
Towards a Distributed Modeling Process
Based on Composite Models

Daniel Strüber, Gabriele Taentzer, Stefan Jurack, Tim Schäfer

Philipps-Universität Marburg, Germany,
{strueber,taentzer,sjurack,timschaefer}@mathematik.uni-marburg.de

Abstract. The rising impact of software development in globally distributed
teams strengthens the need for strategies that establish a clear separation of con-
cerns in software models. Dealing with large, weakly modularized models and
conflicting changes on interrelated models are typical obstacles to be witnessed.
This paper proposes a structured process for distributed modeling based on the
modularization technique provided by composite models with explicit interfaces.
It provides a splitting activity for decomposing large models, discusses asyn-
chronous and synchronous editing steps in relation to consistency management
and provides a merge activity allowing the reuse of code generators. All main
concepts of composite modeling are precisely defined based on category theory.

Keywords: distributed modeling, composite models, model transformation, EMF

1 Introduction

Nowadays, model-driven development is a widely-spread paradigm to cope with the
growing complexity of software requirements. Reliable technologies have emerged that
allow specifying an application on a high level of abstraction using models. These mod-
els can then be transformed towards a running software system. Model-driven develop-
ment is based on modeling languages that are usually defined using meta-modeling: a
meta-model defines a language of individual models by predefining their structure. An
important meta-modeling architecture has been proposed by the Object Management
Group in terms of the Meta Object Facility (MOF) [14]. An essential subset of MOF
has been implemented by the Eclipse Modeling Framework (EMF) [5].

When lifting concepts and tools from model-driven development to a distributed
environment, a couple of challenges arise: contributors at different locations might be
responsible for models that are interconnected in some sense. Thus, clear conditions
and conventions for the editing of models are required to avoid the emergence of in-
consistencies. Another drawback of existing tools is the sometimes monolithic nature
of large models. Large models are difficult to comprehend and maintain. Thus, well-
defined modularization strategies for models are required.

EMF models can be modularized using remote references between individual mod-
els. The targets of remote references are then temporarily represented by proxy elements
and on demand replaced by the actual model element. In consequence, logically, all in-
volved models constitute one big model. While this technique is sufficient for distribut-
ing a large model over a set of resources, it does not establish well-known engineering

principles such as encapsulation and information hiding. Hence, we refer to this ap-
proach as a physical modularization technique. In opposition, we propose composite
models [8] as a logical modularization technique that establishes information hiding
and allows for local consistency checks. A composite model comprises a set of com-
ponents that are interconnected by export and import interfaces. Possible topologies of
model components are predefined by meta-model components. We provide core tool
support for composite models and their transformation.

This paper utilizes composite models in order to address three questions that arise
when lifting model-driven development to a distributed environment: (1) How can a
model be decomposed for logical modularization? (2) How can models be edited in
a distributed way such that consistency between model components is preserved? (3)
How can model-to-code transformation be performed when models are distributed?

Our solution to these questions is a process for distributed modeling. In order to
tackle question (1), a split activity is elaborated that decomposes a given model into
a set of components forming a composite model. As for question (2), we discuss how
editing steps can be specified and performed in a systematic way using composite model
transformation. As a tentative solution to question (3), a merge activity is introduced
that allows the reuse of existing code generation components.

The remainder of this paper is structured as follows: Sect. 2 provides the model-
driven development of web applications as a running example. Composite models are
recapitulated in Sect. 3. An overview of the process forming the main contribution of
this paper is given in Sect. 4. The activities constituting the process – split, edit, and
merge – are elaborated in Sects. 5, 6, and 7. We present an application scenario in Sect.
8 and tool support in Sect. 9. Related work is discussed in Sect. 10. Sect. 11 concludes.

2 Scenario: Model-driven development of web applications

Web applications as a software domain have undergone domain analysis in visual web
modeling languages such as WebML [3] or UWE [11]. A common design decision
found in these modeling languages is their branching into a set of viewpoint-oriented
sub-languages – such as a structural data model, a presentation model and a navigation
model. When a web application is to be developed by a distributed team, it is likely that
the contributors obtain responsibilities for the different viewpoints, e.g. one contributor
acts as domain modeler and another one as presentation modeler. Hence, we consider
this scenario as suitable for distributed modeling. To provide a full model-driven de-
velopment infrastructure, domain-specific languages such as WebML and UWE are
supplemented with code generation facilities that define a language semantics.

As a running example, Fig. 1 provides the syntax for the Simple Web Application
Language (SWAL) as a modeling language for the specification of simple web appli-
cations1. SWAL is specified by means of an EMF meta-model, comprising attributed
model classes as nodes with directed references as edges. Classes may be abstract. Ref-
erences may be containment references that ensure a tree-like structure for models.

1 The development of SWAL was initiated by Manuel Wimmer and Philip Langer at the Tech-
nische Universität Wien and reimplemented for its use in modeling courses at the Philipps-
Universität Marburg.

2

type

DataModel

Feature

ReferenceAttribute

HypertextModel

Page

StaticPageDynamicPage

IndexPage DetailsPage

Link

dataModel

entities

featurestype

startPage pages
linksentity

target

EntityDataType
dataTypes

Fig. 1: SWAL meta-model.

The class HypertextModel is used as root object of a web application to be spec-
ified. It contains a hypertext structure of interconnected pages and a DataModel for
the specification of structural models of persistent data. Persistent data is based on
distinct Entities which are charaterized by a number of Features, i.e. Attributes and
References. An attribute is typed over a primitive DataType, a reference over an entity.

Fig. 2: Poetry contest web application
model.

The hypertext structure is based on Pages
being interconnected through Links. De-
pending on its content, a page can either
be dynamic or static. A dynamic page
refers to an entity and can either be an
index page displaying a list of available
data records or a details page presenting
a detailed view for a specific record.

Based on these concepts, in Fig. 2
a poetry competition web application is
specified. Contest, poet, and poem enti-
ties are to be displayed on interlinked in-
dex and details pages. The concrete syn-
tax given in the presentation facilitates
convenient editing by hiding the Data-
Model and HypertextModel classes: pages and entities are visualized as nodes in dif-
ferent layouts. Hyperlinks, entity links, and references are visualized as arrows.

3 Composite Models

This paper investigates a process for distributed modeling based on composite models.
Composite models provide a logical modularization technique for models by declaring
explicit export and import interfaces. Export and import interfaces identify model el-
ements provided to and obtained from the environment, respectively. While an import
is assigned to exactly one export, an export can serve an arbitrary number of imports.
The core of a component is a conventional model called the body. Interfaces are char-
acterized as sub-models of this body. While the model elements in export and import

3

B B
E EIE

Network
Level

Object
Level

Fig. 3: Composite model with explicit export and import interfaces (taken from [7])

interfaces are identified with body elements, import interface elements are also identi-
fied with export elements to establish interconnection. An interface can hide structural
complexity of its component body, e.g. by flattening its inheritance hierarchy. The in-
terface structure of model components is predefined by meta-model components.

Consider Fig. 3 for a schematic representation of an example composite model with
explicit export and interfaces. The network level constitutes a topology of components
comprising body, export, and import nodes and interconnecting edges. The object level
comprises a set of interrelated models, each providing a refinement for one of the net-
work nodes, with interrelating mappings. Dashed arrows indicate how interfaces are
identified with body models, dotted arrows indicate an assignment between an import
and an export interface. Mappings on object level are compatible with network level ar-
rows in the sense that source and target nodes of mapped arrows are mapped to source
and target of the image arrow.

Formalization. The internal representation of models can be well represented by graphs.
Therefore, the basis of our formalization are typed graphs and graph morphisms as de-
fined in e.g., [4,9]. They form the category GRAPHSTG. Since the following definitions
of composite graphs and graph morphisms are given in a category-theoretical way, it is
also possible to use other kinds of graphs and morphisms as basic ingredients of com-
posite graphs. For example, composite graphs over typed graphs with inheritance and
containment are considered in [9].

Definition 1 (Composite network graph). A composite network graph is a graph G
typed over graph CNG (shown on the right) by a graph morphism t : G → CNG
such that the following constraints hold: (1) each export node is source of exactly
one network edge running to a body node
and (2) each import node is source of ex-
actly two network edges, one edge is run-
ning to a body node and the other to an
export node. If there are export nodes with-
out outgoing edges, corresponding compos-
ite network graphs are called weak.

4

Definition 2 (Composite network graph morphism). Given two network graphs g :
G → CNG and h : H → CNG, an injective graph morphism f : G → H forms a
valid composite network graph morphism, short network morphism, if h ◦ f = g.

Composite network graphs and network graph morphisms form a category, called
COMPONETGRAPHS, that is co-complete [9]. Weak composite network graphs and
their morphisms also form a category, however, this one does not have pushouts.

Definition 3 (Composite Graph). Given a (weak) composite network graph G, a (weak)
composite graph Ĝ over G is defined as Ĝ = (G,G(G),M(G)) with

– G(G) being a set of graphs, called local graphs, of category GRAPHS with each
graph uniquely refining a network node in GN : G(G) = {Ĝ(n)| Ĝ(n) is a graph
and n ∈ GN},

– for all paths Ĝ(x) ◦ Ĝ(y), Ĝ(z) : Ĝ(A) → Ĝ(B) we have Ĝ(x) ◦ Ĝ(y) = Ĝ(z).
(commutative morphisms)

Definition 4 (Composite Graph Morphism). Given two (weak) composite graphs Ĝ
and Ĥ with composite network graphs G and H , resp., a (weak) composite (graph)
morphism, written f̂ : Ĝ→ Ĥ , is a pair f̂ = (f,m) where

– f : G → H is a composite network
graph morphism and

– m is a family of morphisms
{f̂(n) | n ∈ GN} such that
• for all nodes i ∈ GN :

f̂(i) : Ĝ(i) → Ĥ(fN (i)) is a
graph morphism and

• for all edges e : i → j ∈ GE :
Ĥ(fE(e))◦f̂(i) = f̂(j)◦Ĝ(e) (see
the illustration on the right).

i

e

��

Ĝ(i)
f̂(i) //

Ĝ(e)

��

Ĥ(fN (i))

Ĥ(fE(e))

��
j Ĝ(j)

f̂(j) // Ĥ(fN (j))

If morphism f and all morphisms in m are inclusions (injective), f̂ is called inclusion
(injective). Given a graph ˆTG and a composite morphism t̂ : Ĝ→ ˆTG is called typed
composite graph.

Composite graphs and graph morphisms form a category, called COMPGRAPHS,
being co-complete. Weak composite graphs and weak composite morphisms form cate-
gory COMPGRAPHSweak. COMPGRAPHSTG is the category of typed composite graphs
and their morphisms. (See [9].)

This formalization induces that composite graphs are consistent in a certain sense:
Since all morphisms have to be total, especially the ones between import and export
interfaces, inconsistencies between components in the sense of unsatisfied imports may
not occur. It is up to future work to adapt composite models such that temporary incon-
sistencies are tolerated, i.e., partial import mappings are allowed.

4 Distributed modeling process: overview

In this section, we give an overview on a modeling process that addresses three issues
to facilitate distributed model-driven development: (i) How can composite models be

5

used to structure models that lack an appropriate modularization? (ii) How can compos-
ite models be edited systematically so that inconsistencies are avoided? (iii) How can
composite models be used as a blueprint for code generation? We refer to this process
as a distributed process in terms of a collection of activities that enable a distributed
team to work on a logically modularized model.

Fig. 4: Distributed modeling process.

Fig. 4 gives an outline of the process: When applying composite models to an exist-
ing software development project, a monolithic model may exist that is required to be
decomposed. In order to support this, we propose a splitting technique. In the distributed
modeling phase following up, editing steps are performed, involving asynchronous or
synchronous editing as well as changes of the network structure. Afterwards, in order
to support code generation, all components may be merged together. The resulting code
may have gaps to be filled in by the distributed team.

Please note that this overview refers to models on an arbitrary meta-level, e.g. mod-
els in application development or language development. However, the full potential
of the process becomes evident when it is applied on two interrelated levels, e.g., ap-
plication and language development. For instance, a legacy meta-model may be split
by language developers. Conforming application models are then split according to the
language decomposition by application developers. This notion is elaborated further in
the following sections presenting the outlined modeling activities.

5 Model splitting

This section elaborates on model splitting as a migration technique for introducing the
logical modularization technique provided by composite models to existing software
development projects. It assumes a monolithic model or a set of models interconnected
by remote references and produces a composite model comprising a set of model com-
ponents interconnected by export and import interfaces. Meta-models as well as their

6

DataModel

Feature

ReferenceAttribute

dataTypes

features type

Entity
HypertextModel

Page

StaticPageDynamicPage

IndexPage DetailsPage

Link

startPage

pages
links

entity target

entities

SwalData SwalHypertext

DataType
entities

type

Entity

DataModel
dataModelImp

Exp

Fig. 5: Result of splitting SWAL into meta-model components

Fig. 6: Result of splitting the poetry model along the SWAL component split

conforming models can be split. As we will prove for the special case of binary split-
ting, i.e., the decomposition into two components, the split of a typed model can even
be uniquely derived from the split of its meta-model.

Example 1. In Fig. 5, SWAL has been split in two meta-model components comprising
classes related in their belonging to a specific viewpoint: domain modeling and hyper-
text modeling. Both resulting components are self-contained units in the sense that all
model references run between classes within the same component. However, they are
also interrelated as they are equipped with interfaces. SwalHypertext’s import interface
contains DataModel and Entity classes mapped to the DataModel and Entity classes
provided by SwalData’s export which allows for the exchange of data models.

Finding a proper decomposition for meta-models is challenging since it can largely
benefit from automation, but on the other hand, may require some human intervention.
A heuristics may be used to recommend a reasonable decomposition to the stakeholder
based on some indicators of interrelation: e.g., as it is the case in the example, a high
coupling of references, especially of containments, indicates classes often instantiated
in combination. In turn, a stakeholder might consider it desirable to reveal more classes
in interfaces than a minimal subset, e.g. he might want to provide the references running
between entities to support comprehension. In any case, the benefit from finding an ap-
propriate decomposition becomes evident considering the split of conforming models.

7

In Fig. 6, the poetry contest model is split towards the viewpoint meta-models in-
troduced in Fig. 5. For better readability, exported model elements are shown separated
from their body elements. Both meta-model components are instantiated by conforming
model components. Especially, export and import interfaces are instantiated and used
for the sharing of entities between both components. As the split follows the typing of
model elements and their assignment to meta-model components, it can be automatized.

Formalization. In the following, a formalization is provided for splitting a meta-model
in two meta-model components with intermediate export and import interfaces and,
furthermore, for splitting conforming models along that split. Any meta-model that can
be represented as a plain graph can be used as input, e.g., a single self-contained model
or a group of models interconnected by remote references.

Proposition 1 (Binary split of a composite graph). Given graph G and two sub-
graphs G1 and G2 with inclusions g1 : G1 → G and g2 : G2 → G, their intercon-
necting interfaces can be uniquely determined such that the resulting diagram forms a
valid composite graph with two components.

Proof. Let square (1) in the figure below be a pullback and (2) an epi-mono-factoriza-
tion. Then, graph GI and morphisms i1 and i2 are uniquely determined, up to isomor-
phism. The epi-mono-factorization splits morphism i2 into a surjective and an injective
part. Graph GE and morphisms e2 and ie are uniquely determined by this factorization.
Diagram i1, ie, and e2 forms a valid composite graph with two components. Its network
graph is well typed over the component network graph defined in Def. 1.

Proposition 2 (Binary split of a typed composite graph). Given a type graph TG
with its subgraphs TG1 and TG2 and a binary split as in the upper part of the figure
below. Moreover, graph G with its typing t over TG is given. There is a unique bi-
nary split of G being type compatible with the resulting composite type graph. I.e. all
morphisms in the diagram below exist and form a commuting diagram. The result is a
composite graph typed over the split of TG.

Proof. The following steps can be performed:
1. (t1, g1) is constructed as pullback over

(t, tg1).
2. (t2, g2) is constructed as pullback over

(t, tg2).
3. (ti, i1) is constructed as pullback over

(ti1, t1).
4. Morphism i2 is the induced morphism by

pullback (t2, g2) and morphisms g1◦ i1 and
ti2◦ti such that t2◦i2 = ti2◦ti and g1◦i1 =
g2 ◦ i2.

5. (e2, te) is constructed as pullback over
(t2, te2).

6. Morphism ie is the induced morphism by
the pullback (e2, te) and morphisms i2 and
ti ◦ tie such that i2 = e2 ◦ ie and tie ◦ ti =
te ◦ ie.

TG1
oo ti1

OO

t1

TGI

tie

��

OO

ti

TG
��

tg1

oo
tg2OO

t

TG2

��

ti2

OO

t2

TGE
te2oo

OO

teG1
oo i1

GI

ie

��

(1) (2)

G
��

g1

oo
g2

G2

��

i2

GE
e2oo

8

Considering the view-oriented splitting of large meta-models as e.g. for UML, it
makes sense to iterate several binary splits. An example split scenario for UML can
look like this: (1) split the structure component from the behavioral component, (2)
split the structure component further into package and class structure components, (3)
split the behavioral component into a basic action component and a behavior diagrams
component, and (4) continue splitting this component until the well-known behavior
diagrams are each separated in model components. Of course, component interfaces
have to be continuously adapted during this splitting process.

6 Distributed model editing

A crucial challenge of collaborative editing is to preserve the consistency of models
while keeping editing steps as independent as possible. Several approaches to the han-
dling of model inconsistency, being defined as the maintenance of contradictory infor-
mation within a network of models, center on the detection and resolution of incon-
sistencies [13] [6]. These approaches rely on facilities to perform a global consistency
check on the distributed model which, though, might not always be available, e.g., for
security reasons or due to network failures. Hence, we propose a complementary strat-
egy of inconsistency avoidance, giving editing steps at hand that are classified as ei-
ther safe or critical to the consistency of models. We provide the notion of a relaxed
consistency avoidance that allows performing critical steps if necessary. In contrast, a
strict inconsistency avoidance may be an obstacle to the natural evolution of a software
project and is prone to dead-lock situations.

Existing collaborative model editors such as Papyrus [15] or MagicDraw [12] im-
plement a strategy for inconsistency avoidance by locking selected model parts for mod-
ification. These editors follow an asynchronous approach to editing single models that
can be displayed and modified in multiple distributed editors at once. As for the use of
composite models, the management of consistency is facilitated by the maintenance of
interfaces. It is desirable to support asynchronous and synchronous editing steps: for in-
stance, two related components with related contents might be expanded by individual
contributors or in parallel by one contributor. Thus, this section discusses asynchronous
as well as synchronous editing steps and their formalization based on the transformation
of composite graphs. Using our basic implementation of composite model transforma-
tion comprising a rule editor and interpreter engine tool suite, it is possible to deploy
transformation rules as editing steps, e.g. refactorings, within an existing editor such as
Papyrus.

Example 2. For the poetry contest application specified in the Fig. 6, new requirements
might be stated, e.g., the management of books. When domain and hypertext compo-
nents are developed independently, the first action done is that the domain modeler adds
this new entity to the body and export of the swaldata component. The hypertext mod-
eler then adds the entity to the import interface and body of the swalht component and
creates corresponding pages for the entity resulting in the model shown in Fig. 7. In
contrast, it might also be desirable to perform these changes in parallel: e.g., imagine
an editing command that adds an entity and corresponding pages to both components.
We distinguish these two kinds of editing as asynchronous and synchronous editing.

9

Fig. 7: Model components after editing. Thick borders indicate newly added elements.

Formalization. Synchronous and asynchronous editing steps can be formalized as model
transformations on a composite model.

Definition 5 (Composite graph transformation).

Given a composite graph ˆTG, a composite graph rule p̂ = (L̂
l̂←↩ K̂ r̂

↪→ R̂, ˆtype) con-
sists of composite graphs L̂, K̂, and R̂ typed over ˆTG by the triple ˆtype = (ˆtypeL̂ : L̂→
ˆTG, ˆtypeK̂ : K̂ → ˆTG, ˆtypeR̂ : R̂ → ˆTG) being composite morphisms and typed

composite morphisms l̂ : K̂ ↪→ L̂ and r̂ : K̂ ↪→ R̂ being inclusions such that ∀n ∈

KN : p̂(n) = (L̂(n)
l̂(n)
←↩ K̂(n)

r̂(n)
↪→ R̂(n), ˆtype(n)) is a graph rule (as defined in e.g.

[4]).

A composite IC-graph transformation (step) Ĝ
p̂,m̂
=⇒ Ĥ

of a typed composite graph Ĝ to Ĥ by a (weak) com-
posite graph rule p̂ and a typed injective composite mor-
phism m̂ : L̂ → Ĝ is given on the right, where (1) and
(2) are pushouts in the sub-category of COMPGRAPHSTG

(COMPGRAPHSweak
TG) with injective morphisms only.

L̂

m̂

��

K̂? _
l̂oo

d̂

��

� � r̂ // R̂

n̂

��
(1) (2)

Ĝ D̂? _
ĝoo � � ĥ // Ĥ

A composite graph transformation is a sequence Ĝ0 ⇒ Ĝ1 ⇒ ... ⇒ Ĝn of direct
composite graph transformations, written Ĝ0

∗⇒ Ĝn.

A composite transformation can be performed component-wise, i.e., performing the
network transformation first and all local transformations for preserved network nodes

afterwards. Transformation step Ĝ
p̂,m̂
=⇒ Ĥ can be performed if m̂ fulfills the composite

gluing condition ensuring that the resulting structure is again a well-formed composite
graph. Otherwise, it can happen that context edges dangle afterwards. The gluing con-
dition has to be checked on the network and all local transformations. Moreover, for all
network nodes that shall be deleted their local graphs have to be fully determined by
the match and local graph elements may be deleted only if there are no preserved inter-
face elements being mapped to them. Weak composite rules are not allowed to change
stand-alone exports and to produce stand-alone exports by deleting their body graphs.
(For more details see [7].)

10

Fig. 8: Synchronous and asynchronous composite model transformation rules.

Example 3. Two sample composite rules, shown in a compact representation, are pro-
vided in Fig. 8. «Del» and «New» keywords denote nodes as being contained in L̂− K̂
or R̂ − K̂, respectively. Rule a) is a synchronous rule specifying the addition of a new
entity and corresponding index and details pages to both components in parallel. Rule
b) is an asynchronous rule removing an entity from a body and an adjacent export. Ap-
plying rule a) to the composite model in Fig. 6 yields a composite graph. Since nothing
is deleted, the composite gluing condition is obviously fulfilled. To obtain the com-
posite model in Fig. 7, additional references between book, poem, and poet have to be
added by another editing step. Wrt. global consistency, rule a) is evidently neutral as
an intact export/import relation is introduced. The editing step specified by rule b) is to
be considered a critical one since the export interface being edited might be referred to
from a remote import interface. Hence, a user performing an editing step like this may
be warned and suggested to clarify the editing step to his collaborators.

7 Model merging for code generation

Fig. 9: Merged application model.

Aiming at providing a full life-cycle of model-
driven development, code generation as a seman-
tics for composite models is to be investigated.
Generally speaking, two different strategies are
conceivable: A distributed code generation allow-
ing the successive code generation for individual
components is an interesting idea deserving fur-
ther research. However, in this section, we focus
on the second strategy: Existing code generators
can be reused to perform a centralized code gen-
eration. As input for the generator, a single model
conforming to the original language before the
language split is required. We provide a technique
to support the merging of a composite model to a single model serving as a blueprint
for code generation.

11

Example 4. Fig. 9 shows how the composite model provided in Fig. 7 is merged. The
merge exploits the information available in import and export interfaces: Pairs of objects
are identified as corresponding and can thus be merged. The result of the merge is well-
typed because it conforms to the original pre-split meta-model. A merge of meta-models
can be performed applying the same strategy.

Formalization. We provide a formalization for the merge of a composite model.

Proposition 3 (Graph merge). Given a composite graph, there is a unique graph con-
taining its merge result.

Proof. Considering a composite graph C as a diagram in category GRAPHSTG, its col-
imit consists of a simple graph G and a family of graph mophisms from all local graphs
of C to G. The colimes construction is uniquely determined.

8 Application scenario

This section provides a simple application scenario to show how the distributed process
is applied. The scenario, illustrated in Fig. 10, concerns with web application develop-
ment based on the SWAL web modeling language. We assume that the language already
has been subject to a split into domain and hypertext components that was performed
by the language developers.

Fig. 10: Scenario for distributed editing process

The starting point is a monolithic model M conforming to SWAL. M is logically
distributed when project manager Samantha performs a split along the given language-
level decomposition. The resulting composite model comprises domain model compo-
nent D and hypertext model component H being interconnected by means of export and
import interfaces. Samantha now assigns team members to viewpoints: Frank receives

12

responsibility for domain modeling, Mike becomes the hypertext modeler. The internal
details of remote components are hidden to both developers respectively: Frank’s scope
of visibility is restricted to his assigned component, D. Mike’s scope of visibility com-
prises his assigned component, H, and remote component D’s export (cf. the concept of
weak composite graphs introduced in Sect. 3). From now on, Frank and Mike perform
asynchronous editing steps, reflected in increasing version numbers. The first steps per-
formed are neutral to inter-model consistency and do not require conflict handling.

Eventually, the transformation from D2 to D3 is a critical editing step threatening
global consistency, e.g. the deletion of a model element being visible in the export.
Hence, when performing this editing step, Frank receives a warning. His options are: to
manually establish communication to Mike clarifying the change, to let a default mes-
sage be delivered to Mike, to take back the change or to do nothing. In the two former
cases, Mike can react by performing an editing step such that consistency is retained.
When doing nothing, consistence might be broken. Later on, Samantha performs a syn-
chronous editing step changing both components in parallel. Eventually, she decides
that the model components have accomplished a solid state and should be merged for
code generation. A global consistency check may be performed before the merge to
ensure a valid result. If at some later point in time new requirements are added, further
editing can be performed on the components in their state before the merge.

To summarize, the maintenance of explicit export and import interfaces allows to
reason about a smart and relaxed conflict avoidance: at all times, developers are aware
whether their editing is either safe or critical to inter-model consistency. In the case
of critical steps, further intervention may become necessary. However, an automatized
conflict detection and resolution algorithm can be considered complementary and might
be applied at any time throughout the development process. Especially a conflict detec-
tion step right before the code generation step is highly desirable.

9 Tool support

The core processing of composite models is supported by an existing editor environ-
ment based on the Eclipse Modeling Framework. For a set of individual models, wiz-
ard tools are provided allowing the derivation of export and import interfaces in order
to establish model interconnection. Export and import interfaces are implemented as
separate resources with special references, supported by a delegation mechanism that
replaces EMF’s proxy concept. Furthermore, we have implemented a model transfor-
mation language and tool set allowing the specification and execution of editing steps
that can be integrated in an existing editor. The tool set is open source being provided at
http://www.uni-marburg.de/fb12/swt/forschung/software along with ex-
amples and a tutorial. The automation of splitting and merging is left to future work.

10 Related Work

In this section, we compare our work to several other approaches for dealing with large
and distributed models.

13

10.1 Model slicing

The extraction of sub-models from large models has been considered under the heading
of model slicing. [2] presents a tool that allows defining model slicers for domain-
specific languages by determining a selection of classes and features to extract. [10]
provides an elegant formalization of model slicing as they prove that the sub-models
gained from slicing along particular references constitute a lattice. A linear-time al-
gorithm establishing this decomposition is elaborated. These approaches differ from
model splitting in so far as they aim at extracting sub-models conforming to the same
meta-model as the model to be sliced. In turn, model splitting is integrated into an over-
lying process: a meta-model is split in several components. Afterwards, models based
on these meta-models are split towards these components. The splitting of a model to-
wards components with export and import interfaces is specific to our approach.

10.2 Consistency management in distributed modeling

As discussed before, we propose a relaxed inconsistency avoidance as a supplementary
strategy to inconsistency detection and resolution. An elaborated strategy for the lat-
ter is given by Macromodeling [16]. Macromodeling allows integrating multiple mod-
els of different modeling languages on type and instance layers. A major objective of
macromodeling is the check of global consistency conditions based on logical formu-
las. However, it does neither envision a specific modeling process nor the use of explicit
interfaces.

10.3 Model weaving

The merge of models can be compared to the weaving of models that is implemented
by different tools, e.g., Atlas Model Weaver (AMW) [1]. AMW allows the weaving a
set of models by constructing a weave model based on a weave meta-model. It supports
the manual and semi-automatic weaving of models by means of heuristic-based trans-
formations. Our merging, in turn, is restricted to composite models as input models. It
can be fully automatized exploiting the information given by import/export relations.

11 Conclusion and Outlook

The global distribution of software development spawns a need for new well-defined
software engineering methods. The process presented in this paper is our contribution
to satisfying this need. It proposes split, edit and merge activities based on composite
models which have been introduced as a formally sound modularization mechanism,
allowing for local consistency checks and systematic transformation.

Future work is the enhancement of existing tool support towards a comprehensive
tool environment supporting all parts of the presented distributed modeling process.
Firstly, we aim at providing convenient editor support that allows editing components
equipped with interfaces at the right level at abstraction. Secondly, splitting and merging
are to be automatized. It is of our particular interest to find a heuristics that gives rea-
sonable suggestions for splitting. Thirdly, in addition to the centralized code generation

14

approach introduced here, a distributed code generation facility shall be implemented.
In particular, it is to investigate how import/export relations are dealt with when gen-
erating code for individual components. Having a suitable tool support at hand, we are
heading towards larger examples that show the scalability of this approach. We are con-
vinced that precisely defined basic operations on composite models are a clear basis for
a sound distributed modeling process.

References
1. AMW: Atlas Model Weaver. http://www.eclipse.org/gmt/amw
2. Blouin, A., Combemale, B., Baudry, B., Beaudoux, O.: Modeling model slicers. In: Proceed-

ings of the International Conference on Model Driven Engineering Languages and Systems
(MODELS). pp. 62 – 76. Wellington, New Zealand (Oct 2011), http://hal.inria.
fr/inria-00609072/PDF/BLO11b.pdf

3. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling language
for designing Web sites. Computer Networks 33(1-6), 137 – 157 (2000), http://www.
sciencedirect.com/science/article/pii/S1389128600000402

4. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transfor-
mation. Monographs in Theoretical Computer Science. An EATCS Series, Springer (2006)

5. EMF: Eclipse Modeling Framework. http://www.eclipse.org/emf (2011)
6. Goedicke, M., Meyer, T., Taentzer, G.: ViewPoint-oriented Software Development by Dis-

tributed Graph Transformation: Towards a Basis for Living with Inconsistencies. In: Proc.
4th IEEE Int. Symposium on Requirements Engineering (RE’99), June 7-11, 1999, Univer-
sity of Limerick, Ireland. IEEE Computer Society (1999), iSBN 0-7695-0188-5

7. Jurack, S.: Composite Modeling based on Distributed Graph Transformation and the Eclipse
Modeling Framework. dissertation, Philipps-Universität Marburg (2012)

8. Jurack, S., Taentzer, G.: Towards Composite Model Transformations Using Distributed
Graph Transformation Concepts. In: Schürr, A., Selic, B. (eds.) Proc. of 12th Int. Confer-
ence on Model Driven Engineering Languages and Systems (MoDELS 2009). LNCS, vol.
5795, pp. 226–240. Springer (2009)

9. Jurack, S., Taentzer, G.: Transformation of Typed Composite Graphs with Inheritance and
Containment Structures. Fundamenta Informaticae 118(1-2), 97–134 (2012)

10. Kelsen, P., Ma, Q.: A Modular Model Composition Technique. In: Rosenblum, D.S.,
Taentzer, G. (eds.) 13. International Conference on Fundamental Approaches to Software
Engineering, FASE 2010, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2010, Paphos, Cyprus. LNCS, vol. 6013, pp. 173–187. Springer
(2010)

11. Kraus, A., Knapp, A., Koch, N.: Model-Driven Generation of Web Applications in UWE. In:
Proceedings of the 3rd International Workshop on Model-Driven Web Engineering MDWE
2007, Como, Italy, July 17, 2007 (2007)

12. Magic Draw: http://www.magicdraw.com
13. Mougenot, A., Blanc, X., Gervais, M.P.: D-Praxis: A Peer-to-Peer Collaborative Model Edit-

ing Framework. In: 9th IFIP international conference on Distributed Applications and Inter-
operable Systems (DAIS’09). pp. 16–29. Lisbonne, Portugal (Jun 2009)

14. OMG: The Essential MOF (EMOF) Model. http://www.omg.org/cgi-bin/doc?
formal/2006-01-01.pdf (2010), sec. 12

15. Papyrus UML: http://www.papyrusuml.org
16. Salay, R., Mylopoulos, J., Easterbrook, S.M.: Managing models through macromodeling. In:

23rd IEEE/ACM International Conference on Automated Software Engineering (ASE 2008),
15-19 September 2008, L’Aquila, Italy. pp. 447–450. IEEE (2008)

15

http://hal.inria.fr/inria-00609072/PDF/BLO11b.pdf
http://hal.inria.fr/inria-00609072/PDF/BLO11b.pdf
http://www.sciencedirect.com/science/article/pii/S1389128600000402
http://www.sciencedirect.com/science/article/pii/S1389128600000402
http://www.eclipse.org/emf
http://www.omg.org/cgi-bin/doc?formal/2006-01-01.pdf
http://www.omg.org/cgi-bin/doc?formal/2006-01-01.pdf

	Towards a Distributed Modeling Process Based on Composite Models

