
MacFarlane, A., Secker, A., May, P. & Timmis, J. (2010). An experimental comparison of a genetic

algorithm and a hill-climber for term selection. Journal of Documentation, 66(4), pp. 513-531. doi:

10.1108/00220411011052939

City Research Online

Original citation: MacFarlane, A., Secker, A., May, P. & Timmis, J. (2010). An experimental

comparison of a genetic algorithm and a hill-climber for term selection. Journal of Documentation,

66(4), pp. 513-531. doi: 10.1108/00220411011052939

Permanent City Research Online URL: http://openaccess.city.ac.uk/1693/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

An Experimental Comparison of a Genetic Algorithm and a
Hill-Climber for Term Selection
A. MacFarlane1, A. Secker2, P. May2 and J. Timmis3

1Centre for Interactive Systems Research, Dept. Of Information Science, City University, Northampton Square, LONDON
EC1V 0HB, UK
2Computing Laboratory, University of Kent, Canterbury, CT2 7NF
3 Departments of Electronics and Computer Science, University of York. YO 10 5DD

ABSTRACT
Purpose – The term selection problem for selecting query terms in information filtering and routing has
been investigated using hill-climbers of various kinds, largely through the Okapi experiments in the
TREC series of conferences. Although these are simple deterministic approaches which examine the
effect of changing the weight of one term at a time, they have been shown to improve the retrieval
effectiveness of filtering queries in these TREC experiments. Hill-climbers are, however, likely to get
trapped in local optima, and the use of more sophisticated local search techniques for this problem that
attempt to break out of these optima are worth investigating. To this end, we apply a genetic algorithm
(GA) to the same problem.

Design/Methodology/Approach – We use a standard TREC test collection from the TREC-8 filtering
track, recording mean average precision and recall measures to allow comparison between the hill-
climber and GA algorithms. We also vary elements of the GA, such as probability of a word being
included, probability of mutation and population size in order to measure the effect of these variables.
Different strategies such as Elitist and Non-Elitist methods are used, as well as Roulette Wheel and Rank
selection GA algorithms.

Findings – The results of tests suggest that both techniques are, on average, better than the baseline, but
the implemented GA does not match the overall performance of a hill-climber. The Rank selection
algorithm does better on average than the Roulette Wheel algorithm. There is no evidence in this study
that varying word inclusion probability, mutation probability or Elitist method make much difference to
the overall results. Small population sizes do not appear to be as effective as larger population sizes.

Research limitations/implications – The evidence provided here would suggest that being stuck in a
local optima for the term selection optimization problem does not appear to be detrimental to the overall
success of the hill-climber. The evidence from term rank order would appear to provide extra useful
evidence which hill-climbers can use efficiently and effectively to narrow the search space.

Originality/Value – The paper represents the first attempt to compare hill-climbers with GAs on a
problem of this type.

Keywords: Term selection, local search, genetic algorithms, hill-climbers.

Article Type: Research paper.

INTRODUCTION
Information filtering is a task which requires the selection of terms from some source (either from users
directly or from documents judged relevant by the user), which is then stored (sometimes in the form of

a user profile) and used to select new items from an incoming document stream. Of particular interest is
the issue of term selection from a set of documents judged relevant by a user for a given topic. There are
a wide range of techniques for term selection including traditional relevance feedback techniques
(Harman, 1992) and machine learning techniques (Sebastiani, 2002). Both can be used independently for
term selection, but they can also be combined with each other (Robertson et al, 1995). In this paper we
present a comparison between a hill-climber, a popular method for optimizing the terms selected in a
query, and a genetic algorithm (GA), tested on a term-selection problem. It is a well known disadvantage
of hill-climbers that they may become trapped on a local optima, however GAs are not so prone to this
drawback, and so it is hypothesized that a GA will perform better when applied to the term selection
problem. The GA presented in this paper not only selects the terms to be included in the query, but also
adjusts the weight of each word, reflecting the importance of the word in the final query. In addition to
this straightforward comparison, the results of adjusting various parameters of the GA are described,
giving the reader a more rounded view of how a GA may behave in this situation.

The remainder of the paper is laid out as follows. In the next section we describe the work done on the
term selection problem and related research on GAs in information retrieval, thus providing the
motivation for our research. The system used for our experiments and how the components were
integrated is then described. The experimental design is declared, and the results are analysed. We then
provide a discussion and conclusion.

PREVIOUS WORK IN THE AREA
The initial term selection algorithm used in Okapi at TREC-3 was a two stage process, applying
relevance feedback and then using a single pass algorithm which selected a term if it yielded an increase
in average precision. The algorithm started with the top three ranked terms for each topic (Robertson et
al, 1995). This, in fact, was a steepest ascent hill-climber (Tuson, 1998), which was developed further at
TREC 4 under the title of ‘Find Best’, together with two new algorithms, ‘Choose All Positive’ and
‘Choose First Positive’ - the latter being a first ascent hill-climber (Robertson et al, 1996). These TREC-
4 experiments also introduced the concept of removing terms as well as adding them to the list, yielding
a number of different operations on term lists, namely: add only; add-remove; and remove only. The
add-remove operation was shown to be the most beneficial (Robertson et al, 1996). The Okapi at
TREC-5 experiments introduced the concept of weight variation for terms (Beaulieu et al, 1997), using a
simple technique of multiplying a weight by 1.5 or 0.67 and taking the best result for that particular
term. The use of simulated annealing to the weight variation function was tried in Okapi at TREC-6
(Walker et al, 1998), but without success. More recent work in the area was carried out by MacFarlane et
al (2003), using parallel computing techniques to speed up the algorithms and operations mentioned
above. These are local search techniques, where traversal through the search space is restricted to
neighbourhood solutions.

There has also been prior work in the area of applying GAs to information retrieval/filtering. With regard
to term selection, Boughanem et al (2002) and Tamine et al (2003) investigated the use of genetic
algorithms for multiple query evaluation. The process they used took a number of queries for the same
topic and evidence from a ranked list of documents provided by each of these queries (using data fusion
on the hit lists) to generate a query which produced better results than the input queries. Chen et al
(1998) compare various methods for term selection including GA’s and simulated annealing.
Improvement of the GAs crossover operation was addressed by Vrajitoru (1998), and the amended
algorithm was compared to relevance feedback - the latter proved to be a better method. Yang and
Korfhage (1994), Horng and Yeh (2000), Robertson & Willett (1996) and Chang & Chen (2006) all

used a GA to adapt weights for pre-selected keywords (no optimisation on terms was completed).
Martin-Bautista et al (1999) take this idea further and use GA’s to learn ranking functions as well, while
Fan et al (2003) apply Genetic Programming (GP) techniques to the same problem. Lopez-Pujalte et al
(2002), Lopez-Pujalte et al (2003a) and Lopez-Pujalte et al (2003b) investigated the issue of different
fitness functions for GAs in relevance feedback, learning terms, weights and thresholds for a given
query. Martin & Shackleton (2003) use a GA to address a different problem, namely term selection, thus
a Boolean query is produced, rather than a list of terms with weights. GAs, unlike hill-climbers, allow
global search solutions as crossover allows the algorithm to break out of the neighbourhood, but
iteratively converges on a local search solution as the algorithm learns which of the neighbourhood
solutions it has examined yield better results.

It should be emphasised that none of the GA methods use the two stage process described in this paper.
The paradigm we use is known as attribute weighting (Rozsypal and Kubat, 2001). In addition to this,
most of the research, apart from Boughanem et al (2002) and Tamine et al (2003) who use TREC data,
deploy rather small test collections for their experiments, e.g., Cranfield. More information on the area
can be found in the following review papers: Chen (1995), Sebastiani (2002) and MacFarlane & Tuson
(2008).

MOTIVATION
The primary aim of the research in this paper is to investigate the use of genetic algorithms in the second
stage selection process (described briefly above) and compare this with a hill-climber. A key question
for us is therefore: do increasingly sophisticated local search techniques improve the term selection
process? Our reasoning behind this strategy is that, whilst hill-climbing techniques have been
successfully used in Okapi at TREC, techniques which are less likely to get stuck in local optima, like
GAs, may be able to achieve better performance on this task (in terms of retrieval effectiveness). GAs
are able to do this because of crossover (see above). GAs have previously been used before in this
research area, but have not been used in the way that we propose here, namely a two level selection
process for terms on which a limited set of terms are chosen and the weights of which are optimised.
Furthermore, research using GAs has tended to use small collections; we propose the use of the much
larger TREC collections used on the TREC Routing task.

DESCRIPTION OF THE SYSTEM
In this section we describe the system used for experimentation and its components, namely the Okapi
information retrieval (IR) system, the genetic algorithm, and how these components were integrated to
create the system.

Description of the Okapi System
Okapi is an experimental information retrieval (IR) system, written to examine various aspects of
interactive IR research, including such tasks as bibliographic search and full-text search (Robertson,
1997). Okapi was conceived at the University of Westminster as an OPAC system and moved to City
University in 1989 where it was extended to incorporate more general text retrieval algorithms, in
particular an implementation of the Robertson/Sparck Jones probabilistic model (Robertson and Sparck-
Jones, 1976). The storage scheme used by Okapi is the inverted file (Harman et al, 1992). Okapi has a
basic search system (BSS) which provides facilities to load sets of terms, weight terms and merge sets of

terms using Boolean (e.g., and, or), Adjacency (e.g., adj) and term weighting (e.g., BM25) operations
(Robertson, 1997).

Description of the Genetic Algorithm
Genetic algorithms have been shown to be robust and adaptive optimisers (Mitchell, 1999). GAs use the
Darwinian process of natural selection on a number of candidate solutions to determine the optimum
solution to a task. Mechanisms found in the natural world, such as fitness proportional selection and
genetic variation of individuals, provide strong evolutionary pressure on a population to maximise the
average quality of that population in its environment. Each individual in a population contains genetic
information (a chromosome) encoding a potential solution to a problem. In this case, the chromosome
held by each individual is an array of integers (see figure 1), whereby each position represents a word
that could be included in the search, and each value in that position represents the weighting for that
word in the search. Terms with a weight of 0 are excluded from the search, while terms with values
between 1 and 7 are included in the Okapi query with a weight determined by 2n-4, n being the integer
value between 0 and 7. We used this scheme to allow the GA a greater degree of freedom through the
search space than the hill-climber in order to reduce the chance of the algorithm getting stuck in local
optima.

Figure 1. Structure of a chromosome

The GA optimises the population of these chromosomes through a process of evolution as follows. In
the first step of the algorithm, a finite sized population of chromosomes is initialised by randomly
generating chromosomes. Each element of a chromosome is randomly assigned a weight of either 0 or 4
(a value of 4 in the chromosome results in that word being included in the search with default weight).
This process is biased towards assigning a weight of 0 in an attempt to produce less complex queries –
i.e., the aim was to keep the number of words included in the query to a minimum in order to promote
efficiency, whilst maintaining accuracy of the result. In reality, approximately 1 in 10 words will be
selected (i.e., have a weight greater than 0) at this initial stage.

At the beginning of each iteration, Okapi is used to evaluate the fitness of all individual chromosomes in
the population, returning an average precision score for each one. Individuals are selected for
reproduction using this fitness (precision) value and the Roulette Wheel Selection method (Goldberg,
1989). The Rank Selection method is also used in additional experiments (Goldberg, 1989). In this
method, the probability of selecting an individual is proportional to that individual’s fitness when
compared with the rest of the population. A pair of individuals is selected in this way and with a fixed
probability of 0.8, randomly selected positions of each chromosome are swapped between these two
individuals (uniform crossover), producing two new offspring. For this investigation, the probability of
crossover occurring at a given position in an individual is fixed at 0.5, thus on average, half the genetic
material will swap between two parents during this process. For comparison, additional experiments
have been performed using 1-point and 2-point crossover mechanisms, instead of uniform crossover.
Both of these techniques also use a fixed probability of 0.8 to randomly select 1 or 2 (respectively)
crossover points in the parent individuals. In 1-point crossover two new offspring are generated by
swapping the tail portions of the each parent. In 2-point crossover, the offspring are generated by
swapping the portion of the parent individuals between the 2 crossover points. These offspring are then

added to an offspring population ready for the next iteration. This process continues until the offspring
population is the same size as the parent population. A disadvantage with this reproduction mechanism
alone is that it is possible that the highest fitness individual will not be selected for reproduction,
implying any information it encoded is lost. One approach to solve this, employed in this research, is to
always copy the highest fitness individual to the offspring population in each iteration. In this manner,
the fitness of the best individual can never decrease from one generation to the next.

After reproduction, the genetic material carried by offspring may be subject to mutation (apart from the
best individual copied from the parent population), where a few elements within a chromosome are
modified (using a low probability, in this case, 0.01). For this research, mutation either increased or
decreased, at random, a chromosome’s element value by one. Use of a high mutation rate can destroy
potentially good solutions as more elements within the chromosome are modified (Mitchell, 1999).
While mutation can destroy otherwise good candidate solutions, it is necessary as any genetic
information lost through reproduction may otherwise be impossible to replace. As such, mutation serves
as a valuable service by maintaining diversity in the population and reducing the probability that a
population may prematurely converge on a solution. Figure 2 gives an overview of both the GA and hill-
climber algorithms used.

Figure 2. Optimisation algorithms used in experiments

In total, these steps comprise one iteration of a genetic algorithm; in this investigation the GA repeats
these until either 100 iterations have occurred or the individual with the highest fitness in the population
has not increased its own fitness for 5 iterations.

Integration of Okapi and the GA
The GA integrates with the Okapi system, and forms the entry point for the combined system. The GA
initialises Okapi which returns the total number of available words that can be used in a query. The
number of terms in the query determines the size of a chromosome, which the GA uses to randomly
initialise its population. Fitness calculations are performed by passing each chromosome to the Okapi
system for precision evaluation. Once a stopping criterion is met, the chromosome with the highest
fitness is returned to Okapi and can be evaluated for quality.

Table 1. The TREC 8 Routing collection

DESCRIPTION OF THE EXPERIMENT
Care needs to be taken when handling the training data for experiments. This is largely due to the
problem of over-fitting (Robertson et al, 1996), which could occur, for example, if both stages of the
selection process were done on the whole training set - e.g., there is a danger of selecting rare terms
which may produce good results on the whole training set, but poor results otherwise. A number of
different strategies can be used to overcome this problem. One way is to split the training set into two
and use one set for extracting terms and the other set for evaluating the methods under consideration by
selecting terms. The whole training set can then be used to produce the final query which is then applied
to the test set (Robertson et al, 1996). This had a considerable influence on the testing strategy, although
we used a slightly different methodology as described in MacFarlane et al (2003). We split the training
set into two: one part was used for extracting terms from the document set for each topic (the extract set
in table 1), while the second part (the select set in table 1) was used to optimise queries using terms from
the first part. We did not use any further stages on the training data; the queries we produced on the 2nd
stage were applied directly to the test set. Another way of splitting the collection would be to use an
additional validation set (a three way split), and validate the query generated from the selection database
for each topic with this – we did not use this method due to time constraints.

The collection used for this experiment was the TREC-8 Filtering Track Routing set (Hull and
Robertson, 2000). Details of the documents used can be found in Table 1. The queries for this set are
TREC topics 351-400; only 47 of the queries have relevance judgments associated with them in the test
set. We ran an initial set of experiments on the select set (see table 1), with the GA selecting on the top
20, 30, 40, 100, 150, 200 and 250 terms from relevance feedback using Robertson’s Term Selection
Value (Robertson, 1990). We also ran the same term sets on all three hill-climbers (described above) and
the top 20 unoptimised terms from the extract set (see table 1) for comparison purposes (this is the
baseline run). Initial Okapi weights from the training set were used on the baseline and optimised
queries, and applied to the test set. The fitness function used for training was the standard TREC mean

average precision measure. Significance tests are somewhat controversial in the field (MacFarlane and
Tuson, 2008), therefore we used the standard percentage increase on average precision to measure
difference i.e. 5% and 10% increases.

The initial GA runs were completed using the default values declared in table 2. For the hill-climbers in
the experiment we used the add/remove operations with weight variation of 0.67, 1.0 and 1.5; the first
weight to yield a positive result was accepted. Terms in the Hill-climbers were ‘dropped’ from the list if
they did not increase scores in 4 iterations, and only re-examined after 10 iterations had passed. This
approach speeds up the Hill-climbers and has shown to be of some benefit with respect to effectiveness
(Robertson et al, 1996). We used two i686 Linux machines running Red Hat version 9 with 1 GB of
main memory: one machine was a uni-processor (1.6 GhZ), one a dual-processor (1 GhZ). For each run
we recorded the standard IR measures of precision and recall. Note that we did not record the effort
made in terms of evaluations, as we have evidence from previous research that the number of
evaluations carried out is not the primary driver of optimising queries i.e., examining more of the search
space can be both beneficial and detrimental (MacFarlane, 2000).

ANALYSIS OF RESULTS

Figure 3. Initial experiments: Average Precision on GA, Hill-Climber and Baseline runs

Initial Runs and Comparison with Hill -Climbers
The average precision figures obtained are shown in figure 3, with the average over the GA runs being
shown (details of the variation on the GA runs can be found in the appendix). Using average precision as
a measure, the chart shows that both the best hill-climbers (0.425) and GA average (0.396) are much
better than the baseline run (0.318). This corresponds to an increase of approximately 33% for the hill-
climbers, and 23% for the best GA, both of which are above the 10% increase level.

Table 2. GA Variables examined

For the worst GA average (150 terms, precision: 0.369), the increase is over 16% (above the 10%
increase level). The average GA on all term sets is always better than the baseline, but never as good as
any of the hill-climbers - the best hill-climber yields an increase of 15% over the worst average GA run
(0.369). The best hill-climber is Choose All Positive, which we will primarily focus on for the rest of
this paper. Note, figure 3 indicates there is very little gain after 40 terms i.e., 0.04 or 1% in average
precision – we therefore only used 20, 30 and 40 terms when conducting the GA variable experiments
below as no noticeable increase was recorded. Of concern is the dip in performance in average precision
using 150 terms affecting all algorithms, particularly the GA. The only exception to this is Choose First
Positive – which varies little after 40 terms. There is some evidence, although not conclusive, that recall
is increased when using 150 terms in a query (see figure 4). This appears to be the natural effect of
precision versus recall.

Figure 4. Initial experiments: Recall on GA, Hill-Climber and Baseline runs

Comparing the average precision results against the participants of the track which produced this data, is
largely favourable (Hull and Robertson, 2000). In this track were 10 participants: the baseline did better
than four runs (these systems are using much more sophisticated techniques than simple top 20 terms
from relevance feedback), whilst the best hill-climber run (Choose All Positive) did better than seven
runs. The best performing average GA (on 50 terms), did better than five runs.

With respect to recall (see figure 4 – variation on this measure can been seen in the appendix), the hill-
climber runs are all above the baseline - the best run (150 terms on Choose All Positive) yielding a 5%
increase over the baseline. The average GA runs yield a noticeable increase in recall (over the baseline)
only on two occasions - at 100 and 250 terms. Otherwise, recall is below or very near the baseline on all
term sets. Comparing the worst average GA run on 30 terms with the baseline, there is less than 1%
difference. The evidence provided here suggests that using any of the query optimisation techniques put
forward in this paper provides an increase in precision without adversely affecting recall. These
techniques are stable on the recall metric i.e., recall is not adversely affected.

Results for variation of GA Variables
Given the results in our initial experiments, we decided to observe the effect of modifying a number of
the GA’s variables with the goal of increasing the quality of the term selection process.

Experiments for Word Inclusion Probability
With respect to average precision, runs are all above 10% over the baseline (the lowest average run 0.8
on 40 is 17% better than the baseline), however at no point do any of the runs reach the level achieved
by the best hill-climber. There is very little difference between the runs on this variable. On average,
runs using 20 terms are better than either runs on 30/40 terms, but most of these record less than 5%
difference over the baseline. As this variable only affects the initial population, the evidence provided in
figure 5 clearly indicates that the GA is not sensitive to starting conditions (i.e., the number of words
included in each initial chromosome) cause by this variable.

Figure 5. Word Inclusion Probability experiments: Average Precision on GA versus baseline and
best Hill-Climber run

This is a very desirable property for a GA on term selection - as an elitist GA is being used with average
precision as the fitness function, the expected result would be either a slight increase or the same result
for average precision. If a higher word inclusion probability has a lower initial precision score, then the
precision must increase more (for that word inclusion probability value) in order for the final precision
to be similar to the final precision achieved by a lower word inclusion probability value (which starts
with a higher initial precision score). The increase is not caused by the word inclusion probability value
however, and is a result of the GA itself. Word inclusion probability only affects the initial iteration, not
subsequent ones. A higher word inclusion probability value could mean that more terms will be included
in a query, and therefore more documents will be retrieved before ranking.

On recall there appears to be an upward trend as the word inclusion probability increases (see figure 6).
This effect could be caused by a higher probability for inclusion of words, which increases the number
of terms for the initial population of terms for individual query. In the initial iteration a higher word

inclusion probability implies more terms, increasing coverage of relevant documents retrieved, implying
a higher initial recall. As the mutation rate will remain constant across the different experiments, the
amount of change will remain roughly the same regardless of the word inclusion probability, and so if a
run has a better starting point (with respect to recall) – as a result of a higher word inclusion probability
– then this will retain it’s higher recall as the iterations progress.

Figure 6. Word Inclusion Probability experiments: Recall on GA versus baseline and best Hill -
Climber run

With respect to recall, it is possible that there is an important interaction between the Word Inclusion
Probability and Mutate Probability variables. Lower rates of probability for including words will
produce a “narrower” starting query (the implication being that recall will be lower) and a large number
of iterations would do little to improve performance. For example, on 100 iterations, the default
mutation rate of 0.01 on 40 terms produces an average of 0.4 mutations per iteration. If the mutation
rate is increased too much, the increased amount of change on a chromosome in any iteration will detract
from improvements in recall – the search will effectively become random. From figure 7, it can be seen
that the average recall using 40 terms increases with Mutate Probability values to 0.11 then decreases,
with a similar trend on 20 terms, increasing up to 0.15 mutation rate, before decreasing. It is expected
that a higher (rather than the default) mutation rate with a higher rate of Word Inclusion Probability will
offer better recall (due to time constraints we were unable to examine this issue further – this will be
examined in further research).

Experiments for Mutate Probability
With respect to the probability of mutation, the average precision in all cases appears to be better than
the baseline (see figure 7). On average, these are much better than the baseline (e.g., on 30 terms the
average increase over the baseline is 22/23% for values of Mutate Probability). However, no GA
matches the best hill-climber run. There is very little variation on the value of Mutate Probability or its
interaction with term set size. The results presented in figure 7 also fit in with the results for the Word
Inclusion Probability experiments – this had little impact over the precision on the individual sizes
tested. A higher word inclusion probability means more included words at the start. The best precision
cannot decrease over iterations, as we are using an elitist GA, therefore the precision remains constant
with small changes in mutation rate. It is probable that a higher figure for the probability of mutation
(e.g., 0.8) would reduce performance as it is likely any useful term information would be destroyed,
resulting in the GA approximating to a random search. The recall results (see figure 8) show small
variations around the baseline.

Figure 7. Mutate Probability experiments: Average precision on GA versus baseline and best Hill -
Climber run

Figure 8. Mutate Probability experiments: Recall on GA versus baseline and best Hill -Climber
run

Figure 9. Population Size experiments: Average precision on GA versus baseline and best Hill-
Climber run

Figure 10. Population Size experiments: Recall on GA versus baseline and best Hill-Climber run

Experiments for Population Size
In terms of average precision it does seem beneficial to use a Population Size of 100 or over (see figure
9). The increase from 10 to 100 on this variable for 40 terms results in a precision increase of 9.3%, on
average. With respect to recall there is a slight upwards trend (all below the 5% level), but a smaller
population (below 50) does appear to be detrimental, particularly on the minimum runs (see figure 10).
This phenomenon is probably related to the low mutation rate used. The default mutation rate of 0.01 on
20 terms means 0.2 words mutated per individual per iteration, and only 2 words for a population of 10
individuals per iteration. Increasing the Population Size to 100 means 20 words modified per iteration
(all averages). The larger the population size the more diverse the population so a moderate to large size
results in better performance. With a small population the algorithm cannot adequately cover the search
space at the beginning and the range of genetic material is not adequate enough to increase fitness in an
efficient manner.

Results for variation of Algorithm, Elistism and Crossover strategies

Figure 11 Roulette Wheel vs Best Hill-Climber runs

Figure 12 – Rank Selection vs Best Hill-Climber runs

Results from the additional experiments are presented in figures 11 and 12. All GA configurations were
much better than the baseline run (the later are not included to improve the visibility of the optimized
runs). An interesting result from these further experiments is that the Rank Selection method moves the
GA up near the performance of the hill-climbers and for most runs does much better than the Roulette
Wheel selection method – apart from two exceptions. There are a couple of important differences
between the two selection methods which will have impact on the results. Firstly, Rank Selection
reduces the advantage that a very high fitness chromosome has in Roulette Wheel selection, meaning
that lower fitness chromosomes have a better chance of being selected. High fitness values tend to be
recorded in earlier iterations of the optimization process. Rank Selection achieves this by first ordering
(or ranking) the population of chromosomes by fitness, then giving each chromosome a selection
“value” based on its position in the rank rather than its fitness. The lowest fitness chromosome gets a '1',
the next '2', and so on. An individual is selected by comparing a random number with these ranking
values. This will reduce the probability of overfitting on the training set (selecting good training terms
which are poor on the test set), or finding a good optima too early in the search and stopping. Secondly,
Rank Selection helps to differentiate between chromosomes with very similar fitness values. For
example, if there are five chromosomes with fitnesses 0.18, 0.19, 0.20, 0.21, 0.22 (i.e. similarly valued
fitnesses), in the Roulette Wheel method, these would all be similarly proportioned and have a

reasonably equal chance of selection (i.e. approx 1/20). In Rank selection however, the differences
would be exaggerated so, in order, the lowest would have a 1/15 chance of selection, the next 2/15, the
next 3/15, then 4/15, then 5/15. Therefore a slightly better solution has more chance of being chosen.

Comparing hill-climbing results to GA Rank Selection results also yields some interesting results. When
optimizing on 20 terms, all Rank Selection runs are better than the best hill-climber run. However none
match the hill-climber after 30 terms, with a number of runs virtually identical. Difference between these
runs are small however – all bar two runs on 40 terms are below the 5% increase mark. This together
with the clear trend upwards for hill-climbing methods points to the nature of the term selection process
used e.g. evidence from the initial term selection process when using the Term Selection Value to rank
terms (Robertson, 1990). This ranking mechanism has shown to be useful providing a sufficiently large
number of relevance assessments are provided (Robertson et al, 1995). Therefore the hill-climber will be
moving in a space which is known to be generally good anyway, and the results from figure 3 which
show there is very little gain after runs optimizing on 40 terms provide some further evidence. Although
all optimized runs used the top 3 terms from the ranked list, after this initialization the GA’s throw this
evidence away and start from scratch. Prior evidence based on the term selection value would appear to
provide an advantage to any method that can exploit it.

When comparing Elitist vs non-Elitist strategies and crossover methods (uniform, 1 and 2 point) in
figures 11 and 12, there does not appear to be much of a difference between them, as all are within the
5% mark. The results on elitist approaches are perhaps counterintuitive; as they keep the best performing
chromosome from one generation to the next, allowing successive improvement in much the same way
as the hill-climber, it would be expected that the elitist approach would yield an improved precision over
the non-elitist strategy. This implies that the mutation/crossover strategies cause very little
variation/improvement in the population's overall fitness in successive generations, and evidence from
figure 7 above does in fact show that that mutation probability has little effect on the average precision
(i.e. the fitness). This lack of variation in the population may well support the advantage which the Rank
Selection method has over Roulette Wheel, explained above. A further factor could be that non-elitist
strategies used more iterations to achieve the same result, although confirming this would require
analysis of iterations (we did not collect this information in the experiments).

DISCUSSION AND CONCLUSION
Whilst it is clear that using GA’s on the term selection problem addressed in this paper can improve
performance in terms of average precision over the baseline, it is also clear that there is no guarantee of
success in using such a method. Even though the worst average GA run can provide a performance
which was much better than the baseline, there is no evidence that the GA on average is better than the
various hill-climbing algorithms used here. In fact, the evidence is to the contrary. Both the hill-climber
algorithms and the GA appear to be able to improve precision over the baseline without reducing recall.

A short investigation was conducted into the behaviour of the GA where certain parameters were
adjusted. It was found that to maximise recall a higher probability of initial word inclusion should be
considered but this has little effect on the precision. Finally it was also found that a larger population
size resulted in a better precision and a better recall. There are a number of variables that determine the
behaviour of a GA. We selected a few of the most important ones here but in the future others should be

tried, for example the amount of chromosome that swaps during crossover, with the aim of making the
GA more competitive compared to the hill-climber. Further experiments were conducted, comparing
selection strategies (Roulette Wheel vs. Rank selection), elitist vs non-elitist and varying crossover
(uniform, 1 point and 2 point). Although the Rank Selection method did better than Roulette Wheel, it
did not match the hill-climber on the larger term sets used – although differences were small for most
runs. No real difference was found on elitist vs. non-elitist strategies or crossover variation. Evidence
from the Term Selection Value used by the hill-climber to rank terms would appear to give it something
of an advantage on optimization problems of this type.

This paper presents the first real attempt to compare the performance of GA’s against hill-climbers
directly on an IR problem of this type. We had hypothesised that GAs should not get stuck in local
optima so readily and would therefore have better performance. However, on the evidence provided in
this paper, it appears that being stuck in local optima is not such a problem for hill-climbers as these
methods consistently out-performed a GA. The ability of the hill-climber to use term rank order would
appear to provide the method with something of an advantage when moving through the search space.
The GA, which finds other optima, does on average appear to find many more peaks, which are superior
to the baseline (e.g., see figure 3) but may not on average be as good as the single hill-climber peak.
Further research could include the comparison of other stochastic searches such as Artificial Immune
Systems (AIS), Particle Swarm Optimisation (PSO), Ant Colony Optimisation (ACO) in order to verify
these results.

ACKNOWLEDGMENTS
The authors gratefully acknowledge travel funding from the ARTIST network. The authors are grateful
to Alex Freitas for his input, and to Steve Robertson for suggesting the term re-weighting scheme that is
used in this paper.

REFERENCES

Beaulieu, M. Gatford, M, Huang, X., Robertson, S, Walker, S. and Williams P. (1997). Okapi at TREC-
5, In: Voorhees, E. and Harman, D (eds). Proceedings of the Fifth Text Retrieval Conference,
Gaithersburg, November 1996, NIST SP 500-238, pp143-166.

Boughanem, M. Chrisment, C., and Tamine, L, (2002). On using Genetic Algorithms for Multimodel
relevance optimisation in information retrieval, Journal of the American Society for Information Science
and Technology, 53(11), 934-942.

Chang, Y., and Chen, S. (2006). A new query reweighting method for document retrieval based on
genetic algorithms. IEEE Transactions on Evolutionary Computation, 10(5), pp617-622.

Chen, H. (1995). Machine learning for information retrieval: Neural networks, symbolic learning, and
genetic algorithms. Journal of the American Society for Information Science and Technology, 46(3),
pp194–216.

Chen, H, Shankaranarayanan, G. and She, L. (1998). A machine learning approach to inductive query by
examples: an experiment using relevance feedback, ID3, genetic algorithsm and simulated annealing.
Journal of the American Society for Information Science and Technology, 49(8), pp693-705.

Fan, W., Gordon, M. D., & Pathak, P. (2004). A generic ranking function discovery framework by
genetic programming for information retrieval. Information Processing and Management, 40(4), pp587–
602.

Goldberg, D. E. (1989). "Genetic Algorithms in Search, Optimization, and Machine Learning." Addison-
Wesley.

Harman, D. (1992). Relevance Feedback and other Query Modification Techniques, In: Frakes, W. and
Baeza-Yates, ‘Information Retrieval: Data Structures and Algorithms’, Prentice-Hall, pp241-263.

Harman, D., Fox, E, Baeza-Yates, R. and Lee, W. (1992). Inverted Files, In: Frakes, W. and Baeza-
Yates, ‘Information Retrieval: Data Structures and Algorithms’, Prentice-Hall, pp28-43.

Horng, J., and Yeh, C. (2000). Applying genetic algorithms to query optimization in document retrieval,
Information Processing and Management, 36(5), pp737-759.

Hull, D. and Robertson, S. (2000). The TREC-8 Filtering Track Final Report. In: Voorhees and Harman,
D (eds). Proceedings of the Eighth Text Retrieval Conference, Gaithersburg, November 1999, NIST SP
500-246, pp35-55.

Lopez-Pujalte, C., Guerrero Bote, V. and de Moy Anegon. (2002). A test of genetic algorithms in
relevance feedback, Information Processing and Management 38 (6), pp793-805.

Lopez-Pujalte, C., Guerrero Bote, V. and de Moy Anegon. (2003a). Genetic algorithms in relevance
feedback: a second test and new contributions, Information Processing and Management 39(5), pp669-
687.

Lopez-Pujalte, C., Guerrero Bote, V. and de Moy Anegon. (2003b). Order-Based fitness functions for
Genetic Algorithms applied to relevance feedback, Journal of the American Society for Information
Science and Technology, 54(2), pp152-160.

MacFarlane, A., (2000). Distributed inverted files and performance: a study of parallelism and data
distribution methods in IR, PhD Thesis, City University London.

MacFarlane, A., Robertson, S, and McCann, J. (2003). Parallel Computing for Term Selection in
Routing/Filtering, In: Sebastiani, F (ed), Proceeding of the 25th European Conference on IR Research,
ECIR 2003, Pisa Italy, LNCS 2633, Springer-Verlag, pp537-545.

MacFarlane, A., and Tuson, A. (2008). Local search: A guide for the information retrieval practitioner,
Information Processing and Management, 45(1), pp 159–174

Martin-Bautista, M.J., Vila, M.A., and Larsen, H.L. (1999). A fuzzy genetic algorithm approach to an
adaptive information retrieval agent, Journal of the American Society for Information Science, 50(9),
p760-771.

Martin J. and Shackleton, M. (2003). Investigation of the importance of the genotype-phenotype
mapping in information retrieval, Future Generation Computer Systems 19(1), pp55-68.

Mitchell, M. (1999). "An Introduction to Genetic Algorithms", MIT Press. 6th edition.

Robertson, A., and Willett, P. (1996). An upperbound to the performance of ranked-output searching:
optimal weighting of query terms using a genetic algorithm, Journal of Documentation, 52(4), pp405-
420.

Robertson, S., and Sparck-Jones, K. (1976). Relevance weighting of search terms, Journal of the
American Society Information Science, 27, pp129-146.

Robertson, S. (1990). On term selection for query expansion, documentation note. Journal of
Documentation, 46 (4), pp359-364.

Robertson, S. (1997). Overview of the Okapi projects: special issue, Journal of Documentation, 53 (1),
pp3-7.

Robertson, S, Walker, S., Jones, S., Hancock- Beaulieu, M., and Gatford, M. (1995), Okapi at TREC-3,
In: Harman, D (ed). Proceedings of the Third Text Retrieval Conference, Gaithersburg, November 1994,
NIST SP 500-226, pp 109-126.

Robertson, S., Walker, S., and Hancock- Beaulieu, M. (1995). Large test collection experiments on an
operational interactive system: Okapi at TREC. Information processing and Management, 31(3), pp345-
360.

Robertson, S. Walker, S, Beaulieu, M, Gatford, M. and Payne A. (1996), Okapi at TREC-4, In: Harman,
D. (ed) Proceedings of the Forth Text Retrieval Conference, Gaithersburg, November 1995, NIST SP
500-236, 73-96

Rozsypal, A., & Kubat, M. (2001). Using the Genetic Algorithm to Reduce the Size of a Nearest-
Neighbour Classifier and to Select Relevant Attributes. 18th International Conference on Machine
Learning (ICML 2001), Massachusetts, USA. Morgan Kaufmann, pp. 449-45.

Sebastiani, F. (2002). Machine learning in Automated Text Categorization, ACM Computing Surveys,
34(1), pp1-47.

Tamine, L, Chrisment, C., and Boughanem, M. (2003). Multiple query evaluation based on enhanced
genetic algorithm, Information Processing and Management 39(2), pp21-231.

Tuson, A. (1998). Optimisation with Hillclimbing on Steroids: An Overview of Neighbourhood Search
Techniques. In the Keynote Papers of the 10th Young OR Conference, Operational Research Society.

Vrajitoru, D. (1998). Crossover improvement for the genetic algorithm in information retrieval.
Information Processing and Management, 34 (4), 405-415.

Walker, S., Robertson, S, and Boughanem, M. (1998). Okapi at TREC-6: automatic ad hoc, VLC,
routing and filtering. In: Voorhees, E. and Harman, D (eds). Proceedings of the Fifth Text Retrieval
Conference, Gaithersburg, November 1996, NIST SP 500-240, pp125-136.

Yang, J.J. and Korfhage, R. (1994).Query modifications using genetic algorithms in vector space
models. International Journal of Expert Systems. 7(2). pp165-191.

Appendix – Run variation data for the Genetic Algorithm on Initial Runs

Figure A1. Box Plot data for average precision in initial GA runs

Figure A2. Box Plot data for Recall in initial GA runs

Figure 1. Structure of a chromosome

 Individual
=

0 0 0 4 0 4 0

Figure 2. Optimisation algorithms used in
experiments

1) Randomly initialise population

2) While stopping criterion not met, do:

a. Calculate fitness of all population members using
average precision as fitness metric.

b. Create a new individual with a chromosome
identical to the fittest individual in the current
population and place in the (currently empty)
offspring population.

c. While size of offspring population does not equal
size of current population, do:

i. Choose two individuals probabilistically
based on their fitness

ii. Swap genetic material between these
two parent individuals to create two
child individuals (using fixed rate
probability)

iii. Mutate both child individuals (using
fixed rate probability)

iv. Place child individuals in the offspring
population

d. Replace current population with offspring
population.

Figure 2a = GA psedocode

Load term pool

Generate base and evaluation term sets

Obtain relevance information for a topic

Form accumulated set from base set

Loop while no stopping criteria is reached

 Loop list of terms in evaluation set

 Evaluate an operation on the current term

 If operation is successful

 If algorithm is CAP

 Add current term to query

 If algorithm is FB

 Record current term as best term.

 If algorithm is CFP

 Leave inner loop

 EndLoop

 If algorithm is FB or CFP

 Update query with best term

 Check the stopping criteria

Endloop

Figure 2b – Hill -Climber pseudocode

Table 1. The TREC 8 Routing collection

Data Set Collection
Description

Total Docs

Training
Set

Financial Times 1991-
1994, Federal Register
1994, Congressional
Record 1993, FBIS,
LA Times

456,533

Extract
Set

Approximately half of
Training set.

228,268

Select Set Approximately half of
Training set.

228,265

Test Set Financial Times 1993-
1994

140,651

Figure 3. Initial experiments: Average Precision on GA, Hill -Climber and
Baseline runs

GA vs Hill-Climbers

0.310

0.330

0.350

0.370

0.390

0.410

0.430

20 30 40 50 100 150 200 250

No of Terms

GA average Find Best
Ch First Positive Ch All Positive
Baseline

Table 2. GA Variables examined

Variable Description Values Used Defau
lt

Value

Word

Inclusion

Probability

The probability of any one word being included.
Default is 0.1 so an average of 10% of words will be
included in a chromosome, but the number of included
words will change as the population evolves. Increasing
this value only impacts the initial population. The
algorithm will optimise the number of included terms,
but a selection of this value near the optimum will result
in a better start population and thus reduce the time
taken for the population to converge on a solution.

0.1 to 0.8
with
increments of
0.1 (7 runs in
total).

0.1

Mutate

Probability

Varies the chance of a mutation in one element of a
chromosome. High values promote diversity and
therefore exploration of search space, but at the expense
of a higher risk of reducing the quality of a good
individual.

0.01, 0.05,
0.09, 0.11,
0.15 and 0.20
(5 runs in
total).

0.01

Population

Size

Determines the number of individuals in the population.
Lower figures will result in shorter evaluation time per
generation but will require more generations to solve
the problem. The converse is true for higher values.
There will exist an optimum value in terms of
efficiency between these two extremes.

10, 50, 100,
150, 200,
300, 400 and
500 (7 runs in
total).

50

Figure 4. Initial experiments: Recall on GA, Hill-Climber and Baseline runs

GA vs Hill-Climbers

0.870

0.880

0.890

0.900

0.910

0.920

0.930

0.940

20 30 40 50 100 150 200 250

No of Terms

GA average Find Best
Ch First Positive Choose All Positive
Baseline

Figure 5. Word Inclusion Probability experiments: Average Precision on GA
versus baseline and best Hill-Climber run

Word Inclusion Probability Experiments

0.300

0.320

0.340

0.360

0.380

0.400

0.420

0.440

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Word Inclusion Probability value

GA Avg (20) GA Avg (30)
GA Avg (40) Baseline
Best Hill-Climber

Figure 6. Word Inclusion Probability experiments: Recall on GA versus baseline
and best Hill-Climber run

Word Inclusion Probability Experiments

0.870

0.880

0.890

0.900

0.910

0.920

0.930

0.940

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Word Inclusion Probability value
Baseline GA Avg (20)
GA Avg (30) GA Avg (40)
Best Hill-Climber

Figure 7. Mutate Probability experiments: Average precision on GA versus
baseline and best Hill-Climber r un

Mutate Probability Experiments

0.300

0.320

0.340

0.360

0.380

0.400

0.420

0.440

0.01 0.05 0.09 0.11 0.15 0.2

Mutate Probability value

GA Avg (20) GA Avg (30)
GA Avg (40) Baseline
Best Hill-Climber

Figure 8. Mutate Probability experiments: Recall on GA versus baseline and best
Hill -Climber run

Mutate Probability Experiments

0.870

0.880

0.890

0.900

0.910

0.920

0.930

0.940

0.01 0.05 0.09 0.11 0.15 0.2

Mutate Probability value

Baseline GA Avg (20)
GA Avg (30) GA Avg (40)
Best Hill-Climber

Figure 9. Population Size experiments: Average precision on GA versus baseline
and best Hill-Climber run

Population Size Experiments

0.300

0.320

0.340

0.360

0.380

0.400

0.420

0.440

10 50 100 150 200 300 400 500

Population Size value
GA Avg (20) GA Avg (30)
GA Avg (40) Baseline
Best Hill-Climber

Figure 10. Population Size experiments: Recall on GA versus baseline and best
Hill -Climber run

Population Size Experiments

0.860

0.865

0.870

0.875

0.880

0.885

0.890

10 50 100 150 200 300 400 500

Population Size value

Baseline GA Avg (20)
GA Avg (30) GA Avg (40)

Figure 11 Roulette Wheel vs Best Hill-Climber runs

Figure 12 – Rank Selection vs Best Hill-Climber runs

Figure A1. Box Plot data for average precision in initial GA runs

Average precision var iat ion data

0.320

0.330

0.340

0.350

0.360

0.370

0.380

0.390

0.400

0.410

0.420

20 30 40 50 100 150 200 250

Term s

q1

m in

m edian

m ax

q3

Figure A2. Box Plot data for Recall in initial GA runs

Recall var iat ion data

0.860

0.870

0.880

0.890

0.900

0.910

0.920

20 30 40 50 100 150 200 250

Term s

q1

m in

m edian

m ax

q3

	INTRODUCTION
	PREVIOUS WORK IN THE AREA
	MOTIVATION
	DESCRIPTION OF THE SYSTEM
	Description of the Okapi System
	Description of the Genetic Algorithm
	Integration of Okapi and the GA

	DESCRIPTION OF THE EXPERIMENT
	ANALYSIS OF RESULTS
	Initial Runs and Comparison with Hill-Climbers
	Results for variation of GA Variables
	Experiments for Word Inclusion Probability
	Experiments for Mutate Probability
	Experiments for Population Size

	Results for variation of Algorithm, Elistism and Crossover strategies
	DISCUSSION AND CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	Appendix – Run variation data for the Genetic Algorithm on Initial Runs
	ga-paper-figures.pdf
	Collection Description

