant), and the elevation of every point is
set to that of the first return at —which is equivalent to the
traditional assumption of a flat seabed. Then, the beam-pattern

is computed by setting it to the original image values and then
regularizing it as shown in (11).

Other initialization approaches have been tested. In partic-
ular we have tried to use the shadows in the original image to
obtain a coarse approximation to , and also to use a variation
of the original image as an initialization for . All approaches
generated very similar end results and final convergence errors.
After extensive tests, we were able to conclude that the most
important factor driving the final optimization result is the mul-
tiresolution implementation (see the following section), which
provides a better initialization for the final full-resolution stage
of the optimization procedure.

E. Multiresolution

A multiresolution implementation of the method described
in the paragraphs above results in better convergence and im-
proved results. The main reason being the better initialization
for the final (full resolution) scale, as compared to the simple
initialization proposed in Section IV-D. The subsampling and
resampling steps performed in the multiresolution implemen-
tation also contribute to the regularization procedure, which is
of extreme importance due to the point-wise nature of the op-
timization method described in Section IV-B, which operates
on a per-pixel level. The simple regularization stage described
in Section IV-C is able to restore some of the interdependence
of the pixel neighborhoods, but bigger seabed features, such as
slowly varying slopes, cannot be fully recovered just by it. Ef-
fects of this limitation are shown in the top part of Fig. 3, where
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Fig. 3. Front view of the reconstruction of a rock using (top) single-stage and
(bottom) three-level multiresolution implementations of the proposed recon-
struction method. The single stage is not capable of recovering shape features
of a bigger scale.

Fig. 4. Outline of the multiresolution implementation for the optimization pro-
cedure.

the full shape of the rock has not been completely recovered on
the single-stage implementation of the proposed method.

Results improve notably when using a multiresolution ver-
sion of the same algorithm, which is able to recover the seafloor
scenes in a more natural way, as well as reducing the overall
error at convergence. The bottom part of Fig. 3 shows the results
of this approach, where the shape of the rock is better estimated,
once that more of the spatial frequencies involved are taken into
account.

Implementation of the multiresolution version starts by the
construction of a multiresolution pyramid by iterated subsam-
pling of the source side-scan image. Processing starts at the
smallest level (coarser resolution), using the initialization and
regularization procedures described in the previous sections.
The resulting , , and maps from one level are used as ini-
tial maps for the next resolution level. The process finishes when
the final stage—corresponding to the full resolution image—is
processed. An outline of this multiresolution implementation is
presented in Fig. 4.

V. RESULTS

Datasets from different systems have been processed in order
to reconstruct the bathymetry from their side-scan images. Re-
sults for Remus, Ocean Explorer and Geosub datasets are pre-
sented below. Later, the limitations of the proposed reconstruc-
tion method and their influence on the results are discussed. Typ-
ical running time for a 1024 1000 pixel image using three
multiresolution levels is about 5 min on a Pentium III 2.0 GHz.

A. Remus Results

The BP02 survey was performed off the coast of Italy using a
Remus autonomous underwater vehicle (AUV) equipped with a

Fig. 5. (Left column) Ground-range images and (right column) synthetic
models after convergence, for three different source side-scan images of the
same Remus mission. Image sizes are 1024 � 1000 pixels with a resolution
of 0.058 m/pixel horizontally and 0.12 m/pixel vertically, which result in an
actual size of 59.39 � 120 m.

Marine Sonics sensor. Three images from the survey have been
processed as shown in Fig. 5. Ground-range corrected side-scan
images are shown in the left column; the corresponding syn-
thetic models after convergence of the three-level multiresolu-
tion implementation are shown in the right column. On con-
vergence (to a possible local minimum), the resulting synthetic
models are extremely similar to the ground-range images, sug-
gesting that the data are well fitted by the solutions found by the
proposed reconstruction approach.

The full set of outputs of the reconstruction process for the
image in the bottom row of Fig. 5 is shown in Fig. 6. The effect
of the beam profile permeates the reflectivity and elevation maps
in the region right under the sensor path, where the Lambertian
model cannot properly approximate the nondiffuse reflections.
Results are nonetheless consistent with the observed features on
the source image. The sand ripples and the structure of the rock
are clearly visible in the perspective view of the 3-D surface.

The beam profiles recovered from the three source images
of Fig. 5 are compared in Fig. 7. Apart from the inaccuracies
corresponding to the region right below the sensor, the shape of
the main lobes is consistent across the three profiles, suggesting
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Fig. 6. Full set of model parameters and 3-D view for the Remus image shown
in the last row of Fig. 5. (a) Beam-pattern, (b) reflectivity, and (c) elevation
maps. (d) Perspective view of a 3-D flat-shaded surface constructed from the
highlighted region (328 � 247 pixels, corresponding to an actual size of 19.02
� 29.64 m) of the elevation map.

Fig. 7. Beam profiles recovered from the three source images of Fig. 5.

that, in effect, the same sensor and TVG settings have been used
for the acquisition of the three source images.

Fig. 8 shows the evolution of the overall error at the final
full-resolution stage for the source image corresponding to the
bottom row of Fig. 5. The three- and five-level multiresolution
versions perform better than the single stage (no multiresolu-
tion), due to better initialization.

B. Ocean Explorer Results

The GOATS2000 survey was conducted off the coast of Italy
using the Ocean Explorer AUV equipped with an Edgetech dual
frequency DF-1000 sonar. Fig. 9 shows a region of one of the
side-scan images from the survey. Posidonia formations, as well
as heavy sand ripples can be appreciated. The result of the re-
constructions clearly shows the 3-D structure of these features.

C. Geosub Results

One of the Autotracker project missions was performed off
the Orkney Islands in Scotland. The Geosub AUV was used to
track an underwater pipe of 76.2 cm in diameter, and images

Fig. 8. Evolution of the overall error at the last full-resolution stage with the
number of iterations for: (short dash) no multiresolution, (long dash) three-level
multiresolution, and (continuous line) five-level multiresolution.

Fig. 9. Reconstruction results for the Ocean Explorer vehicle. (a) Ground
range section (1920 � 657 pixels, resolution 0.026 m/pixel horizontally
and 0.11 m/pixel vertically) of the original side-scan image; (b) model after
convergence of the three-level multiresolution reconstruction; (c) resulting
elevation map; (d) corresponding perspective view of the textured 3-D surface.

were acquired with an Edgetech DW-2200 sonar. Fig. 10 shows
one of the images, where the acoustic shadow casted by the pipe
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Fig. 10. Results for the Geosub vehicle. (a) Section (383 � 346 pixels) of a
side-scan image showing an underwater pipe; (b) flat-shaded perspective view
of the resulting 3-D reconstruction for the highlighted region (92 � 65 pixels);
(c) profile view of the reconstructed pipe. Diameter of the pipe is 76.2 cm, and
ground-range image resolution is 8.7 cm per pixel.

can be clearly appreciated. The shadows have traditionally been
used for the estimation of the height of targets, and in principle
could be used to estimate the pipe radius. However, the fact that
the pipe might be partially buried into the seabed makes this
approach less suitable for this type of target. The 3-D recon-
struction method proposed in this paper, however, can be used
to obtain the profile of the pipe, which can be later used to esti-
mate its radius independently of its burying depth, as discussed
in Section V-F of the paper.

D. Augmented Reality Results

One direct application of the reconstruction procedure de-
scribed in this paper is the generation of augmented reality sonar
images. Inversion of an original side-scan image yields its ele-
vation, reflectivity and beam-profile maps, which can then be
locally modified to account for the presence of various syn-
thetic objects or structures. Use of the forward model (4) on
these modified maps will create a variation of the original image
which contains realistic depictions of those synthetic objects.

An example of application is shown in Fig. 11, where three
spherical objects have been artificially embedded into a side-
scan image. This is of direct interest for training and bench-
marking of detection and classification algorithms in a realistic
environment, as getting real data of underwater objects is a com-
plicated and expensive task (logistics, localization of targets). In
practice, very few and limited databases of real object exist, con-
straining the types of algorithms that can be used. The technique
presented in this paper opens the possibility to train and bench-
mark algorithms using synthetic images of the targets but in a
very realistic setup where real environments can be preserved.
More complex AR implementations could take into account the
interactions between the synthetic objects and the real environ-
ment, given a proper model for these interactions is devised.

E. Reconstruction Limits

The performance of the proposed reconstruction procedure
is limited by two main factors. The first is the set of assump-
tions used for the development of the model and its implemen-

Fig. 11. Application of the proposed reconstruction method to augmented re-
ality. Left: Region of the seabed showing sand ripples (242 � 153 pixels, res-
olution 0.058 m/pixel horizontally and 0.12 m/pixel vertically). Right: Results
after embedding three spherical objects (2-m diameter). Notice how the shape
and shadow of the objects realistically integrate with the rippled seafloor.

Fig. 12. Two seafloor configurations that would generate the same side-scan
image. On the left, pipe A sits on the seabed, resulting in a multivalued elevation
function Z(r) for every range r, as shown by the black dots. On the right, an
equivalent shape B that generates the same signal return for every range r is
constructed so that the elevation function Z(r) is single valued.

tation (Lambertian scattering, steepest descent implementation,
etc.). However, the second, and most important, is the perfor-
mance of the imaging sensor itself. Since the side-scan sonar
integrates all the returns received from the surface at a given
time, different surface configurations might produce exactly the
same side-scan image. An example is shown in Fig. 12, which
presents two equivalent cases. In Fig. 12 (left), a pipe is sit-
ting on the seabed; each acoustic wave front intersects both the
pipe and the seafloor in one or more points, whose contribution
will be integrated when the acoustic return is measured; surface
points under the acoustic shadow produced by the pipe (colored
dark) are effectively hidden from the sensor’s view and cannot
be resolved. In Fig. 12 (right), a shape B is constructed so that
each wave front intersects the shape at only one point and re-
turns the same energy as A and the seafloor do. Targets A and
B will generate the same image when scanned by a side-scan
sonar.

Generally speaking, for every seafloor configuration where
wave fronts might intersect different points at each sampling
interval, there exists another seafloor configuration—which re-
sults in exactly the same side-scan image—such that the wave
fronts intersect only one point at each sampling interval. This
latter seafloor configuration is the one that would be recon-
structed by the method proposed in this paper, since we implic-
itly assume that is a single-valued function for each range
.

It must also be noted that the reconstruction procedure is per-
formed in the sensor’s coordinate space, and—as is the case
with the side-scan images themselves—geo-referencing of the
reconstruction results is required in order to recover the proper
along-track scaling. The examples shown in this paper are pre-
sented as they are obtained from the reconstruction, before any
geo-referencing has been performed.
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Fig. 13. Geometry of the reconstruction validation problem, showing key
points a and b, from which the radius r of the proud or partially buried pipe
can be determined.

F. System Validation

In order to determine the validity of the reconstruction
method proposed here, an experiment on a target whose con-
figuration is known is required. It must be remarked here that
availability of information on the real dimensions of underwater
structures is extremely limited, which makes this type of vali-
dation unfeasible in most of the occasions. We have used one
of the Geosub side-scan images showing an underwater pipe
of known diameter, and then computed its 3-D reconstruction.
Part of the resulting 3-D model is presented in Fig. 10, where
the pipe shape is clearly recognizable in the reconstruction. A
profile view for the reconstruction of one of the side-scan lines
is also shown.

It should also be noted that this section is not concerned with
general detection, tracking or measurement of underwater pipes.
For approaches to those problems see the specialized literature
on the subject [10], [27]. Note, as well, that the approach taken
in this section probably will not work if the section of the pipe
is not parallel to the direction of movement of the sonar.

Due to the limitations described in the previous section, it is
not possible to just fit the computed 3-D points to a cylinder in
order to estimate the diameter of the reconstructed pipe. The re-
constructed shape is actually the single-valued equivalent shape
to that of the pipe, and an indirect validation method is required.

Our approach is to determine unique points, which can be
identified both in the original configuration and in the recon-
structed single-valued contours and from which the ra-
dius of the pipe can be estimated. As shown in Fig. 13, the
points of interest are the top of the pipe and the point where
the first wave front that touches the pipe intersects the seafloor,
which results in a steep increase in the slope of the reconstructed
shape. Using these two points alone, it is possible to compute
the original pipe radius even if the pipe is partially buried, as
long as the tangent point first touched by the wave front is
above the seafloor and the wave front intersecting the pipe at
does not touch any other seafloor or pipe point. Application of
Pythagoras theorem to right-angled triangles and

(Fig. 13) yields the following equation for :

(12)

The quantization of the values of the coordinate in units
of 1 pixel (equivalent to 0.087 m) affects the distribution of the
resulting values computed for , as can be seen in Fig. 14. The

Fig. 14. Effects of the quantization of the x coordinate on the distribution of
the computed values for pipe radius r are clearly visible in its histogram.

error associated to the quantization of can be evaluated by
computing

(13)

where pixel m.
Using (12) and (13), an estimate of the pipe radius and the

corresponding quantization error can be computed for each re-
constructed side-scan line of the pipe image section shown in
Fig. 10. Averaging the results from the 346 lines gives an esti-
mated pipe radius of m. This has to be con-
trasted with the real value m, which falls within the
computed error range.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a new method for the esti-
mation of seabed elevation from side-scan images. The method
uses a Lambertian model for the sonar scattering process, which
is then used by a multiresolution optimization procedure to de-
termine the seabed features ultimately responsible for the ob-
served side-scan image. Examples of the type of results that can
be obtained by the procedure have been presented. The perfor-
mance of the reconstruction method has also been evaluated by
analysis of the reconstruction results for a pipe of know size,
showing that the estimated radius is within the computed toler-
ance error of the real value. It should be noted that the quantiza-
tion error is quite large compared to the size of the object being
reconstructed, which is ultimately caused by the small size of the
pipe in the original side-scan image; more experiments should
be performed with sensors of higher resolution or bigger targets
to obtain more accurate performance measures for the recon-
struction procedure presented in this paper. The composition of
the target should also be taken into account, as some materials
adjust better to the Lambertian acoustic scattering model than
others.

Applications of the proposed 3-D reconstruction method
are numerous and include accurate mosaic construction, detail
improvement on existing bathymetry maps, obtention of 3-D
models of underwater structures, generation of augmented
reality sonar images, etc.
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