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ABSTRACT

Purpose— The term selection problem for selecting query terms in information filtandgouting has
been investigated using hdlimbers of various kinds, largely through the Okapi experiments in the
TREC series of conferences. Although these are simple deterministmaapes which examine the
effect of changing the weight of one teah a time, they have been shown to improve the retrieval
effectiveness of filtering queries in these TREC experiments:chiibers are, however, likely to get
trapped in local optima, and the use of more sophisticated local search technighsspiablem that
attempt to break out of these optima are worth investigating. To this end, we applyi@ @godathm
(GA) to the same problem.

Design/Methodology/Approach— We use a standard TREC test collection from the TH8Hiliering

track, recording meaaverage precision and recall measures to allow comparison between the hill
climber and GA algorithms. We also vary elements of the GA, such as probabilityvofdabeing
included, probability of mutation and population size in order to measure theddfthbese variables.
Different strategies such as Elitist and Nelitist methods are used, as well as Roulette Wheel and Rank
selection GA algorithms.

Findings — The results of tests suggest that both techniques are, on average, better baeelinehut
the implementedsA does not match the overall performance of adtithber. The Rank selection
algorithm does better on average than the Roulette Wheel algorithne. iSher evidence in this study
that varying word inclusion probability, mutationopability or Elitist method make much difference to
the overall results. Small population sizes do not appear to be as effective rgsdptg@tion sizes.

Research limitations/implications— The evidence provided here would suggest that being stuck in a
local optima for the term selection optimization problem does not appear to be detrimérgzoverall
success of the hiltlimber. The evidence from term rank order would appear to provide extra useful
evidence which hilelimbers can use efficiently and effectively to narrow the search space.

Originality/Value — The paper represents the first attempt to comparelimibers with GAs on a
problem of this type.

Keywords: Term selection, local search, genetic algorithms.chithbers.
Article Type: Research paper.
INTRODUCTION

Information filtering is a task which requires the selection of terms from somees@ither from users
directly or from documents judged relevant by the user), which is then stored (sesietithe form of



a user profile) andsed to select new items from an incoming document stream. Of particular interest is
the issue of term selection from a set of documents judged relevant by a usgvéor tpic. There are

a wide range of techniques for term selection including toawiti relevance feedback techniques
(Harman, 1992) and machine learning techniques (Sebastiani, 2002). Both can be used independently fol
term selection, but they can also be combined with each other (Robertson et al, 1995pdpethigse
present a compaon between a hitlimber, a popular method for optimizing the terms selected in a
qguery, and a genetic algorithm (GA), tested on a-slaction problem. It is a well known disadvantage

of hill-climbers that they may become trapped on a local optimagver GAs are not so prone to this
drawback, and so it is hypothesized that a GA will perform better when applibd terin selection
problem. The GA presented in this paper not only selects the terms to be included in the gaéy, but
adjusts the weight of each word, reflecting the importance of the word in the fimal buaddition to

this straightforward comparison, the results of adjusting various paranuétédne GA are described,
giving the reader a more rounded view of how a GA may behateés situation.

The remainder of the paper is laid out as follows. In the next section we dekeriberk done on the
term selection problem and related research on GAs in information retrieval pribwvisging the
motivation for our research. The system used for our experiments and how the comparents
integrated is then described. The experimental design is declared, and theareatislysed. Wien
provide a discussion and conclusion.

PREVIOUS WORK IN THE AREA

The initial term selection algbhm used in Okapi at TREG was a two stage process, applying
relevance feedback and then using a single pass algorithm which selectedfat tgelded an increase

in average precision. The algorithm started with the top three ranked termshdogaqRobertson et

al, 1995). This, in fact, was a steepest ascentlmfiber (Tuson, 1998), which was developed further at
TREC 4 under the title of ‘Find Best’, together with two new algorithms, ‘Choos®dasitive’ and
‘Choose First Positive’ thelatter being a first ascent hilimber (Robertson et al, 1996). These TREC

4 experiments also introduced the concept of removing terms as well as adding therstpyielding

a number of different operations on term lists, namadig only;, add-remove; andremove only. The
add-remove operation was shown to be the most beneficial (Robertson et al, 1996). The Okapi at
TREG5 experiments introduced the concept of weight variation for terms (Beaulied@93), using a
simple technique of multiplying weight by 1.5 or 0.67 and taking the best result for that particular
term. The use of simulated annealing to the weight variation functionrigdsin Okapi at TREG
(Walker et al, 1998), but without success. More recent work in the area wed aar by MacFarlane et

al (2003), using parallel computing techniques to speed up the algorithms and operationsechenti
above. These are local search techniques, where traversal through the search spaimted t@s
neighbourhood solutions.

There haslao been prior work in the area of applying GAs to information retrieval/filterinth ¥gard

to term selection, Boughanem et al (2002) and Tamine et al (2003) investigated thegaseticf
algorithms for multiple query evaluation. The process they used took a number of quethesstme

topic and evidence from a ranked list of documents provided by each of these queries {adugjata

on the hit lists) to generate a query which produced better results than the inpes. dDleen et al
(1998) compare various methods for term selection including GA’s and simulatedlirgne
Improvement of the GAs crossover operation was addressed by Vrajitoru (1998), amdetidec
algorithm was compared to relevance feedbathe latter proved to be a betterethod. Yang and
Korfhage (1994), Horng and Yeh (2000), Robertson & Willett (1996) and Chang & Chen (2006) all



used a GA to adapt weights for melected keywords (no optimisation on terms was completed).
Martin-Bautista et al (1999) take this idea ftland use GA'’s to learn ranking functions as well, while
Fan et al (2003) apply Genetic Programming (GP) techniques to the same problerrPljatiezet al
(2002), LopezPujalte et al (2003a) and LopPuujalte et al (2003b) investigated the issue ofedifit
fitness functions for GAs in relevance feedback, learning terms, weigttsheesholds for a given
guery. Martin & Shackleton (2003) use a GA to address a different problem, name$etection, thus

a Boolean query is produced, rather than aoligserms with weights. GAs, unlike hillimbers, allow
global search solutions as crossover allows the algorithm to break out of the ndigbdourut
iteratively converges on a local search solution as the algorithm learok wfhthe neighbourhood
sdutions it has examined yield better results.

It should be emphasised that none of the GA methods use the two stage process descisheajier thi
The paradigm we use is known as attribute weighting (Rozsypal and Kubat, oadition to this,
most d the research, apart from Boughanem et al (2002) and Tamine et al (2003) WiREGalata,
deployrather small test collections for their experiments, e.g., Cranfielde Méormation on the area
can be found in the following review papers: Chen (1989Bhastiani (2002) and MacFarlane & Tuson
(2008)

MOTIVATION

The primary aim of the research in this paper is to investigate the use of gég@ithms in the second
stage selection process (described briefly above) and compare this witiclanibidér. A key question
for us is therefore: do increasingly sophisticated local search technigpesvénthe term selection
process? Our reasoning behind this strategy is that, whilstlimlbing techniques have been
successfully used in Okapi at TREC, tecluais| which are less likely to get stuck in local optima, like
GAs, may be able to achieve better performance on this task (in temesi®@fal effectiveness). GAs
are able to do this because of crossover (see above). GAs have previously been used theore i
research area, but have not been used in the way that we propose here, namebvel tsabettion
process for terms on which a limited set of terms are chosen and the weiglhistofave optimised.
Furthermore, research using GAs has tended to use small collections; we propgse dhéhe much
larger TREC collections used on the TREC Routing task.

DESCRIPTION OF THE SYSTEM

In this section we describe the system used for experimentation and its componeeals tmau@kapi
information retrievalIR) system, the genetic algorithm, and how these components were edetgrat
create the system.

Description of the Okapi System

Okapi is an experimental information retrieval (IR) system, written to examaneug aspects of
interactive IR researchncluding such tasks as bibliographic search andtéxll search (Robertson,
1997). Okapi was conceived at the University of Westminster as an OPAC sysfemoved to City
University in 1989 where it was extended to incorporate more general tegwvaetigorithms, in
particular an implementation of the Robertson/Sparck Jones probabilistic mobettgdn and Sparek
Jones, 1976). The storage scheme used by Okapi is the inverted file (Harman et al, 1992)aO&a
basic search system (BSS) which pdes facilities to load sets of terms, weight terms and merge sets of



terms using Boolean (e.g., and, or), Adjacency (e.g., adj) and term weighting (e.g., BM2Spoger
(Robertson, 1997).

Description of the Genetic Algorithm

Genetic algorithms haveebn shown to be robust and adaptive optimisers (Mitchell, 1999). GAs use the
Darwinian process of natural selection on a number of candidate solutions to det&enapimum
solution to a task. Mechanisms found in the natural world, such as fithess proportioneinsaledt
genetic variation of individuals, provide strong evolutionary pressure on a population to seattimi
average quality of that population in its environment. Each individual in a population corgagtg g
information (a chromosomencoding a potential solution to a problem. In this case, the chromosome
held by each individual is an array of integers (see figure 1), whereby eacbmosiesents a word
that could be included in the search, and each value in that position réptéseweighting for that
word in the search. Terms with a weight of O are excluded from the search, whiewéh values
between 1 and 7 are included in the Okapi query with a weight determinéd,byt2ing the integer
value between 0 and 7. We dsthis scheme to allow the GA a greater degree of freedarugh the
search space than the kalimber in order to reduce the chance of the algorithm getting stuck in local
optima.

Figure 1. Structure of a chromosome

The GA optimises the population tifese chromosomes through a process of evolution as follows. In
the first step of the algorithm, a finite sized population of chromosomes is initidisedndomly
generating chromosomes. Each element of a chromosome is randomly assigned af wélghtO or 4

(a value of 4 in the chromosome results in that word being included in the seidrclefault weight).

This process is biased towards assigning a weight of 0 in an attempt to produce [@eg qoeries-

i.e., the aim was to keep the number of words included in the query to a minimum in order to promote
efficiency, whilst maintaining accuracy of the result. In reality, approximdtan 10 words will be
selected (i.e., have a weight greater than 0) at this initial stage.

At the beginning okach iteration, Okapi is used to evaluate the fitness of all individual chromosomes i
the population, returning an average precision score for each one. Individuals ared sklec
reproduction using this fitness (precision) value and the Roulette Wheeti@eleethod (Goldberg,
1989). The Rank Selection method is also used in additional experinGoittb¢rg, 1989). In this
method, the probability of selecting an individual is proportional to that individual’'s Sitmégen
compared with the rest dfi¢ population. A pair of individuals is selected in this way and with a fixed
probability of 0.8, randomly selected positions of each chromosome are swappeshbbeee two
individuals (uniform crossover), producing two new offspring. For this ifrga&in, the probability of
crossover occurring at a given position in an individual is fixed at 0.5, thus on average, heifetie g
material will swap between two parents during this process. For comparisoigreddexperiments
have been performedsimg Xpoint and 2point crossover mechanisms, instead of uniform crossover.
Both of these techniques also use a fixed probability of 0.8 to randomly select espctively)
crossover points in the parent individuals. Hhpdint crossover two new pring are generated by
swapping the tail portions of the each parent. 4poidt crossover, the offspring are generated by
swapping the portion of the parent individuals between the 2 crossover poiese offspring are then



added to an offspring population ready for the next iteration. This process continues wftdptheg
population is the same size as the parent population. A disadvantage with this reprodudisnmsme
alone is that it is possible that the highest fitness individual willb@ selected for reproduction,
implying any information it encoded is lost. One approach to solve this, employed estasah, is to
always copy the highest fitness individual to the offspring popul@ti@ach iteration. In this manner,
the fitnes of the best individual can never decrease from one generation to the next.

After reproduction, the genetic material carried by offspring may be subjetutation (apart from the
best individual copied from the parent population), where a few elements within a chrommsome
modified (using a low probability, in this case, 0.01). For this research, mutation ietheased or
decreased, at random, a chromosome’s element value by one. Use of a high mutatéondestray
potentially good solutions asore elements within the chromosome are modified (Mitchell, 1999).
While mutation can destroy otherwise good candidate solutions, it is necessayy agenetic
information lost through reproduction may otherwise be impossible to replace. As sudigmageves

as a valuable service by maintaining diversity in the population and reducing the prplibailia
population may prematurely converge on a solution. Figure 2 gives an ovenhbethtie GAand hilk
climber algorithns used.



Figure 2. Optimisation algorithms used in experiments

In total, these steps comprise one iteration of a genetic algorithm; in\ke&igation the GA repeats
these until either 100 iterations have occurred or the individual with the highess in the population
has not increased its own fitness for 5 iterations.

Integration of Okapi and the GA

The GA integrates with the Okapi system, and forms the entry point for thermmhdyistem. The GA
initialises Okapi which returns the total number of available wordscmatbe used in a query. The
number of terms in the query determines the size of a chromosome, which the GA seomly
initialise its population. Fitness calculations are performed by passing eachoslome to the Okapi
system for precision evaluah. Once a stopping criterion is met, the chromosome with the highest
fitness is returned to Okapi and can be evaluated for quality.

Table 1. The TREC 8 Routing collection

DESCRIPTION OF THE EXPERIMENT

Care needs to be takerh@n handling the training data for experiments. This is largely due to the
problem of oveffitting (Robertson et al, 1996), which could occur, for example, if both stages of the
selection process were done on the whole training edd., there is a dangef selecting rare terms
which may produce good results on the whole training set, but poor results othermembar of
different strategies can be used to overcome this problem. One way is to sphirtimg set into two

and use one set for extrag terms and the other set for evaluating the methods under consideration by
selecting terms. The whole training set can then be used to produce the final quengwiea applied

to the test set (Robertson et al, 1996). This had a considerable influence onrnpetregegy, although

we used a slightly different methodology as described in MacFarlane et al (2008plitke training

set into two: one part was used for extracting terms frexdocument set for each topic (the extract set
in tablel), while the second part (the select set in table 1) was used to optimise gsiagasrms from

the first part. We did not use any further stages on the training data; thes quereoduced on thé®
stage were applied directly to the test set. tAeapway of splitting the collection would be to use an
additional validation set (a three way split), and validate the query gethératn the selection database
for each topic with this — we did not use this method due to time constraints.

The collectim used for this experiment was the TRECFiltering Track Routing set (Hull and
Robertson, 2000). Details of the documents used can be found in Table 1. The quehnissskirare

TREC topics 35400; only 47 of the queries have relevance judgmentsiagstevith them in the test

set. We ran an initial set of experiments on the select set (see table 1), with sleée@ilg on the top

20, 30, 40, 100, 150, 200 and 250 terms from relevance feedback using Robertson’s Term Selection
Value (Robertson, 1990We also ran the same term sets on all threelmtibers (described above) and

the top 20unoptimisedterms from the extract set (see table 1) for comparison purposess(thes i
baseline run). Initial Okapi weights from the training set were useth@rbaseline and optimised
gueries, and applied to the test Jéte fitness function used for training was the standard TREC mean



average precision measure. Significance tests are somewtiatversiain the field (MacFarlane and
Tuson, 2008), thereferwe used the standard percentage increase on average precision to measure
difference i.e. 5% and 10% increases.

The initial GA runs were completed using the default values declarablen2. For the hiltlimbers in

the experiment we used tlhdd/remove operations with weight variation of 0.67, 1.0 and 1.5; the first
weight to yield a positive result was accepted. Terms in thechiitbers were ‘dropped’ from the list if
they did not increase scores in 4 iterations, and orgxamined after 10 iteratns had passed. This
approach speeds up the Hililmbers and has shown to be of some benefit with respect to effectiveness
(Robertson et al, 1996). We used two i686 Linux machines running Red Hat version 9 vitlofl G
main memory: one machine was a-processor (1.6 GhZ), one a dymbcessor (1 GhZz). For each run
we recorded the standard IR measures of precision and recall. Note that me¢ cedord the effort
made in terms of evaluations, as we have evidence from previous research that biee otim
evaluations carried out is not the primary driver of optimising queries i.e.jrargmrmore of the search
space can be both beneficial and detrimental (MacFarlane, 2000).

ANALYSIS OF RESULTS

Figure 3. Initial experiments: Average Precision on GA, HiHClimber and Baseline runs

Initial Runs and Comparison with Hill -Climbers

The average precision figures obtained are shown in figure 3, with thegaw@rer the GA runs being
shown (details of the variation on the GA runs can be found in the appendix).dysimage precision as

a measure, the chart shows that both the bestlimibers (0.425) and GA average (0.396) are much
better than the baseline run (0.318). This corresponds to an increase of applpgdatéor the hilt
climbers, and 23% for the best GA, both of which are above the 10% increase level.

Table 2. GA Variables examined

For the worst GA average (150 terms, precision: 0.369), the increase is over 16% t(ebd¥8o
increase level). The average GA on all term sets is always bettehéhbaseline, but never as good as
any of the hillclimbers- the best hilclimber yields an increase of 15% over the worst average GA run
(0.369). The best hitlimber is Choose All Positive, which we will primarily focus on for the o#s

this paper.Note, figure 3 indicates there is very little gain after 40 terms i.e., 0.04 or 1%ragave
precision —we therefore only used 20, 30 and 40 terms when conducting the GA variable experiments
below as no noticeable increase was recorded. Of conceendgtim performance in average precision
using 150 terms affecting all algorithms, particularly the GA. The onlyptiareto this is Choose First
Positive— which varies little after 40 terms. There is some evidence, although not ceaecthsit recall

is increased when using 150 terms in a query (see figure 4). This appears to be theffedttici
precision versus recall.



Figure 4. Initial experiments: Recall on GA, HillClimber and Baseline runs

Comparing the average precision results againgtdahecipants of the track which produced this data, is
largely favourable (Hull and Robertson, 2000). In this track were 10 participants: éhadasd better
than four runs (these systems are using much more sophisticated techniques tleatopi@@lerms
from relevance feedback), whilst the best-blilinber run (Choose All Positive) did better than seven
runs. The best performing average GA (on 50 terms), did better than five runs.

With respect to recall (see figure-4variation on this measure can been seen in the appendix), the hill
climber runs are all above the baselirthe best run (150 terms on Choose All Positive) yielding a 5%
increase over the baseline. The average GA runs yield a noticeable increase in redié (oaeeline)

only ontwo occasions at 100 and 250 terms. Otherwise, recall is below or very near the baseline on all
term sets. Comparing the worst average GA run on 30 terms with the baseliads tlesis than 1%
difference. The evidence provided here suggests that asingf the query optimisation techniques put
forward in this paper provides an increase in precision without adversely rajfeettall. These
techniques are stable on the recall metric i.e., recall is not adversely affected.

Results for variation of GAVariables
Given the results in our initial experiments, we decided to observe the effect ofinmgpdinumber of
the GA’s variables with the goal of increasing the quality of the term selectioagsto

Experiments for Word Inclusion Probability

With respect to average precision, runs are all above 10% over the baseline (itealsvage run 0.8

on 40 is 17% better than the baseline), however at no point do any of the runs reach the level achieved
by the best hikclimber. There is very little differe@ between the runs on this variable. On average,
runs using 20 terms are better than either runs on 30/40 terms, but most of thes&essctiran 5%
difference over the baseline. As this variable only affects thelipgulation, the evidence provided in

figure 5 clearly indicates that the GA is not sensitive to stariimgliions (i.e., the number of words
included in each initial chromosome) cause by this variable.

Figure 5. Word Inclusion Probability experiments: Average Precision on GA verss baseline and
best Hill-Climber run

This is a very desirable property for a GA on term selectaman elitist GA is being used with average
precision as the fitness function, the expected result would be aitligiht increase or the same result
for average precisiont a higherword inclusion probability has a lower initial precision score, then the
precision must increase more (for thadrd inclusion probabilitywalue) in order for the final precision
to be similar to the final precision achieved blpawer word inclusion probabilitwalue (which starts
with a higher initial precision score). The increase is not caused laotdanclusion probabilityalue
however, and is a result of the GA itself. Word inclusion probability only afteetaitialiteration, not
subsequent ones. A higher word inclusion probability vetugd mean that more terms will be included
in a query, and therefore more documents will be retrieved before ranking.

On recall there appears to be an upward trend as theinabudion probability increases (see figure 6).
This effect could be caused by a higher probability for inclusion of words, whichsesré@e number
of terms for the initial population of terms for individual query. In the initial iteratidngherword



inclusion probabilityymplies more terms, increasing coverage of relevanimeas retrieved, implying
a higher initial recall. As the mutation rate will remain constant acrosgdiffeeent experiments, the
amount of change will remain roughly the samgardless of thevord inclusion probabilityand so if a
run has a better starting point (with respect to reeal§ a result of a highevord inclusion probability
—then this will retain it's higher recall as the iterations progress.

Figure 6. Word Inclusion Probability experiments: Recall on GA versus baseline and best Hi
Climber run

With respect to recall, it is possible that there is an important interaction bettwes@rd Inclusion
Probability and Mutate Probability variables. Lower rates gbrobability for including words will
produce a “narrower” starting query (the implication being that recall willwerjoand a large number
of iterations would do little to improve performance. For example, on 100 iteratfmnsjefault
mutation rate ©0.01 on 40 terms produces an average of 0.4 mutations per iteration. If the mutation
rate is increased too much, the increased amount of change on a chromosomeeratenmywill detract
from improvements in recaH the search will effectively becamrandom. From figure 7, it can be seen
that the average recall using 40 terms increasesMuithte Probability values to 0.11 then decreases,
with a similar trend on 20 terms, increasing up to 0.15 mutation rate, before therréas expected
that ahigher (rather than the default) mutation rate with a higher ratdoad Inclusion Probability will
offer better recall (due to time constraints we were unable to examine thesfusther— this will be
examined in further research).

Experiments for Mutate Probability

With respect to the probability of mutation, the average precision in all casessafgpba better than
the baseline (see figure 7). On average, these are much better than the baselore 38.¢erms the
average increase over the Hame is 22/23% for values oMutate Probability). However, no GA
matches the best hitlimber run. There is very little variation on the valuévaftate Probability or its
interaction with term set size. The results presented in figure 7 also fit intheitlesults for th&\Vord
Inclusion Probability experiments- this had little impact over the precision on the individual sizes
tested. A higher word inclusion probability means more included words at the start. sTheebision
cannot decrease ovdeiations, as we are using an elitist GA, therefore the precision remainantons
with small changes in mutation rate. It is probable that a higher figuredgsrébability of mutation
(e.g., 0.8) would reduce performance as it is likely any useful itgionmation would be destroyed,
resulting in the GA approximating to a random search. The recall resultsigsee §) show small
variations around the baseline.

Figure 7. Mutate Probability experiments: Average precision on GA versus basak and bestHill -
Climber run

Figure 8. Mutate Probability experiments: Recall on GA versus baseline and kgdill -Climber
run



Figure 9. Population Size experiments: Average precision on GA versus baselimeldest Hill-
Climber run

Figure 10. Population Size expements: Recall on GA versus baseline and best HiClimber run

Experiments for Population Sze

In terms of average precision it does seem beneficial to Bspubation Sze of 100 or over (see figure
9). The increase from 10 to 100 on this variable fote#fhs results in a precision increase of 9.3%, on
average. With respect to recall there is a slight upwards trend (all below thev&% but a smaller
population (below 50) does appear to be detrimental, particularly on the minimum rurigysz=&a)
This phenomenon is probably related to the low mutation rate used. The defatilbmwatte of 0.01 on
20 terms means 0.2 words mutated per individual per iteration, and only 2 words foratipomil 10
individuals per iteration. Increasing tRepulation Sze to 100 means 20 words modified per iteration
(all averages). The larger the population size the more diverse the population soaanodarge size
results in better performance. With a small population the algorithm cannot se¢qgoser the search
space at the beginning and the range of genetic material is not adequate enocglase fitness in an
efficient manner.

Results for variation of Algorithm, Elistism and Crossoer strategies

Figure 11 Roulette Wheel vs Best HHClimber runs

Figure 12 —Rank Selection vs Best HilClimber runs

Results from the additional experiments are presented in figures 11 and 12. All GAaiitns were
much better than the baseline run (the later are not included to improve the visiktitigy agftimized
runs). An interesting result from these further experiments ishhaRank Selection method moves the
GA up near the performance of the Hulimbers and for most runs does much better than the Roulette
Wheel selection method apart from wo exceptions. There are a couple of important differences
between lte two selection methods which will have impact on the results. Firstly, RanktiSele
reduces the advantage that a very high fithess chromosome has in Roulette Whieh seeaning
that lower fithess chromosomes have a better chance of being selectedirdigh ¥alues tend to be
recorded in earlier iterations of the optimization process. Rank Selection acthievby first ordering

(or ranking) the population of chromosomes by fitness, then giving each chromosometiansele
“value” based on its position in the rank rather than its fithess. The |lGmess chromosome gets a '1’,
the next '2', and so on. An individual is selected by comparing a random number vethathias)
values. This will reduce the probability of overfitting on the training séé¢8eg good training terms
which are poor on the test set), or finding a good optima too early in the search amis®epondly,
Rank Selection helps to differentiate ween chromosomes with very similar fithess values. For
example, if there are five chromosomes with fitnesses 0.18, 0.19, 0.20, 0.21, 0.22 (i.dy siatilad
fitnesses), in the Roulette Wheel method, these would all be similarly propdrtamee havea



reasonably equal chance of selection (i.e. approx 1/20). In Rank selection howevwkiffetbaces
would be exaggerated so, in order, the lowest would have a 1/15 chance of selexti@xt /15, the
next 3/15, then 4/15, then 5/15. Therefore a slightly better solution has more chance of being chosen.

Comparing hiliclimbing results to GA Rank Selection results also yields some interesting.régods
optimizing on 20 terms, all Rank Selection runs are better than the bedintdér run. Howevenone
match the hiliclimber after 30 terms, with a number of runs virtually identicafe@nce between these
runs are small howeverall bar two runs on 40 terms are below the 5% increase mark. This together
with the clear trend upwards for hdlimbing methods points to the nature of the term selection process
used e.g. evidence from the initial term selection process when using the Tectro®é&/alue to rank
terms (Robertson, 1990). This ranking mechanism has shown to beprsefding a sufficently large
number of relevance assessments are provided (Robertson et al,Th@®&fore the hitclimber will be
moving in a space which is known to be generally good anyway, and the results from figoieh 3 w
show there is very little gain after ruaptimizing on 40 terms provide some further evidence. Although
all optimized runs used the top 3 terms from the ranked list, after this initializatiorAteehBow this
evidence away and start from scratch. Prior evidence based on the term seddudiomould appear to
provide an advantage to any method that can exploit it.

When comparing Elitist vs nellitist strategies and crossover methods (uniform, 1 and 2 point) in
figures 11 and 12, there does not appear to be much of a difference betweeasth#rare within the

5% mark. The results on elitist approaches are perhaps counterintuitive; as thie kg performing
chromosome from one generation to the next, allowing successive improvement in mwheheay

as the hiliclimber, it wouldbe expected that the elitist approach would yield an improved precision over
the nonelitist strategy. This implies that the mutation/crossover strategies cause very little
variation/improvement in the population's overall fitness in successive gensyand evidence from
figure 7 above does in fact show that that mutation probability has little effebe@vérage precision
(i.e. the fitness). This lack of variation in the population may well support thetageawhich the Rank
Selection method hasver Roulette Wheel, explained above. A further factor could be thaglitish
strategies used more iterations to achieve the same result, although iognfinlm would require
analysis of iterations (we did not collect this information in the expetshen

DISCUSSION AND CONCLUSION

Whilst it is clear that using GA’s on the term selection problem addrassinis paper can improve
performance in terms of average precision over the baseline, it is alschaletrete is no guarantee of
success in usgsuch a method. Even though the worst average GA run can provide a performance
which was much better than the baseline, there is no evidence that the GA oer @&/bgiter than the
various hillclimbing algorithms used here. In fact, the evidence is to the contrary. Both thintidiéer
algorithms and the GA appear to be able to improve precision over the baseline withoagreztadl.

A short investigation was conducted into the behaviour of the GA where certamepenrs were
adjusted. It was fouhthat to maximise recall a higher probability of initial word inclusion should be
considered but this has little effect on the precision. Finally it wss faund that a larger population
size resulted in a better precision and a better recall. Theeeranmber of variables that determine the
behaviour of a GA. We selected a few of the most important ones here but in the futurshathler®e



tried, for example the amount of chromosome that swaps during crossover, wiim thienaaking the
GA more conpetitive compared to the hitlimber. Futher experiments were conducted, comparing
selection strategies (Roulette Wheel vs. Rank selection), elitist veliish and varying crossover
(uniform, 1 point and 2 point). Although the Rank Selection methddetter than Roulette Wheel, it
did not match the hHtlimber on the larger term sets usedlthough differences were small for most
runs. No real difference was found on elitist vs.-ebtist strategies or crossover variation. Evidence
from the Tem Selection Value used by the kslimber to rank terms would appear to give it something
of an advantage on optimization problems of this type.

This paper presents the first real attempt to compare the performance of @G#st dgllclimbers
directly on an IR problem of this type. We had hypothesised that GAs should not get stuck in local
optima so readily and would therefore have better performance. However, on the evidence provide
this paper, it appears that being stuck in local optima is not such a problem-tintokrs as these
methods consistently opierformed a GA. The ability of the hitlimber to use term rank order would
appear to provide the method with something of an advantage when moving through thesseac

The GA, which fnds other optima, does on average appear to find many more peaks, which are superior
to the baseline (e.g., see figure 3) but may not on average be as good as the Iscighbéil peak.
Further research could include the comparison of other stochaatiches such as Artificidmmune
Systems (AlS)Particle Swarm OptimisatiofPSO),Ant Colony Optimisatior(ACO) in order to verify

these results.
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Figure A2. Box Plot data for Recall in initial GA runs



Figure 1. Structure of a chromosome
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Figure 2. Optimisation algorithms used in
experiments

1) Randomly initialise population
2)  While stopping criterion not met, do:

a. Calculate fitness of all population members using
average pgcision as fitness metric.

b. Create a new individual with a chromosome
identical to the fittest individual in the current
population and place in the (currently empty)
offspring population.

c.  While size of offspring population does not equal
size of current poulation, do:

i. Choose two individuals probabilistically
based on their fitness

ii. Swap genetic material between these
two parent individuals to create two
child individuals (using fixed rate
probability)

iii. Mutate both child individuals (using
fixed rate probabity)

iv. Place child individuals in the offspring
population

d. Replace current with  offspring

population.

population

Figure 2a = GA psedocode

Load term pool
Generate base and evaluatierm sets
Obtain relevance information for a topic
Form accumulatedes from base set
Loop while no stopping criteria is reached
Loop list of terms in evaluation set
Evaluate an operation on the current term
If operation is successful
If algorithm is CAP
Add current term to query
If algorithm is FB
Record current term as best term.
If algorithm is CFP
Leave inner loop
EndLoop
If algorithm is FB or CFP
Update query with best term
Check the stopping criteria
Endloop

Figure 2b— Hill -Climber pseudocode



Table 1. The TREC 8 Routing collection

Data Set | Collection Total Docs
Description
Training | Financial Times 1991 456,533
Set 1994, Federal Register
1994, Camogressiona
Record 1993, FBIS
LA Times
Extract Approximately half of] 228,268
Set Training set.
Select Set| Approximately half of 228,265
Training set.
Test Set | Financial Times 1993 140,651
1994




Figure 3. Initial experiments: Average Precisio on GA, Hill-Climber and
Baseline runs

GA vs Hill-Climbers
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Table 2. GA Variables examined

Variable Description Values Used| Defau
It
Value
Word The probability of any one word being includ¢ 0.1 to 0.8/ 0.1
Inclusion Default is 0.1 so an average of 10% of words willl eth
. included in a chromosome, but the number of includedrements of
Probability words will change as the population evolves. Increasihg (7 runs in
this value only impacts the initial population. T] total).
algorithm will optimise the number of included tern
but a selection of this value near the optimwithresult
in a better start population and thus reduce the
taken for the population to converge on a solution.
Mutate Varies the chance of a mutation in one element | 0.01, 0.05) 0.01
Probability | chromosore. High values promote diversity aj 0.09,  0.11,
therefore exploration of search space, but at the expén$®é and 0.20
of a higher risk of reducing the quality of a gg (5 runs in
individual. total).
Population | Determines the nunab of individuals in the populatio 10, 50, 100) 50
Size Lower figures will result in shorter evaluation time f 150, 200,
generation but will require more generations to s¢ 300, 400 ang

the problem. The converse is true for higher val
There will exist an optimum value in terms
efficiency between these two extremes.

500 (7 runs in
total).




Figure 4. Initial experiments: Recall on GA, Hill-Climber and Baseline runs

GA vs Hill-Climbers
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Figure 5. Word Inclusion Probability experiments: Average Precision on @&
versusbaseline and best HiHClimber run
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Figure 6. Word Inclusion Probability experiments: Recall on GA versus basdine
and best Hill-Climber run
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Figure 7. Mutate Probability experiments: Average precision on GA versus
baseline and best HiHClimber run
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Figure 8. Mutate Probability experiments: Recall on GA versus baseline andelst
Hill -Climber run
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Figure 9. Population Size experiments: Average precision on GA versus basel
and best Hill-Climber run
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Figure 10. Population Size experiments: Recall on GA versus baseline anesb
Hill -Climber run
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Figure 11 Roulette Wheel vs Best HHClimber runs
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Figure 12 —Rank Selection vs Best HillClimber runs
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Figure Al. Box Plot data for average precision in initial GA runs
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