
Agile Development in Computer Science Education:
Practices and Prognosis

Joseph Bergin
Computer Science

Pace University
New York, NY
845-225-4369

berginf@pace.edu

Clifton Kussmaul
(Moderator)

Mathematical Sciences
Muhlenberg College

Allentown, PA 18104-5586
484-664-3352

kussmaul@muhlenberg.edu

Thomas Reichlmayr
Software Engineering
Rochester Institute of

Technology
Rochester, NY 14623-5608

585-475-2852
tjrese@rit.edu

James Caristi
Mathematics & Computer Science

Valparaiso University
Valparaiso, IN 46383

219-464-5342
James.Caristi@valpo.edu

Gary Pollice
Computer Science

Worcester Polytechnic Institute
Worcester, MA, 01609-2280

508-831-6793
gpollice@cs.wpi.edu

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – productivity,
programming teams, software process models. K.3.2
[Computers and Education]: Computer and Information
Science Education – computer science education, curriculum,
information systems education. K.6.3 [Management of
Computing and Information Systems]: Software Management
– software development, software process.

General Terms
Design, Documentation, Management, Standardization

Keywords
agility, curriculum, development, methodology, process,
software, XP

1. SUMMARY
Agile approaches to software development share a particular set
of values [2,4]:

• Individuals and interactions over processes and tools.
• Working software over comprehensive

documentation.
• Customer collaboration over contract negotiation.
• Responding to change over following a plan.

Many agile methodologies were developed in response to so-
called disciplined methodologies that emphasize detailed
documentation and formal processes, and that are often
associated with ISO compliance or the CMM. However, there is
growing recognition that both agile and disciplined approaches
have advantages, and that often a combination can be very
effective [1].
Many faculty are exploring and experimenting with ways to
integrate agile concepts and practices into academic programs in
areas such as computer science, software engineering, and
information systems. This special session will help us work
together in agile ways to better understand the importance and
role(s) of agile concepts and practices, successful ways to
incorporate them in academic settings, potential pitfalls, and key
questions that should be explored further. We want to gather
input from a wide range of people in different sub-disciplines
and programs.
We will begin with a very brief overview of agile concepts and
practices, followed by brief statements from each of the five
speakers, to give other participants a sense of the range of
possibilities (25 min). Next, we will poll participants to identify
a set of topics within agility that they want to discuss further (5
min). Participants will then gather into subgroups for each topic,
and each subgroup will identify best practices, interesting ideas,
and open questions for that topic (30-35 min). Each subgroup
will then give a brief report to the entire group, and we will
conclude with a few minutes of general discussion (10-15 min).

2. JOSEPH BERGIN
Many of the techniques of agile methods are beneficial to
novices as well as to professionals. In fact the practices of XP
are just good practices that can be taught early. It is also true
that some of the tools and techniques of XP can be used to
enhance the teaching process itself. One such tool is the
GeneralFixture of Fitnesse [3], which permits an instructor to
present a Java exercise to a student as an executable

Copyright is held by the author/owner(s).
SIGCSE’05, February 23–27, 2005, St. Louis, Missouri, USA.
ACM 1-58113-997-7/05/0002.

130

specification. This specification can be easily interleaved with
natural language requirements. The tool then provides an
executable test of the correctness of implementation of an
individual requirement. Moreover, the students can easily add
additional tests to help them get the program correct. The
executable specification is equivalent to a test in JUnit, but it
doesn't involve programming so is accessible to students earlier
in their education.
GeneralFixture is an optional component of Fitnesse, which is
itself a convenient wiki server that also permits asynchronous
communication within a course. The tests in Fitnesse are
executed directly within a web page by pushing a button on the
page and are developed online by filling in a web form. Tables
use a simpler syntax than HTML and can even be pasted from
Excel spreadsheets.

3. JAMES CARISTI
A number of students resist using some of the agile practices
that we try to teach them. In particular, strong students
occasionally have difficulty accepting test first and pair
programming. Research in pair programming has indicated a
few promising strategies. And the experience of several
instructors with test first has uncovered a few ideas that seem to
work and some that definitely do not.

4. CLIFTON KUSSMAUL
I have used agile practices successfully in consulting projects,
and I am experimenting with agile practices in a variety of
educational contexts. I encourage, but don’t yet require, pair
programming in CS I. I find that Iterative development of
software projects and written proposals is very effective in both
non-majors courses and capstone courses. The emphasis on
individuals and interactions, and the lack of detailed formal
processes, give students an incentive to reflect on and adjust the
process, rather than blindly following it. Multiple iterations and
the emphasis on responding to change give students more
opportunities to see the interactions between activities, and
encourage students to react to and recover from errors early in
the project. For me, these advantages are just as important as
helping students become more effective developers. I am also
trying to show students that many of these ideas are more
broadly applicable; for example, agile concepts and techniques
can be used to improve student writing.

5. GARY POLLICE
Should we develop agility or analytical skills? Are they
distinct?
The Agile Software Development movement has matured and
become an effective approach to software development for
many industrial environments. However, it is but one approach
of several that might be selected. The key skill is to understand
what the benefits and disadvantages of each approach are and
how and when to apply them.
Agility has a lot to offer when teaching CS courses, especially
those that are designed to give students basic programming and
problem-solving skills. Pair-programming and test-first practices
are useful skills to know. As we progress to software
engineering courses, we are faced with the need to broaden the
student's skills to more than just agile methods. The question I

am continually faced with is whether to just present an agile
method like XP, for the students to apply to their, necessarily
small, term project, or to give them the knowledge that will
allow them to select the right set of practices for their context. I
choose the latter and find that this almost always works better in
the long run.
As educators we need to find the right ways to introduce
students to agile practices while preparing them for all kinds of
projects they might encounter in their professional careers. Just
teaching agile methods is not sufficient for software engineering
courses.

6. THOMAS REICHLMAYR
Can an agile software development process be successfully
integrated into an undergraduate software engineering
curriculum? The introductory software engineering class at RIT
has successfully been using an agile process for the past two
years in its term long project. As this course represents the first
opportunity for students to participate in a team project, the
collaborative nature of agile processes has facilitated the
challenges of students transitioning from individually focused
developers to contributing team players.
The agile process attributes that have been most beneficial to
student teams has been the development of project requirements
and a raised quality awareness using test driven design.
Time to delivery is always a major challenge of any software
project, but even more so in an academic environment. Student
teams have a short period in which to deliver their final release
of the project. User stories provide a process in which
requirements can be elicited and incremental release strategies
developed to evolve the product over the term. Exposure to user
story prioritization, scheduling and release planning are perhaps
the most valuable skills our students leave the course with.
Testing is identified as a skill that students are least prepared for
upon graduation and entry into the industrial workplace.
Academic project scheduling pressures often short change the
testing process by the students’ perception that testing is an end
of the waterfall activity that is often consumed by the need for
additional implementation (coding) effort. Test driven design in
concert with a well conceived project release plan puts the focus
on continuous working software through out the project life
cycle.

7. REFERENCES
[1] Boehm, B. and Turner, R. Balancing Agility and

Discipline: A Guide for the Perplexed. Addison Wesley,
2003

[2] Cockburn, A. Agile Software Development. Addison
Wesley (2003)

[3] Fitnesse. http://www.fitnesse.org
 Highsmith, J. Agile Software Development Ecosystems.

Addison Wesley (2002)

131

