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This paper deals with the Linear Quadratic Regulator (LQR) problem subject to descriptor systems for which the semidefi-
nite programming approach is used as a solution. We propose a new sufficient condition in terms of primal dual semidefinite
programming for the existence of the optimal state-control pair of the problem considered. The results show that semidefi-
nite programming is an elegant method to solve the problem under consideration. Numerical examples are given to illustrate
the results.
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1. Introduction

The semidefinite programming problem is an optimization
one in which the decision variables are semidefinite matri-
ces. It is well known that semidefinite programming has
been one of the most exciting and active research areas in
optimization recently. This tremendous activity is spurred
by the discovery of important applications in various ar-
eas, mainly in control theory (Balakrishnan and Vanden-
berghe, 2003; Rami and Zhou, 2000; Vandenberghe and
Boyd, 1999).

In the work of Yao et al. (2001), semidefinite pro-
gramming was used to find optimal control of the classi-
cal LQR (linear quadratic regulator) problem. It is well
known that this problem has many applications, mainly
in electrical engineering, biology, social sciences and eco-
nomics.

On the other hand, the LQR problem subject to a de-
scriptor system is a generalization of the the classical LQR
problem, which is one of the most important classes of op-
timal control problems, in both theory and application. In
general, it is a problem to find a controller that minimizes
the linear quadratic objective function subject to the de-
scriptor systems, either continuous or discrete.

Descriptor systems have attracted the attention of
many researcher in the past years due to the fact that, in
some cases, they describe the behavior of physical sys-
tems better than standard systems do. They can preserve
the structure of physical systems and include a nondy-

namic constraint and an impulsive element. Systems of
this kind have many important applications, e.g., in bio-
logical phenomena, in economics (the Leontief dynamic
model), in electrical and mechanical models (Dai, 1989;
Silva and de Lima, 2003). Therefore, it is fair to say
that descriptor systems give a more complete class of dy-
namical models than conventional state-space systems do.
Likewise, the LQR problem subject to descriptor systems
has great potential for system modelling.

A great number of results on solving the LQR prob-
lem subject to descriptor systems have appeared in the lit-
erature (Bender and Laub, 1987; Geerts, 1994; Jiandong
et al., 2002; Katayama and Minamino, 1992; Mehrmann,
1989). However, almost all of these results consider the
regularity assumption of descriptor systems and the posi-
tive definiteness assumption of the control weighting ma-
trix in the quadratic cost functional.

To the best of the author’s knowledge, little work has
been done with rectangular descriptor systems as a con-
straint and the control weighting matrix in the quadratic
cost being positive semidefinite. In this last case, i.e.,
the quadratic cost being positive semidefinite, the existing
LQR problem theories always involve impulse distribu-
tions (Geerts, 1994; Mehrmann, 1989). Thus no answer is
provided to a basic question such as when the LQR prob-
lem subject to descriptor systems possesses an optimal so-
lution in the form of a conventional control, in particular,
one that does not involve an impulse distribution. How-
ever, this issue was discussed by Jiandong et al. (2002),
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who transform the LQR problem subject to a descriptor
system into a standard LQR problem in which both are
equivalent. Nonetheless, there still remains an open prob-
lem, that is, the new standard LQR problem may be sin-
gular and this is not answered by Jiandong et al. (2002).

In this paper, we reconsider the problem stated by
Jiandong et al. (2002) and, in particular, the open prob-
lem, i.e., the singular version of the new standard LQR
problem, is solved using the semidefinite programming
approach. A new sufficient condition in terms of primal
dual semidefinite programming for the existence of the
optimal state-control pair of such a problem is proposed.
Here, since we do not assume that the descriptor system
is regular, our work is more general than some previous
results (Bender and Laub, 1987; Geerts, 1994; Katayama
and Minamino, 1992; Mehrmann, 1989). The method of
Jiandong et al. (2002) is still maintained to transform the
original problem into the equivalent singular LQR one.

This paper is organized as follows. Section 2 consid-
ers a brief account of the problem statement. Section 3
presents the process of transformation from the original
LQR problem into an equivalent LQR one. In Section 4,
the main result for solving the LQR problem subject to
descriptor system is presented. Numerical examples are
given to illustrate the results in Section 5. Section 6 con-
cludes the paper.

Notation. Throughout this paper, the superscript ‘T ’
stands for the transpose, ∅ denotes the empty set, In is
the identity matrix of dimension n, R

n denotes the n-
dimensional Euclidean space, R

m×n is the set of all m×n
real matrices, C

+
p [Rn] denotes the n-dimensional piece-

wise continuous functions space with domain in [0,∞),
S

p
+ denotes set of all p -dimensional symmetric positive

semidefinite matrices, and C denotes the set of complex
number.

2. Problem statement

Let us consider the following continuous time descriptor
system:

Eẋ(t) = Ax(t) + Bu(t), t ≥ 0, Ex(0) = x0,
y(t) = Cx(t) + Du(t),

(1)
where x(t) ∈ R

n denotes the state variable, u(t) ∈
R

r denotes the control (input) variable and y(t) ∈ R
q de-

notes the output variable. The matrices E, A ∈ R
m×n,

B ∈ R
m×r, C ∈ R

q×n, D ∈ R
q×r are constant, with

rankE ≡ p < min {m, n} . This system is denoted by
(E, A, B, C, D). The system (E, A, B, C, D) is said to
be regular if m = n and det(sE − A) �= 0 for al-
most all s ∈ C. Otherwise, it is called nonregular if
det(sE − A) = 0 for each s ∈ C or if E, A ∈ R

m×n

with m �= n. In particular, it is called a rectangular de-
scriptor system if m �= n.

It is well known that the solution to (1) exists and is
unique if this system is regular. Otherwise, it is possible
to have many solutions, or no solution at all.

Next, for a given admissible initial state x0 ∈ R
n, we

consider the following associated objective function (cost
functional):

J(u(·), x0) =

∞∫

0

yT (t)y(t) dt. (2)

In general, the problem of determining the stabilizing
feedback control u(t) ∈ R

r which minimizes the cost
functional (2) on the the trajectories of the dynamic sys-
tem (1) for an admissible initial state x0 ∈ R

n is often
called the LQR problem subject to a descriptor system. If
DT D is positive semidefinite, it is called a singular LQR
problem subject to a descriptor system.

In this paper, we will consider the LQR problem sub-
ject to a rectangular descriptor system. Without loss of
generality, we assume that m < n. We denote, for sim-
plicity, this LQR problem as Ω. Next, we define the set of
admissible control-state pairs of the problem Ω by

Aad ≡ {(u(·), x(·)) | u(·) ∈ C
+
p [Rr] and

x(·) ∈ C
+
p [Rn] satisfy (1) and

J(u(·), x0) < ∞} .

The problem under consideration is how to use
semidefinite programming to find the pair (u∗, x∗) ∈ Aad

for a given admissible initial condition x0 ∈ R
n, such that

J(u∗, x0) = min
(u(·),x(·))∈Aad

J(u(·), x0), (3)

under the assumption that (1) is solvable, impulse control-
lable and DT D is positive semidefinite.

Definition 1. (Jiandong et al., 2002) Two systems
(E, A, B, C, D) and (Ē, Ā, B̄, C̄, D) are termed re-
stricted system equivalent (r.s.e.), denoted by

(E, A, B, C, D) ∼ (Ē, Ā, B̄, C̄, D),

if there exist two nonsingular matrices M ∈ R
m×m and

N ∈ R
n ×n such that their associated system matrices

are related by MEN = Ē, MAN = Ā, MB = B̄ and
CN = C̄.

Definition 2. (Jiandong et al., 2002) Two optimal control
problems are said to be equivalent if there exists a bijec-
tion between the two admissible control–state pair sets,
and the value of the quadratic cost functional of an image
is equal to that of the corresponding preimage.

Obviously, Definition 2 confirms that two equivalent
optimal control problems will have the same solvability,
uniqueness of solution and optimal cost characterizations.
Thus solving one can be replaced by solving the other.
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3. Transformation into an equivalent LQR
problem

Since rankE = p < m, the Singular Value Decompo-
sition (SVD) theorem (Klema and Laub, 1980) implies
that there exist nonsingular matrices M ∈ R

m×m and
N ∈ R

n×n such that

MEN =
(

Ip 0
0 0

)
.

It follows that we have

MAN =
(

A11 A12

A21 A22

)
, MB =

(
B1

B2

)
,

CN =
(

C1 C2

)
, N−1x =

(
x1

x2

)
, (4)

where A11∈ R
p×p, A12 ∈ R

p×(n−p), A21∈ R
(m−p)×p,

A22∈ R
(m−p)×(n−p), B1∈ R

p×r, B2∈ R
(m−p)×r, C1 ∈

R
q×p, C2 ∈ R

q×(n−p), x1∈ R
p and x2∈ R

n−p. There-
fore, for a given admissible initial state x0 ∈ R

n, the sys-
tem (1) is r.s.e. to the system

ẋ1(t) = A11x1(t) + A12x2(t) + B1u(t),
0 = A21x1(t) + A22x2(t) + B2u(t),

y(t) = C1x1(t) + C2x2(t) + Du(t),
(5)

with x1(0) = x10 =
(

Ip 0
)
Mx0.

Using the expression (5), the objective function (2)
can be changed into

J1(u(·), x10) =

∞∫

0

x̄T (t)Qx̄(t) dt, (6)

where

x̄(t) =

⎛
⎝ x1(t)

x2(t)
u(t)

⎞
⎠ ,

Q =

⎛
⎝ CT

1 C1 CT
1 C2 CT

1 D
CT

2 C1 CT
2 C2 CT

2 D
DT C1 DT C2 DT D

⎞
⎠ .

Likewise, we have the new LQR problem which mini-
mizes the objective function J1(u(·), x10) subject to the
dynamic system (5), and denote this LQR problem as Ω1.
Further, we define the set of admissible control-state pairs
of the problem Ω1 by

A
1
ad ≡ {(u(·), x1(·), x2(·)) | u(·) ∈ C

+
p [Rr],

x1(·) ∈ C
+
p [Rp] and x2(·) ∈ C+

p [Rn−p]

satisfy (5) and J1(u(·), x10) < ∞} .

By virtue of Definition 2, it is easily seen that the LQR
problem Ω1 is equivalent to Ω.

From the work of Ishihara and Terra (2001), we know
that impulsive controllability of the descriptor system (1)
is equivalent to

rank
(

A21 A22 B2

)
= rank

(
A22 B2

)
.

In fact, the matrix
(

A22 B2

)
may have no full

row rank. Let us write rank
(

A22 B2

)
= s, where

s ≤ m − p ≤ n − p. It follows that there exists a nonsin-
gular matrix V ∈ R

(m−p)×(m−p) such that

V
(

A22 B2

)
=

(
Ā22 B̄2

0 0

)
,

where
(

Ā22 B̄2

)
has full row rank. By modifying the

procedure of Jiandong et al. (2002), we have the following
transformation:

x̄(t) =
(

Ip 0
0 W

)
Γx̄1(t), (7)

where

Γ =

⎛
⎜⎝

Ip 0

−Ā21 0
0 In−p+r−s

⎞
⎟⎠

and

x̄1(t) =
(

x1(t)
v(t)

)

for some v ∈ R
n−p+r−s and for some nonsingular matrix

W =
(

W11 W12

W21 W22

)
∈ R

(n−p+r)×(n−p+r),

where Ā21 =
(

Is 0
)
V A21. Finally, we get a new

LQR problem as follows:

min
(v(·),x1)

J2(v(·), x10) =

∞∫

0

x̄T
1 (t)Q̄x̄1(t)dt,

s.t.

{
ẋ1(t) = Āx1(t) + B̄1v(t), x1(0) = x10,
y(t) = C̄x1(t) + D̄v(t)

(8)

where

Q̄ =
(

Q11 Q12

QT
12 Q22

)
, (9)

Ā = A11 − Ā12Ā21,

Ā12 = A12W11 + B1W21,

B̄1 = A12W12 + B1W22,

C̄ = C1 −
(

C2 D
)
W

(
Ā21

0

)
,

D̄ =
(

C2 D
)
W

(
0

In−p+r−s

)
,

Q11 = C̄T C̄, Q12 = C̄T D̄, Q22 = D̄T D̄.
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Let us denote by Ω2, this LQR problem and define
the set of admissible control-state pairs of the problem Ω2

by

A
2
ad ≡ {(v(·), x1(·)) | v(·) ∈ C

+
p [Rn−p+r−s] and

x1(·) ∈ C
+
p [Rp] satisfy (8) and

J2(v(·), x10) < ∞} .

It is obvious that the system (8) is a standard state space
system with the state x1, the control v and the output y,
so Ω2 is a standard LQR problem.

It is easy to show that the transformation defined by
(7) is a bijection from A

2
ad to A

1
ad, and thus the problem

Ω2 is equivalent to the problem Ω1 . It follows that Ω2 is
equivalent to the problem Ω as well. Therefore, in order
to solve the problem Ω, it suffices to consider the problem
Ω2 only.

4. Solving the LQR problem

It is well known that the solution of Ω2 hinges on the
behavior of the input weighting matrix Q22 in (9), whether
it is positive definite or positive semidefinite.

Under a certain property, Q22 may be positive def-
inite, (see the results of Jiandong et al. (2002) for de-
tails). In the case where Q22 is positive definite, one
can use the classical theory of LQR, which asserts that
Ω2 has a unique optimal control-state pair if the pair
(Ā, B̄1) is asymptotically stabilizable and the pair (Ā −
B̄1Q

−1
22 QT

12, Q11 −Q12Q
−1
22 QT

12) is detectable (Anderson
and Moore, 1990). In this case, the optimal control v∗ is
given by

v∗ = Lx∗
1, (10)

where the state x∗
1 is the solution to the differential equa-

tion

ẋ1(t) = (Ā + B̄1L)x1(t), x1(0) = x10, (11)

with L = −Q−1
22 (QT

12 + B̄T
1 P ), and P is the unique pos-

itive semidefinite solution of the following algebraic Ric-
cati equation:

ĀT P + PĀ + Q11

− (PB̄1 + Q12)Q−1
22 (PB̄1 + Q12)T = 0, (12)

where every eigenvalue λ of (A11 − Ā12Ā21 + B̄1L)
satisfies Reλ < 0. Thus, in this case, the optimal control-
state pair of the problem Ω is given by

(
x∗

u∗

)

=
(

N 0
0 Ir

) ⎛
⎝

Ip

−W11Ā21 + W12L

−W21Ā21 + W22L

⎞
⎠x∗

1. (13)

On the other hand, when the matrix Q22 is positive
semidefinite (Q22 ≥ 0), the algebraic Riccati equation
(12) seems to be meaningless, and therefore this result can
no longer be used to handle the singular LQR problem Ω.

A natural extension is to generalize the algebraic Ric-
cati equation (12) by replacing the matrix Q−1

22 with the
matrix Q†

22, such that the equation (12) is replaced by

�(P ) ≡ ĀT P + PĀ + Q11

− (PB̄1 + Q12)Q
†
22(PB̄1 + Q12)T = 0, (14)

where Q†
22 stands for the Moore–Penrose inverse of Q22.

Consider an affine transformation of the matrix P as fol-
lows:

H(P ) ≡
(

Q22 (PB̄1 + Q12)T

PB̄1 + Q12 Q11 + ĀT P + PĀ

)
. (15)

By using Schur’s Extended lemma (Rami and Zhou,
2000), we have the following lemma, which shows that
�(P ) ≥ 0 and H(P ) ≥ 0 are closely related.

Lemma 1. (Balakrishnan and Vandenberghe, 2003)
(In−p+r−s − Q22Q

†
22)(PB̄1 + Q12)T = 0 and �(P ) ≥

0 if and only if H(P ) ≥ 0.

Now, let us consider the following primal semidefi-
nite programming:

max 〈Ip, P 〉 ,

s.t. P ∈ P ,
(P)

where
P ≡ {

P ∈ S
p
+ | H(P ) ≥ 0

}
is the set of feasible solutions of the primal semidefinite
programming problem (P). It is easy to show that P is a
convex set and it may be empty which in particular im-
plies that there is no solution to primal semidefinite pro-
gramming. Moreover, it is easy to show that the objective
function of the problem (P) is convex as well. Since the
objective function and P satisfy the convexity properties,
the above primal semidefinite programming case is a con-
vex optimization problem.

Corresponding to the above primal semidefinite pro-
gramming, we have the following dual problem:

min 〈Q22, Zb〉 + 2
〈
QT

12, Zu

〉
+ 〈Q11, Zp〉 ,

s.t. ZT
u B̄T

1 + B̄1Zu + ZpĀ
T + ĀZp + Ip = 0,

Z ≡
[

Zb Zu

ZT
u Zp

]
≥ 0,

(D)

where Z denotes the dual variable associated with the pri-
mal constraint H(P ) ≥ 0 with Zb, Zu and Zp being a
block partitioning of Z of appropriate dimensions.
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Remark 1. Semidefinite programming is known to be
a special form of conic optimization problems, for which
there exists a well-developed duality theory (see, e.g., the
works of Balakrishnan and Vandenberghe (2003), Rami
and Zhou (2000), Vandenberghe and Boyd (1999) or Yao
et al. (2001) for an exhaustive theory of semidefinite pro-
gramming). Key points of the theory can be highlighted
as follows:

1. Weak duality always holds, i.e., any feasible solution
to the primal problem always possesses an objective
value that is greater than the dual objective value of
any dual feasible solution. In contrast, strong duality
does not always hold.

2. A sufficient condition for strong duality is that there
exist a pair of complementary optimal solution, i.e.,
both the primal and dual semidefinite programming
problems have attainable optimal solutions, and that
these solutions are complementary to each other.
This means that the optimal solution P ∗ and the
dual optimal solution Z∗ both exist and satisfy
H(P ∗)Z∗ = 0.

3. If both (P) and (D) satisfy strict feasibility, namely,
there exist a primal and dual feasible solution P0 and
Z0 such that H(P0) > 0 and Z0 > 0, then the com-
plementary solutions exist.

In the following we present the condition for the sta-
bility of the singular LQR control problem Ω2.

Theorem 1. The singular LQR problem Ω2 is stabiliz-
able if and only if the dual problem (D) is strictly feasible.

Proof. (⇒) First assume that the system (8) is stabi-
lizable by some feedback control v(t) = Lx1(t). Then
all the eigenvalues of the matrix Ā + B̄1L have nega-
tive real parts. Consequently, using Lyapunov’s theorem
(Balakrishnan and Vandenberghe, 2003), there exists a
positive definite matrix Y such that

(Ā + B̄1L)Y + Y (Ā + B̄1L)T = −Ip.

By setting Zp = Y and Zu = LZp, this relation can be
rewritten as

ZT
u B̄T

1 + B̄1Zu + ZpĀ
T + ĀZp + Ip = 0.

Now choose

Zb = εIr + Zu(Zp)−1ZT
u .

Then, by Schur’s lemma, Z is strictly feasible to (D).

(⇐) If the dual problem (D) is strictly feasible, then Zp >
0 by Schur’s lemma. Setting

L = Zu(Zp)−1,

with Z satisfying the equality constraint of (D) yields

(Ā + B̄1L)Zp + Zp(Ā + B̄1L)T = −Ip.

By constructing a quadratic Lyapunov function
xT

1 Zpx1, it is easily verified that the system in (8)
is stabilizable. �

Theorem 2. If (P) and (D) satisfy the complementary
slackness condition, then the optimal solution of the prob-
lem (P) satisfies the generalized algebraic Riccati equa-
tion �(P ) = 0.

Proof. Let P ∗ and Z∗ denote the optimal solution of
(P) and (D), respectively. Since P ∗ is optimal, it is also
feasible and satisfies H(P ∗) ≥ 0. By Lemma 1, we have

(Ir − Q22Q
†
22)(P

∗B̄1 + Q12)T = 0.

Thus, the following decomposition is true:

H(P ∗) =
(

Ir 0
(P ∗B̄1 + Q12)Q

†
22 Ip

)

×
(

Q22 0
0 �(P ∗)

)

×
(

Ir Q†
22(P

∗B̄1 + Q12)T

0 Ip

)
.

From the relation H(P ∗)Z∗ = 0, we have

H(P ∗)Z∗ =
( H11 H12

H21 H22

)
=

(
0 0
0 0

)
,

where

H11 = Q22(Z∗
b + Q†

22(P
∗B̄1 + Q12)T (Z∗

u)T ),

H12 = Q22(Z∗
u + Q†

22(P
∗B̄1 + Q12)T Z∗

p ),

H21 = �(P ∗)(Z∗
u)T ,

H22 = �(P ∗)Z∗
p .

Therefore

�(P ∗)(Z∗
u)T = 0 and �(P ∗)Z∗

p = 0,

and hence

Z∗
u�(P ∗) = 0 and Z∗

p�(P ∗) = 0.

Since Z∗ is dual feasible, it also satisfies

ZT
u B̄T

1 + B̄1Zu + ZpĀ
T + ĀZp + Ip = 0.

Pre-and post-multiplying the above equation by �(P ∗) ,
we get,

�(P ∗)(ZT
u B̄1

T + B̄1Zu + ZpĀ
T + ĀZp + Ip)�(P ∗),

which yields �(P ∗)2 = 0 and hence �(P ∗) = 0. �
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Now, let us consider the subset Pbound of P which is
defined as follows:

Pbound ≡ {
P ∈ S

p
+ | H(P ) ≥ 0 and �(P ) = 0

}
.

Note that Pbound may be empty, which in particular im-
plies that there is no solution to the generalized algebraic
Riccati equation (14).

In the following, we present our main results, where
the LQR problem is explicitly constructed in terms of the
solution to primal and dual semidefinite programming.

Theorem 3. If Pbound �= ∅ and

v∗(t) = −Q†
22(P

∗B̄1 + Q12)T x1(t) (16)

is a stabilizing control for some P ∗ ∈ Pbound, where
x1(t) satisfies the differential equation

ẋ1(t) =
(
Ā − B̄1Q

†
22(P

∗B̄1 + Q12)T
)

x1(t),

with x1(0) = x10, then (P) and (D) satisfy the comple-
mentary slackness property . Moreover, v∗(t) is the opti-
mal control for the LQR problem Ω2.

Proof. Let P ∗ ∈ Pbound and L = −Q†
22(P

∗B̄1 +
Q12)T . Since the control v∗(t) = Lx1(t) is stabilizing,
the Lyapunov equation

(Ā + B̄1L)Y + Y (Ā + B̄1L)T + Ip = 0

has a positive definite solution. Denote it be Y ∗ > 0. Let

Z∗
p = Y ∗, Z∗

u = LY ∗, Z∗
b = LY ∗LT .

By this construction, we can easily verify that

(
Z∗

b Z∗
u

(Z∗
u)T Z∗

p

)

=
(

Ir L
0 Ip

) (
0 0
0 Z∗

p

) (
Ir 0
LT Ip

)

≥ 0,

and

Ip + (Z∗
u)T B̄T

1 + B̄1Z
∗
u + Z∗

p ĀT + ĀZ∗
p = 0.

Therefore,

Z∗ =
(

Z∗
b Z∗

u

(Z∗
u)T Z∗

p

)

is a feasible solution of (D). Since H(P ) ≥ 0, by
Lemma 1, we have

(Ir − Q22Q
†
22)(PB̄1 + Q12)T = 0.

It follows that the identity

H(P ) =
(

Ir 0
(PB̄1 + Q12)Q

†
22 Ip

)

×
(

Q22 0
0 �(P )

)

×
(

Ir Q†
22(PB̄1 + Q12)T

0 Ip

)

is valid. Moreover, we can verify that

H(P ∗)Z∗

=
(

Ir 0
−LT Ip

) (
Q22 0
0 �(P ∗)

)

×
(

Ir −L
0 Ip

) (
Z∗

b Z∗
u

(Z∗
u)T Z∗

p

)

=
(

Ir 0
−LT Ip

)

×
(

Q22(Z∗
b − L(Z∗

u)T ) Q22(Z∗
u − LZ∗

p)
�(P ∗)(Z∗

u)T
�(P ∗)Z∗

p

)

=
(

0 0
0 0

)
,

that is, Problems (P) and (D) satisfy the complementary
slackness property. Now, we prove that

v∗(t) = −Q†
22(P

∗B̄1 + Q12)T x1(t)

is the optimal control for the LQR problem Ω2. Firstly,
consider any P ∈ P and any admissible stabilizing con-
trol v(·) ∈ C

+
p [Rr]. We have

d
dt

(
xT

1 (t)Px1(t)
)

=
(
Āx1(t) + B̄1v(t)

)T
Px1(t)

+ xT
1 (t)P

(
Āx1(t) + B̄1v(t)

)
= xT

1 (t)
(
ĀT P + PĀ

)
x1(t) + 2vT (t)B̄T

1 Px1(t).

Integrating over [0,∞) and making use of the fact that

lim
t→∞xT

1 (t)Px1(t) = 0,

we have

0 = xT
10Px10 +

∫ ∞

0

(xT
1 (t)(ĀT P + PĀ)x1(t)

+ 2vT (t)B̄T
1 Px1(t)) dt.
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Therefore,

J2(v(·), x10)

=

∞∫

0

(
xT

1 (t)Q11x1(t)

+ 2vT (t)QT
12x1(t) + vT (t)Q22v(t)

)
dt

= xT
10Px10 +

∫ ∞

0

(
xT

1 (t)(ĀT P + PĀ + Q11)x1(t)

+2vT (t)(PB̄1 + Q12)T x1(t) + vT (t)Q22v(t)
)
dt

= xT
10Px10

+

∞∫

0

[
(
v(t) + Q+

22(PB̄1 + Q12)T x1(t)
)T

Q22

× (
v(t) + Q+

22(PB̄1 + Q12)T x1(t)
)

+ xT
1 (t)�(P )x1(t)]dt.

Since P ∈ P , we have �(P ) ≥ 0. This means that

J2(v(·), x10) ≥ xT
10Px10, (17)

for each P ∈ P and each admissible stabilizing control
v(·) ∈ C

+
p [Rr]. On the other hand, under the feedback

control

v∗(t) = −Q†
22(P

∗B̄1 + Q12)T x1(t),

and if we take into account P ∗ ∈ Pbound, we have

0 ≤ J2(v∗(·), x10)

=

∞∫

0

[xT
1 (t)Q11x1(t) + 2v∗

T

(t)QT
12x1(t)

+ v∗
T

(t)Q22v
∗(t)] dt

= lim
t→∞

∫ t

0

[xT
1 (τ)Q11x1(τ) + 2v∗

T

(τ)QT
12x1(τ)

+ v∗
T

(τ)Q22v
∗(τ)] dτ

= lim
t→∞ [ xT

10P
∗x10 − xT

1 (t)P ∗x1(t)

+
∫ t

0

(xT
1 (τ)(ĀT P ∗ + P ∗Ā + Q11)x1(τ)

+ 2v∗
T

(τ)(P ∗B̄1 + Q12)T x1(τ)

+ v∗
T

(τ)Q22v
∗(τ)) dτ ]

≤ xT
10P

∗x10 + lim
t→∞

t∫

0

[(v∗(τ)

+ Q†
22(P

∗B̄1 + Q12)T x1(τ))
T

Q22

× (v∗(τ) + Q†
22(P

∗B̄1 + Q12)T x1(τ))

+ xT
1 (τ)�(P ∗)x1(τ)]dτ

= xT
10P

∗x10.

It follows that

J2(v∗(·), x10) ≤ xT
10P

∗x10. (18)

The facts (17) and (18) lead us to conclude that the LQR
problem Ω2 has an attainable optimal feedback control
which is given by (16) with the cost xT

10P
∗x10. �

The significance of Theorem 3 is that one can solve
the LQR problem for a standard state space system by
simply solving a corresponding semidefinte programming
problem. Consequently, since there exists the equivalent
relationship between the LQR problem subject to rectan-
gular descriptor systems and the standard LQR problem,
one can also solve the LQR problem subject to rectangular
descriptor systems via such the corresponding semidefi-
nite programming approach.

By reconsidering the transformation (7), it follows
that

⎛
⎝

x∗
1(t)

x∗
2(t)

u∗(t)

⎞
⎠ =

(
Ip 0
0 W

)
Γ

(
x∗

1(t)
v∗(t)

)

=

⎛
⎝ Ip 0

−W11Ā21 W12

−W21Ā21 W22

⎞
⎠

(
x∗

1(t)
v∗(t)

)

=

⎛
⎝ Ip

Λ1

Λ2

⎞
⎠ x∗

1(t),

where Λ1 = −W11Ā21 − W12Q
†
22(P

∗B̄1 + Q12)T and
Λ2 = −W21Ā21 − W22Q

†
22(P

∗B̄1 + Q12)T . Finally, by
reconsidering (4 ), we obtain that the optimal control-state
pair ( u∗, x∗) of Ω is

x∗ = N

⎛
⎝ Ip

−W11Ā21 − W12Q
†
22(P

∗B̄1 + Q12)T

⎞
⎠ x∗

1

and

u∗ = (−W21Ā21 − W22Q
†
22(P

∗B̄1 + Q12)T x∗
1.

We end this section by presenting a sufficient condi-
tion for the existence of the optimal control of the LQR
problem subject to a descriptor system.

Corollary 1. Assume that the rectangular descriptor
system (1) is impulse controllable and the LQR problem
Ω is equivalent to Ω2, where the matrix Q22 is positive
semidefinite. If Pbound �= ∅ and

v∗(t) = −Q†
22(P

∗B̄1 + Q12)T x1(t)

is a stabilizing control for some P ∗ ∈ Pbound, where
x1(t) satisfies the differential equation

ẋ1(t) =
(
Ā − B̄1Q

†
22(P

∗B̄1 + Q12)T
)

x1(t),
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with x1(0) = x10, then

u∗(t) =
(
−W21Ā21 − W22Q

†
22(P

∗B̄1 + Q12)T
)

x1(t)

is the optimal control for the LQR problem subject to the
rectangular descriptor system (1).

5. Numerical example

Consider the LQR problem subject to the rectangular de-
scriptor system, where the matrices E, A, B, C and D
are given as follows:

E =

⎛
⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎠ ,

A =

⎛
⎜⎜⎝

−3 6 1 0 0
−1 −4 −1 −1 3
0 −2 0 −1 2
0 −2 0 −1 2

⎞
⎟⎟⎠ ,

B =

⎛
⎜⎜⎝

1 −1
1 2
1 0
1 0

⎞
⎟⎟⎠ , C =

(
1 0 0 0 0
0 0 0 0 0

)
,

D =
( −1 −1

0 0

)
,

with the initial state

x0 =
(

0 1 0 0
)T

.

By taking the matrices M = I4 and N = I5, it is
easy to verify that

rank
(

A21 A22 B2

)
= rank

(
A22 B2

)
= 1,

and thus the rectangular descriptor system is impulse con-
trollable. By choosing

V =
(

0.5 0.5
0.7071 0.7071

)

and

W =

⎛
⎜⎜⎜⎜⎝

0 0 0 −1 0
2 3 0 2 1
1 1 −1 1 0
1 1 2 0 1
0 0 0 0 −1

⎞
⎟⎟⎟⎟⎠ ,

the problem Ω can be equivalently changed into the singu-
lar LQR problem subject to the standard state space sys-
tem:

min
(v(.),x1)

∞∫

0

(
x1(t)
v(t)

)T

Q̄

(
x1(t)
v(t)

)
dt,

s.t.

⎧⎨
⎩

ẋ1(t) = Āx1(t) + B̄1v(t), x1(0) =
(

0
1

)

y(t) = C̄x1(t) + D̄v(t),

where x1 ∈ R
2, v ∈ R

4,

Ā =
( −3 8

−1 0

)
, B̄1 =

(
1 2 −1 2
1 −1 2 −2

)
,

C̄ =
(

1 −2
0 0

)
, D̄ =

( −1 −2 0 0
0 0 0 0

)
,

Q11 =
(

1 −2
−2 4

)
, Q12 =

( −1 −2 0 0
2 4 0 0

)
,

and

Q22 =

⎛
⎜⎜⎝

1 2 0 0
2 4 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

To identify a positive semidefinite feasible solution
P ∗ to primal semidefinite programming that satisfies the
generalized algebraic Riccati equation �(P ∗) = 0, we
first consider the constraint

(I4 − Q22Q
†
22)(P

∗B̄1 + Q12)T = 0

as stipulated by Lemma 1, such that we have
⎛
⎜⎜⎝

1.2q 1.2r
−0.6q −0.6r
−p + 2q −q + 2r
2p− 2q 2q − 2r

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 0
0 0
0 0
0 0

⎞
⎟⎟⎠ .

This is satisfied only by p = q = r = 0, i.e.,

P ∗ =
(

0 0
0 0

)
.

In fact, this P ∗ satisfies the generalized algebraic Riccati
equation (14). It follows that

Ā − B̄1Q
†
22(P

∗B̄1 + Q12)T =
( −2 6

−1.2 0.4

)
,

which has eigenvalues −0.8 + 2.4i and −0.8 − 2.4i, and
these are stable. Hence the control

v∗(t) = −Q†
22(P

∗B̄1 + Q12)T x∗
1(t),

where x∗
1(t) is solution of the following differential equa-

tion

ẋ1(t) =
( −2 6

−1.2 0.4

)
x1(t), x1(0) =

(
0
1

)
,

is stabilizing. It is easy to verify that

x∗
1(t) = e−0.8t

(
2.5 sin 2.4t

0.5(2 cos2.4t + sin 2.4t)

)
.

Hence, according to Theorem 3, the control v∗(t)
must be optimal to the singular LQR problem Ω2.
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Fig. 1. Simulation results: state trajectories (a), control trajectories (b).

Thereby, according to Corollary 1, the optimal state-
controls are as follows:

x∗(t) = e−0.8t

⎛
⎜⎜⎜⎜⎝

2.5 sin 2.4t
0.5(2 cos 2.4t + sin 2.4t)

0
0.1(28 cos2.4t + 29 sin2.4t)
0.1(24 cos2.4t + 7 sin 2.4t)

⎞
⎟⎟⎟⎟⎠ ,

u∗(t) =
(

2.5e−0.8t sin 2.4t
0

)
,

and the optimal cost Jopt = 0.
The trajectories of the state x and the control u are

shown in Fig. 1.

6. Conclusion

We have solved the LQR control problem subject to a rect-
angular descriptor system using the semidefinite program-
ming approach. We have also proposed a new sufficient
condition in terms of semidefinite programming for the
existence of the optimal state-control pair of the problem
considered. The results show that the optimal control-state
pair is free impulse, i.e., they are smooth functions.

Acknowledgment

The author would like to thank the anonymous referees for
very helpful suggestions and comments which improved
the quality of this paper. This work was supported by
the Ministry of Education of Indonesia through Grant No.
437/SP2H/PP/DP2M/V/2009.

References
Anderson, B.D.O. and Moore, J.B. (1990). Optimal Control:

Linear Quadratic Methods, Prentice-Hall, Upper Saddle
River, NJ.

Balakrishnan, V. and Vandenberghe, L. (2003). Semidefinite
programming duality and linear time-invariant systems,
IEEE Transactions on Automatic Control 48(1): 30–41.

Bender, D.J. and Laub, A.J. (1987). The linear quadratic op-
timal regulator for descriptor systems, IEEE Transactions
on Automatic Control 32(8): 672–688.

Dai, L. (1989). Singular Control Systems, Lecture Notes in Con-
trol and Information Sciences, Vol. 118, Springer, Berlin.

Geerts, T. (1994). Linear quadratic control with and without sta-
bility subject to general implicit continuous time systems:
Coordinate-free interpretations of the optimal cost in terms
of dissipation inequality and linear matrix inequality, Lin-
ear Algebra and Its Applications 203–204: 607–658.

Ishihara, J.Y. and Terra, M.H. (2001). Impulse controllability
and observability of rectangular descriptor systems, IEEE
Transactions on Automatic Control 46: 991–994.

Jiandong, Z., Shuping, M. and Zhaolin, C. (2002). Singular LQ
problem for nonregular descriptor system, IEEE Transac-
tions on Automatic Control 47(7): 1128–1133.

Katayama, T. and Minamino, K. (1992). Linear quadratic regula-
tor and spectral factorization for continuous time descriptor
system, Proceedings of the IEEE Conference on Decision
and Control, Tucson, AZ, USA, pp. 967–972.

Klema, V.C. and Laub, A.J. (1980). The singular value de-
composition: Its computation and some applications IEEE
Transactions on Automatic Control 25(2): 164–176.

Mehrmann, V. (1989). Existence, uniqueness, and stability of
solutions to singular linear quadratic optimal control prob-
lems, Linear Algebra and Its Applications 121: 291–331.

Rami, M.A. and Zhou, X.Y. (2000). Linear matrix inequal-
ities, riccati equations, and indefinite stochastic linear
quadratic controls, IEEE Transactions on Automatic Con-
trol 45(6): 1131–1143.

Silva, M.S. and de Lima, T.P. (2003). Looking for nonnegative
solutions of a leontif dynamic model, Linear Algebra and
Its Applications 364: 281–316.



664 Muhafzan

Vandenberghe, L. and Boyd, S. (1999). Applications of
semidefinite programming, Applied Numerical Mathemat-
ics 29: 283–299.

Yao, D., Zhang, D. and Zhou, X.Y. (2001). A pri-
mal dual semidefinite programming approach to linear
quadratic control, IEEE Transactions on Automatic Con-
trol 46(9): 1442–1447.

Muhafzan received the B.Sc. degree in mathe-
matics from Riau University (Indonesia) in 1992,
the M.Sc. degree in mathematics from the Ban-
dung Institute of Technology (Indonesia) in 1999,
and the Ph.D degree in applied mathematics from
Universiti Putra Malaysia in 2007. He has been
a lecturer at Andalas University, Indonesia, since
1993. His research interests include the theory of
descriptor systems and optimal control.

Received: 13 August 2009
Revised: 15 February 2010
Re-revised: 24 June 2010


	Introduction
	Problem statement
	Transformation into an equivalent LQR problem
	Solving the LQR problem
	Numerical example
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice


