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ABSTRACT 
Purpose – The term selection problem for selecting query terms in information filtering and routing has 
been investigated using hill-climbers of various kinds, largely through the Okapi experiments in the 
TREC series of conferences. Although these are simple deterministic approaches which examine the 
effect of changing the weight of one term at a time, they have been shown to improve the retrieval 
effectiveness of filtering queries in these TREC experiments. Hill-climbers are, however, likely to get 
trapped in local optima, and the use of more sophisticated local search techniques for this problem that 
attempt to break out of these optima are worth investigating. To this end, we apply a genetic algorithm 
(GA) to the same problem. 

Design/Methodology/Approach – We use a standard TREC test collection from the TREC-8 filtering 
track, recording mean average precision and recall measures to allow comparison between the hill-
climber and GA algorithms. We also vary elements of the GA, such as probability of a word being 
included, probability of mutation and population size in order to measure the effect of these variables. 
Different strategies such as Elitist and Non-Elitist methods are used, as well as Roulette Wheel and Rank 
selection GA algorithms. 

Findings – The results of tests suggest that both techniques are, on average, better than the baseline, but 
the implemented GA does not match the overall performance of a hill-climber.  The Rank selection 
algorithm does better on average than the Roulette Wheel algorithm. There is no evidence in this study 
that varying word inclusion probability, mutation probability or Elitist method make much difference to 
the overall results. Small population sizes do not appear to be as effective as larger population sizes. 

Research limitations/implications – The evidence provided here would suggest that being stuck in a 
local optima for the term selection optimization problem does not appear to be detrimental to the overall 
success of the hill-climber. The evidence from term rank order would appear to provide extra useful 
evidence which hill-climbers can use efficiently and effectively to  narrow the search space.  

Originality/Value  – The paper represents the first attempt to compare hill-climbers with GAs on a 
problem of this type. 

Keywords: Term selection, local search, genetic algorithms, hill-climbers. 

Article Type: Research paper. 

INTRODUCTION  
Information filtering is a task which requires the selection of terms from some source (either from users 
directly or from documents judged relevant by the user), which is then stored (sometimes in the form of 



a user profile) and used to select new items from an incoming document stream. Of particular interest is 
the issue of term selection from a set of documents judged relevant by a user for a given topic. There are 
a wide range of techniques for term selection including traditional relevance feedback techniques 
(Harman, 1992) and machine learning techniques (Sebastiani, 2002). Both can be used independently for 
term selection, but they can also be combined with each other (Robertson et al, 1995). In this paper we 
present a comparison between a hill-climber, a popular method for optimizing the terms selected in a 
query, and a genetic algorithm (GA), tested on a term-selection problem. It is a well known disadvantage 
of hill-climbers that they may become trapped on a local optima, however GAs are not so prone to this 
drawback, and so it is hypothesized that a GA will perform better when applied to the term selection 
problem. The GA presented in this paper not only selects the terms to be included in the query, but also 
adjusts the weight of each word, reflecting the importance of the word in the final query. In addition to 
this straightforward comparison, the results of adjusting various parameters of the GA are described, 
giving the reader a more rounded view of how a GA may behave in this situation. 

The remainder of the paper is laid out as follows. In the next section we describe the work done on the 
term selection problem and related research on GAs in information retrieval, thus providing the 
motivation for our research. The system used for our experiments and how the components were 
integrated is then described. The experimental design is declared, and the results are analysed.  We then 
provide a discussion and conclusion. 

PREVIOUS WORK IN THE AREA  
The initial term selection algorithm used in Okapi at TREC-3 was a two stage process, applying 
relevance feedback and then using a single pass algorithm which selected a term if it yielded an increase 
in average precision. The algorithm started with the top three ranked terms for each topic (Robertson et 
al, 1995).  This, in fact, was a steepest ascent hill-climber (Tuson, 1998), which was developed further at 
TREC 4 under the title of ‘Find Best’, together with two new algorithms, ‘Choose All Positive’ and 
‘Choose First Positive’ - the latter being a first ascent hill-climber (Robertson et al, 1996). These TREC-
4 experiments also introduced the concept of removing terms as well as adding them to the list, yielding 
a number of different operations on term lists, namely: add only; add-remove; and remove only. The 
add-remove operation was shown to be the most beneficial (Robertson et al, 1996).  The Okapi at 
TREC-5 experiments introduced the concept of weight variation for terms (Beaulieu et al, 1997), using a 
simple technique of multiplying a weight by 1.5 or 0.67 and taking the best result for that particular 
term. The use of simulated annealing to the weight variation function was tried in Okapi at TREC-6 
(Walker et al, 1998), but without success. More recent work in the area was carried out by MacFarlane et 
al (2003), using parallel computing techniques to speed up the algorithms and operations mentioned 
above. These are local search techniques, where traversal through the search space is restricted to 
neighbourhood solutions.  

There has also been prior work in the area of applying GAs to information retrieval/filtering. With regard 
to term selection, Boughanem et al (2002) and Tamine et al (2003) investigated the use of genetic 
algorithms for multiple query evaluation. The process they used took a number of queries for the same 
topic and evidence from a ranked list of documents provided by each of these queries (using data fusion 
on the hit lists) to generate a query which produced better results than the input queries. Chen et al 
(1998) compare various methods for term selection including GA’s and simulated annealing.  
Improvement of the GAs crossover operation was addressed by Vrajitoru (1998), and the amended 
algorithm was compared to relevance feedback - the latter proved to be a better method. Yang and 
Korfhage (1994), Horng and Yeh (2000), Robertson & Willett (1996) and  Chang & Chen (2006) all 



used a GA to adapt weights for pre-selected keywords (no optimisation on terms was completed). 
Martin-Bautista et al (1999) take this idea further and use GA’s to learn ranking functions as well, while 
Fan et al (2003) apply Genetic Programming (GP) techniques to the same problem. Lopez-Pujalte et al 
(2002), Lopez-Pujalte et al (2003a) and Lopez-Pujalte et al (2003b) investigated the issue of different 
fitness functions for GAs in relevance feedback, learning terms, weights and thresholds for a given 
query. Martin & Shackleton (2003) use a GA to address a different problem, namely term selection, thus 
a Boolean query is produced, rather than a list of terms with weights. GAs, unlike hill-climbers, allow 
global search solutions as crossover allows the algorithm to break out of the neighbourhood, but 
iteratively converges on a local search solution as the algorithm learns which of the neighbourhood 
solutions it has examined yield better results. 

It should be emphasised that none of the GA methods use the two stage process described in this paper. 
The paradigm we use is known as attribute weighting (Rozsypal and Kubat, 2001). In addition to this, 
most of the research, apart from Boughanem et al (2002) and Tamine et al (2003) who use TREC data, 
deploy rather small test collections for their experiments, e.g., Cranfield. More information on the area 
can be found in the following review papers: Chen (1995), Sebastiani (2002) and MacFarlane & Tuson 
(2008). 

MOTIVATION  
The primary aim of the research in this paper is to investigate the use of genetic algorithms in the second 
stage selection process (described briefly above) and compare this with a hill-climber. A key question 
for us is therefore: do increasingly sophisticated local search techniques improve the term selection 
process? Our reasoning behind this strategy is that, whilst hill-climbing techniques have been 
successfully used in Okapi at TREC, techniques which are less likely to get stuck in local optima, like 
GAs, may be able to achieve better performance on this task (in terms of retrieval effectiveness). GAs 
are able to do this because of crossover (see above). GAs have previously been used before in this 
research area, but have not been used in the way that we propose here, namely a two level selection 
process for terms on which a limited set of terms are chosen and the weights of which are optimised. 
Furthermore, research using GAs has tended to use small collections; we propose the use of the much 
larger TREC collections used on the TREC Routing task. 

 

DESCRIPTION OF THE SYSTEM 
In this section we describe the system used for experimentation and its components, namely the Okapi 
information retrieval (IR) system, the genetic algorithm, and how these components were integrated to 
create the system. 

 

Description of the Okapi System 
Okapi is an experimental information retrieval (IR) system, written to examine various aspects of 
interactive IR research, including such tasks as bibliographic search and full-text search (Robertson, 
1997). Okapi was conceived at the University of Westminster as an OPAC system and moved to City 
University in 1989 where it was extended to incorporate more general text retrieval algorithms, in 
particular an implementation of the Robertson/Sparck Jones probabilistic model (Robertson and Sparck-
Jones, 1976). The storage scheme used by Okapi is the inverted file (Harman et al, 1992). Okapi has a 
basic search system (BSS) which provides facilities to load sets of terms, weight terms and merge sets of 



terms using Boolean (e.g., and, or), Adjacency (e.g., adj) and term weighting  (e.g., BM25) operations 
(Robertson, 1997).  

 

Description of the Genetic Algorithm 
Genetic algorithms have been shown to be robust and adaptive optimisers (Mitchell, 1999). GAs use the 
Darwinian process of natural selection on a number of candidate solutions to determine the optimum 
solution to a task.  Mechanisms found in the natural world, such as fitness proportional selection and 
genetic variation of individuals, provide strong evolutionary pressure on a population to maximise the 
average quality of that population in its environment. Each individual in a population contains genetic 
information (a chromosome) encoding a potential solution to a problem. In this case, the chromosome 
held by each individual is an array of integers (see figure 1), whereby each position represents a word 
that could be included in the search, and each value in that position represents the weighting for that 
word in the search. Terms with a weight of 0 are excluded from the search, while terms with values 
between 1 and 7 are included in the Okapi query with a weight determined by 2n-4, n being the integer 
value between 0 and 7. We used this scheme to allow the GA a greater degree of freedom through the 
search space than the hill-climber in order to reduce the chance of the algorithm getting stuck in local 
optima. 

 

Figure 1. Structure of a chromosome 

 

The GA optimises the population of these chromosomes through a process of evolution as follows.  In 
the first step of the algorithm, a finite sized population of chromosomes is initialised by randomly 
generating chromosomes. Each element of a chromosome is randomly assigned a weight of either 0 or 4 
(a value of 4 in the chromosome  results in that word being included in the search with default weight). 
This process is biased towards assigning a weight of 0 in an attempt to produce less complex queries – 
i.e.,  the aim was to keep the number of words included in the query to a minimum in order to promote 
efficiency, whilst maintaining accuracy of the result. In reality, approximately 1 in 10 words will be 
selected (i.e.,  have a weight greater than 0) at this initial stage. 

At the beginning of each iteration, Okapi is used to evaluate the fitness of all individual chromosomes in 
the population, returning an average precision score for each one.  Individuals are selected for 
reproduction using this fitness (precision) value and the Roulette Wheel Selection method (Goldberg, 
1989). The Rank Selection method is also used in additional experiments (Goldberg, 1989). In this 
method, the probability of selecting an individual is proportional to that individual’s fitness when 
compared with the rest of the population.  A pair of individuals is selected in this way and with a fixed 
probability of 0.8,   randomly selected positions of each chromosome are swapped between these two 
individuals (uniform crossover), producing two new offspring.  For this investigation, the probability of 
crossover occurring at a given position in an individual is fixed at 0.5, thus on average, half the genetic 
material will swap between two parents during this process. For comparison, additional experiments 
have been performed using 1-point and 2-point crossover mechanisms, instead of uniform crossover.  
Both of these techniques also use a fixed probability of 0.8 to randomly select 1 or 2 (respectively) 
crossover points in the parent individuals.  In 1-point crossover two new offspring are generated by 
swapping the tail portions of the each parent.  In 2-point crossover, the offspring are generated by 
swapping the portion of the parent individuals between the 2 crossover points. These offspring are then 



added to an offspring population ready for the next iteration.  This process continues until the offspring 
population is the same size as the parent population.  A disadvantage with this reproduction mechanism 
alone is that it is possible that the highest fitness individual will not be selected for reproduction, 
implying any information it encoded is lost.  One approach to solve this, employed in this research, is to 
always copy the highest fitness individual to the offspring population in each iteration.  In this manner, 
the fitness of the best individual can never decrease from one generation to the next. 

After reproduction, the genetic material carried by offspring may be subject to mutation (apart from the 
best individual copied from the parent population), where a few elements within a chromosome are 
modified (using a low probability, in this case, 0.01). For this research, mutation either increased or 
decreased, at random, a chromosome’s element value by one.  Use of a high mutation rate can destroy 
potentially good solutions as more elements within the chromosome are modified (Mitchell, 1999).  
While mutation can destroy otherwise good candidate solutions, it is necessary as any genetic 
information lost through reproduction may otherwise be impossible to replace. As such, mutation serves 
as a valuable service by maintaining diversity in the population and reducing the probability that a 
population may prematurely converge on a solution. Figure 2 gives an overview of both the GA and hill-
climber algorithms used. 



 
 

Figure 2. Optimisation algorithms used in experiments 

 

In total, these steps comprise one iteration of a genetic algorithm; in this investigation the GA repeats 
these until either 100 iterations have occurred or the individual with the highest fitness in the population 
has not increased its own fitness for 5 iterations.  

Integration of Okapi and the GA 
The GA integrates with the Okapi system, and forms the entry point for the combined system.  The GA 
initialises Okapi which returns the total number of available words that can be used in a query. The 
number of terms in the query determines the size of a chromosome, which the GA uses to randomly 
initialise its population.  Fitness calculations are performed by passing each chromosome to the Okapi 
system for precision evaluation.  Once a stopping criterion is met, the chromosome with the highest 
fitness is returned to Okapi and can be evaluated for quality.  

 

Table 1. The TREC 8 Routing collection 

 

DESCRIPTION OF THE EXPERIMENT  
Care needs to be taken when handling the training data for experiments. This is largely due to the 
problem of over-fitting (Robertson et al, 1996), which could occur, for example, if both stages of the 
selection process were done on the whole training set - e.g., there is a danger of selecting rare terms 
which may produce good results on the whole training set, but poor results otherwise. A number of 
different strategies can be used to overcome this problem. One way is to split the training set into two 
and use one set for extracting terms and the other set for evaluating the methods under consideration by 
selecting terms. The whole training set can then be used to produce the final query which is then applied 
to the test set (Robertson et al, 1996). This had a considerable influence on the testing strategy, although 
we used a slightly different methodology as described in MacFarlane et al (2003). We split the training 
set into two: one part was used for extracting terms from the document set for each topic (the extract set 
in table 1), while the second part (the select set in table 1) was used to optimise queries using terms from 
the first part. We did not use any further stages on the training data; the queries we produced on the 2nd 
stage were applied directly to the test set. Another way of splitting the collection would be to use an 
additional validation set (a three way split), and validate the query generated from the selection database 
for each topic with this – we did not use this method due to time constraints. 

The collection used for this experiment was the TREC-8 Filtering Track Routing set (Hull and 
Robertson, 2000). Details of the documents used can be found in Table 1. The queries for this set are 
TREC topics 351-400; only 47 of the queries have relevance judgments associated with them in the test 
set. We ran an initial set of experiments on the select set (see table 1),  with the GA selecting on the top 
20, 30, 40, 100, 150, 200 and 250 terms from relevance feedback using Robertson’s Term Selection 
Value (Robertson, 1990). We also ran the same term sets on all three hill-climbers (described above) and 
the top 20 unoptimised terms from the  extract set (see table 1) for comparison purposes (this is the 
baseline run). Initial Okapi weights from the training set were used on the baseline and optimised 
queries, and applied to the test set. The fitness function used for training was the standard TREC mean 



average precision measure. Significance tests are somewhat controversial in the field (MacFarlane and 
Tuson, 2008), therefore we used the standard percentage increase on average precision to measure 
difference i.e. 5% and 10% increases. 

The initial GA runs were completed using the default values declared in table 2. For the hill-climbers in 
the experiment we used the add/remove operations with weight variation of 0.67, 1.0 and 1.5; the first 
weight to yield a positive result was accepted. Terms in the Hill-climbers were ‘dropped’ from the list if 
they did not increase scores in 4 iterations, and only re-examined after 10 iterations had passed. This 
approach speeds up the Hill-climbers and has shown to be of some benefit with respect to effectiveness 
(Robertson et al, 1996). We used two i686 Linux machines running Red Hat version 9 with 1 GB of 
main memory: one machine was a uni-processor (1.6 GhZ), one a dual-processor (1 GhZ). For each run 
we recorded the standard IR measures of precision and recall. Note that we did not record the effort 
made in terms of evaluations, as we have evidence from previous research that the number of 
evaluations carried out is not the primary driver of optimising queries i.e., examining more of the search 
space can be both beneficial and detrimental (MacFarlane, 2000).  

ANALYSIS OF RESULTS 
 

Figure 3. Initial experiments: Average Precision on GA, Hill-Climber and Baseline runs 

Initial Runs and Comparison with Hill -Climbers 
The average precision figures obtained are shown in figure 3, with the average over the GA runs being 
shown (details of the variation on the GA runs can be found in the appendix). Using average precision as 
a measure, the chart shows that both the best hill-climbers (0.425) and GA average (0.396) are much 
better than the baseline run (0.318).  This corresponds to an increase of approximately 33% for the hill-
climbers, and 23% for the best GA, both of which are above the 10% increase level. 

 

Table 2. GA Variables examined

 

For the worst GA average (150 terms, precision: 0.369), the increase is over 16% (above the 10% 
increase level).  The average GA on all term sets is always better than the baseline, but never as good as 
any of the hill-climbers - the best hill-climber yields an increase of 15% over the worst average GA run 
(0.369). The best hill-climber is Choose All Positive, which we will primarily focus on for the rest of 
this paper. Note, figure 3 indicates there is very little gain after 40 terms i.e., 0.04 or 1% in average 
precision – we therefore only used 20, 30 and 40 terms when conducting the GA variable experiments 
below as no noticeable increase was recorded. Of concern is the dip in performance in average precision 
using 150 terms affecting all algorithms, particularly the GA. The only exception to this is Choose First 
Positive – which varies little after 40 terms. There is some evidence, although not conclusive, that recall 
is increased when using 150 terms in a query (see figure 4). This appears to be the natural effect of 
precision versus recall.  



 

Figure 4. Initial experiments: Recall on GA, Hill-Climber and Baseline runs 

Comparing the average precision results against the participants of the track which produced this data, is 
largely favourable (Hull and Robertson, 2000). In this track were 10 participants: the baseline did better 
than four runs (these systems are using much more sophisticated techniques than simple top 20 terms 
from relevance feedback), whilst the best hill-climber run (Choose All Positive) did better than seven 
runs. The best performing average GA (on 50 terms), did better than five runs. 

With respect to recall (see figure 4 – variation on this measure can been seen in the appendix), the hill-
climber runs are all above the baseline - the best run (150 terms on Choose All Positive) yielding a 5% 
increase over the baseline. The average GA runs yield a noticeable increase in recall (over the baseline) 
only on two occasions - at 100 and 250 terms. Otherwise, recall is below or very near the baseline on all 
term sets. Comparing the worst average GA run on 30 terms with the baseline, there is less than 1% 
difference. The evidence provided here suggests that using any of the query optimisation techniques put 
forward in this paper provides an increase in precision without adversely affecting recall. These 
techniques are stable on the recall metric i.e.,  recall is not adversely affected.  

Results for variation of GA Variables  
Given the results in our initial experiments, we decided to observe the effect of modifying a number of 
the GA’s variables with the goal of increasing the quality of the term selection process. 

Experiments for Word Inclusion Probability 
With respect to average precision, runs are all above 10% over the baseline (the lowest average run 0.8 
on 40 is 17% better than the baseline), however at no point do any of the runs reach the level achieved 
by the best hill-climber. There is very little difference between the runs on this variable. On average, 
runs using 20 terms are better than either runs on 30/40 terms, but most of these record less than 5% 
difference over the baseline. As this variable only affects the initial population, the evidence provided in 
figure 5 clearly indicates that the GA is not sensitive to starting conditions (i.e., the number of words 
included in each initial chromosome) cause by this variable. 

 

Figure 5. Word Inclusion Probability experiments: Average Precision on GA versus baseline and 
best Hill-Climber run  

This is a very desirable property for a GA on term selection - as an elitist GA is being used with average 
precision as the fitness function, the expected result would be either a slight increase or the same result 
for average precision. If a higher word inclusion probability has a lower initial precision score, then the 
precision must increase more (for that word inclusion probability value) in order for the final precision 
to be similar to the final precision achieved by a lower word inclusion probability value (which starts 
with a higher initial precision score).  The increase is not caused by the word inclusion probability value 
however, and is a result of the GA itself. Word inclusion probability only affects the initial iteration, not 
subsequent ones. A higher word inclusion probability value could mean that more terms will be included 
in a query, and therefore more documents will be retrieved before ranking.     

On recall there appears to be an upward trend as the word inclusion probability increases (see figure 6). 
This effect could be caused by a higher probability for inclusion of words, which increases the number 
of terms for the initial population of terms for individual query. In the initial iteration a higher word 



inclusion probability implies more terms, increasing coverage of relevant documents retrieved, implying 
a higher initial recall.  As the mutation rate will remain constant across the different experiments, the 
amount of change will remain roughly the same regardless of the word inclusion probability, and so if a 
run has a better starting point (with respect to recall) – as a result of a higher word inclusion probability 
– then this will retain it’s higher recall as the iterations progress. 

 

Figure 6. Word Inclusion Probability experiments: Recall on GA versus baseline and best Hill -
Climber run  

With respect to recall, it is possible that there is an important interaction between the Word Inclusion 
Probability and Mutate Probability variables. Lower rates of probability for including words will 
produce a “narrower” starting query (the implication being that recall will be lower) and a large number 
of iterations would do little to improve performance.  For example, on 100 iterations, the default 
mutation rate of 0.01 on 40 terms produces an average of 0.4 mutations per iteration.  If the mutation 
rate is increased too much, the increased amount of change on a chromosome in any iteration will detract 
from improvements in recall – the search will effectively become random. From figure 7, it can be seen 
that the average recall using 40 terms increases with Mutate Probability values to 0.11 then decreases, 
with a similar trend on 20 terms, increasing up to 0.15 mutation rate, before decreasing. It is expected 
that a higher (rather than the default) mutation rate with a higher rate of Word Inclusion Probability will 
offer better recall (due to time constraints we were unable to examine this issue further – this will be 
examined in further research). 

Experiments for Mutate Probability 
With respect to the probability of mutation, the average precision in all cases appears to be better than 
the baseline (see figure 7). On average, these are much better than the baseline (e.g., on 30 terms the 
average increase over the baseline is 22/23% for values of Mutate Probability). However, no GA 
matches the best hill-climber run.  There is very little variation on the value of Mutate Probability or its 
interaction with term set size. The results presented in figure 7 also fit in with the results for the Word 
Inclusion Probability experiments – this had little impact over the precision on the individual sizes 
tested.  A higher word inclusion probability means more included words at the start.   The best precision 
cannot decrease over iterations, as we are using an elitist GA, therefore the precision remains constant 
with small changes in mutation rate. It is probable that a higher figure for the probability of mutation 
(e.g., 0.8) would reduce performance as it is likely any useful term information would be destroyed, 
resulting in the GA approximating to a random search. The recall results (see figure 8) show small 
variations around the baseline.  

 

Figure 7. Mutate Probability experiments: Average precision on GA versus baseline and best Hill -
Climber run  

 

 

Figure 8. Mutate Probability experiments: Recall on GA versus baseline and best Hill -Climber 
run 

 



Figure 9. Population Size experiments: Average precision on GA versus baseline and best Hill-
Climber run  

 

Figure 10. Population Size experiments: Recall on GA versus baseline and best Hill-Climber run  

Experiments for Population Size 
In terms of average precision it does seem beneficial to use a Population Size of 100 or over (see figure 
9). The increase from 10 to 100 on this variable for 40 terms results in a precision increase of 9.3%, on 
average. With respect to recall there is a slight upwards trend (all below the 5% level), but a smaller 
population (below 50) does appear to be detrimental, particularly on the minimum runs (see figure 10). 
This phenomenon is probably related to the low mutation rate used.  The default mutation rate of 0.01 on 
20 terms means 0.2 words mutated per individual per iteration, and only 2 words for a population of 10 
individuals per iteration.  Increasing the Population Size to 100 means 20 words modified per iteration 
(all averages).  The larger the population size the more diverse the population so a moderate to large size 
results in better performance. With a small population the algorithm cannot adequately cover the search 
space at the beginning and the range of genetic material is not adequate enough to increase fitness in an 
efficient manner. 

 

Results for variation of Algorithm, Elistism and Crossover strategies 
 

 

Figure 11 Roulette Wheel vs Best Hill-Climber runs 

 

 

Figure 12 – Rank Selection vs Best Hill-Climber runs 

 

Results from the additional experiments are presented in figures 11 and 12. All GA configurations were 
much better than the baseline run (the later are not included to improve the visibility of the optimized 
runs). An interesting result from these further experiments is that the Rank Selection method moves the 
GA up near the performance of the hill-climbers and for most runs does much better than the Roulette 
Wheel selection method – apart from two exceptions.  There are a couple of important differences 
between the two selection methods which will have impact on the results. Firstly, Rank Selection 
reduces the advantage that a very high fitness chromosome has in Roulette Wheel selection, meaning 
that lower fitness chromosomes have a better chance of being selected. High fitness values tend to be 
recorded in earlier iterations of the optimization process. Rank Selection achieves this by first ordering 
(or ranking) the population of chromosomes by fitness, then giving each chromosome a selection 
“value” based on its position in the rank rather than its fitness.  The lowest fitness chromosome gets a '1', 
the next '2', and so on.  An individual is selected by comparing a random number with these ranking 
values. This will reduce the probability of overfitting on the training set (selecting good training terms 
which are poor on the test set), or finding a good optima too early in the search and stopping. Secondly, 
Rank Selection helps to differentiate between chromosomes with very similar fitness values.  For 
example, if there are five chromosomes with fitnesses 0.18, 0.19, 0.20, 0.21, 0.22 (i.e. similarly valued 
fitnesses), in the Roulette Wheel method, these would all be similarly proportioned and have a 



reasonably equal chance of selection (i.e. approx 1/20).  In Rank selection however, the differences 
would be exaggerated so, in order, the lowest would have a 1/15 chance of selection, the next 2/15, the 
next 3/15, then 4/15, then 5/15. Therefore a slightly better solution has more chance of being chosen. 

 

Comparing hill-climbing results to GA Rank Selection results also yields some interesting results. When 
optimizing on 20 terms, all Rank Selection runs are better than the best hill-climber run. However none 
match the hill-climber after 30 terms, with a number of runs virtually identical. Difference between these 
runs are small however – all bar two runs on 40 terms are below the 5% increase mark. This together 
with the clear trend upwards for hill-climbing methods points to the nature of the term selection process 
used e.g. evidence from the initial term selection process when using the Term Selection Value to rank 
terms (Robertson, 1990). This ranking mechanism has shown to be useful providing a sufficiently large 
number of relevance assessments are provided (Robertson et al, 1995). Therefore the hill-climber will be 
moving in a space which is known to be generally good anyway, and the results from figure 3 which 
show there is very little gain after runs optimizing on 40 terms provide some further evidence. Although 
all optimized runs used the top 3 terms from the ranked list, after this initialization the GA’s throw this 
evidence away and start from scratch. Prior evidence based on the term selection value would appear to 
provide an advantage to any method that can exploit it.  

 

When comparing Elitist vs non-Elitist strategies and crossover methods (uniform, 1 and 2 point) in 
figures 11 and 12, there does not appear to be much of a difference between them, as all are within the 
5% mark. The results on elitist approaches are perhaps counterintuitive; as they keep the best performing 
chromosome from one generation to the next, allowing successive improvement in much the same way 
as the hill-climber, it would be expected that the elitist approach would yield an improved precision over 
the non-elitist strategy. This implies that the mutation/crossover strategies cause very little 
variation/improvement in the population's overall fitness in successive generations, and evidence from 
figure 7 above does in fact show that that mutation probability has little effect on the average precision 
(i.e. the fitness). This lack of variation in the population may well support the advantage which the Rank 
Selection method has over Roulette Wheel, explained above. A further factor could be that non-elitist 
strategies used more iterations to achieve the same result, although confirming this would require 
analysis of iterations (we did not collect this information in the experiments). 

 

DISCUSSION AND CONCLUSION 
Whilst it is clear that using GA’s on the term selection problem addressed in this paper can improve 
performance in terms of average precision over the baseline, it is also clear that there is no guarantee of 
success in using such a method. Even though the worst average GA run can provide a performance 
which was much better than the baseline, there is no evidence that the GA on average is better than the 
various hill-climbing algorithms used here. In fact, the evidence is to the contrary. Both the hill-climber 
algorithms and the GA appear to be able to improve precision over the baseline without reducing recall. 

A short investigation was conducted into the behaviour of the GA where certain parameters were 
adjusted. It was found that to maximise recall a higher probability of initial word inclusion should be 
considered but this has little effect on the precision. Finally it was also found that a larger population 
size resulted in a better precision and a better recall. There are a number of variables that determine the 
behaviour of a GA. We selected a few of the most important ones here but in the future others should be 



tried, for example the amount of chromosome that swaps during crossover, with the aim of making the 
GA more competitive compared to the hill-climber. Further experiments were conducted, comparing 
selection strategies (Roulette Wheel vs. Rank selection), elitist vs non-elitist and varying crossover 
(uniform, 1 point and 2 point). Although the Rank Selection method did better than Roulette Wheel, it 
did not match the hill-climber on the larger term sets used – although differences were small for most 
runs. No real difference was found on elitist vs. non-elitist strategies or crossover variation. Evidence 
from the Term Selection Value used by the hill-climber to rank terms would appear to give it something 
of an advantage on optimization problems of this type.  

This paper presents the first real attempt to compare the performance of GA’s against hill-climbers 
directly on an IR problem of this type. We had hypothesised that GAs should not get stuck in local 
optima so readily and would therefore have better performance.  However, on the evidence provided in 
this paper, it appears that being stuck in local optima is not such a problem for hill-climbers as these 
methods consistently out-performed a GA. The ability of the hill-climber to use term rank order would 
appear to provide the method with something of an advantage when moving through the search space. 
The GA, which finds other optima, does on average appear to find many more peaks, which are superior 
to the baseline (e.g., see figure 3) but may not on average be as good as the single hill-climber peak. 
Further research could include the comparison of other stochastic searches such as Artificial Immune 
Systems (AIS), Particle Swarm Optimisation (PSO), Ant Colony Optimisation (ACO) in order to verify 
these results. 
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Appendix – Run variation data for the Genetic Algorithm on Initial Runs 
 

 
Figure  A1. Box Plot data for average precision in initial GA runs  

 

 

Figure A2. Box Plot data for Recall in initial GA runs 

 
 

 



Figure 1. Structure of a chromosome 
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Figure 2. Optimisation algorithms used in 
experiments 

 

1) Randomly initialise population 

2) While stopping criterion not met, do: 

a. Calculate fitness of all population members using 
average precision as fitness metric. 

b. Create a new individual with a chromosome 
identical to the fittest individual in the current 
population and place in the (currently empty) 
offspring population. 

c. While size of offspring population does not equal 
size of current population, do: 

i. Choose two individuals probabilistically 
based on their fitness 

ii. Swap genetic material between these 
two parent individuals to create two 
child individuals (using fixed rate 
probability) 

iii.  Mutate both child individuals (using 
fixed rate probability) 

iv. Place child individuals in the offspring 
population 

d. Replace current population with offspring 
population. 

 

Figure 2a = GA psedocode  

 

 

 

Load term pool 

Generate base and evaluation term sets  

Obtain relevance information for a topic  

Form accumulated set from base set  

Loop while no stopping criteria is reached  

      Loop list of terms in evaluation set  

           Evaluate an operation on the current term  

           If operation is successful  

   If algorithm is CAP 

        Add current term to query 

                If algorithm is FB 

                      Record current term as best term.  

                If algorithm is CFP  

                      Leave inner loop  

      EndLoop  

      If algorithm is FB or CFP 

            Update query with best term  

      Check the stopping criteria  

Endloop  

 

Figure 2b – Hill -Climber pseudocode



Table 1. The TREC 8 Routing collection 

 

 

Data Set Collection 
Description 

Total Docs 

Training 
Set 

Financial Times 1991-
1994, Federal Register 
1994, Congressional 
Record 1993, FBIS, 
LA Times 

456,533 

Extract 
Set 

Approximately half of 
Training set. 

228,268 

Select Set Approximately half of 
Training set. 

228,265 

Test Set Financial Times 1993-
1994 

140,651 

 



 

Figure 3. Initial experiments: Average Precision on GA, Hill -Climber and 
Baseline runs 
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Table 2. GA Variables examined 

Variable Description Values Used Defau
lt  

Value 

Word 

Inclusion 

Probability 

The probability of any one word being included. 
Default is 0.1 so an average of 10% of words will be 
included in a chromosome, but the number of included 
words will change as the population evolves. Increasing 
this value only impacts the initial population. The 
algorithm will optimise the number of included terms, 
but a selection of this value near the optimum will result 
in a better start population and thus reduce the time 
taken for the population to converge on a solution. 

0.1 to 0.8 
with 
increments of 
0.1 (7 runs in 
total). 

0.1 

Mutate 

Probability 

Varies the chance of a mutation in one element of a 
chromosome. High values promote diversity and 
therefore exploration of search space, but at the expense 
of a higher risk of reducing the quality of a good 
individual. 

0.01, 0.05, 
0.09, 0.11, 
0.15 and 0.20 
(5 runs in 
total). 

0.01 

Population 

Size 

Determines the number of individuals in the population. 
Lower figures will result in shorter evaluation time per 
generation but will require more generations to solve 
the problem. The converse is true for higher values. 
There will exist an optimum value in terms of 
efficiency between these two extremes. 

10, 50, 100, 
150, 200, 
300, 400 and 
500 (7 runs in 
total). 

50 

 



 

Figure 4. Initial experiments: Recall on GA, Hill-Climber and Baseline runs 

GA vs Hill-Climbers
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Figure 5. Word Inclusion Probability experiments: Average Precision on GA 
versus baseline and best Hill-Climber run  
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Figure 6. Word Inclusion Probability experiments: Recall on GA versus baseline 
and best Hill-Climber run  
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Figure 7. Mutate Probability experiments: Average precision on GA versus 
baseline and best Hill-Climber r un 
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Figure 8. Mutate Probability experiments: Recall on GA versus baseline and best 
Hill -Climber run  
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Figure 9. Population Size experiments: Average precision on GA versus baseline 
and best Hill-Climber run  
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Figure 10. Population Size experiments: Recall on GA versus baseline and best 
Hill -Climber run  

 

Population Size Experiments

0.860

0.865

0.870

0.875

0.880

0.885

0.890

10 50 100 150 200 300 400 500

Population Size  value

Baseline GA Avg (20)
GA Avg (30) GA Avg (40)

 



Figure 11 Roulette Wheel vs Best Hill-Climber runs  

 

 



Figure 12 – Rank Selection vs Best Hill-Climber runs 

 

 



Figure  A1. Box Plot data for average precision in initial GA runs  
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Figure A2. Box Plot data for Recall in initial GA runs 
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