
Enhanced Generic Key-Address Mapping Sort Algorithm

Chenn-Jung Huang#, Chih-Tai Guan and Yi-Ta Chuang
Institute of Learning Technology, College of Science

National Hualien University of Education, Hualien, Taiwan
cjhuang@mail.nhlue.edu.tw

Abstract

Various methods, such as address-calculation
sort, distribution counting sort, radix sort, and
bucket sort, adopt the values being sorted to
improve sorting efficiency, but require extra
storage space. This work presents a specific
key-address mapping sort implementation. The
proposed algorithm has the advantages of linear
average-time performance and no requirement for
linked-list data structures, and can avoid the
tedious second round of sorting required by other
content-based sorting algorithms, such as
Groupsort. The key-address mapping function
employed in the proposed algorithm can fit data in
any specific distribution when the mapping
function is carefully designed. The cases for the
uniformly and normally distributed data are
explored herein to demonstrate the effectiveness of
the proposed key-address mapping functions.
Although the computation of the average and the
standard deviation increases the overhead in our
sorting algorithm, the empirical results indicate
that the proposed sorting algorithm is still faster
than both Quicksort and Groupsort for lists
comprising 1,000 to 2,000,000 positive integers.
The proposed algorithm adopts a valid
key-address mapping function for uniformly
distributed data, and a desirable approximation of
the cumulative distribution function by using a
cubic polynomial for normally distributed data,
respectively.

1 Introduction

Sorting is an extensively studied problem in
computer science for various practical and
theoretical reasons. Sorting constitutes a
fundamental operation of many computing tasks,
including VLSI design, digital signal processing,
network communications, database management
and data processing, for which sorting operations
are estimated to account for over 25% of the total
processing time. The significance of sorting is
reflected in the multitude of many sorting
algorithms that have been presented in recent
decades. Sorting a generic list of numbers is a

well-studied problem that can be efficiently solved
with using generic algorithms, such as Quicksort
[1-2], Shellsort [3] and Mergesort [4].

Most versions of Quicksort [1] need O(n2)
comparisons in the worst case, but are efficient in
the average case. Furthermore, the number of data
movements is very small in Quicksort. The
average number of comparisons of the
best-of-three version of Quicksort, known as
Clever Quicksort, has been calculated as about
1.188(n+1)log(n 2.255)⋅n+2.507 [5]. Mergesort is
a sorting algorithm approaching the lower
threshold of O(n log n). Mergesort can be shown
to make n log n – (n – 1) comparisons in the worst
case and n log n – 1.2645n comparisons in the
average case [6–7], but requires O(n) additional
storage. The merging technique, which is a
fundamental operation of Mergesort, has been
examined for a long time as a way to alleviate this
additional space requirement. Kronrod [8]
developed a linear-time algorithm for merging two
sorted lists in constant extra space using an
internal buffer. Horvath [9], Mannila and Ukkonen
[10], Pardo [11] and Huang & Langston [12]
continued developing this approach, but most of
their algorithms are cumbersome and inefficient.
The fastest version of merging using constant
extra space, introduced by Huang and Langston
[12], requires at most around 1.5n comparisons
and 2n exchanges [12]. The standard merging
requires at most n comparisons and n exchanges.

An alternative way to decrease the sorting times
is to modify the model for determining the key
order. Most classic sorting algorithms adopt the
“comparison based” model, i.e., they sort the list
exclusively using pair-wise comparison. However,
in “content-based” sorting methods, the content of
keys is applied to obtain their position without
needing to compare them to each other. This
approach improves the analytical results because
real machines allow many operations other than
comparison [13]. Examples of content based sort
algorithms include Bucketsort [14], Radixsort [13]
and Groupsort [4].

Radixsort is a fast stable sorting algorithm for
sorting items identified using unique keys. Every
key is a string or number. Radixsort sorts these
keys in a particular lexicographic-like order. The

algorithm operates in O(n·k) time, where n denotes
the number of items, and k represents the average
key length. This algorithm was originally used to
sort punched cards in several passes. Harold H.
Seward devised a RadixSort computer algorithm
at MIT in 1954. Radixsort is faster than
comparison sorts in many recent applications
requiring very fast processor speeds and large
computer memory.

Radixsort has resurfaced as an alternative to
other high-performance sorting algorithms, which
need O(n log n) comparisons. Such algorithms can
sort with respect to orderings that are more
complex than lexicographic ones, but this is of
little significance in many practical applications.
Groupsort [4] is an implementation of Bucketsort,
which splits the unsorted list into k groups
(buckets) according to the key of each element,
and sorts each group with Quicksort. Groupsort
has two advantages: (i) it achieves linear
average-time performance with additional storage
equal to a fraction of the number of elements
being sorted, and (ii) it uses no linked-list data
structures because it performs all sorting by arrays.
However, content-based sort algorithms such as
Groupsort need two sorting stages, and may not
perform well when the data not uniformly
distributed. This work presents an effective
key-address mapping algorithm to avoid the need
for two sorting stages, as required in content-based
methods found in the literature. Experimental
results indicate that the proposed algorithm can
calculate addresses of the data from their key
values, thus avoiding the second round sorting that
is required in other sorting algorithms.

The remainder of this paper is organized as
follows. Section 2 briefly surveys related work. A
primitive key-bag mapping sort algorithm is
presented in Section 3. Section 4 describes the
proposed key-address mapping sort algorithm.
Section 5 presents the empirical test results to
support the theoretical expectation obtained in
Section 4. Conclusions are drawn in Section 6.

2 Related Work

Various sorting algorithms have been designed
to employ the values being sorted to increase
efficiency, but require extra storage space. One of
the first such approaches is the address-calculation
sort proposed by Isaac and Singleton [15]. To
simplify the following discussion, assume that n
records are to be sorted in increasing order
according to keys stored as positive integers in the
array x[1],……, x[n]. A sorting function is needed
to associates each key with an integer
corresponding to an approximate location of its

record in the final sorted array. For instance, given
n keys with values ranging from u to v, the linear
sorting function mx + b can be created through the
two points (u, 1) and (v, n). Then, for a given
value of a key k with vku ≤≤ , the approximate
location of that key in the sorted list is given by f(k)
= mk + b. Each element x[i] must then be moved
to its corresponding location in an output array,
say, y, by setting y[f(x[i])] = x[i]. Unfortunately, f
may not be one-to-one, so two different keys, x[i]
and x[j], can produce f(x[i]) = f(x[j]).

Another example of an address-calculation sort
is the Franzisort, presented by Suraweera and
Al-Anzy in [16], in which the record keys range
from u to v. Given that the values of the keys are
unique, by using an additional array, say, y[u..v],
each record x[i] is moved directly from its original
location to its correct location in y by setting y[x[i]]
to x[i]. The sorted list is then derived by moving
the nonzero elements of y sequentially back to the
next available position of the original array x.

Seward [17] and Feurzig [18] independently
developed a similar method for handling repeated
key values based on distribution-counting sort,
which was described succinctly by Knuth [13].
This procedure stipulates the original array x of n
elements, an output array z of size n for the sorted
records and an additional array of size v − u + 1
elements to monitor the number of times that each
value of a key occurs. Unfortunately, the user has
no control over the values of u and v since they are
based on the given keys. Consequently, the
amount of storage space used can be prohibitive.
Another address-calculation sorting algorithm is
Bucketsort [14], which partitions the range of the
numbers to be sorted into K subranges. Each
number in the list is then placed into one of K
corresponding groups called buckets based on its
subrange. The numbers in each bucket are
recorded in a linked list to permit an indeterminate
number of values. The sorting algorithms
described by Knuth [13] and Cormen et al. [19]
sort the numbers in the buckets are sorted with
insertion sort. The final sorted list is derived by
moving the numbers from each bucket to the
output list in order. The advantage of bucket sort is
that it moves each number quickly to its
approximate location by placing it in the correct
bucket. Under the assumption that the values
being sorted are uniformly distributed throughout
the range, the average number of elements in each
bucket is approximately n/K, which can then be
sorted efficiently by insertion sort. The
disadvantages of this algorithm include: (i) the use
of linked-list data structures, (ii) the need for extra
storage for the n linked-list elements in the
buckets together with K pointers to the head of
each list, and (iii) the fact that insertion sort can

consume large amounts of time with many
elements in a bucket. This last disadvantage can be
mitigated by using the Floyd’s tree sort, [20]
which is more efficient than insertion sort.

Another bucket sort variant is Groupsort [4],
which splits the unsorted list into k groups based
on the key of each element, and sorts each group
with Quicksort. Consider an example of an
unsorted list as illustrated in Fig 1, with a data
range 28075 (32449 – 4374 = 28075). Figure 2
shows the range of values for each group when
Groupsort is performed.

Fig. 1. The original array to be sorted.

Fig. 2. The range of values for each group.

Figure 3 illustrates the marking for the starting

location of each group, and Fig. 4 shows each
element moving to its group moves according to
the group intervals. Figure 5 shows the sorting
within each group of data.

Fig. 3. The starting location of each group.

Fig. 4.The lists after all elements are moved to

their group.

Fig. 5. The list after the second stage of sorting.

3 A Primitive Key-Bag Mapping Sort

Algorithm

The key-bag mapping sort presented in this
Section 1 assumes a fixed number of bags to
accommodate n unsorted elements, and employs a

statistical mapping function that associates each
key to a corresponding bag index for each element
after the mapping function is computed. The
statistics mapping function is defined as,

ratiobiaskeykeyindex ⋅+==)()map(, (1)
where key is the key value for each element; ratio
denotes the ratio of the linear transformation, and
bias represents the bias of the original key value.
The ratio is given by,

STD
ccntratio
⋅

=
32

, (2)

where ccnt represents the counts of the bags, and
STD is the standard deviation of the elements. The
denominator in Eq. (2) represents the range of
unsorted elements, which is assumed to be within

STDAVG ⋅− 3 and STDAVG ⋅+ 3 , where AVG is
the calculated average of all unsorted elements.
Notably, the ratio given in Eq. (2) is used to
compute the index for each unsorted element
within the effective range, i.e. [0,…,ccnt-1]. The
following proves why 3 occurs in Eq. (2).

Suppose that a set contains n evenly distributed
elements as follows,

dnadaa)1(,,, −++ L . (3)
The average and standard deviation can then be

expressed respectively as,

dnaAVG
2

1−
+= , (4)

and

1
32

)
2

1(
)(

22

1

0

2

−=
−

+−
+

=
∑
−

= nddna
n

kda
STD

n

k .(5)

Therefore, the ratio of the distribution length of
the n elements to the standard deviation is given
by

1

132
1

32

)1(
22 −

−
=

−

−
=

n

n

nd
dndts . (6)

When n is sufficiently large, 1
1

1lim
2

=
−

−
∞>− n

n
n

.

Thus Eq. (6) can be further simplified as,

32
1

132lim
2

=
−

−
=

∞>− n
ndts

n
. (7)

Meanwhile, since the indices for the elements
inside each bag begin from 0, a bias constant, bias,
is required in Eq. (1) as follows,

() AVGSTDSTDAVGbias −⋅=⋅−−= 33 , (8)
where AVG and STD denote the average and the
standard deviation of the elements, respectively.

In case the computed mapping function value is
out of the range [0,…, 1−ccnt], where ccnt is
the counts of the bags, then the index for the
corresponding bag for the unsorted elements
should be corrected as,

()⎪
⎩

⎪
⎨

⎧
−≥

−<
−=

else
ccntindex if

index if

index
ccntindex 5.0

5.0

round
1

0

, (9)

where ()⋅round is the rounding-off function.
After the elements are placed in the

corresponding bags, the numbers in each bag are
sorted with Quicksort.

3.1 Time and Space Complexity Analysis

Each bag is assumed to accommodate cs
elements, and the counts of the bags, ccnt, are
given by

cs
nccnt = , (10)

where n denotes the number of unsorted elements.
The elements inside each bag are assumed to be

sorted with Quicksort, and then the total time
needed for sorting n elements in ccnt bags is given
by:

csncscsccntttime log)log(×=⋅⋅= . (11)
When the unsorted numbers are not evenly

distributed, cs is set to n , and we obtain

nncsnttime log
2
1log ⋅=⋅= . (12)

Accordingly, the time complexity and space
complexity of the proposed algorithm are
()nnlogO and ()nO , respectively.
Conversely, ncs log= is set if the unsorted

numbers are evenly distributed, and
nnttime loglog⋅= . (13)

Thus, the time complexity and space complexity
of the proposed algorithm in this case are

()nn loglogO and
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n

n
log

O , respectively.

Notably, Eq. (1) does not affect the computation of
()ttimeO here, because its calculation of Eq. (1)

only requires ()nO .

4 The Proposed Key-Address Mapping

Sort Algorithm

In Groupsort and the primitive key-bag mapping
sort introduced in Section 3, the bottleneck occurs
in the second stage of the whole process, which is

the Quicksort executed in each individual
group/bag. Since the cost of memory is falling, 2n
free space was allocated in this work, and the
statistics mapping function was modified as in Eq.
(1) to map each unsorted number into the
“appropriate” position within the 2n free space
and avoid entering the expensive second
processing stage.

offsetfskeyDkeymapindex +×==)()(, (14)
where D(key) is the cumulative distribution
function for each specific model, and fs and offset
denote the size and offset of the free space,
respectively.

It is very common that the cumulative
distribution function appears in an integral form
for data of different distributions and the
calculation for the cumulative distribution
function is time consuming. We thereby try to
employ a polynomial in this work to approximate
the true value of the cumulative distribution
function in any specific distribution. The general
form of the polynomial of degree n that
approaches cumulative distribution function can
be expressed as,

∑
=

=
n

i

i
i keyakeyD

0
)(ˆ , (15)

Here n is varied for different distributions.
The following subsections investigate two

frequently adopted statistic distributions, uniform
and normal distribution, to verify the effectiveness
of the proposed sort algorithm.

4.1 Key-Address Mapping Function for

Uniformly Distributed Data

Equation (14) is employed to map unsorted
numbers into 2n units of contiguously free space
by linear transformation. The following
relationship is assumed once the unsorted numbers
are evenly distributed:

STD
fs

AVGkey
fmindexratio

⋅
=

−
−

=
32

, (16)

where STD⋅32 denotes the range of the
unsorted elements as mentioned after the
appearance of Eq. (2). The linear transformation
ratio given in Eq. (16) expresses the ratio required
to map the range of n evenly distributed numbers
into 2n of contiguous free space.

The statistics mapping function for uniformly
distributed data can then be expressed as,

keyratiokeymapindex ⋅==)(, (17)
where ratio is given by Eq. (16).

If two or more numbers collide in the same
position in the 2n free space, the interpolation sort

is adopted to place one colliding element into the
nearest free position around the collision location.
However, the possibility of the collision should be
very small compared to the amount of the data if
an appropriate key-address mapping function is
chosen.

The following example demonstrates how the
proposed algorithm works. Assume that the
original list is

21211, 4374, 23291, 16420, 17849, 27399,
22353, 29261, 31970, 32449.

After the computation of Eq. (1), the index for
each number becomes:

4.03, −1.40, 4.70, 2.49, 2.95, 6.03, 4.40, 6.63,
7.51, 7.66

According to Eq. (9), since index for 4374 is
out-of-bounds (−1.40 < 0), the index must be
adjusted to 0. Since each element is placed into its
appropriate location, no extra sorting work is
required, so the overhead of the second round of
sorting is avoided.

4.2 Key-Address Mapping Function for

Normally Distributed Data

The probability function of a variable x,
normally distributed with mean μ and standard
deviation σ, can be expressed as:

() () ()22 2/

2
1 σµ

πσ
−−= xexp . (18)

The cumulative distribution function is:

() ()∫ ∞−
′′=

x
xdxpxD . (19)

Each number’s index can be calculated using the
mapping function as shown in Eq. (14) when its
cumulative distribution function for each number
has been derived. However, as mentioned earlier,
the cumulative distribution function is in an
integral form and is computationally expensive.
Therefore, a cubic polynomial,
() 32 excxbxaxg +++= , was proposed in this work

to approximate the original cumulative
distribution function, as shown in Eq. (19).

The derivation of the coefficients in the cubic
polynomial, () 32 excxbxaxg +++= , can be
completed by the following error function:

()() ()dxxpxDexcxbxaxE ∫
∞

∞−
−+++=

232)(, (20)

Let

()
()

∫∫
∞

∞−

−
−∞

∞−
== 2

2

2

2
1 σ

µ

πσ

x
nn

n exdxxpxI , (21)

and

() ()
() ()

dtdxeexdxxDxpxJ
x

tx
nn

n ∫∫∫ ∞−

−
−∞

∞−

−
−∞

∞−
== 2

2

2

2

22
22

1 σ

µ

σ

µ

πσ
(22)

Then Eq. (20) can be further transformed into a
linear matrix:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

3

2

1

0

6543

5432

4321

3210

J
J
J
J

IIII
IIII
IIII
IIII

e
c
b
a

, (23)

where the values of I0, I1, I2, I3, I4, I5 and I6 can be
derived by Eq. (21), and J0, J1, J2 and J3 by Eq.
(22).

Since it is tedious to derive the coefficients of

the cubic polynomial using Eq. (23), we set

σ
µ-xz = and rewrite Eqs. (18) and (19) as

follows to simplify the calculation:

22

2
1)(/ze
π

zp = , (24)

∫ ∞=
z

-

/2z 'dze
2
1)z(D

2'

π
, (25)

and the cubic polynomial which approximates the
cumulative distribution function becomes:

32 ezczbza)z(g +++= , (26)

After the substitution for z in Eq. (26) using

σ
µ-x , we obtain

()
3

σ
x-µe

σ
x-µc

σ
x-µbaxg ⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛++=

2
, (27)

and the error function becomes:

() ()∫
∞

∞
+++=

-
dzzp-D(z)ezczbzaE 232 , (28)

Since ()zD is symmetric at)
2
1,0(, it can be

2
1a = , (29)

and
0c = . (30)

Meanwhile, the error function as given in Eq.
(20) is expressed as,

()∫
∞

∞
⎟
⎠
⎞

⎜
⎝
⎛ ++=

-
dzzp-D(z)ezbzE

2
3

2
1 . (31)

Notably, the difference between the cubic
polynomial and the cumulative distribution

function becomes zero when appropriate values
are chosen for b and e in Eq. (31). That is,

e
E

b
E

∂
∂

==
∂
∂ 0 . (32)

Based on Eq. (32), it can be shown that:

() () 0
2
1 3 =⎟

⎠
⎞

⎜
⎝
⎛ ++∫

∞

∞-
dzzzpz-Dezbz , (33)

and

() ()∫
∞

∞
=⎟

⎠
⎞

⎜
⎝
⎛ ++

-
dzzpzz-Dezbz 0

2
1 33 . (34)

Now Eq. (23) can be rewritten as,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡

33

11

64

42

2
1
2
1

I-J

I-J

II
II

e
b , (35)

where

()∫
∞

∞
=

-

n
n dzzpzI , (36)

and

()∫
∞

∞
=

-

n
n D(z)dzzpzJ . (37)

We next derive the value of In and Jn.
Since

() () ()zpzzpz nn −=−− , (38)
when n is odd, thus

Nn,I n- ∈∀= 012 , (39)
when n is even, In becomes a recurrence relation
as follows,

() nn InI 12 +=+ . (40)
Thus, we obtain

1531 642 === I; I; I . (41)
Next we let

()∫
∞

∞
=

-

n
n dzzpzK 2 . (42)

It can be shown that:

nn-n KnJJ +=+ 11 , (43)
and we have

π
 J;

π
J

4
5

2
1

31 == . (44)

Accordingly, Eq. (35) can be expressed as:

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡
1

15
24

1

4
1

2
1

153
31

-π
π

π
e
b , (45)

and the cubic polynomial as given by Eq. (27)
becomes:

3

24
1

8
5

2
1

⎟
⎠
⎞

⎜
⎝
⎛ −

−⎟
⎠
⎞

⎜
⎝
⎛ −

+=
σ

µx
πσ

µx
π

g(x) . (46)

Then the index for each number can be
obtained from the following mapping
function:

() fsxgxindex ⋅=)(, (47)

where fs denotes the size of the free space.

4.3 Time and Space Complexity Analysis

4.3.1 Time and Space Complexity Analysis

for Uniformly Distributed Data

To sort the uniformly distributed data, the
proposed sort algorithm can be divided into three
processing stages, which are the computation of
the value of ratio as given by Eq. (16), the
mapping of each element’s key onto its
corresponding address, and moving the sorted
elements into the original array, respectively. The
total computation time of the sorting can then be
expressed as

)(T)(T)(T)(T 321 nnnntotal ++= , (48)
where)(T ni denotes the computation time at the
ith processing stage.

The computation of ratio as given by Eq. (16)
requires n additions, n+1 multiplications and one
square-root operation for the derivation of the
standard deviation, and n-1 additions and one
multiplication for the calculation of the mean,
respectively. Thus, the total computation time
spent at the first stage is,

SqrtMulAdd TTnTnn +++−=)4()12()(T1 , (49)

where TAdd, TMul, and TSqrt denote the computation
time of a single addition, multiplication, and
square-root operation, respectively.

During the second processing stage, the
mapping of each element’s key onto its
corresponding address requires one multiplication,

When the sorted elements are moved back to the
original array during the final stage,
it involves n movements:

MovTnn ⋅=)(T3 , (51)
where TMov denote the computation time of a
single movement operation.

Accordingly, the total computation time
required for sorting the uniformly distributed data
becomes,

() ()() () ()MovMulSqrtMulAddtotal TnTTTnTnn ⋅+++++−= 412)(T

)5()2(AddSqrtMulMovMulAdd TTTnTTT −++++= . (52)

Apparently, the time complexity of Eq. (52) is
)O(n .

Meanwhile, the space required for sorting the
uniformly distributed data is 2n as mentioned in
Section 4.1, the space complexity is)O(n as
well.

4.3.2 Time and Space Complexity Analysis

for Normally Distributed Data

As for the normally distributed data, the whole
sorting algorithm can be also separated into three
processing stages, which are the calculation of
mean and standard deviation, the mapping of each
element’s key and its corresponding address, and
moving the sorted elements back to the original
array, respectively.

During the first stage, the calculation of mean
and standard deviation requires,

SqrtMulAdd TTnTnn +++−=)2()12()(T1 . (53)

Then we check if there is more than one element
mapped to the same address during the second
processing stage, which is the mapping of each
element’s key and its address. The possibility of
conflicting at the same address should be
effectively reduced if the avoidance of the second
round sorting is expected. One comparison is
required if there are two elements mapped to the
same address. In case there are more than two

elements mapped to the same address, Quicksort is
employed in this work to sort these conflicted
elements.

10,000 sets of normally distributed data
truncated in the range 0~1,500,000, with mean µ =
750,000 were generated using a normal random
variables generator with list size equal to
1,000,000 elements to investigate the distribution
of different elements which are mapped into
identical addresses when the proposed sorting
algorithm is used to sort the normally distributed
data. Table 1 lists the statistics of the distribution
of the number of the elements mapped onto the
same address after we ran the sorting tests for
10,000 times using the normally distributed data.
The average occurrence frequency and the
standard deviation of the occurrence frequency for
various numbers of conflicted elements are given
at the second and the fifth columns in Table 1,
respectively. The small standard deviation values
comparing with the average occurrence frequency
as listed in Table 1 exhibit that the behavior of the
proposed key-address mapping function is indeed
stable and consistent, and it is considered to be
reliable to apply the statistics given in Table 1 in
the computation of the time complexity for the
second processing stage of the proposed
algorithm.

Table 1: Distribution of number of elements mapped into the same addresses

Number of elements

mapped onto the same

address

Average

occurrence

frequency

Minimum

occurrence

frequency

Maximum

occurrence

frequency

Standard

deviation

0 396160.00 394992 397269 319.25

1 369370.00 367472 371110 491.84

2 179100.00 177824 180416 336.32

3 59916.00 59016 60651 206.15

4 15485.00 15044 15901 114.98

5 3279.90 3065 3478 54.823

6 590.42 506 673 24.019

7 92.56 61 130 9.7117

8 12.92 2 27 3.5671

9 1.64 0 8 1.2794

10 0.19 0 4 0.43877

11 0.02 0 2 0.14898

12 0.00 0 1 0.053774

The maximum occurrence frequency of various
numbers of conflicted elements as given at the
fourth columns in Table 1 is used to compute the
upper bound of the time complexity of the second
processing stage,

222
2 5

1000000
34784

1000000
159013

1000000
60651

1000000
180416)(T ⋅+⋅+⋅+= nnnnn

2222 9
1000000

88
1000000

277
1000000

1306
1000000

673
⋅+⋅+⋅+⋅+ nnnn

222 12
1000000

111
1000000

210
1000000

4
⋅+⋅+⋅+ nnn

n. ⋅= 1014011 , (54)
where i2 represents the upper bound of sorting
time when Quicksort is used to sort i numbers.

During the final stage, the sorted elements are
moved back to the original array, and it takes n
movement operations,

MovTnn ⋅=)(T3 . (55)

The total computation time for the key-address
mapping sort algorithm used for normally
distributed data is then

() ()() () ()MovSqrtMulAddtotal Tnn.TTnTnn ⋅+⋅++++−= 1014011212)(T

)2()101401.12(SqrtMulAddMulAdd TTTnTT ++−+++= . (56)

Thus the time complexity of the key-address
mapping algorithm is also)O(n .

The space complexity of the proposed algorithm
can be derived as follows. We first need a fixed
space, which is equal to 1.5n, to save for the
outcomes of the key-address mapping function. In
case there is more than one element mapped to the
same address, a dynamic allocation of memory is
required to save the conflicted numbers. Base on
the statistics as given in Table 1, the upper bound
of the dynamically allocated memory required for
the conflicted numbers can be expressed as,

nnnnnasize
1000000

3478
1000000

15901
1000000

60651
1000000
180416)(+++=

nnnn
1000000

8
1000000

27
1000000

130
1000000

673
++++

nnn
1000000

1
1000000

2
1000000

4
+++

n.2612910= . (57)
The space complexity of the proposed algorithm is
thus equal to

() n.nnnasizennS 7612911261291.05.15.1)(=+=+= ,(58)
which is also)O(n .

5 Performance Evaluation

A series of simulations was conducted to
evaluate the performance of the proposed sorting
algorithms and contrast their results with those of
Quicksort and Groupsort. The tests are performed
on a personal computer with an INTEL Pentium 4
CPU. The proposed sort algorithm and Groupsort
code were written in Dev-C++. The C function
sort was used for the implementation of Quicksort.

The performance of the proposed algorithm was
first evaluated using 30 uniformly distributed data
sets generated with a uniform random variables
generator, for list sizes varying from 1,000 to
1,600,000. Figure 6 shows that the average sorting
time for each scheme is similar when the number
of data in the set is small. The sorting time of the
proposed algorithm improves as the size of the
data set increases. The mapping function
apparently reduces the probability of collision, as
compared with other content-based sorting
algorithms. Consequently, the proposed algorithm
does not require the second round of sorting
employed by other algorithms. Although the
computation of the average and the standard
deviation might increase the overhead of the
proposed algorithm, the impact of the computation
decreases significantly as the data size increases.

0
100
200
300
400
500
600
700
800
900

10
00

15
00

0

10
00

00

25
000

0

40
00

00

55
00

00

70
00

00

85
00

00

10
00

00
0

11
50

00
0

13
00

00
0

14
500

00

16
00

00
0

List size

M
ic

ro
 se

c.

Quicksort Groupsort Key-address mapping sort

Fig. 6. Performance comparison of sorting

uniformly distributed data sets.

0

1000

2000

3000

4000

5000

6000

10
00

15
00

0

10
00

00

25
00

00

40
00

00

55
00

00

70
00

00

85
00

00

10
00

00
0

11
50

00
0

13
00

00
0

14
50

00
0

16
00

00
0

List size

M
ic

ro
 se

c.
Key-address mapping sort Quicksort Groupsort

 Fig. 7. Performance comparison of sorting

normally distributed data sets.

The performance for a normally distributed data
set was also investigated. As revealed in Fig. 7, the
proposed algorithm still outperforms others,
obviously owing to a suitable selection of
coefficients for the cubic polynomial used in the
key-address mapping function as in Eq. (46), thus
reducing the possibility of dealing with colliding
numbers. Meanwhile, the array elements are
truncated in the range 0~ LSize. ⋅51 , the average is
set to

2
5.1 LSize⋅ , and the standard deviation is set

to ten in this experiment, where Lsize denotes the
number of the array elements. Fig. 7 exhibits that
the performance of Groupsort is similar to that of
Quicksort for normally distributed data when the
standard deviation is not large. Based on
experimental results, it is verified that the
proposed algorithm indeed outperforms others
whether the data is uniformly or normally
distributed. Furthermore, the genetic key-address
mapping function as shown in Eq. (14) was shown
to be valid when an appropriate cumulative
distribution function is chosen to match the
specific distribution model.

In the next series of tests, we examine how the
efficiency of the proposed sort algorithm is
affected by a normal distribution of values, in
comparison to Groupsort and Quicksort. The array
elements are generated according to a normal
distribution truncated in the range 0~1,500,000,
with mean µ = 750,000 and standard deviation
varying from 2 to 15000. Figure 8 shows the
average running times comparison of the three sort
algorithms with list size n = 1,000,000. It can be
observed that the performances of the proposed
algorithm and Quicksort are insignificantly
affected by the varied standard deviation, whereas
that of Groupsort is somewhat improved when the
variance is increased. Meanwhile, the proposed
algorithm is much faster than other two sort
algorithms regardless of value of variance.

0

100

200

300

400

500

600

700

800

2 10 1000 10000 15000
Standard deviation

M
ic

ro
 se

c.

Key-address mapping sort Quicksort Groupsort

Fig. 8. Average running times for normal
distribution with list size n = 1,000,000.

6 Conclusion

This work presents a key-address mapping sort
algorithm to eliminate the second round of sorting
required by content-based sorting algorithms
found in literature. Additionally, this work
demonstrates that a genetic key-address mapping
function can be used to fit for the data in any
specific distribution in case a fast cumulative
distribution function can be obtained. Cases
involving uniformly and normally distributed data
were studied in this work to show the feasibility of
the proposed algorithm. Experimental results
verify that the proposed algorithm performs better
performance than Quicksort and Groupsort with
large data sets. Moreover, the running time rises
rather slowly as the set size increases. Although
computing the mean and standard deviation
increases the computation time in the proposed
sorting algorithm, approximating the cumulative
distribution function for uniformly and normally
distributed data using a linear equation and a cubic
polynomial derived herein, respectively, can
reduce the total computation time by eliminating
the second round of sorting. Future work will
further derive the approximate cubic polynomial
for the cumulative distribution function adopted in
a specific distribution model, such as Poisson or
Weibull distribution to confirm the effectiveness
of the genetic key-address mapping function. The
applicability of the proposed work to the parallel
sort computation problems will also be
investigated.

7 Acknowledgement

The authors would like to thank the National
Science Council of the Republic of China, Taiwan
for financially supporting this research under
Contract No. NSC 94-2213-E-026-001.

References

[1] C. A. R. Hoare, “Quicksort,” Comput. J. vol.

5, no. 4, pp. 10–15, 1962.
[2] R. Sedgewick, “The analysis of quicksort

programs,” Acta Informatica, vol. 7, pp.
327-355, 1977.

[3] D. L. Shell, “A high speed sorting
procedure,” Communications of ACM, vol. 2,
no. 7, pp.30–32, 1959.

[4] A. Burnetas, D. Solow, and R. Agrawal, “An
analysis and implementation of an efficient
in-place bucket sort,” Acta Informatica, vol.
34, pp. 687–700, 1997.

[5] I. Wegener, “Bottom-up heap sort, a new
variant of heap sort beating on average
quicksort if n is not very small,” in
Proceedings of Mathematical Foundations of
Computer Science, pp. 516-522, 1990.

[6] J. H. Kingston, ‘‘Algorithms and Data
Structures: Design, Correctness, Analysis,’’
pp.175-194, Addison-Wesley, Reading, MA,
1990.

[7] D. E. Knuth, “The Art of Computer
Programming,’’ Vol. 3, Addison-Wesley,
Reading, MA, 1973.

[8] M. A. Kronrod, “An optimal ordering
algorithm without a field of operation,” Dokl.
Akad. Nauk SSSR, vol. 186, pp. 1256-1258,
1969.

[9] E. C. Horvath, “Stable sorting in
asymptotically optimal time and extra space,”
J. Assoc. Comput., pp. 177-199, 1978.

[10] H. Mannila and E. Ukkonen, “A simple
linear-time algorithm for in situ merging,”
Informat. Process. Lett., vol. 18, pp. 203-208,
1984.

[11] L. T. Pardo, “Stable sorting and merging with
optimal space and time bounds,” SIAM J.
Comput., vol. 6, pp. 351-372, 1977.

[12] B. C. Huang and M. A. Langston, “Practical
in-place merging,” Comm. ACM, vol. 31, pp.
348-352, 1988.

[13] D. Knuth, “The Art of Computer
Programming,” vol. 3. 1979.

[14] L. Devroye, “Lecture notes on bucket
algorithms,” Birkhauser, 1986.

[15] E. J. Isaac, and R. C. Singleton, “Sorting by
address calculation,” J. ACM vol. 3, pp.
169–174, 1956.

[16] F. Suraweera, and J. M. Al-Anzy, “Analysis
of a modified address calculation sorting
algorithm,” Comput. J. vol.31, no.6, pp.
561–563, 1988.

[17] H. H. Seward, “Information sorting in the
application of electronic digital computers to
business operations,” Tech. rep., MIT Digital
Computer Laboratory, Report R-232,

Cambridge, Mass, 1954
[18] W. Feurzig, “Algorithm 23, math sort,”

Commun. ACM, vol. 3, pp. 601–602, 1960.
[19] T. H. Cormen, C. E. Leiserson, and R. L.

Rivest, “Introduction to algorithms,” MIT
Press, 1990.

[20] R. W. Floyd, “Algorithm 245: Treesort 3,”
Commun. ACM, vol. 7, no. 12, p. 701, 1964.

[21] E. Gamson and C. Picard, “Algorithme de tri
par addressage direct,” C. R. Acad. Sc. Paris
vol. 269, pp. 38-41, 1969.

[22] F. Ducoin, “Tri par addressage direct.
R.A.I.R.O.,” Informatique/Computer Science,
vol. 13, no. 3, pp. 225–237, 1979.

[23] G. H. Gonnet, “Handbook of Algorithms and
Data Structures,” Addison-Wesley, 1984.

