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Abstract 
 

Various methods, such as address-calculation 
sort, distribution counting sort, radix sort, and 
bucket sort, adopt the values being sorted to 
improve sorting efficiency, but require extra 
storage space. This work presents a specific 
key-address mapping sort implementation. The 
proposed algorithm has the advantages of linear 
average-time performance and no requirement for 
linked-list data structures, and can avoid the 
tedious second round of sorting required by other 
content-based sorting algorithms, such as 
Groupsort. The key-address mapping function 
employed in the proposed algorithm can fit data in 
any specific distribution when the mapping 
function is carefully designed. The cases for the 
uniformly and normally distributed data are 
explored herein to demonstrate the effectiveness of 
the proposed key-address mapping functions. 
Although the computation of the average and the 
standard deviation increases the overhead in our 
sorting algorithm, the empirical results indicate 
that the proposed sorting algorithm is still faster 
than both Quicksort and Groupsort for lists 
comprising 1,000 to 2,000,000 positive integers. 
The proposed algorithm adopts a valid 
key-address mapping function for uniformly 
distributed data, and a desirable approximation of 
the cumulative distribution function by using a 
cubic polynomial for normally distributed data, 
respectively. 

 
 

1  Introduction 
 

Sorting is an extensively studied problem in 
computer science for various practical and 
theoretical reasons. Sorting constitutes a 
fundamental operation of many computing tasks, 
including VLSI design, digital signal processing, 
network communications, database management 
and data processing, for which sorting operations 
are estimated to account for over 25% of the total 
processing time. The significance of sorting is 
reflected in the multitude of many sorting 
algorithms that have been presented in recent 
decades. Sorting a generic list of numbers is a 

well-studied problem that can be efficiently solved 
with using generic algorithms, such as Quicksort 
[1-2], Shellsort [3] and Mergesort [4].  

Most versions of Quicksort [1] need O(n2) 
comparisons in the worst case, but are efficient in 
the average case. Furthermore, the number of data 
movements is very small in Quicksort. The 
average number of comparisons of the 
best-of-three version of Quicksort, known as 
Clever Quicksort, has been calculated as about 
1.188(n+1)log(n  2.255)⋅n+2.507 [5]. Mergesort is 
a sorting algorithm approaching the lower 
threshold of O(n log n). Mergesort can be shown 
to make n log n – (n – 1) comparisons in the worst 
case and n log n – 1.2645n comparisons in the 
average case [6–7], but requires O(n) additional 
storage. The merging technique, which is a 
fundamental operation of Mergesort, has been 
examined for a long time as a way to alleviate this 
additional space requirement. Kronrod [8] 
developed a linear-time algorithm for merging two 
sorted lists in constant extra space using an 
internal buffer. Horvath [9], Mannila and Ukkonen 
[10], Pardo [11] and Huang & Langston [12] 
continued developing this approach, but most of 
their algorithms are cumbersome and inefficient. 
The fastest version of merging using constant 
extra space, introduced by Huang and Langston 
[12], requires at most around 1.5n comparisons 
and 2n exchanges [12]. The standard merging 
requires at most n comparisons and n exchanges. 

An alternative way to decrease the sorting times 
is to modify the model for determining the key 
order. Most classic sorting algorithms adopt the 
“comparison based” model, i.e., they sort the list 
exclusively using pair-wise comparison. However, 
in “content-based” sorting methods, the content of 
keys is applied to obtain their position without 
needing to compare them to each other. This 
approach improves the analytical results because 
real machines allow many operations other than 
comparison [13]. Examples of content based sort 
algorithms include Bucketsort [14], Radixsort [13] 
and Groupsort [4]. 

Radixsort is a fast stable sorting algorithm for 
sorting items identified using unique keys. Every 
key is a string or number. Radixsort sorts these 
keys in a particular lexicographic-like order. The 



algorithm operates in O(n·k) time, where n denotes 
the number of items, and k represents the average 
key length. This algorithm was originally used to 
sort punched cards in several passes. Harold H. 
Seward devised a RadixSort computer algorithm 
at MIT in 1954. Radixsort is faster than 
comparison sorts in many recent applications 
requiring very fast processor speeds and large 
computer memory. 

Radixsort has resurfaced as an alternative to 
other high-performance sorting algorithms, which 
need O(n log n) comparisons. Such algorithms can 
sort with respect to orderings that are more 
complex than lexicographic ones, but this is of 
little significance in many practical applications. 
Groupsort [4] is an implementation of Bucketsort, 
which splits the unsorted list into k groups 
(buckets) according to the key of each element, 
and sorts each group with Quicksort. Groupsort 
has two advantages: (i) it achieves linear 
average-time performance with additional storage 
equal to a fraction of the number of elements 
being sorted, and (ii) it uses no linked-list data 
structures because it performs all sorting by arrays. 
However, content-based sort algorithms such as 
Groupsort need two sorting stages, and may not 
perform well when the data not uniformly 
distributed. This work presents an effective 
key-address mapping algorithm to avoid the need 
for two sorting stages, as required in content-based 
methods found in the literature. Experimental 
results indicate that the proposed algorithm can 
calculate addresses of the data from their key 
values, thus avoiding the second round sorting that 
is required in other sorting algorithms. 

The remainder of this paper is organized as 
follows. Section 2 briefly surveys related work. A 
primitive key-bag mapping sort algorithm is 
presented in Section 3. Section 4 describes the 
proposed key-address mapping sort algorithm. 
Section 5 presents the empirical test results to 
support the theoretical expectation obtained in 
Section 4. Conclusions are drawn in Section 6. 
 
 
2  Related Work 
 

Various sorting algorithms have been designed 
to employ the values being sorted to increase 
efficiency, but require extra storage space. One of 
the first such approaches is the address-calculation 
sort proposed by Isaac and Singleton [15]. To 
simplify the following discussion, assume that n 
records are to be sorted in increasing order 
according to keys stored as positive integers in the 
array x[1],……, x[n]. A sorting function is needed 
to associates each key with an integer 
corresponding to an approximate location of its 

record in the final sorted array. For instance, given 
n keys with values ranging from u to v, the linear 
sorting function mx + b can be created through the 
two points (u, 1) and (v, n). Then, for a given 
value of a key k with vku ≤≤ , the approximate 
location of that key in the sorted list is given by f(k) 
= mk + b. Each element x[i] must then be moved 
to its corresponding location in an output array, 
say, y, by setting y[f(x[i])] = x[i]. Unfortunately, f 
may not be one-to-one, so two different keys, x[i] 
and x[j], can produce f(x[i]) = f(x[j]). 

Another example of an address-calculation sort 
is the Franzisort, presented by Suraweera and 
Al-Anzy in [16], in which the record keys range 
from u to v. Given that the values of the keys are 
unique, by using an additional array, say, y[u..v], 
each record x[i] is moved directly from its original 
location to its correct location in y by setting y[x[i]] 
to x[i]. The sorted list is then derived by moving 
the nonzero elements of y sequentially back to the 
next available position of the original array x. 

Seward [17] and Feurzig [18] independently 
developed a similar method for handling repeated 
key values based on distribution-counting sort, 
which was described succinctly by Knuth [13]. 
This procedure stipulates the original array x of n 
elements, an output array z of size n for the sorted 
records and an additional array of size v − u + 1 
elements to monitor the number of times that each 
value of a key occurs. Unfortunately, the user has 
no control over the values of u and v since they are 
based on the given keys. Consequently, the 
amount of storage space used can be prohibitive. 
Another address-calculation sorting algorithm is 
Bucketsort [14], which partitions the range of the 
numbers to be sorted into K subranges. Each 
number in the list is then placed into one of K 
corresponding groups called buckets based on its 
subrange. The numbers in each bucket are 
recorded in a linked list to permit an indeterminate 
number of values. The sorting algorithms 
described by Knuth [13] and Cormen et al. [19] 
sort the numbers in the buckets are sorted with 
insertion sort. The final sorted list is derived by 
moving the numbers from each bucket to the 
output list in order. The advantage of bucket sort is 
that it moves each number quickly to its 
approximate location by placing it in the correct 
bucket. Under the assumption that the values 
being sorted are uniformly distributed throughout 
the range, the average number of elements in each 
bucket is approximately n/K, which can then be 
sorted efficiently by insertion sort. The 
disadvantages of this algorithm include: (i) the use 
of linked-list data structures, (ii) the need for extra 
storage for the n linked-list elements in the 
buckets together with K pointers to the head of 
each list, and (iii) the fact that insertion sort can 



consume large amounts of time with many 
elements in a bucket. This last disadvantage can be 
mitigated by using the Floyd’s tree sort, [20] 
which is more efficient than insertion sort. 

Another bucket sort variant is Groupsort [4], 
which splits the unsorted list into k groups based 
on the key of each element, and sorts each group 
with Quicksort. Consider an example of an 
unsorted list as illustrated in Fig 1, with a data 
range 28075 (32449 – 4374 = 28075). Figure 2 
shows the range of values for each group when 
Groupsort is performed. 

 
Fig. 1. The original array to be sorted. 

 

 
Fig. 2. The range of values for each group. 

 
Figure 3 illustrates the marking for the starting 

location of each group, and Fig. 4 shows each 
element moving to its group moves according to 
the group intervals. Figure 5 shows the sorting 
within each group of data. 

 
Fig. 3. The starting location of each group. 

 

 
Fig. 4.The lists after all elements are moved to 

their group. 
 

 
Fig. 5. The list after the second stage of sorting. 

 
 
 
3  A Primitive Key-Bag Mapping Sort 

Algorithm 
 

The key-bag mapping sort presented in this 
Section 1 assumes a fixed number of bags to 
accommodate n unsorted elements, and employs a 

statistical mapping function that associates each 
key to a corresponding bag index for each element 
after the mapping function is computed. The 
statistics mapping function is defined as, 

ratiobiaskeykeyindex ⋅+== )()map( , (1) 
where key is the key value for each element; ratio 
denotes the ratio of the linear transformation, and 
bias represents the bias of the original key value. 
The ratio is given by, 

STD
ccntratio
⋅

=
32

, (2) 

where ccnt represents the counts of the bags, and 
STD is the standard deviation of the elements. The 
denominator in Eq. (2) represents the range of 
unsorted elements, which is assumed to be within 

STDAVG ⋅− 3  and STDAVG ⋅+ 3 , where AVG is 
the calculated average of all unsorted elements. 
Notably, the ratio given in Eq. (2) is used to 
compute the index for each unsorted element 
within the effective range, i.e. [0,…,ccnt-1]. The 
following proves why 3  occurs in Eq. (2). 

Suppose that a set contains n evenly distributed 
elements as follows, 

dnadaa )1(,,, −++ L . (3) 
The average and standard deviation can then be 

expressed respectively as, 
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Therefore, the ratio of the distribution length of 
the n elements to the standard deviation is given 
by 
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Thus Eq. (6) can be further simplified as, 
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Meanwhile, since the indices for the elements 
inside each bag begin from 0, a bias constant, bias, 
is required in Eq. (1) as follows, 

( ) AVGSTDSTDAVGbias −⋅=⋅−−= 33 , (8) 
where AVG and STD denote the average and the 
standard deviation of the elements, respectively. 



In case the computed mapping function value is 
out of the range [0,…, 1−ccnt ], where ccnt  is 
the counts of the bags, then the index for the 
corresponding bag for the unsorted elements 
should be corrected as, 

( )⎪
⎩

⎪
⎨

⎧
−≥

−<
−=

else
ccntindex if

index if

index
ccntindex 5.0

5.0

round
1

0

, (9) 

where ( )⋅round  is the rounding-off function. 
After the elements are placed in the 

corresponding bags, the numbers in each bag are 
sorted with Quicksort. 
 
 
3.1 Time and Space Complexity Analysis 
 

Each bag is assumed to accommodate cs 
elements, and the counts of the bags, ccnt, are 
given by 

cs
nccnt = , (10) 

where n denotes the number of unsorted elements. 
The elements inside each bag are assumed to be 

sorted with Quicksort, and then the total time 
needed for sorting n elements in ccnt bags is given 
by: 

csncscsccntttime log)log( ×=⋅⋅= . (11) 
When the unsorted numbers are not evenly 

distributed, cs  is set to n , and we obtain 

nncsnttime log
2
1log ⋅=⋅= . (12) 

Accordingly, the time complexity and space 
complexity of the proposed algorithm are 
( )nnlogO  and ( )nO , respectively. 
Conversely, ncs log=  is set if the unsorted 

numbers are evenly distributed, and 
nnttime loglog⋅= . (13) 

Thus, the time complexity and space complexity 
of the proposed algorithm in this case are 

( )nn loglogO  and 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n

n
log

O , respectively. 

Notably, Eq. (1) does not affect the computation of 
( )ttimeO  here, because its calculation of Eq. (1) 

only requires ( )nO . 
 
 
4 The Proposed Key-Address Mapping 

Sort Algorithm 
 

In Groupsort and the primitive key-bag mapping 
sort introduced in Section 3, the bottleneck occurs 
in the second stage of the whole process, which is 

the Quicksort executed in each individual 
group/bag. Since the cost of memory is falling, 2n 
free space was allocated in this work, and the 
statistics mapping function was modified as in Eq. 
(1) to map each unsorted number into the 
“appropriate” position within the 2n free space 
and avoid entering the expensive second 
processing stage. 

offsetfskeyDkeymapindex +×== )()( , (14) 
where D(key) is the cumulative distribution 
function for each specific model, and fs and offset 
denote the size and offset of the free space, 
respectively. 

It is very common that the cumulative 
distribution function appears in an integral form 
for data of different distributions and the 
calculation for the cumulative distribution 
function is time consuming. We thereby try to 
employ a polynomial in this work to approximate 
the true value of the cumulative distribution 
function in any specific distribution. The general 
form of the polynomial of degree n that 
approaches cumulative distribution function can 
be expressed as, 

∑
=

=
n

i

i
i keyakeyD

0
)(ˆ , (15) 

Here n is varied for different distributions. 
The following subsections investigate two 

frequently adopted statistic distributions, uniform 
and normal distribution, to verify the effectiveness 
of the proposed sort algorithm. 
 
 
4.1  Key-Address Mapping Function for 

Uniformly Distributed Data 
 

Equation (14) is employed to map unsorted 
numbers into 2n units of contiguously free space 
by linear transformation. The following 
relationship is assumed once the unsorted numbers 
are evenly distributed: 

STD
fs

AVGkey
fmindexratio

⋅
=

−
−

=
32

, (16) 

where STD⋅32  denotes the range of the 
unsorted elements as mentioned after the 
appearance of Eq. (2). The linear transformation 
ratio given in Eq. (16) expresses the ratio required 
to map the range of n evenly distributed numbers 
into 2n of contiguous free space. 

The statistics mapping function for uniformly 
distributed data can then be expressed as, 

keyratiokeymapindex ⋅== )( , (17) 
where ratio is given by Eq. (16). 

If two or more numbers collide in the same 
position in the 2n free space, the interpolation sort 



is adopted to place one colliding element into the 
nearest free position around the collision location. 
However, the possibility of the collision should be 
very small compared to the amount of the data if 
an appropriate key-address mapping function is 
chosen. 

The following example demonstrates how the 
proposed algorithm works. Assume that the 
original list is 

21211, 4374, 23291, 16420, 17849, 27399, 
22353, 29261, 31970, 32449. 

After the computation of Eq. (1), the index for 
each number becomes: 

4.03, −1.40, 4.70, 2.49, 2.95, 6.03, 4.40, 6.63, 
7.51, 7.66 

According to Eq. (9), since index for 4374 is 
out-of-bounds (−1.40 < 0), the index must be 
adjusted to 0. Since each element is placed into its 
appropriate location, no extra sorting work is 
required, so the overhead of the second round of 
sorting is avoided. 
 
 
4.2  Key-Address Mapping Function for 

Normally Distributed Data 
 

The probability function of a variable x, 
normally distributed with mean μ and standard 
deviation σ, can be expressed as: 

( ) ( ) ( )22 2/

2
1 σµ

πσ
−−= xexp . (18) 

The cumulative distribution function is: 

( ) ( )∫ ∞−
′′=

x
xdxpxD . (19) 

Each number’s index can be calculated using the 
mapping function as shown in Eq. (14) when its 
cumulative distribution function for each number 
has been derived. However, as mentioned earlier, 
the cumulative distribution function is in an 
integral form and is computationally expensive. 
Therefore, a cubic polynomial, 
( ) 32 excxbxaxg +++= , was proposed in this work 

to approximate the original cumulative 
distribution function, as shown in Eq. (19). 

The derivation of the coefficients in the cubic 
polynomial, ( ) 32 excxbxaxg +++= , can be 
completed by the following error function: 

( )( ) ( )dxxpxDexcxbxaxE ∫
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−+++=
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Then Eq. (20) can be further transformed into a 
linear matrix: 
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where the values of I0, I1, I2, I3, I4, I5 and I6 can be 
derived by Eq. (21), and J0, J1, J2 and J3 by Eq. 
(22). 

Since it is tedious to derive the coefficients of 

the cubic polynomial using Eq. (23), we set 

σ
µ-xz =  and rewrite Eqs. (18) and (19) as 

follows to simplify the calculation: 
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and the cubic polynomial which approximates the 
cumulative distribution function becomes: 

32 ezczbza)z(g +++= , (26) 

After the substitution for z in Eq. (26) using 

σ
µ-x , we obtain 
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and the error function becomes: 
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Since ( )zD  is symmetric at )
2
1,0( , it can be 

2
1a = , (29) 

and 
0c = . (30) 

Meanwhile, the error function as given in Eq. 
(20) is expressed as, 
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Notably, the difference between the cubic 
polynomial and the cumulative distribution 



function becomes zero when appropriate values 
are chosen for b and e in Eq. (31). That is, 

e
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Based on Eq. (32), it can be shown that: 
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Now Eq. (23) can be rewritten as, 
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We next derive the value of In and Jn. 
Since 

( ) ( ) ( )zpzzpz nn −=−− , (38) 
when n is odd, thus 

Nn,I n- ∈∀= 012 , (39) 
when n is even, In becomes a recurrence relation 
as follows, 
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Thus, we obtain 
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Accordingly, Eq. (35) can be expressed as: 
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and the cubic polynomial as given by Eq. (27) 
becomes: 
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Then the index for each number can be 
obtained from the following mapping 
function: 

( ) fsxgxindex ⋅= )( , (47) 

where fs denotes the size of the free space. 
 
 
4.3 Time and Space Complexity Analysis 
 
4.3.1   Time and Space Complexity Analysis 

for Uniformly Distributed Data 
 

To sort the uniformly distributed data, the 
proposed sort algorithm can be divided into three 
processing stages, which are the computation of 
the value of ratio as given by Eq. (16), the 
mapping of each element’s key onto its 
corresponding address, and moving the sorted 
elements into the original array, respectively. The 
total computation time of the sorting can then be 
expressed as 

)(T)(T)(T)(T 321 nnnntotal ++= ,  (48) 
where )(T ni  denotes the computation time at the 
ith processing stage. 

The computation of ratio as given by Eq. (16) 
requires n additions, n+1 multiplications and one 
square-root operation for the derivation of the 
standard deviation, and n-1 additions and one 
multiplication for the calculation of the mean, 
respectively. Thus, the total computation time 
spent at the first stage is, 

SqrtMulAdd TTnTnn +++−= )4()12()(T1 , (49) 

where TAdd, TMul, and TSqrt denote the computation 
time of a single addition, multiplication, and 
square-root operation, respectively. 

During the second processing stage, the 
mapping of each element’s key onto its 
corresponding address requires one multiplication, 

When the sorted elements are moved back to the 
original array during the final stage, 
it involves n movements: 

MovTnn ⋅=)(T3 , (51) 
where TMov denote the computation time of a 
single movement operation. 

Accordingly, the total computation time 
required for sorting the uniformly distributed data 
becomes, 

( ) ( )( ) ( ) ( )MovMulSqrtMulAddtotal TnTTTnTnn ⋅+++++−= 412)(T

)5()2( AddSqrtMulMovMulAdd TTTnTTT −++++= . (52) 

Apparently, the time complexity of Eq. (52) is 
)O(n . 



Meanwhile, the space required for sorting the 
uniformly distributed data is 2n as mentioned in 
Section 4.1, the space complexity is )O(n  as 
well. 
 
 
4.3.2   Time and Space Complexity Analysis 

for Normally Distributed Data 
 

As for the normally distributed data, the whole 
sorting algorithm can be also separated into three 
processing stages, which are the calculation of 
mean and standard deviation, the mapping of each 
element’s key and its corresponding address, and 
moving the sorted elements back to the original 
array, respectively. 

During the first stage, the calculation of mean 
and standard deviation requires, 

SqrtMulAdd TTnTnn +++−= )2()12()(T1 . (53) 

Then we check if there is more than one element 
mapped to the same address during the second 
processing stage, which is the mapping of each 
element’s key and its address. The possibility of 
conflicting at the same address should be 
effectively reduced if the avoidance of the second 
round sorting is expected. One comparison is 
required if there are two elements mapped to the 
same address. In case there are more than two 

elements mapped to the same address, Quicksort is 
employed in this work to sort these conflicted 
elements. 

10,000 sets of normally distributed data 
truncated in the range 0~1,500,000, with mean µ = 
750,000 were generated using a normal random 
variables generator with list size equal to 
1,000,000 elements to investigate the distribution 
of different elements which are mapped into 
identical addresses when the proposed sorting 
algorithm is used to sort the normally distributed 
data. Table 1 lists the statistics of the distribution 
of the number of the elements mapped onto the 
same address after we ran the sorting tests for 
10,000 times using the normally distributed data. 
The average occurrence frequency and the 
standard deviation of the occurrence frequency for 
various numbers of conflicted elements are given 
at the second and the fifth columns in Table 1, 
respectively. The small standard deviation values 
comparing with the average occurrence frequency 
as listed in Table 1 exhibit that the behavior of the 
proposed key-address mapping function is indeed 
stable and consistent, and it is considered to be 
reliable to apply the statistics given in Table 1 in 
the computation of the time complexity for the 
second processing stage of the proposed 
algorithm. 

Table 1: Distribution of number of elements mapped into the same addresses 

Number of elements 

mapped onto the same  

address 

Average 

occurrence  

frequency 

Minimum 

occurrence 

frequency 

Maximum  

occurrence  

frequency 

Standard

deviation

0 396160.00 394992 397269 319.25

1 369370.00 367472 371110 491.84

2 179100.00 177824 180416 336.32

3 59916.00 59016 60651 206.15

4 15485.00 15044 15901 114.98

5 3279.90 3065 3478 54.823

6 590.42 506 673 24.019

7 92.56 61 130 9.7117

8 12.92 2 27 3.5671

9 1.64 0 8 1.2794

10 0.19 0 4 0.43877

11 0.02 0 2 0.14898

12 0.00 0 1 0.053774
  



The maximum occurrence frequency of various 
numbers of conflicted elements as given at the 
fourth columns in Table 1 is used to compute the 
upper bound of the time complexity of the second 
processing stage, 
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where i2 represents the upper bound of sorting 
time when Quicksort is used to sort i numbers. 

During the final stage, the sorted elements are 
moved back to the original array, and it takes n 
movement operations, 

MovTnn ⋅=)(T3 . (55) 

The total computation time for the key-address 
mapping sort algorithm used for normally 
distributed data is then 

( ) ( )( ) ( ) ( )MovSqrtMulAddtotal Tnn.TTnTnn ⋅+⋅++++−= 1014011212)(T

)2()101401.12( SqrtMulAddMulAdd TTTnTT ++−+++= . (56) 

Thus the time complexity of the key-address 
mapping algorithm is also )O(n . 

The space complexity of the proposed algorithm 
can be derived as follows. We first need a fixed 
space, which is equal to 1.5n, to save for the 
outcomes of the key-address mapping function. In 
case there is more than one element mapped to the 
same address, a dynamic allocation of memory is 
required to save the conflicted numbers. Base on 
the statistics as given in Table 1, the upper bound 
of the dynamically allocated memory required for 
the conflicted numbers can be expressed as, 
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n.2612910= . (57) 
The space complexity of the proposed algorithm is 
thus equal to 

( ) n.nnnasizennS 7612911261291.05.15.1)( =+=+= ,(58) 
which is also )O( n . 
 
 
5  Performance Evaluation 

A series of simulations was conducted to 
evaluate the performance of the proposed sorting 
algorithms and contrast their results with those of 
Quicksort and Groupsort. The tests are performed 
on a personal computer with an INTEL Pentium 4 
CPU. The proposed sort algorithm and Groupsort 
code were written in Dev-C++. The C function 
sort was used for the implementation of Quicksort. 

The performance of the proposed algorithm was 
first evaluated using 30 uniformly distributed data 
sets generated with a uniform random variables 
generator, for list sizes varying from 1,000 to 
1,600,000. Figure 6 shows that the average sorting 
time for each scheme is similar when the number 
of data in the set is small. The sorting time of the 
proposed algorithm improves as the size of the 
data set increases. The mapping function 
apparently reduces the probability of collision, as 
compared with other content-based sorting 
algorithms. Consequently, the proposed algorithm 
does not require the second round of sorting 
employed by other algorithms. Although the 
computation of the average and the standard 
deviation might increase the overhead of the 
proposed algorithm, the impact of the computation 
decreases significantly as the data size increases. 
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Fig. 6. Performance comparison of sorting 

uniformly distributed data sets. 
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 Fig. 7. Performance comparison of sorting 

normally distributed data sets. 
 

The performance for a normally distributed data 
set was also investigated. As revealed in Fig. 7, the 
proposed algorithm still outperforms others, 
obviously owing to a suitable selection of 
coefficients for the cubic polynomial used in the 
key-address mapping function as in Eq. (46), thus 
reducing the possibility of dealing with colliding 
numbers. Meanwhile, the array elements are 
truncated in the range 0~ LSize. ⋅51 , the average is 
set to 

2
5.1 LSize⋅ , and the standard deviation is set 

to ten in this experiment, where Lsize denotes the 
number of the array elements. Fig. 7 exhibits that 
the performance of Groupsort is similar to that of 
Quicksort for normally distributed data when the 
standard deviation is not large. Based on 
experimental results, it is verified that the 
proposed algorithm indeed outperforms others 
whether the data is uniformly or normally 
distributed. Furthermore, the genetic key-address 
mapping function as shown in Eq. (14) was shown 
to be valid when an appropriate cumulative 
distribution function is chosen to match the 
specific distribution model. 

In the next series of tests, we examine how the 
efficiency of the proposed sort algorithm is 
affected by a normal distribution of values, in 
comparison to Groupsort and Quicksort. The array 
elements are generated according to a normal 
distribution truncated in the range 0~1,500,000, 
with mean µ = 750,000 and standard deviation 
varying from 2 to 15000. Figure 8 shows the 
average running times comparison of the three sort 
algorithms with list size n = 1,000,000. It can be 
observed that the performances of the proposed 
algorithm and Quicksort are insignificantly 
affected by the varied standard deviation, whereas 
that of Groupsort is somewhat improved when the 
variance is increased. Meanwhile, the proposed 
algorithm is much faster than other two sort 
algorithms regardless of value of variance. 
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Fig. 8. Average running times for normal 
distribution with list size n = 1,000,000. 

 
 
6  Conclusion 
 

This work presents a key-address mapping sort 
algorithm to eliminate the second round of sorting 
required by content-based sorting algorithms 
found in literature. Additionally, this work 
demonstrates that a genetic key-address mapping 
function can be used to fit for the data in any 
specific distribution in case a fast cumulative 
distribution function can be obtained. Cases 
involving uniformly and normally distributed data 
were studied in this work to show the feasibility of 
the proposed algorithm. Experimental results 
verify that the proposed algorithm performs better 
performance than Quicksort and Groupsort with 
large data sets. Moreover, the running time rises 
rather slowly as the set size increases. Although 
computing the mean and standard deviation 
increases the computation time in the proposed 
sorting algorithm, approximating the cumulative 
distribution function for uniformly and normally 
distributed data using a linear equation and a cubic 
polynomial derived herein, respectively, can 
reduce the total computation time by eliminating 
the second round of sorting. Future work will 
further derive the approximate cubic polynomial 
for the cumulative distribution function adopted in 
a specific distribution model, such as Poisson or 
Weibull distribution to confirm the effectiveness 
of the genetic key-address mapping function. The 
applicability of the proposed work to the parallel 
sort computation problems will also be 
investigated. 
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