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Modélisation Mathématique et Analyse Numérique

MEASURING THE IRREVERSIBILITY OF NUMERICAL SCHEMES FOR

REVERSIBLE STOCHASTIC DIFFERENTIAL EQUATIONS ∗

Markos Katsoulakis1, Yannis Pantazis1 and Luc Rey-Bellet1

Abstract. For a Markov process the detailed balance condition is equivalent to the time-reversibility
of the process. For stochastic differential equations (SDE’s) time discretization numerical schemes
usually destroy the property of time-reversibility. Despite an extensive literature on the numerical
analysis for SDE’s, their stability properties, strong and/or weak error estimates, large deviations and
infinite-time estimates, no quantitative results are known on the lack of reversibility of the discrete-time
approximation process. In this paper we provide such quantitative estimates by using the concept of
entropy production rate, inspired by ideas from non-equilibrium statistical mechanics. The entropy
production rate for a stochastic process is defined as the relative entropy (per unit time) of the path
measure of the process with respect to the path measure of the time-reversed process. By construction
the entropy production rate is nonnegative and it vanishes if and only if the process is reversible.
Crucially, from a numerical point of view, the entropy production rate is an a posteriori quantity, hence
it can be computed in the course of a simulation as the ergodic average of a certain functional of the
process (the so-called Gallavotti-Cohen (GC) action functional). We compute the entropy production
for various numerical schemes such as explicit Euler-Maruyama and explicit Milstein’s for reversible
SDEs with additive or multiplicative noise. Additionally, we analyze the entropy production for the
BBK integrator of the Langevin processes. We show that entropy production is an observable that
distinguishes between different numerical schemes in terms of their discretization-induced irreversibility.
Furthermore, our results show that the type of the noise critically affects the behavior of the entropy
production rate.
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Numerical integration, (overdamped) Langevin processes.
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Résumé. Pour un processus de Markov la condition de balance détaillée est équivalente à la re-
versibilité du processus par rapport au renversement du temps. Pour les équations différentielles
stochastiques, les schémas de discrétisation détruisent en général cette proprieté de reversibilité. En
dépit d’une vaste littérature sur l’analyse numérique des équations differentielles stochastiques, leur
proprieté de stabilité, les erreurs fortes et/ou faibles, les proprietés de grandes déviations et à long
temps, il n’y a pas eu jusqu’à maintenant de résultats quantitatifs sur l’irréversibilité introduite par
l’approximation numérique. Dans cet article nous fournissons de telles estimations, en nous basant sur
le taux de production d’entropie, inspirés par des idées de mécanique statistique hors-équilibre. Le
taux de production d’entropie est, par définition, l’entropie relative (par unité de temps) du proces-
sus par rapport au processus renversé en temps. Par construction, le taux de production d’entropie
est non-négatif et il est zéro si et seulement si le procesus est réversible. Crucialement, d’un point
de vue numérique, le taux de production d’entropie peut être evalué directement comme la moyenne
ergodique d’une certaine fonctionnelle du processus (la fonctionelle de Gallavotti-Cohen), sous des
conditions d’ergodicité adéquates. Nous calculons la production d’entropie pour le schéma explicite
d’Euler-Maruyama et le schéma explicite de Milstein pour des equations différentielles stochastiques
reversibles avec des bruit additifs ou multiplicatifs. Nos résultats démontrent que le type de bruit
change le comportement la production d’entropie de manière critique. Finalement nous analysons la
production d’entropie pour le schéma BBK pour l’equation de Langevin.

1991 Mathematics Subject Classification. ???, ???

The dates will be set by the publisher.

Introduction1

In molecular simulations arising in the simulation of systems in materials science, chemical engineering,2

evolutionary games, computational statistical mechanics, etc. the equilibrium statistics obtained from numerical3

simulations are of great importance [6,22,28]. For instance, the free energy of the system or free energy differences4

as well dynamic transitions between metastable states are quantities which are sampled at the stationary regime.5

In addition, physical processes are often modeled at a microscopic level as interactions between particles which6

obey a system of stochastic differential equations (SDE’s) [6, 12]. To perform equilibrium simulations for the7

sampling of desirable observables, the solution of the system of SDE’s must possess a (unique) ergodic invariant8

measure. The uniqueness of the invariant measure follows from the ellipticity or hypoellipticity of the generator9

of the process together with irreducibility, which means that the process can reach at some positive time any10

open subset of the state space with positive probability [16,20]. Under such conditions the distribution process11

converges to the invariant measure (ergodicity) which has a smooth density and the process started in the12

invariant measure is stationary, i.e. the distribution of the paths of the processes, is invariant under time-13

shift. Many processes of physical origin, such as diffusion and adsoprtion/desoprtion of interacting particles,14

satisfy the condition of detailed balance (DB), or equivalently, reversibility, i.e., the distribution of the path15

of the processes are invariant under time-reversal. It is easy to see that reversibility implies stationarity but16

is a strictly stronger condition in general. The condition of detailed balance often arises from a gradient-like17

behavior of the dynamics or from Hamiltonian dynamics if the time-reversal include reversal of the velocities.18

However, the numerical simulation of SDE’s necessitates the use of numerical discretization schemes. Dis-19

cretization procedures, except in very special cases, results in the destruction of the DB condition. This affects20

the approximation process in at least two ways. First, the invariant measure of the approximation process, if21

it exists at all, is not known explicitly and, second, the time reversibility of the process is lost. Several recent22

results concerns the existence of the invariant measure for the discrete-time approximation and associated error23

estimates [2,3,14,15] but, to the best of our knowledge, there is no quantitative assessment of the irreversibility24

of the approximation process. Of course there exist Metropolized numerical schemes such as MALA [21] and25
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variations thereof which do satisfy the DB condition but they are numerically more expensive, especially in26

high-dimensional systems, as they require an accept/reject step. Thus, a quantitative understanding of the lack27

of reversibility for simpler discretization schemes can provide new insights for selecting which schemes are closer28

to satisfying the DB condition.29

The implications of irreversibility are only partially understood, both from the physical and mathematical30

point of view. These issues have emerged as a main theme in non-equilibrium statistical mechanics and it31

is well-known that irreversibility introduces a stationary current (net flow) to the system [8, 18, 23] but it is32

unclear how this current affects the long-time properties (i.e., the dynamics and large deviations) of the process33

such as exit times, correlation times and phase transitions of metastable states. Reversibility is a natural34

and fundamental property of physical systems and thus, if numerical simulation results in the destruction of35

reversibility, one should carefully quantify the irreversibility of the approximation process and we do in this36

paper using the entropy production rate. The entropy production rate which is defined as the relative entropy37

(per unit time) between the path measure of the process and the path measure of the reversed process is widely38

used in statistical mechanics for the study of non-equilibrium steady states of irreversible systems [5,8,11,13]. A39

fundamental result on the structure of non-equilibrium steady states is the Gallavotti-Cohen fluctuation theorem40

that describes the fluctuations (of large deviations type) of the entropy production [5,8,11,13] and this result can41

be viewed as a generalization of the Kubo-formula and Onsager relations far from equilibrium. For our purpose,42

it is important to note that the entropy production rate is zero when the process is reversible and positive43

otherwise making entropy production rate a sensible quantitative measure of irreversibility. Furthermore, if we44

assume ergodicity of the approximation process, the entropy production rate equals the time-average of the45

Gallavotti-Cohen (GC) action functional which is defined as the logarithm of the Radon-Nikodym derivative46

between the path measure of the process and the path measure of the reversed process. A key observation of47

this paper is that an important feature of GC action functional is that it is an a posteriori quantity, hence, it is48

easily computable during the simulation making the numerical computation of entropy production rate tractable.49

We show that entropy production is a computable observable that distinguishes between different numerical50

schemes in terms of their discretization-induced irreversibility and as such allows us to adjust the discretization51

in the course of the simulation.52

We use entropy production to assess the irreversibility of various numerical schemes for reversible continuous-53

time processes. A simple class of reversible processes, yet of great interest, is the overdamped Langevin process54

with gradient-type drift [6, 7, 12]. The discretization of the process is performed using the explicit Euler-55

Maruyama (EM) scheme and we distinguish between two different cases depending on the kind of the noise.56

In the case of additive noise, under the assumption of ergodicity of the approximation process [2, 3, 14, 15] we57

prove that the entropy production rate is of order O(∆t2) where ∆t is the time step of the numerical scheme.58

In the case of multiplicative noise, the results are remarkably different. Indeed, under ergodicity assumption,59

the entropy production rate for the explicit EM scheme is proved to have a lower positive bound which is60

independent of ∆t. Thus irreversibility is not reduced by adjusting ∆t, as the approximation process converges61

to the continuous-time process. The different behavior of entropy production depending on the kind of noise is62

one of the prominent findings of this paper. As a further step in our study, we formulate and test numerically the63

explicit Milstein’s scheme with multiplicative noise (it is the next higher-order numerical scheme). Simulation64

results on a wide range of different multiplicative noises show that the entropy production rate of Milstein’s65

scheme decreases as time step decreases with order O(∆t).66

Finally, we compute both analytically and numerically the entropy production rate for a discretization scheme67

for Langevin systems which is another important and widely-used class of reversible models [6,12]. The Langevin68

equation is time-reversible if addition to reversing time, one reverses the sign of the velocity of all particles.69

The noise is degenerate but the process is hypo-elliptic and under mild conditions the Langevin equation is70

ergodic [15, 19, 26]. Our discretization scheme is an explicit EM–Verlet (symplectic)–implicit EM scheme also71

known as BBK integrator [4, 12]. We rigorously prove, under ergodicity assumption of the approximation72

process, that the entropy rate produced by the numerical scheme for the Langevin process with additive noise73

is of order O(∆t), hence, in terms of irreversibility it can be an acceptable integration scheme.74
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The paper is organized in four sections. In Section 1 we recall some basic facts about reversible processes75

and define rigorously the entropy production. Moreover we give the basic assumption necessary for our proofs,76

namely, the ergodicity of both continuous-time and discrete-time approximation process. In Section 2 we77

compute the entropy production rate for reversible overdamped Langevin processes. The section is split into78

two subsections for the additive and multiplicative noise. In Section 3 we compute the entropy production rate79

for the reversible (up to momenta flip) Langevin process using the BBK integrator. Conclusions and future80

extensions of the current work are summarized in the fourth and final Section.81

1. Reversibility, Gallavotti-Cohen Action Functional, and Entropy82

Production83

Let us consider a d-dimensional system of SDE’s written as84

dXt = a(Xt)dt+ b(Xt)dBt (1)

where Xt ∈ Rd is a diffusion Markov process, a : Rd → Rd is the drift vector, b : Rd → Rd×m is the diffusion85

matrix, and Bt ∈ Rm is a standard m-dimensional Brownian motion. We will always assume that a and b are86

sufficiently smooth and satisfy suitable growth conditions and/or dissipativity conditions at infinity to ensure87

the existence of global solutions. The generator of the diffusion process is defined by88

Lf =

d∑
i=1

ai
∂f

∂xi
+

1

2

d∑
i,j=1

(bbT )i,j
∂2f

∂xi∂xj
. (2)

for test functions f which are twice continuously differentiable and with bounded derivatives up to second89

order. We assume that the process Xt has a (unique) invariant measure µ(dx), and that it satisfies the Detailed90

Balance (DB) condition, i.e., its generator is symmetric in the Hilbert space L2(µ), i.e.91

< Lf, g >L2(µ)=< f,Lg >L2(µ) (3)

for suitable test functions f, g as above.92

A Markov process Xt is said to be reversible if for any n and sequence of times t1 < · · · < tn the finite93

dimensional distributions of (Xt1 , ..., Xtn) and of (Xtn , ..., Xt1) are identical. More formally, let Pρ
[0,t] denote94

the path measure of the process Xt on the time-interval [0, t] with X0 ∼ ρ. Let Θ denote the time reversal, i.e.95

Θ acts on a path {Xs}0≤s≤t has96

(ΘX)s = Xt−s (4)

Then reversibility is equivalent to Pµ
[0,t] = Pµ

[0,t] ◦Θ. Additionally, it is well-known that a stationary1 process97

which satisfies the DB condition is reversible.98

The condition of reversibility can be also expressed in terms of relative entropy as follows. Recall that for99

two probability measure π1, π2 on some measurable space, the relative entropy of π1 with respect to π2 is given100

by R(π1|π2) ≡
∫
dπ1 log dπ1

dπ2
if π1 is absolutely continuous with respect to π2 and +∞ otherwise. The relative101

entropy is nonnegative, R(π1|π2) ≥ 0 and R(π1|π2) = 0 if and only if π1 = π2. The entropy production rate of102

a Markov process Xt is defined by103

EPcont := lim
t→∞

1

t
R(Pρ

[0,t]|P
ρ
[0,t] ◦Θ) = lim

t→∞

1

t

∫
dPρ

[0,t] log
dPρ

[0,t]

dPρ
[0,t] ◦Θ

(5)

If Xt satisfies DB and X0 ∼ µ then R(Pµ
[0,t]|P

µ
[0,t] ◦ Θ) is identically 0 for all t and the entropy production104

rate is 0. Note that if X0 ∼ ρ 6= µ then R(Pρ
[0,t]|P

ρ
[0,t] ◦ Θ) is a boundary term, in the sense that it is O(1)105

1Stationarity is equivalent to starting the process Xt from its invariant measure, i.e., X0 ∼ µ.



TITLE WILL BE SET BY THE PUBLISHER 5

and so the entropy rate vanishes in this case in the large time limit (under suitable ergodicity assumptions).106

Conversely when EPcont 6= 0 the process is truly irreversible. The entropy production rate for Markov processes107

and stochastic differential equations is discussed in more detail in [11,13].108

Let us consider a numerical integration scheme for the SDE (1) which is written in the general form109

xi+1 = F (xi,∆t,∆Wi) i = 1, 2, ... (6)

where xi ∈ Rd is a discrete-time continuous state-space Markov process, ∆t is the time-step and ∆Wi ∈ Rm, i =110

1, 2, ... are i.i.d. Gaussian random variables with mean 0 and variance ∆tIm. We assume that the Markov111

process xi has transition probabilities which are absolutely continuous with respect to Lebesgue measure with112

everywhere positive densities Π(xi, xi+1) := ΠF (x,∆t,∆W )(xi+1|xi) and we also assume that xi has a invariant113

measure which we denote µ̄(dx) and which is then unique and has a density with respect to Lebesgue. In114

general the invariant measure for Xt and xi differ, µ 6= µ̄ and xi does not satisfy a DB condition. Note also115

that the very existence of µ̄ is not guaranteed in general. Results on the existence of µ̄ do exist however and116

typically require that the SDE is elliptic or hypoellitptic and that the state space of Xt is compact or that a117

global Lipschitz condition on the drift holds [2, 3, 14,15].118

Proceeding as in the continuous case we introduce an entropy production rate for the Markov process xi.119

Let us assume that the process starts from some distribution ρ(x)dx, then the finite dimensional distribution120

on the time window [0, t] where t = n∆t is given by121

P̄[0,t](dx0, · · · , dxn) = ρ(x0)Π(x0, x1) · · ·Π(xn−1, xn)dx0 · · · dxn . (7)

For the time reversed path Θ(x0, · · ·xn) = (xn, · · · , x0) we have then122

P̄[0,t] ◦Θ(dx0, ..., dxn) = ρ(xn)Π(xn, xn−1) · · ·Π(x1, x0)dx0 · · · dxn (8)

and the Radon-Nikodym derivative takes the form123

dP̄[0,t]

dP̄[0,t] ◦Θ
= exp(W (t))

ρ(x0)

ρ(xn)
(9)

where W (t) is the Gallavotti-Cohen (GC) action functional given by124

W (t) = W (n; ∆t) :=

n−1∑
i=0

log
Π(xi, xi+1)

Π(xi+1, xi)
. (10)

Note that W (t) is an additive functional of the paths and thus if xi is ergodic, by the ergodic theorem the125

following limit exists126

EP (∆t) = lim
t→∞

1

t
W (t) = lim

n→∞

1

n∆t
W (n; ∆t) P̄ − a.s.. (11)

We call the quantity EP (∆t) the entropy production rate associated to the numerical scheme. Note that we127

have, almost surely,128

EP (∆t) =
1

∆t
lim
n→∞

1

n

n−1∑
i=0

log
Π(xi, xi+1)

Π(xi+1, xi)
=

1

∆t

∫
log

Π(x, y)

Π(y, x)
Π(x, y)µ̄(x) dxdy (12)

and for concrete numerical schemes we will compute fairly explicitly the entropy production in the next sec-129

tions. Since we are interested in the ergodic average we will systematically omit boundary terms which do not130

contribute to ergodic averages and we will use the notation131

W1(t)=̇W2(t) if lim
t→∞

1

t
(W1(t)−W2(t)) = 0 . (13)
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For example we have132

W (t) =̇ log
dP̄[0,t]

dP̄[0,t] ◦Θ
. (14)

Note also that using (11) and (10), entropy production rate is tractable numerically and it can be easily133

calculated “on-the-fly” once the transition probability density function Π(·, ·) is provided.134

In the following sections we investigate the behavior of the entropy production rate for different discretization135

schemes of various reversible processes in the stationary regime. However, before proceeding with our analysis,136

let us state formally the basic assumptions necessary for our results to apply.137

Assumption 1.1. We have138

• The drift a and the diffusion b in (1) as well as the vector F in (6) are C∞ and all their derivatives139

have at most polynomial growth at infinity.140

• The generator L is elliptic or hypo-elliptic, in particular the transition probabilities and the invariant141

measure (if it exists) are absolutely continuous with respect to Lebesgue with smooth densities. For the142

discretized scheme we assume that xi has smooth transition probabilities.143

• Both the continuous-time process Xt and discrete-time process xi are ergodic with unique invariant144

measures µ and µ̄, respectively. Furthermore for sufficiently small ∆t we have145

|Eµ[f ]− Eµ̄[f ]| = O(∆t) (15)

for functions f which are C∞ with at most polynomial growth at infinity.146

Notice that inequality (15) is an error estimate for the invariant measures of the processes Xt and xi. The147

rate of convergence in terms of ∆t depends on the particular numerical scheme [14, 25]. Ergodicity results for148

(numerical) SDEs can be found in [2,3,9,14,15,21,25–27]. For instance, if both drift term a(x) and diffusion term149

b(x) have bounded derivatives of any order, the covariance matrix (bbT )(x) is elliptic for all x ∈ Rd and there is150

a compact set outside of which holds xTa(x) < −C|x|2 for all x ∈ Rd (Lyapunov exponent) then it was shown151

in [25] that the continuous-time process as well both Euler and Milstein numerical schemes are ergodic and152

error estimate (15) holds. Another less restrictive example where ergodicity properties were proved is for SDE153

systems with degenerate noise and particularly for Langevin processes [15,26]. Again, a Lyapunov functional is154

the key assumption in order to handle the stochastic process at the infinity. More recently, Mattingly et al. [14]155

showed ergodicity for SDE-driven processes restricted on a torus as well their discretizations utilizing only the156

assumptions of ellipticity or hypoellipticity and the assumption of local Lipschitz continuity for both drift and157

diffusion terms.158

2. Entropy Production for the Overdamped Langevin Processes159

The overdamped Langevin process, Xt ∈ Rd, is the solution of the following system of SDE’s160

dXt = −1

2
Σ(Xt)∇V (Xt)dt+

1

2
∇Σ(Xt)dt+ σ(Xt)dBt (16)

where V : Rd → R is a smooth potential function, σ : Rd → Rd×m is the diffusion matrix, Σ := σσT : Rd → Rd×d161

is the covariance matrix and Bt is a standard m-dimensional Brownian motion. We assume from now on that162

Σ(x) is invertible for any x so that the process is elliptic. It is straightforward to show that the generator of163

the process Xt satisfies the DB condition (3) with invariant measure164

µ(dx) =
1

Z
exp(−V (x))dx (17)

where Z =
∫
Rd exp(−V (x))dx is the normalization constant and thus if X0 ∼ µ then the Markov process Xt is165

reversible.166
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The explicit Euler-Maruyama (EM) scheme for numerical integration of (16) is given by167

xi+1 = xi −
1

2
Σ(xi)∇V (xi)∆t+

1

2
∇Σ(xi)∆t+ σ(xi)∆Wi (18)

with ∆Wi ∼ N(0,∆tIm), i = 1, 2, ... are m-dimensional iid Gaussian random variables. The process xi is a168

discrete-time Markov process with transition probability density given by169

Π(xi, xi+1) =
1

Z(xi)
exp

(
1

2∆t
(∆xi +

1

2
Σ(xi)∇V (xi)∆t−

1

2
∇Σ(xi)∆t)

T

Σ−1(xi)(∆xi +
1

2
Σ(xi)∇V (xi)∆t−

1

2
∇Σ(xi)∆t)

) (19)

where ∆xi = xi+1−xi and Z(xi) = (2π)m/2|det Σ(xi)|1/2 is the normalization constant for the multidimensional170

Gaussian distribution. The following lemma provides the GC action functional for the explicit EM time-171

discretization scheme of the overdamped Langevin process.172

Lemma 2.1. Assume that det Σ(x) 6= 0 ∀x ∈ Rd. Then the GC action functional of the process xi solving (18)173

is174

W (n; ∆t)=̇− 1

2

n−1∑
i=0

∆xTi [∇V (xi+1) +∇V (xi)] +
1

2

n−1∑
i=0

∆xTi [Σ−1(xi+1)∇Σ(xi+1) + Σ−1(xi)∇Σ(xi)]

+
1

2∆t

n−1∑
i=0

∆xTi
[
Σ−1(xi+1)− Σ−1(xi)

]
∆xi

(20)

where =̇ means equality up to boundary terms, as defined in (13).175
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Proof. The assumption for non-zero determinant is imposed so that the transition probabilities and hence the
GC action functional are non-singular. The proof is then a straightforward computation using (19) and (10).

W (n; ∆t) :=

n−1∑
i=0

[log Π(xi, xi+1)− log Π(xi+1, xi)] =

n−1∑
i=0

[logZ(xi+1)− logZ(xi)]

− 1

2∆t

n−1∑
i=0

[
(∆xi +

1

2
Σ(xi)∇V (xi)∆t−

1

2
∇Σ(xi)∆t)

TΣ−1(xi)(∆xi +
1

2
Σ(xi)∇V (xi)∆t−

1

2
∇Σ(xi)∆t)

−(−∆xi +
1

2
Σ(xi+1)∇V (xi+1)∆t− 1

2
∇Σ(xi+1)∆t)TΣ−1(xi+1)(−∆xi +

1

2
Σ(xi+1)∇V (xi+1)∆t− 1

2
∇Σ(xi+1)∆t)

]
=̇− 1

2∆t

n−1∑
i=0

[
∆xTi Σ−1(xi)∆xi +

1

4
∇V (xi)

TΣ(xi)∇V (xi)∆t
2 +

1

4
∇Σ(xi)

TΣ−1(xi)∇Σ(xi)∆t
2

+ ∆xTi ∇V (xi)∆t−∆xTi Σ−1(xi)∇Σ(xi)∆t−
1

2
∇V (xi)

T∇Σ(xi)∆t
2

−∆xTi Σ−1(xi+1)∆xi −
1

4
∇V (xi+1)TΣ(xi+1)∇V (xi+1)∆t2 − 1

4
∇Σ(xi+1)TΣ−1(xi+1)∇Σ(xi+1)∆t2

+∆xTi ∇V (xi+1)∆t−∆xTi Σ−1(xi+1)∇Σ(xi+1)∆t+
1

2
∇V (xi+1)T∇Σ(xi+1)∆t2

]
=̇− 1

2∆t

n−1∑
i=0

∆xTi
[
Σ−1(xi)− Σ−1(xi+1)

]
∆xi −

1

2

n−1∑
i=0

∆xTi [∇V (xi+1) +∇V (xi)]

+
1

2

n−1∑
i=0

∆xTi [Σ−1(xi+1)∇Σ(xi+1) + Σ−1(xi)∇Σ(xi)]

where all the terms of the general form G(xi)−G(xi+1) in the sums were cancelled out since they form telescopic176

sums which become boundary terms. �177

Three important remarks can readily be made from the above computation.178

Remark 2.2. The numerical computation of entropy production rate as the time-average of the GC action179

functional on the path space (i.e., based on (9)) at first sight seems computationally intractable due to the large180

dimension of the path space. However, due to ergodicity, the numerical computation of the entropy production181

can be performed as a time-average based on (11) and (20) for large n. Additionally, this computation can182

be done for free and “on-the-fly” since the quantities involved are already computed in the simulation of the183

process. The numerical entropy production rate shown in the following figures is computed using this approach.184

Remark 2.3. It was shown in [13] that the GC action functional of the continuous-time process driven by (16)185

equals the Stratonovich integral186

Wcont(t) = −
∫ t

0

∇V (Xs) ◦ dXs = V (x0)− V (xt) (21)

which reduces to a boundary term as expected. This functional has the discretization187

Wcont(t) ≈
1

2

n−1∑
i=0

∆xTi [∇V (xi+1) +∇V (xi)] (22)

and this is exactly the first term in the GC action functional W (n; ∆t) for the explicit EM approximation188

process (see (20)). However, the discretization scheme introduces two additional terms to the GC action189



TITLE WILL BE SET BY THE PUBLISHER 9

functional which may greatly affect the asymptotic behavior of entropy production as ∆t goes to zero, as we190

demonstrate in Section 2.2. Notice that when the noise is additive, i.e., when the diffusion matrix is constant,191

then these two additional terms vanish and taking the limit ∆t → 0, the GC action functional W (n; ∆t), if192

exists, becomes the Stratonovich integral Wcont(t) which is a boundary term.193

Remark 2.4. The GC action functional W (n; ∆t) consists of three terms (see (20)), each of which stems from194

a particular term in the SDE. Thus, each term in the SDE contributes to the entropy production functional195

a component which is totally decoupled to the other terms. The reason for this decomposition lies in the196

particular form of the transition probabilities for the explicit EM scheme which are exponentials with quadratic197

argument. This feature can be exploited for the study of entropy production of numerical schemes for processes198

with irreversible dynamics. Indeed, if a non-gradient term of the form a(Xt)dt is added to the drift of (16), the199

process is irreversible and its GC action functional is not anymore a boundary term and is given by [13]200

Wcont(t)=̇−
∫ t

0

Σ−1(Xt)a(Xt) ◦ dXt ≈
1

2

n−1∑
i=0

∆xTi [Σ−1(xi)a(xi) + Σ−1(xi+1)a(xi+1)] (23)

On the other hand, due to the separation property of the explicit EM scheme, the GC action functional of the201

discrete-time approximation process W (n; ∆t) has the additional term202

1

2

n−1∑
i=0

∆xTi [Σ−1(xi)a(xi) + Σ−1(xi+1)a(xi+1)]. (24)

Evidently, the discretization of Wcont(t) equals the additional term of the GC functional W (n; ∆t). Thus, GC203

action functional W (n; ∆t) is decomposed into two components, one stemming from the irreversibility of the204

continuous-time process and another one stemming from the irreversibility of the discretization procedure.205

2.1. Entropy Production for the Additive Noise206

An important special case of (16) is the case of additive noise, i.e., when the covariance matrix does not207

depend in the process, Σ(x) ≡ Σ. In this case, the SDE system becomes208

dXt = −1

2
Σ∇V (Xt)dt+ σdBt

X0 ∼ µ
(25)

and the GC action functional is simply given by209

W (n; ∆t)=̇− 1

2

n−1∑
i=0

∆xTi [∇V (xi+1) +∇V (xi)] (26)

In this section we prove an upper bound for the entropy production of the explicit EM scheme. The proof210

uses several lemmas stated and proved in Appendix A.211

Theorem 2.5. Let Assumption 1.1 hold. Assume also that the potential function V has bounded fifth-order212

derivative and that the covariance matrix Σ is invertible. Then, for sufficiently small ∆t, there exists C =213

C(V,Σ) > 0 such that214

EP (∆t) ≤ C∆t2 (27)



10 TITLE WILL BE SET BY THE PUBLISHER

Proof. Utilizing the generalized trapezoidal rule (75) for k = 3, the GC action function is rewritten as215

W (n; ∆t)=̇− 1

2

n−1∑
i=0

∆xTi [∇V (xi+1) +∇V (xi)]

=

n−1∑
i=0

−(V (xi+1)− V (xi)) +
∑
|α|=3

Cα[DαV (xi+1) +DαV (xi)]∆x
α
i

+
∑

|α|=1,3,5

∑
|β|=5−|α|

Bβ [Rβα(xi, xi+1) +Rβα(xi+1, xi)]∆x
α+β
i


=̇

n−1∑
i=0

∑
|α|=3

Cα[DαV (xi+1) +DαV (xi)]∆x
α
i

+

n−1∑
i=0

∑
|α|=1,3,5

∑
|β|=5−|α|

Bβ [Rβα(xi, xi+1) +Rβα(xi+1, xi)]∆x
α+β
i .

(28)

Applying, once again, Taylor series expansion to DαV (xi+1), the GC action functional becomes216

W (n; ∆t)=̇

n−1∑
i=0

∑
|α|=3

2CαD
αV (xi)∆x

α
i +

∑
|α|=3

Cα
∑
|β|=1

Dα+βV (xi)∆x
α+β
i


+

n−1∑
i=0

∑
|α|=1,3,5

∑
|β|=5−|α|

R̄βα(xi, xi+1)∆xα+β
i

(29)

where R̄βα(xi, xi+1) = Bβ [Rβα(xi, xi+1) + Rβα(xi+1, xi)] + 1|α|=3R
α
β (xi, xi+1). Moreover, expanding ∆xαi using217

the multi-binomial formula218

∆xαi = (−1

2
Σ∇V (xi)∆t+ σ∆Wi)

α =
∑
ν≤α

(
α

ν

)
(−1

2
Σ∇V (xi)∆t)

ν(σ∆Wi)
α−ν . (30)

Then, the GC action functional becomes219

W (n; ∆t)=̇2

n−1∑
i=0

∑
|α|=3

∑
ν≤α

Cα

(
α

ν

)
DαV (xi)(−

1

2
Σ∇V (xi)∆t)

ν(σ∆Wi)
α−ν

+

n−1∑
i=0

∑
|α|=3

∑
|β|=1

∑
ν≤α+β

Cα

(
α+ β

ν

)
Dα+βV (xi)(−

1

2
Σ∇V (xi)∆t)

ν(σ∆Wi)
α+β−ν

+

n−1∑
i=0

∑
|α|=1,3,5

∑
|β|=5−|α|

∑
ν≤α+β

(
α+ β

ν

)
R̄βα(xi, xi+1)(−1

2
Σ∇V (xi)∆t)

ν(σ∆Wi)
α+β−ν .

(31)
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From (11), the entropy production rate is the time-averaged GC action functional as n→∞. Thus,220

EP (∆t) = lim
n→∞

W (n; ∆t)

n∆t

=
2

∆t

∑
|α|=3

∑
ν≤α

Cα

(
α

ν

)
lim
n→∞

1

n

n−1∑
i=0

DαV (xi)(−
1

2
Σ∇V (xi)∆t)

ν(σ∆Wi)
α−ν

+
1

∆t

∑
|α|=3

∑
|β|=1

∑
ν≤α+β

Cα

(
α+ β

ν

)
lim
n→∞

1

n

n−1∑
i=0

Dα+βV (xi)(−
1

2
Σ∇V (xi)∆t)

ν(σ∆Wi)
α+β−ν

+
1

∆t

∑
|α|=1,3,5

∑
|β|=5−|α|

∑
ν≤α+β

(
α+ β

ν

)
lim
n→∞

1

n

n−1∑
i=0

R̄βα(xi, xi+1)(−1

2
Σ∇V (xi)∆t)

ν(σ∆Wi)
α+β−ν .

(32)

The ergodicity of xi as well the Gaussianity of ∆Wi guarantees that the first two limits in the entropy production221

formula exist. Additionally, the residual terms, R̄βα(xi, xi+1), are bounded due to the assumption on bounded222

fifth-order derivative of V , hence, the third limit also exists. Note here that this assumption could be changed by223

assuming boundedness of a higher order derivative and performing a higher-order Taylor expansion. Appendix A224

gives rigorous proofs of these ergodicity statements. Hence,225

EP (∆t) =
2

∆t

∑
|α|=3

∑
ν≤α

Cα

(
α

ν

)
Eµ̄[DαV (x)(−1

2
Σ∇V (x)∆t)ν ]Eρ[(σy)α−ν ]

+
1

∆t

∑
|α|=3

∑
|β|=1

∑
ν≤α+β

Cα

(
α+ β

ν

)
Eµ̄[Dα+βV (x)(−1

2
Σ∇V (x)∆t)ν ]Eρ[(σy)α+β−ν ]

+
1

∆t

∑
|α|=1,3,5

∑
|β|=5−|α|

∑
ν≤α+β

(
α+ β

ν

)
Eµ̄×ρ[R̄βα(x, y)(−1

2
Σ∇V (x)∆t)ν ]Eρ[(σy)α+β−ν ]

(33)

where µ̄ is the equilibrium measure for xi while ρ is the Gaussian measure of ∆Wi. Using the Isserlis-Wick226

formula we can compute the higher moments of multivariate Gaussian random variable from the second-order227

moments. Indeed, we have228

E[yν ] = E[yν11 ...yνdd ] = E[z1z2...z|ν|] =

{
0 if |ν| odd∑∏
E[zizj ] if |ν| even

(34)

where
∑∏

means summing over all distinct ways of partitioning z1, ..., z|ν| into pairs. Moreover, E[zizj ] =229

Σij∆t, hence, applying (34) into (33) and changing the multi-index notation to the usual notation, the entropy230

production rate becomes231

EP (∆t) =
2

∆t

d∑
k1=1

d∑
k2=1

d∑
k3=1

Ck1k2k3

{
Eµ̄[

∂3V

∂xk1∂xk2∂xk3
(−1

2
Σ∇V )k1 ]Σk2k3∆t2

+Eµ̄[
∂3V

∂xk1∂xk2∂xk3
(−1

2
Σ∇V )k2 ]Σk1k3∆t2 + Eµ̄[

∂3V

∂xk1∂xk2∂xk3
(−1

2
Σ∇V )k3 ]Σk1k2∆t2 +O(∆t3)

}
+

1

∆t

d∑
k1=1

d∑
k2=1

d∑
k3=1

d∑
k4=1

Ck1k2k3

{
Eµ̄[

∂4V

∂xk1 ...∂xk4
][Σk1k2Σk3k4 + Σk1k3Σk2k4 + Σk1k4Σk2k3 ]∆t2 +O(∆t3)

}
+

1

∆t
O(∆t3) .

(35)
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Using that (− 1
2Σ∇V )ki = − 1

2

∑d
k4=1 Σkik4

∂V
∂xk4

, entropy production is rewritten as232

EP (∆t) =

d∑
k1=1

d∑
k2=1

d∑
k3=1

d∑
k4=1

Ck1k2k3

{
Σk1k2Σk3k4

(
−Eµ̄[

∂3V

∂xk1∂xk3∂xk4

∂V

∂xk2
] + Eµ̄[

∂4V

∂xk1 ...∂xk4
]

)

+ Σk1k3Σk2k4

(
−Eµ̄[

∂3V

∂xk1∂xk2∂xk4

∂V

∂xk3
] + Eµ̄[

∂4V

∂xk1 ...∂xk4
]

)
+Σk1k4Σk2k3

(
−Eµ̄[

∂3V

∂xk1∂xk2∂xk3

∂V

∂xk4
] + Eµ̄[

∂4V

∂xk1 ...∂xk4
]

)}
∆t+O(∆t2) .

(36)

By a simple integration by parts, we observe that for any combination k1, ..., k4 = 1, ..., d233

Eµ[
∂3V

∂xk1∂xk2∂xk3

∂V

∂xk4
] = Eµ[

∂4V

∂xk1 ...∂xk4
] (37)

where the expectation is taken with respect of µ which is the invariant measure of the continuous-time process.234

However, in (36) the expectation is w.r.t. the invariant measure of the discrete-time process (i.e., µ̄ instead of235

µ). Nevertheless, Assumption 1.1 guarantees that the alternation of the measure from µ to µ̄ costs an error of236

order O(∆t). Hence, for any coefficient in (36), we obtain that237 ∣∣∣∣Eµ̄[
∂3V

∂xk1∂xk2∂xk3

∂V

∂xk4
]− Eµ̄[

∂4V

∂xk1 ...∂xk4
]

∣∣∣∣ ≤ 2K∆t (38)

since the potential V as well its derivatives are sufficiently smooth. Hence, we overall showed that238

EP (∆t) = O(∆t2) (39)

which completes the proof. �239

Remark 2.6. Depending on the potential function the entropy production could be even smaller. For instance,240

when the potential V is a quadratic function (i.e. the continuous-time process is an Ornstein-Uhlenbeck process),241

then, it is easily checked by a trivial calculation of (26) that the GC action function is a boundary term, thus,242

the entropy production of the explicit EM scheme is zero. However, for a generic potential V we expect that243

the entropy production rate decays quadratically as a function of ∆t but not faster.244

2.1.1. Fourth-order potential on a torus245

Lets now proceed with an important example where the potential is a forth-order polynomial while the246

process takes values on a torus. Assume d = 2 while potential V = Vβ is given by247

Vβ(x) = β

(
|x|4

4
− |x|

2

2

)
(40)

where β is a positive real number which in statistical mechanics has the meaning of the inverse temperature.248

The diffusion matrix is set to σ =
√

2β−1Id. Based on [15], Assumption 1.1 is satisfied because the domain is249

restricted to a torus, the potential is locally Lipschitz continuous and the covariance matrix is elliptic. Figure 1250

presents both the GC action functional (upper panel) and the entropy production rate (lower panel) as a251

function of time for fixed ∆t = 0.05. Both quantities are numerically computed while the inverse temperature252

is set to β = 10. Even though the variance of the GC action functional is large, entropy production which253

is the cumulative sum of the GC functional converges due to the law of large numbers to a (positive) value254

after relatively long time. Additionally, due to the ergodicity assumption, it converges to the correct value.255

Figure 2 shows the loglog plot of the numerical entropy production rate as a function of ∆t for β = 20, 40, 60.256
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Figure 1. Upper panel: The GC action functional as a function of time for fixed ∆t = 0.05. Its
variance is large necessitating the use of many samples in order to obtain statistically confident
quantities. Lower Panel: The entropy production rate as a function of time for the same ∆t.
It converges to a positive value as expected.

Final time was set to t = 2 · 106 while initial point was set to one of the attraction points of the deterministic257

counterpart. For reader’s convenience, the thick black line denotes the O(∆t2) rate of convergence. This plot is258

in agreement with the theorem’s estimate (27) at least for small ∆t while for larger time-steps (i.e. ∆t > 0.1)259

the rate of entropy production is of order O(∆t3). Notice also that, for small ∆t, entropy production rate is260

very close to 0 and even larger final time is needed in order to obtain a statistically confident numerical estimate261

for the entropy production. Moreover, as it is evident from the figure and the GC action functional in (26),262

the dependence of the entropy production w.r.t. the inverse temperature is inverse proportional. Thus, from a263

statistical mechanics point of view, the larger is the temperature the larger –in a linear manner– is the entropy264

production rate of the numerical scheme.265

2.2. Entropy Production for the Multiplicative Noise in 1d266

For the multiplicative overdamped Langevin process, we restrict to the 1-dimensional case. The reason for this267

restriction is that we apply not only the EM scheme but also a higher-order scheme (Milstein’s) which becomes268

complicated for general diffusion matrices in higher dimensions. Nonetheless, the results and conclusions of this269

subsection for both explicit EM and Milstein’s schemes are valid in a more general, multi-dimensional setting270

where the diffusion matrix σ(x) is diagonal.271

In order to study the entropy production rate of the explicit EM scheme for the overdamped Langevin process272

with multiplicative noise, the remainder terms of the GC action functional should be studied. In this direction273

we can rewrite the GC action function as it is given by the Lemma 2.1 for 1d274

W (n; ∆t)=̇− 1

2

n−1∑
i=0

[V ′(xi+1) + V ′(xi)]∆xi +
1

2

n−1∑
i=0

[Σ−1(xi+1)Σ′(xi+1) + Σ−1(xi)Σ
′(xi)]∆xi

+
1

2∆t

n−1∑
i=0

[
Σ−1(xi+1)− Σ−1(xi)

]
∆x2

i =: W1(n; ∆t) +W2(n; ∆t) +W3(n; ∆t) .

(41)
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Figure 2. Entropy production rate as a function of time step ∆t for additive noise. The
entropy production rate is of order O(∆t2) for small ∆t while it decreases linearly as a function
of inverse temperature β.

The entropy produced from W1(n; ∆t) was computed in the previous section and after an interesting and rather275

unexpected cancellation it was proved to be of order O(∆t2). For the multiplicative case, a cancellation also276

occurs (see (45) and (46) below) but it does not fully eliminate the lower order term. In any case, W1(n; ∆t)277

contributes to the entropy production O(∆t). Additionally, W2(n; ∆t) is also the sum of a gradient term since278

variance Σ(x) ∈ R and holds Σ−1(x)Σ′(x) = (log Σ(x))′. Hence, assuming suitable condition on Σ(x), the279

same computation as for W1(n; ∆t) applies and the entropy production rate stemming from W2(n; ∆t) is also of280

order O(∆t). However, W3(n; ∆t) contributes to the entropy production with a positive term which is of order281

O(1). The following theorem summarizes the behavior of entropy production rate for the explicit EM scheme282

for multiplicative noise.283

Theorem 2.7. Let Assumption 1.1 hold. Assume also that the potential function V has bounded fifth-order284

derivative while there exists M > 0 such that Σ(x) > M−1, ∀x.285

(a) Let c = 3
4Eµ[(Σ−1)(x)(Σ′)2(x)], then, for sufficiently small ∆t, there exists C = C(V,Σ) > 0 independent286

of ∆t such that287

|EP (∆t)− c| ≤ C∆t (42)

(b) Assuming that Eµ[(Σ−1)(x)(Σ′)2(x)] 6= 0, then, for sufficiently small ∆t, there exists a lower bound c′ =288

c′(V,Σ) > 0 independent of ∆t such that289

c′ ≤ EP (∆t) (43)

290

Proof. Assumption Σ(x) > M−1 ∀x, which is the ellipticity condition applied in 1d, is necessary because it
makes Σ−1(x) as well its derivatives bounded around 0. Additionally, both W1(n; ∆t) and W2(n; ∆t) contribute
to the entropy production by a O(∆t) amount which does not affect the proof of the theorem hence they are
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eliminated. Thus, concentrating to W3(n; ∆t), after a Taylor series expansion we have

W3(n; ∆t) =
1

2∆t

n−1∑
i=0

[
(Σ−1)′(xi)∆x

3
i +

1

2
(Σ−1)′′(xi)∆x

4
i +

1

2∆t

n−1∑
i=0

∫ 1

0

(1− t)(Σ−1)′′′(txi+1 + (1− t)xi)dt∆x5
i

]

=
1

2∆t

n−1∑
i=0

3∑
k=0

(
3

k

)
(Σ−1)′(xi)(−

1

2
Σ(xi)V

′(xi)∆t+
1

2
Σ′(xi)∆t)

k(σ(xi)∆Wi)
3−k

+
1

4∆t

n−1∑
i=0

4∑
k=0

(
4

k

)
(Σ−1)′′(xi)(−

1

2
Σ(xi)V

′(xi)∆t+
1

2
Σ′(xi)∆t)

k(σ(xi)∆Wi)
4−k

+
1

2∆t

n−1∑
i=0

5∑
k=0

(
5

k

)∫ 1

0

(1− t)(Σ−1)′′′(txi+1 + (1− t)xi)dt(−
1

2
Σ(xi)V

′(xi)∆t+
1

2
Σ′(xi)∆t)

k(σ(xi)∆Wi)
5−k .

As in Theorem 2.5, applying the ergodic lemmas of the appendix, the entropy production rate stemming291

from W3(n; ∆t) equals to292

EP3(∆t) = lim
t→∞

W3(n; ∆t)

n∆t

=
1

2∆t2

3∑
k=0

(
3

k

)
Eµ̄[(Σ−1)′(x)(−1

2
Σ(x)V ′(x)∆t+

1

2
Σ′(x)∆t)kσ(x)3−k]Eρ[∆W 3−k]

+
1

4∆t2

4∑
k=0

(
4

k

)
Eµ̄[(Σ−1)′′(x)(−1

2
Σ(x)V ′(x)∆t+

1

2
Σ′(x)∆t)kσ(x)4−k]Eρ[∆W 4−k]

+
1

2∆t2

5∑
k=0

Eµ̄×ρ[R(x, y)(−1

2
Σ(x)V ′(x)∆t+

1

2
Σ′(x)∆t)kσ(x)5−k]Eρ[∆W 5−k]

=
1

2∆t2

[
−3

2
Eµ̄[(Σ−1)′(x)Σ2(x)V ′(x)]∆t2 +

3

2
Eµ̄[(Σ−1)′(x)Σ′(x)Σ(x)]∆t2 +O(∆t3)

]
+

1

4∆t2
[
Eµ̄[(Σ−1)′′(x)Σ2(x)]3∆t2 +O(∆t3)

]
+

1

2∆t2
O(∆t3)

=
3

4

[
−Eµ̄[(Σ−1)′(x)Σ2(x)V ′(x)] +

1

2
Eµ̄[(Σ−1)′(x)(Σ2)′(x)] + Eµ̄[(Σ−1)′′(x)Σ2(x)]

]
+O(∆t)

(44)

On the other hand, it holds for the invariant measure µ that293

Eµ[(Σ−1)′(x)Σ2(x)V ′(x)] = Eµ[(Σ−1)′′(x)Σ2(x)] + Eµ[(Σ−1)′(x)(Σ2)′(x)] (45)

Thus, using the error estimate (15) of Assumption 1.1 as in the additive case, we obtain that294

EP3(∆t) = −3

8
Eµ̄[(Σ−1)′(x)(Σ2)′(x)] +O(∆t)

⇒EP3(∆t)− 3

4
Eµ̄[(Σ−1)(x)(Σ′)2(x)] = O(∆t)

(46)

which concludes the proof of (a). (b) is a direct consequence of (a). �295
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2.2.1. Quadratic potential on R296

Let V (x) = x2

2 be a single-well quadratic potential while the diffusion term is given by297

σε(x) =

√
1

1 + εx2
(47)

The choice of the diffusion term is justified by the fact that we can control its variation in terms of x and sending298

ε to zero, the additive noise case is recovered. The invariant measure of this process is the Gaussian measure299

with zero mean and variance one. This invariant measure is the simplest measure to be considered. Moreover,300

all the assumptions of Theorem 2.7 are satisfied thus we expect a O(1) behavior of the entropy production rate301

at least for small ∆t. Indeed, Figure 3 shows the behavior of the numerically-computed entropy production302

as a function of ∆t and it does not decrease to zero as ∆t tends to zero. Consequently, explicit EM scheme303

for multiplicative noise totally destroys the reversibility property of the discrete-time approximation process304

independently of how small time-step is utilized. Additionally, notice that as ε decreases, entropy production305

decreases, too. This is also expected since σ(x) → σ = const. as ε → 0 and in combination with the quadratic306

potential V , EP (∆t)→ 0 as ε→ 0 for any ∆t sufficiently small.307
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Figure 3. Entropy production rate as a function of time step ∆t for multiplicative noise and
the explicit EM scheme. As Theorem 2.7 asserts, entropy production does not decrease as ∆t
is decreased. This results in a permanent loss of reversibility which cannot be fixed by reducing
the time step. Star symbols denote the theoretical value of the lower bound as it is given by
the Theorem (i.e., c′ ≈ c = 3

4Eµ[(Σε)
−1(x)(Σ′ε)

2(x)]). The agreement between the theoretical
and the numerical values is excellent.

2.2.2. Milstein’s scheme308

Since the EM scheme has entropy production rate which does not decrease as ∆t decreases, an immediate309

question to ask is what happens when a higher-order scheme is applied. Milstein’s scheme is the next higher-310

order scheme [10,17] and its explicit version is given by311

xi+1 = xi −
1

2
Σ(xi)V

′(xi)∆t+
1

2
Σ′(xi)∆t+ σ(xi)∆Wi +

1

2
σ(xi)σ

′(xi)(∆W
2
i −∆t)

(48)
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which is rewritten as312

∆xi = −1

2
Σ(xi)V

′(xi)∆t+
1

4
Σ′(xi)∆t+ σ(xi)∆Wi +

1

4
Σ′(xi)∆W

2
i . (49)

Since ∆Wi is zero-mean Gaussian random variable with variance ∆t, the transition probability for Milstein’s313

scheme is314

Π(xi, xi+1) =
1√

2π∆tZ(xi,∆xi)

exp

− 1

2∆t

∣∣∣∣∣−σ(xi) +
√
Z(xi,∆xi)

1
2Σ′(xi)

∣∣∣∣∣
2


+ exp

− 1

2∆t

∣∣∣∣∣σ(xi) +
√
Z(xi,∆xi)

1
2Σ′(xi)

∣∣∣∣∣
2
 (50)

where315

Z(xi,∆xi) = Σ(xi) + Σ′(xi)

(
∆xi +

1

2
Σ(xi)V

′(xi)∆t−
1

4
Σ′(xi)∆t

)
. (51)

Notice also that Z(xi,∆xi) = (σ(xi) + 1
2Σ′(xi)∆Wi)

2 ≥ 0 which is always non-negative while the transition316

probability density is rewritten as317

Π(xi, xi+1) =
1√

2π∆tZ(xi,∆xi)
exp

(
−2(Σ(xi) + Z(xi,∆xi))

∆t(Σ′)2(xi)

)
cosh

(√
Σ(xi)Z(xi,∆xi)

∆tΣ′(xi)

)
. (52)

Thus, the GC action functional for Milstein’s scheme equals up to boundary terms to318

W (n; ∆t)=̇− 1

2

n−1∑
k=0

[log
Z(xi,∆xi)

Z(xi+1,−∆xi)
]− 2

∆t

n−1∑
k=0

[
Z(xi,∆xi)

(Σ′)2(xi)
− Z(xi+1,−∆xi)

(Σ′)2(xi+1)

]

+

n−1∑
k=0

[
log cosh

√
Z(xi,∆xi)

2∆tσ′(xi)
− log cosh

√
Z(xi+1,−∆xi)

2∆tσ′(xi+1)

]
.

(53)

We can test the behavior of the entropy production numerically since, as we already stated, averaged GC action319

functional provides under ergodicity assumption an estimate for the entropy production rate. Figure 4 shows320

the numerically computed entropy production for the same example shown in Figure 3. Evidently, entropy321

production rate decreases linearly as time step ∆t is decreasing. Additionally, a number of different variance322

functions which satisfy the condition of Theorem 2.7 were tested and in all cases the decrease of the entropy323

production for the Milstein’s scheme was linear. Thus, we conjecture that entropy production of overdamped324

Langevin process with multiplicative noise is of order O(∆t) for Milstein’s scheme.325

3. Entropy Production for Langevin Process326

Let us consider another important class of reversible processes, namely the processes driven by the Langevin327

equation328

dqt = M−1ptdt

dpt = −∇V (qt)dt− γ(qt)M
−1ptdt+ σ(qt)dBt

(54)

where qt ∈ RdN is the position vector of the N particles, pt ∈ RdN is the momentum vector of the particles, M329

is the mass matrix, V is the potential energy, γ is the friction factor (matrix), σ is the diffusion factor (matrix)330

and Bt is a dN -dimensional Brownian motion. Even though the Langevin system is degenerate since the noise331

applies only to the momenta, the process is hypoelliptic and is ergodic under mild conditions on V and σ. The332
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Figure 4. Entropy production rate as a function of time step ∆t for the explicit Milstein’s
scheme. The decrease of the entropy production rate for this numerical scheme is linear. Thus,
in a loose sense, the reversibility property of the original continuous-time process is restored.

fluctuation-dissipation theorem asserts that friction and diffusion terms are related with the inverse temperature333

β(·) ∈ R of the system by334

(σσT )(qt) = 2β−1(qt)γ(qt) . (55)

If β(qt) = β is a constant, the Langevin equation is reversible (modulo momenta flip, see (58)) with invariant335

measure336

µ(dq, dp) =
1

Z
exp (−βH(q, p)) dqdp. (56)

where H(q, p) is the Hamiltonian of the system given by337

H(q, p) = V (q) +
1

2
pTM−1p . (57)

Indeed if L denotes the generator of (54), it is straightforward to verify the following modified DB condition338

< Lf(q, p), g(q, p) >L2(µ)=< f(q,−p),Lg(q,−p) >L2(µ) (58)

for any test functions f and g which are bounded, twice differentiable with bounded derivatives. This shows339

that the Langevin process is reversible modulo flipping the momenta of all particles.340

An explicit EM–Verlet (symplectic)–implicit EM scheme is applied for the discretization of (54). It is written341

as342

pi+ 1
2

= pi −∇V (qi)
∆t

2
− γ(qi)M

−1pi
∆t

2
+ σ(qi)∆Wi

qi+1 = qi +M−1pi+ 1
2
∆t

pi+1 = pi+ 1
2
−∇V (qi+1)

∆t

2
− γ(qi+1)M−1pi+1

∆t

2
+ σ(qi+1)∆Wi+ 1

2

(59)

with ∆Wi,∆Wi+ 1
2
∼ N(0, ∆t

2 IdN ). This numerical scheme also known as BBK integrator [4, 12] utilizes a343

Strang splitting. Its stability and convergence properties were studied in [4,12] while its ergodic properties can344

be found in [14,15,26]. An important property of this numerical scheme which simplifies the computation of the345
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transition probabilities is that the transition probabilities are non-degenerate. We rewrite the BBK integrator346

as347

qi+1 = qi +M−1[pi −∇V (qi)
∆t

2
− γ(qi)M

−1pi
∆t

2
]∆t+M−1σ(qi)∆t∆Wi (60a)

348

pi+1 = (I+γ(qi+1)M−1 ∆t

2
)−1[

1

∆t
M(qi+1−qi)−∇V (qi+1)

∆t

2
]+(I+γ(qi+1)M−1 ∆t

2
)−1σ(qi+1)∆Wi+ 1

2
(60b)

and thus the transition probabilities of the discrete-time approximation process are given by the product349

Π(qi, pi, qi+1, pi+1) = P (qi+1|qi, pi)P (pi+1|qi+1, qi, pi) (61)

where P (pi+1|qi, pi) is the propagator of the positions given by350

P (qi+1|qi, pi) =
1

Z0
exp{ 1

∆t3
(∆qi +M−1(pi −∇V (qi)

∆t

2
+ γ(qi)M

−1pi
∆t

2
)∆t)T

(σM−TM−1σT )−1(qi)(∆qi +M−1(pi −∇V (qi)
∆t

2
+ γ(qi)M

−1pi
∆t

2
)∆t)} (62)

where ∆qi = qi+1 − qi while P (pi+1|qi+1, qi, pi) is the propagator of the momenta given by351

P (pi+1|qi+1, qi, pi) =
1

Z1(qi+1)
exp{ 1

∆t
(pi+1 − (I + γ(qi+1)M−1 ∆t

2
)−1(

1

∆t
M∆qi −∇V (qi+1)

∆t

2
))T

(σT (I + γM)−T (I + γM−1)σ)−1(qi+1)(pi+1 − (I + γ(qi+1)M−1 ∆t

2
)−1(

1

∆t
M∆qi −∇V (qi+1)

∆t

2
))}

(63)

Finally, since the Langevin process is reversible modulo flip of the momenta, the GC action functional takes the352

form353

W (n; ∆t) =

n−1∑
i=0

log
Π(qi, pi, qi+1, pi+1)

Π(qi+1,−pi+1, qi,−pi)
. (64)

3.1. Langevin Process with Additive Noise354

In the following, even though the general case can be handled, we restrict for clarity to the simpler additive355

noise case. Thus, we assume that σ(qi) = σI, γ(qi) = γI as well that particles have equal masses (M = mI).356

Starting as in the previous section with the GC action functional, the next lemma is stated and proved.357

Lemma 3.1. The GC action functional of the BBK integrator equals to358

W (n; ∆t)=̇
2β

m∆t

n−1∑
i=0

[
∆pTi ∆qi −∇V (qi)

T pi
∆t2

2m

]
(65)

359

Proof. Firstly, (62) and (63) are rewritten as360

P (qi+1|qi, pi) =
1

Z0
exp

{
m2

σ2∆t3
|∆qi + (pi −

1

m
∇V (qi)

∆t

2
+
γ

m
pi

∆t

2
)∆t|2

}
(66)

and361

P (pi+1|qi+1, qi, pi) =
1

Z1
exp

{
1

σ2∆t
|(1 +

γ∆t

2m
)pi+1 − (

m

∆t
∆qi −

∆t

2
∇V (qi+1))|2

}
(67)
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respectively. Then, as in the overdamped Langevin case, the computation of the GC action functional is
straightforward,

W (n; ∆t) = − m2

σ2∆t3

n−1∑
i=0

[∣∣∣∣∆qi +
∆t2

2m
∇V (qi)−

∆t

m
(1− γ∆t

2m
)pi

∣∣∣∣2 − ∣∣∣∣−∆qi +
∆t2

2m
∇V (qi+1) +

∆t

m
(1− γ∆t

2m
)pi+1

∣∣∣∣2
]

− 1

σ2∆t

n−1∑
i=0

[∣∣∣∣(1 +
γ∆t

2m
)pi+1 −

m

∆t
∆qi +

∆t

2
∇V (qi+1)

∣∣∣∣2 − ∣∣∣∣−(1 +
γ∆t

2m
)pi +

m

∆t
∆qi +

∆t

2
∇V (qi)

∣∣∣∣2
]

= − m2

σ2∆t3

n−1∑
i=0

[
|∆qi|2 + |∆t

2

2m
∇V (qi)|2 + |∆t

m
(1− γ∆t

2m
)pi|2 +

∆t2

m
∆qTi ∇V (qi)

− 2∆t

m
(1− γ∆t

2m
)∆qTi pi −

∆t3

m2
(1− γ∆t

2m
)∇V (qi)

T pi

− |∆qi|2 − |
∆t2

2m
∇V (qi+1)|2 − |∆t

m
(1− γ∆t

2m
)pi+1|2 +

∆t2

m
∆qTi ∇V (qi+1)

+
2∆t

m
(1− γ∆t

2m
)∆qTi pi+1 −

∆t3

m2
(1− γ∆t

2m
)∇V (qi+1)T pi+1

]
− 1

σ2∆t

n−1∑
i=0

[
|(1 +

γ∆t

2m
)pi+1|2 + | m

∆t
∆qi|2 + |∆t

2
∇V (qi+1)|2 − (1 +

γ∆t

2m
)
2m

∆t
pTi+1∆qi

+ (1 +
γ∆t

2m
)∆tpTi+1∇V (qi+1)−m∆qTi ∇V (qi+1)

− |(1 +
γ∆t

2m
)pi|2 − |

m

∆t
∆qi|2 − |

∆t

2
∇V (qi)|2 + (1 +

γ∆t

2m
)
2m

∆t
pTi ∆qi

+ (1 +
γ∆t

2m
)∆tpTi ∇V (qi)−m∆qTi ∇V (qi)

]
.

Thus we have,

W (n; ∆t)=̇− m2

σ2∆t3

n−1∑
i=0

[
∆t2

m
∆qTi (∇V (qi) +∇V (qi+1)) +

2∆t

m
(1− γ∆t

2m
)∆qTi ∆pi

−∆t3

m2
(1− γ∆t

2m
)(∇V (qi+1)T pi+1 +∇V (qi)

T pi)

]
− 1

σ2∆t

n−1∑
i=0

[
−(1 +

γ∆t

2m
)
2m

∆t
∆pTi ∆qi −m∆qTi (∇V (qi) +∇V (qi+1))

+(1 +
γ∆t

2m
)∆t(pTi ∇V (qi) + pTi+1∇V (qi+1))

]
= − 2m

σ2∆t2

n−1∑
i=0

[
−(1− γ∆t

2m
)∆qTi ∆pi + (1 +

γ∆t

2m
)∆qTi ∆pi

+
∆t2

2m
(1− γ∆t

2m
)(∇V (qi+1)T pi+1 +∇V (qi)

T pi)−
∆t2

2m
(1 +

γ∆t

2m
)(∇V (qi+1)T pi+1 +∇V (qi)

T pi)

]
= − 2γ

mσ2∆t

n−1∑
i=0

[
∆pTi ∆qi −

∆t2

2m
(∇V (qi+1)T pi+1 +∇V (qi)

T pi)

]
which is equal, up to boundary terms, with (65). �362
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Remark 3.2. Proceeding as in Remark 2.3 we can compare the GC action functional of the BBK integrator363

to the GC functional for the additive Langevin process with constant temperature, which is given, [13], by364

Wcont(t) =
β

m

∫ t

0

∇V (qt)ptdt ≈
β∆t

m

n−1∑
i=0

∇V (qi)
T pi (68)

and is a boundary term in continuous time. Comparing the GC functionals, it is evident that the discrete365

version of Wcont(t) is contained in the functional W (n; ∆t) given by (65). This is similar to the overdamped366

Langevin case when discretized utilizing the explicit EM scheme. In addition the remaining term in the GC367

action functional W (n; ∆t) stems from the Strang splitting of the numerical scheme. Moreover, this additional368

term critically affects the irreversibility of the discrete-time approximation process since it is the leading order369

term in the entropy production rate, as shown in the following theorem.370

Theorem 3.3. Let Assumption 1.1 hold. Assume also that the potential function V has bounded fifth-order371

derivative. Then, for sufficiently small ∆t, there exists C = C(N, γ,m) > 0 such that372

EP (∆t) ≤ C∆t (69)

373

Proof. Solving (60a) for pi, changing the index from i+ 1 to i in (60b) and adding them, the momenta equal to374

pi =
m

2∆t
(∆qi + ∆qi−1) +

σ

2
(∆Wi− 1

2
−∆Wi) (70)

Then,375

∆pi =
m

2∆t
(∆qi+1 −∆qi−1) +

σ

2
(−∆Wi+1 −∆Wi+ 1

2
+ ∆Wi −∆Wi− 1

2
) (71)

hence the GC action functional becomes376

W (n; ∆t)=̇
2β

m∆t

n−1∑
i=0

[
∆pTi ∆qi −∇V (qi)

T pi
∆t2

2m

]

=
2β

m∆t

n−1∑
i=0

[( m

2∆t
(∆qi+1 −∆qi−1) +

σ

2
(−∆Wi+1 −∆Wi+ 1

2
+ ∆Wi −∆Wi− 1

2
)
)T

∆qi

−∇V (qi)
T
( m

2∆t
(∆qi + ∆qi−1) +

σ

2
(∆Wi− 1

2
−∆Wi)

) ∆t2

2m

]
=̈

2β

m∆t

n−1∑
i=0

[σ
2

(∆Wi −∆Wi− 1
2
)T∆qi −∇V (qi)

T (∆qi + ∆qi−1)∆t
]

=̇
βσ

m2

n−1∑
i=0

(∆Wi −∆Wi− 1
2
)T
(

(1− γ∆t

2m
)pi −∇V (qi)

∆t

2
+ σ∆Wi

)

− βσ

m2

n−1∑
i=0

(∇V (qi+1)T pi+1 +∇V (qi))
T∆qi

(72)

where =̈ means equality not only up to boundary terms but also up to statistical independence which does not377

affect the value of the entropy production rate, either.378

The second sum of GC action functional has exactly the same form as in additive overdamped Langevin379

equation and adapting the arguments of Theorem 2.5 it can be proved that the entropy production rate for380
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this term is of order O(∆t2). The first term is treated similarly, but since an additional cancellation occurs we381

provide the details. The first sum in (72) equals to382

βσ

m2

n−1∑
i=0

(∆Wi −∆Wi− 1
2
)T
(

(1− γ∆t

2m
)pi −∇V (qi)

∆t

2
+ σ∆Wi

)

=̈
βσ

m2

n−1∑
i=0

[
−(1− γ∆t

2m
)(1 +

γ∆t

2m
)−1(

m

∆t
∆qi−1 −

∆t

2
∇V (qi) + σ∆Wi− 1

2
)T∆Wi− 1

2
+ σ|∆Wi|2

]

=̈
βσ2

m2

n−1∑
i=0

[
−(1− γ∆t

2m
)(1 +

γ∆t

2m
)−1|∆Wi− 1

2
|2 + |∆Wi|2

]
(73)

Hence, the total entropy production rate becomes383

EP (∆t) =
2γ

m2∆t
lim
n→∞

1

n

n−1∑
i=0

[
−(1− γ∆t

2m
)(1 +

γ∆t

2m
)−1|∆Wi− 1

2
|2 + |∆Wi|2

]
+O(∆t2)

=
2γ

m2∆t

[
−(1− 2

γ∆t

2m
+O(∆t2))

N∆t

2
+
N∆t

2

]
+O(∆t2)

=
Nγ2

m3
∆t+O(∆t2)

(74)

which completes the proof. �384

3.1.1. Quadratic potential on a torus385

The conclusions of the above theorem are validated by a numerical example where the potential function is386

quadratic, V (x) = |x|2
2 . Figure 5 shows the behavior of numerical entropy production rate as a function of ∆t387

computed as the time-average of the GC action functional. Number of particles was set to N = 5 while the388

mass of its particle was set to m = 1. The variance of the stochastic term was set σ2 = 0.01 while the final time389

was set to t = 2 · 105. The initial data was chosen randomly from the zero-mean Gaussian distribution with390

appropriate variance. Notice also that due to the quadratic potential of this example Gaussian distribution391

is also the invariant measure of the process. Thus, the simulation is performed at the equilibrium regime.392

Evidently, the entropy production rate is of order O(∆t) as it is expected. Additionally, we plot (stars in the393

Figure) the leading term of the theoretical value of the entropy production rate as it given by (74). Apparently,394

the theoretical coefficient, Nγ2

m3 , is very close to the numerically-computed coefficient. Finally, notice that the395

entropy production rate is quadratically proportional to the friction factor γ which is in accordance with (74).396

4. Summary and Future Work397

In this paper, we introduce the entropy production rate as a novel tool to assess quantitatively the (lack of)398

reversibility of discretization schemes for various reversible SDE’s. Reversibility of the discrete-time approxi-399

mation process is a desirable feature when equilibrium simulations are performed. The entropy production rate400

which is defined as the time-average of the relative entropy between the path measure of the forward process401

and the path measure of the time-reversed process is zero when the process is reversible and positive when it is402

irreversible. Thus, it provides a way to quantify the (ir)reversibility of the approximation process. Moreover,403

under an ergodicity assumption, entropy production rate can be computed numerically on-the-fly utilizing the404

GC action functional. This is another attractive feature of the entropy production rate.405

We have computed the entropy production rate for overdamped Langevin processes both analytically and406

numerically when discretized with explicit Euler-Maruyama scheme. One of the main finding in this paper is407

that depending on the type of the noise –additive vs multiplicative– the entropy production for the explicit EM408
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Figure 5. Entropy production rate as a function of time step, ∆t, for various friction factors γ.
The decrease of the entropy production rate is linear as Theorem 3.3 asserts. Additionally, the
theoretically-computed entropy production rate (star points) perfectly matches the numerically-
computed entropy rate.

scheme had totally different behavior. Indeed, for additive noise entropy production rate is of order O(∆t2) while409

for multiplicative noise it is of order O(1). Hence, reversibility of the discrete-time approximation process does410

not depend only on the numerical scheme but also on the intrinsic characteristics of the SDE. The Milstein’s411

scheme improved the convergence rate of the entropy production rate for multiplicative noise as shown in412

numerical simulations. Furthermore, we have computed the entropy production rate both analytically and413

numerically for discretization schemes of the Langevin process with additive noise. Specifically, we computed414

the entropy production rate for the BBK integrator of the Langevin equation which is an explicit EM-symplectic415

(Verlet)- implicit EM numerical scheme. The rate of entropy production was shown to be of order O(∆t).416

This paper offers a new conceptual tool for the evaluation of discretization schemes of SDE systems simulated417

at the equilibrium regime. We consider only the simplest schemes here and we will analyze in future work the418

behavior of the entropy production for other numerical schemes such as fully implicit EM, drift-implicit EM,419

higher-order schemes as well as different kind of splitting methods. Moreover, other reversible or even non-420

reversible processes can be analyzed in the same way, in particular extended, spatially-distributed processes.421

A particularly interesting example, where the reversibility of the original system is destroyed by numerical422

schemes in the form of spatio-temporal fractional step approximations of the generator, arises in the (partly423

asynchronous) parallelization of Kinetic Monte Carlo algorithms [24], [1]. Finally, another possible extension424

of this work is to develop adaptive schemes based on the a posteriori simulation of entropy production rate,425

which should guarantee the reversibility or the approximate reversibility of the discrete-time approximation426

process. In this direction, the decomposition of entropy production functional for Metropolis-adjusted Langevin427

algorithms (MALA) [12,21] should be further studied and understood.428
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Appendix A. Tools for proving Theorem 3.2476

Firstly, a generalization of the trapezoidal rule is stated and proved.477

Lemma A.1 (Generalized Trapezoidal Rule). For k odd,478

V (xi+1)− V (xi) =

k∑
|α|=1,3,...

Cα[DαV (xi+1) +DαV (xi)]∆x
α
i

+

k+2∑
|α|=1,3,...

∑
|β|=k+2−|α|

Bβ [Rβα(xi, xi+1) +Rβα(xi+1, xi)]∆x
α+β
i

(75)
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where α = (α1, ..., αd) is a typical d-dimensional multi-index vector, DαV (x) = ∂|α|V
∂x
α1
1 ...∂x

αd
d

(x) is the α-th partial479

derivative while xα = xα1
1 ...xαdd . The coefficients Cα are defined recursively by480

Cα =
1

2
for |α| = 1

Cα =
1

2

 1

α!
−

|α|−2∑
|γ|=1,3,...

1

(α− γ)!
Cγ

 for |α| = 3, 5, ..., k
(76)

while the coefficients Bβ are also recursively defined by481

Bβ =
1

2
for |β| = 0

Bβ = −1

2

|β|∑
|γ|=2,4,...

1

γ!
Bβ−γ for |β| = 2, 4, ..., k + 1

(77)

Finally, the remainder terms are given by482

Rβα(xi, xi+1) = |α|
α!

∫ 1

0
(1− t)|α|−1Dα+βV ((1− t)xi + txi+1)dt.483

Proof. The starting point is the usual Taylor series expansion around xi484

V (xi+1)− V (xi) =

k+1∑
|α|=1

1

α!
DαV (xi)∆x

α
i +

∑
|α|=k+2

R0
α(xi, xi+1)∆xαi (78)

and around xi+1485

V (xi+1)− V (xi) = −
k+1∑
|α|=1

1

α!
DαV (xi+1)(−∆xi)

α −
∑

|α|=k+2

R0
α(xi+1, xi)(−∆xi)

α (79)

Adding the two equations we obtain the symmetrized Taylor series expansion for V given by486

V (xi+1)− V (xi) =
1

2

k∑
|α|=1,3,...

1

α!
[DαV (xi+1) +DαV (xi)]∆x

α
i

− 1

2

k+1∑
|α|=2,4,...

1

α!
[DαV (xi+1)−DαV (xi)]∆x

α
i +

1

2

∑
|α|=k+2

[R0
α(xi, xi+1) +R0

α(xi+1, xi)]∆x
α
i

(80)

Moreover, generalized trapezoidal formula (75) for DαV with |α| even is487

DαV (xi+1)−DαV (xi) =

k−|α|∑
|γ|=1,3,...

Cγ [Dα+γV (xi+1) +Dα+γV (xi)]∆x
γ
i

+

k+2−|α|∑
|γ|=1,3,...

∑
|β|=k+2−|α|−|γ|

Bβ [Rα+β
γ (xi, xi+1) +Rα+β

γ (xi+1, xi)]∆x
β+γ
i

(81)
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Hence, substituting (81) into (80), a recursive Taylor series expansion488

V (xi+1)− V (xi) =
1

2

k∑
|α|=1,3,...

1

α!
[DαV (xi+1) +DαV (xi)]∆x

α
i

− 1

2

k+1∑
|α|=2,4,...

1

α!

k−|α|∑
|γ|=1,3,...

Cγ [Dα+γV (xi+1) +Dα+γV (xi)]∆x
α+γ
i

− 1

2

k+1∑
|α|=2,4,...

1

α!

k+2−|α|∑
|γ|=1,3,...

∑
|β|=k+2−|α|−|γ|

Bβ [Rα+β
γ (xi, xi+1) +Rα+β

γ (xi+1, xi)]∆x
α+β+γ
i

+
1

2

∑
|α|=k+2

[R0
α(xi, xi+1) +R0

α(xi+1, xi)]∆x
α
i

=
1

2

k∑
|α|=1,3,...

1

α!
[DαV (xi+1) +DαV (xi)]∆x

α
i

− 1

2

k∑
|α|=3,5,...

|α|−2∑
|γ|=1,3,...

1

(α− γ)!
Cγ [DαV (xi+1) +DαV (xi)]∆x

α
i

+
1

2

∑
|α|=k+2

∑
|β|=k+2−|α|

[Rβα(xi, xi+1) +Rβα(xi+1, xi)]∆x
α
i

− 1

2

k∑
|α|=1,3,...

∑
|β|=k+2−|α|

|β|∑
|γ|=2,4,...

1

γ!
Bβ−γ [Rβα(xi, xi+1) +Rβα(xi+1, xi)]∆x

α+β
i

(82)

is obtained after few rearrangements of the sums. Equating the same powers of (82) and (75), the coefficients489

Cα and Bβ are obtained.490

Up to now, we present how to compute the coefficients of the generalized trapezoidal formula. A rigorous491

proof of the lemma is then easily derived by induction on the order, k, of (75) and proceeding on the reverse492

direction of the above formulas. �493

Lemma A.2. Assume that the discrete-time Markov process xi driven by494

xi+1 = F (xi,∆Wi) (83)

where ∆Wi are i.i.d. Gaussian random variables is ergodic with invariant measure µ̄. Then,495

(i) For sufficiently smooth function h we have496

lim
n→∞

1

n

n−1∑
i=0

h(xi,∆Wi) = Eµ̄×ρ[h(x, y)] (84)

(ii) For sufficiently smooth functions f and g we have497

lim
n→∞

1

n

n−1∑
i=0

f(xi)g(∆Wi) = Eµ̄[f(x)]Eρ[g(y)] (85)
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(iii) For sufficiently smooth functions f and g and for bounded f holds that498

lim
n→∞

1

n

n−1∑
i=0

f(xi,∆Wi)g(∆Wi) = Eµ̄×ρ[f(x, y)]Eρ[g(y)] (86)

where ρ is always the Gaussian measure.499

Proof. Proving (i) is based on showing that the transition density of the joint process zi = (xi,∆Wi) exists500

and it is positive. Both are trivial since the transition density is the product of the two densities which are501

both positive. Thus, irreducibility for the joint process is proved and in combination with stationarity the joint502

process is ergodic.503

(ii) is a direct consequence of (i) for h(x, y) = f(x)g(y).504

Denoting f̄ = Eµ̄×ρ[f(x, y)] and ḡ = Eρ[g(y)], (iii) is proved applying (i) and that505 ∣∣∣∣∣ 1n
n−1∑
i=0

f(xi,∆Wi)g(∆Wi)− f̄ ḡ

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n−1∑
i=0

f(xi,∆Wi)g(∆Wi)−
1

n

n−1∑
i=0

f(xi,∆Wi)ḡ +
1

n

n−1∑
i=0

f(xi,∆Wi)ḡ − f̄ ḡ

∣∣∣∣∣
≤M | 1

n

n−1∑
i=0

g(∆Wi)− ḡ|+ |ḡ||
1

n

n−1∑
i=0

f(xi,∆Wi)− f̄ |

(87)

since f is bounded (i.e., |f | ≤M). Hence, sending n→∞, (iii) is proved.506
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