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Module systems enable a divide and conquer strategy to software develop-
ment. To implement compile-time variability in software product lines, mod-
ules can be composed in different combinations. However, this way variability
dictates a dominant decomposition. Instead, we introduce a variability-aware
module system that supports compile-time variability inside a module and its
interface. This way, each module can be considered a product line that can
be type checked in isolation. Variability can crosscut multiple modules. The
module system breaks with the antimodular tradition of a global variabil-
ity model in product-line development and provides a path toward software
ecosystems and product lines of product lines developed in an open fashion.
We discuss the design and implementation of such a module system on a core
calculus and provide an implementation for C, which we use to type check
the open source product line Busybox with 811 compile-time options.

1 Introduction

A module system allows developers to decompose a large system into manageable sub-
systems, which can be developed and checked in isolation [13]. A module hides informa-
tion about internal implementations and exports only a well-defined and often machine-
enforced interface. This enables an open-world development style, in which software can
be composed from modular self-contained parts.
The need for compile-time variability, for example in software product lines [6, 17,

10], challenges existing module systems. To tailor a software system, stakeholders may
want to select from compile-time configuration options (or features) and derive a specific
configuration (or variant, or product) of the system. At compile-time, a user selects
of which configuration options code should be compiled into the system. In a modular
scenario, we can derive different configurations by composing different subsets of modules.
However, to encode variability only at composition level, variability must align with the
modular structure, and each compile-time configuration option must be expressed as a
separate module. When variability crosscuts the dominant decomposition, a modular
implementation becomes tricky: A configuration option, such as transaction support in
a database, may affect multiple modules and may even change their interfaces [30].
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In fact, state of the art product-line implementations often use antimodular concepts:
Conditional compilation, typically with #ifdef directives of the C preprocessor, is common
and crosscuts entire implementations [34]. Intended variability of the product line is
commonly described in a single global variability model in a closed-world fashion. As
long as product-lines are developed entirely by a small team inside a single company,
this closed-world view may suffice. But, for larger product lines developed by multiple
teams, for product lines that should be reused in other contexts, and for product lines
that span organizational units, a modular solution is needed.
An additional challenge comes from the combinatorial explosion of configuration op-

tions. There are O(2n) compile-time configurations of a product line with n configuration
options. Checking all configurations one by one in a brute-force fashion is infeasible in
practice. Likewise, checking only specific configurations at module-composition-time de-
fies the purpose of modularity, since conflicts are detected only late.
To enable modular product-line development, we introduce a variability-aware module

system that supports both inner variability inside a module and crosscutting variability
that affects multiple modules. In the module system, each module can be considered as
a product line in itself. Module composition becomes the composition of entire product
lines including their variability.
We formalize our variability-aware module system as calculus. The distinguishing fea-

ture of this module calculus is that interfaces and implementations are variable depending
on the selection of configuration options. Furthermore, each module defines its own local
variability model – the constraints on its environment. The formalization is based on
Cardelli’s seminal formalization of separate type checking and linking [13] and a more
recent generalization of this work towards propositions in interfaces [31]. We show that
the calculus is sound in two ways: (1) well-typedness of a module implies well-typedness
of all configurations of the module, and (2) module composition preserves well-typedness.
We implement a variant of our variability-aware module system for the C programming

language with #ifdef variability. Taking every translation unit (.c file) as a module
with inner variability (from #ifdef directives), we efficiently and modularly check all
configurations of a module and infer an interface with variability. Subsequently, we
perform composition checks for all configurations, equivalent to linker checks in C. We
encode expensive compatibility checks and type checks as Boolean satisfiability problems,
building on prior work on variability-aware analysis [18, 50, 28, 3, 15]. We provide a
full open-source implementation as part of our TypeChef project and type check the
entire Busybox product line with 811 compile-time configuration options (and, thus,
more potential configurations than the estimated number of atoms in the universe [32]) to
demonstrate practicality. Modularity allows us to type check each of Busybox’s 522 files
in parallel. We show that TypeChef is able to find actual type errors in Busybox.
In summary, our central contributions are the following: (1) We motivate the need for

inner and crosscutting variability. (2) We design a novel module system for product lines
and discuss design decisions. (3) We formalize the module system as formal calculus and
prove its soundness. (4) To demonstrate practicality, we present a practical implemen-
tation strategy, we implement the module system for C and the C preprocessor, and we
find type errors with this implementation in a medium-size real-world product line. To
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the best of our knowledge, this is the first implementation of modular type-checking for
practical product-line implementions in C with #ifdef variability.

2 Modules and variability

Modularity as enforced by most module systems serves a simple means: It allows splitting
a system into smaller subsystems (modules), each of which are divided into an internal
implementation and an external interface. The module’s interface describes a contract
with the rest of the system in terms of imports and exports. Ideally, a developer (or
compiler) can understand (or type-check and compile) a module separately, by looking
only at its internal implementation and interface, but not at implementations of other
modules. Internals of the module can be changed without affecting (and even knowing)
any other module. This separation into modules with interfaces enables modular rea-
soning and reuse of modules in unplanned contexts. For uniformity, we adopt Cardelli’s
notion that modules have explicit imports and are closed under composition [13]. That
is, two modules can be composed (or linked) to form a larger module, in which imports
that are exported by the other module are removed. When composing two compatible
modules, module composition should preserve well-typedness.
In practical software development, frequently a demand for variation arises. Different

configurations of a system should be compiled for different platforms, customers, and
use cases. Especially in software product lines, such variation is planned and used as
strategic advantage. Instead of developing a software system only for a single customer,
product lines cover related systems in a whole domain. Such a product-line approach
promises lower costs, better quality, shorter time to market, and flexibility to react to
market changes, due to strategic reuse [6, 17, 10]. For illustration and demonstration, we
use two examples of product lines. First, we introduce a tailorable embedded database
management system that can be configured with two different storage mechanisms –
persistent and in-memory, – an optional XML layer, and other options. Second, we
analyze Busybox, a real-world resource-efficient product line of UNIX utilities. In both
scenarios, resource constraints of embedded systems demand compile-time reduction and
specialization to the necessary core; hence, for different scenarios, different tailor-made
solutions should be provided.
In the following, we outline how to implement variability with conventional module

systems, we discuss their limitations, we outline our concept of a variability-aware module
system, and we survey how variability is implemented in the real-world product line
Busybox.

2.1 Variable module composition

To implement product lines modularly, developers usually develop a module for each
configuration option and express variability by composing different sets of modules. This
style of programming, in which modules align with configuration options, is also known
as feature-oriented programming [42, 7] and popular in the form of plug-in systems [2, 6].
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core = (
import write: Key→Table→Bool;
import read: Key→Table;

fun log(msg: String): Unit = ...;
export fun select(q: String): Table = ... read(...) ...;
export fun update(q: String): Bool = ... write(...) ...;
export fun main(p: String): Int = ...;

)

xml = (
import update: String→Bool;

fun parse(s: String): XML = ...;
fun unparse(x: XML): String = ...;
export fun storeXML(x: XML): Bool = ... update(...) ...;

)

inmem = (
export fun write(k: Key, t: Table): Bool = ...;
export fun read(k: Key): Table = ...;

)

persist = (
fun fopen(f: Int): Handle = ...;
export fun write(k: Key, t: Table): Bool = ...;
export fun read(k: Key): Table = ...;

)

Figure 1: Simple database example without inner variability.

In our database example, we could decompose a system into four modules as illus-
trated in Figure 1: a core database module core, an in-memory-storage module inmem,
a persistent-storage module persist, and an XML module xml. Now, we derive different
systems by composing (•) modules in different combinations: core • inmem yields an in-
memory database, core • persist a persistent database, core • inmem • xml an in-memory
XML database, and so forth.
Composing two modules merges their definitions. Imports of one module are matched

by exports of the other module as far as possible; nonexported (private) functions are
renamed or inlined if necessary. Two modules exporting the same function, such as
inmem and persist in our example, are incompatible and cannot be composed.
If desired, we can automate the generation of tailored systems for a given selection of

configuration options with a build system. Build systems range from simple shell scripts
to sophisticated compilation managers [11, 43, 9]. Build systems typically introduces
explicit configuration options (and possibly dependencies between them in a variability
model). The configuration options are then mapped to modules [17]. For a given selection
of configuration options, the build system compiles and composes the corresponding
modules. In such setting, variability is expressed globally for a fixed set of modules at
composition level : The modules themselves have no notion of variability, especially no
variability in interfaces.

2.2 A case against variability-induced decomposition

When variability is expressed only at composition level, modules align with configura-
tion options. On one hand, this alignment enforces separation of concerns regarding
configuration options; but, on the other hand, then, variability dictates a dominant de-
composition [48] of the system, which might not be the desired one. There are at least
three problems of a variability-induced decomposition:

• Variability is known as a crosscutting concern [34, 25, 49, 42, 36]. In our database
example, configuration options such as readonly affect many modules and con-
cerns. Even with advanced and controversial module constructs, such as aspects, it
is not clear whether the implementation of crosscutting configuration options can
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be specified in a single module [30].

• Configuration options are not independent. In our example, configuration option
readonly would affect both in-memory and persistent storage. A typical solution
of the module-per-configuration-option approach is creating more modules (e.g.,
inmem-common, inmem-write, and inmem-readonly) [36], leading to an explosion
of micro-modules.

• Configuration options (and interactions between configuration options) that affect
only few lines of code must be extracted into their own function and module, even
if they are just a minor concern in a larger context. Such small additional modules
reduce the benefit of an open-world module system, because they are typically hard
to reuse and tightly coupled to the rest of the system.

We argue that variability should not necessarily dictate the dominant decomposition.
Although tool support could potentially address the problem of many small modules,
we explore a language-based solution. In the remainder of the paper, we introduce a
variability-aware module system that enforces modular checks in the presence of inner
and crosscutting variability.

2.3 Variability inside modules

Instead of encoding variability using module composition, we propose to encode variabil-
ity inside modules, such that configuration options and modules do not need to align.
Each module can be interpreted as a product line that can be configured. For example,
we implement a module storage for the storage subsystem that can be configured to use
in-memory or persistent storage and to provide read-only or read-and-write access. How-
ever, with variability in interfaces, the composition process and the role of the variability
model (previously part of the build system) changes.
We introduce variability with presence conditions. A presence condition on a code

element is a formula over configuration options that specifies in which configurations the
element should be included. For example, we say module storage defines function fopen
only if configuration option persist is selected (fopen if PERSIST). In the simplest
case, presence conditions can be implemented by conditional compilation with #ifdef
directives; we discuss alternatives in Section 4.3.
To reason about configuration options inside a module, we declare them explicitly

or import them like functions. Hence, for every configuration option there is a unique
module that declares the configuration option (and possibly related configuration infor-
mation, such as description, defaults, costs, and interested stakeholders). Hence, there
is a well-defined distinction between configuration option definition and configuration
option usage, which yields a well-defined scoping concept for configuration options and
enables standard techniques such as α-renaming of configuration options. Declared con-
figuration options are always part of the interface (they cannot be hidden, because users
must be able to configure the module). Finally, each module can have a local variability
model that constraints possible combinations of configuration options; for this purpose,
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storage = (
config PERSIST "persistent storage" default;
config INMEM "in-memory storage"
config READONLY "read-only access only (faster, smaller)";
variability (PERSIST∨INMEM)∧¬(PERSIST∧INMEM);

fun fopen(f: Int): Handle if PERSIST = ...;
export fun write(x: Rec): Tid if ¬READONLY∧PERSIST = ...;
export fun write(x: Rec): Tid if ¬READONLY∧INMEM = ...;
export fun read(x: Tid): Rec if PERSIST = ... fopen ...;
export fun read(x: Tid): Rec if INMEM = ...;

)

query = (
import config READONLY;
import write: Rec→ Tid if ¬READONLY,

read: Tid→ Rec;

config TXN, INDEX;

fun createIndex(t: T): I if INDEX = ...;
fun log(m: String): Bool = ...;
export fun select(q: String): Tab = ...;
export fun update(q: String): Bool if ¬READONLY = ...;
export fun main(p: String): Int = ...;

)

xml = (
import config READONLY, TXN, INDEX;
import select: String→ Table,

update: String→ Table if ¬READONLY,
read: Tid→ Rec;

config XQUERY;
variability XQUERY⇒ INDEX;

fun parse(e: String): Xml = ...;
fun toXML(x: Xml): String = ...;
export fun storeXML(x: Xml): Tid if ¬READONLY = ...;
export fun query(q: String): Xml if XQUERY = ...;

)

storage • xml = (
import config TXN, INDEX;
import select: String→ Table,

update: String→ Table if ¬READONLY;

config PERSIST, INMEM, READONLY, XQUERY;
variability (XQUERY⇒ INDEX) ∧

((PERSIST∨INMEM)∧¬(PERSIST∧INMEM));

fun fopen(f: Int): Handle if PERSIST = ...;
export fun write(x: Rec): Tid if ¬READONLY∧PERSIST = ...;
export fun write(x: Rec): Tid if ¬READONLY∧INMEM = ...;
export fun read(x: Tid): Rec if PERSIST = ...;
export fun read(x: Tid): Rec if INMEM = ...;
fun parse(e: String): Xml = ...;
fun toXML(x: Xml): String = ...;
export fun storeXML(x: Xml): Tid if ¬READONLY = ...;
export fun query(q: String): Xml if XQUERY = ...;

)

Figure 2: Extended database example with inner variability.

we specify a formula, but other notations, including graphical feature diagrams, are pos-
sible [17, 51, 9, 8].
Composing two modules in our variability-aware module system is similar to composing

two modules in a traditional module system. Composing two modules with variability
(i.e., two product lines) yields another module that combines the variability of both
(i.e., another product line). Imports are matched by exports as far as possible, and
configuration options and functions are merged. Local variability models are combined,
requiring now the constraints of both models. Furthermore, we will explore additional
constraints on the variability model in case of function conflicts later.
In Figure 2, we illustrate the concepts with an extended database example. The system

is divided into three modules storage, query, and xml, not aligning with variability. Each
of these modules has inner variability. Furthermore, we exemplify the result of the
composition storage • xml.

2.4 Crosscutting and inner-module variability in Busybox

Before we get to a formal description, we want to emphasize the need for a proper
variability-aware module system once more with a look into practice. We report data
from the open-source product line Busybox. Like in many product-lines, the Busybox
developers did not pursue a strictly modular approach and used the C preprocessor to
encode variability inside and across modules.
We selected Busybox (release 0.18.5, available at http://busybox.net/) as a paradig-

matic case, representing many other conditional-compilation-based product-line imple-
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mentations [34]. Busybox has 522 .c files and 260 000 lines of unpreprocessed C code.
BusyBox combines custom implementations of many common UNIX utilities into a single
small executable for small or embedded devices. Targeted at resource-constraint environ-
ments, BusyBox is highly customizable with 811 explicitly declared Boolean compile-time
configuration options, allowing selecting which utilities to include and with which facili-
ties.
As common in C, we regard every translation unit (.c file with inlined header files)

as a module, which a compiler can translate independently and which a linker can com-
pose with other modules. Variability in Busybox uses both variability at composition
level, automated by the build system, and variability at inner-module source-code level,
encoded with #ifdef directives.
We illustrate variability in Busybox from different perspectives with metrics:

• Variable module composition. There is a high amount of variability at composition
level. Of 522 modules, 413 modules (79%) are composed only under some condition.
Of 811 configuration options, 386 (48%) influence variable module composition; 270
configuration options (33%) exclusively control composition, but not inner-module
variability. Variability at composition level mostly reflects the selection of entire
tools to be linked into the Busybox executable, such as grep, find, or chmod, and
compression libraries.

• Variability inside modules. Of 811 configuration options, 499 (62%) control vari-
ability at source-code level with #ifdef directives. All 522 translation units contain
source-code level variability. Many translation units provide configuration options
that are local to that module and occur in no other module. For example, find.c has
22 local inner configuration options, hush.c has 13, and httpd.c has 11. There are
69 translation units with at least two local inner configuration options. Between
configuration options inside a translation unit, there are often dependencies in the
variability model, such as hush_job ⇒ hush_interactive. Hence, Busybox
shows potential for local declarations of configuration options and local variability
models.

• Crosscutting variability. In addition to 391 (48%) configuration options local to
a single translation unit (usually configuration options of individual tools, such as
modprobe_blacklist), there are 109 (13%) configuration options that crosscut
multiple translation units. Crosscutting is mostly moderate with 46 configuration
options affecting between two and ten translation units, and 15 between 11 and
50 translation units. However, 47 configuration options affect over 500 (essentially
all) translation units. Configuration options crosscut when several translation units
together implement the same concepts, such as unicode_support and shadow-
passwds. Heavy crosscutting comes mostly from variability in header files that
are included in most translation units, independent of whether the functionality is
used. These metrics show that crosscutting configuration options are common and
should be addressed by an implementation approach.
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• Variability in module interfaces. Source-level variability does not only affect module
implementations, but also their interfaces. As interface of a translation unit in C, we
regard imported and exported functions (for details, see Section 5.2). Conditional
compilation that controls only statements, expressions, or unused declarations do
not cause variability in module interfaces.

Overall, 11% of all exports and 7% of all imports are variable. Of all 811 con-
figuration options, 303 (37%) affect imports or exports in at least one transla-
tion unit. While again variability is mostly local to the interface of a single
translation unit, 45 configuration options affect interfaces in up to ten transla-
tion units (e.g., human_readable, shadowpasswds), and 11 configuration op-
tions affect more than ten interfaces, with the maximum of 41 interfaces affected
by ioctl_hex2str_error (a configuration option adjusting how errors are re-
ported). The metrics indicate that a large amount of source-level variability is
hidden inside modules and does not influence interfaces, but still handling variabil-
ity in interfaces is crucial.

In summary, Busybox illustrates that variability is used both at composition level and
source-code level inside modules. There is potential for local definitions of configuration
options and for hiding variability implementations inside a module. Many translation
units can be considered as small product lines. At the same time, crosscutting is also
common. In our experience with other open-source product lines implemented in C [34],
we judge Busybox as a paradigmatic case.
Traditional module systems cannot handle implementations with inner-module source-

level variability. Enforcing decomposition by variability would require many additional
modules and rewrites, which we regard as impractical for Busybox. On the other hand,
in the current form with inner-module variability, a C compiler only determines imported
and exported symbols after running the preprocessor to remove all variability from the
code. Modules are composed only selecting configuration options. There is no means
to check module compatibility for all configurations, other than applying a brute-force
strategy. We conclude that our motivation for variability-aware modules is also supported
by current software practice.

3 Formalization

In our module system, a module has a well-defined interface that describes the names and
types of imported and exported functions. A type system checks each module in isolation
against its interface and a composition engine ensures that composed modules have type-
compatible interfaces and that no name clashes occur. The formalization can be seen
as the specification of the desired behavior, quite distinct from our implementation. We
use the formalization to prove that our module system is sound. Although the formal
definitions are simple, the soundness properties are not obvious; in fact, it took several
iterations of proving and fixing to get the definitions right.
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Notation:
x ∈ X function names
e ∈ E expressions
t ∈ T types

Γ ∈ X→ T contexts / function imports
∆ ∈ X→ E× T function definitions
m = (Γ ,∆) ∈M module

Auxiliary functions:
sig : (X→ E× T)→ (X→ T)
sig(∆)(x) = t where ∆(x) = (e, t)

∀x∈ dom(Γ1) ∩ dom(Γ2). Γ1(x) = Γ2(x)
typecompatible(Γ1, Γ2)

Module typing:

dom(Γ) ∩ dom(∆) = ∅ Γ ` ∆
(Γ ,∆) OK

∀x∈ dom(∆). Γ ∪ sig(∆) ` e : t where ∆(x) = (e, t)
Γ ` ∆

Module compatibility and composition:

dom(∆1) ∩ dom(∆2) = ∅
typecompatible(Γ1, Γ2)

typecompatible(Γ1, sig(∆2))
typecompatible(sig(∆1), Γ2)

(Γ1,∆1)÷(Γ2,∆2)

Γ ′ = Γ1 ∪ Γ2 \ (sig(∆1) ∪ sig(∆2))
∆ ′ = ∆1 ∪ ∆2

(Γ1,∆1) • (Γ2,∆2) = (Γ ′,∆ ′)

Figure 3: Module system M without variability.

3.1 A base module system M without variability

To illustrate the basic concepts, let us start with a small calculus of a module system
without variability inside modules in Figure 3. The calculus follows the spirit of Cardelli’s
module system formalization [13].
A module consists of a set of imported function declarations with their associated type,

and a list of typed function definitions with a body. Imports are modeled as partial finite
maps (we overload the function arrow → to denote partial maps) from names to types,
definitions are maps from names to types and expressions. The interface of a module
consists of all imported declarations and the signatures of all locally defined functions.
We could easily model a distinction between private definitions and exported definitions,
but except for the need of renaming during composition, this adds little to our discussion;
we simply assume that private functions have been inlined. Translating the example from
Figure 1 into this calculus is straightforward. We leave the exact form of expressions and
types open; we just assume that there is a type system for the expression language that
can perform a type-check of the form Γ ` e : t. The only requirement on the typing
relation is that it must be monotonic (if Γ ′ is an extension of Γ and Γ ` e : t, then
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Γ ′ ` e : t), otherwise module composition would not preserve well-typedness. Almost all
type systems used in practical programming languages have this property.1

We type check each module in isolation. A module is well-typed (m OK) if all function
bodies are well-typed in the context of imported and defined functions and if a function
is not both imported and defined.
Two modules are compatible (m1÷m2) unless they contain a function conflict. There

are three kinds of possible function conflicts: (1) both modules export a function with the
same name, (2) both modules import a function with the same name but with different
types, and (3) one module imports a function defined in the other with a different type.
Composing two modules essentially merges imports and exports, and imports provided
by the other module are removed. To compose two modules with a function conflict,
first the conflict must be resolved; for example, developers can rename the function
in one module to make both modules compatible (see also the rename operator of the
composition language in Section 3.4).
Module system M has the following desirable properties:

(P1) The module system is closed under composition, that is, composing two modules
yields a new module (• :M×M→M).

(P2) We can type check each module in isolation (against its own interface), independent
of other modules (m OK).

(P3) To determine whether two modules are compatible (m1÷m2), we only need to
investigate their interfaces, not their internal implementations.

(P4) When composing two well-typed compatible modules, and the typing relation is
monotonic, then the composed module is well-typed as well (m1 OK ∧ m2 OK ∧

m1÷m2 ⇒ m1 •m2 OK).

(P5) Composition is associative and commutative.

(P6) Module compatibility is closed under module composition (m1÷m2 ∧ m1÷m3 ∧

m2÷m3 ⇒ m1÷ (m2 •m3)), as proved in the appendix.

We want to preserve these properties when we move to a variability-aware module system.

3.2 A variability-aware module system Mv

Now, let us introduce variability into the module systemM. For clarity, we proceed in two
steps: First, we add variability with a global name space for configuration options inMv,
as specified in Figure 4. Subsequently, in the next subsection, we add a scoping concept
for configuration options in Mvl. The calculus models semantics and is hence rather
abstract: We leave open how sets of configuration options are represented (usually with
propositional formulas) and just represent them semantically as sets of (or mappings

1Often called weakening ; substructural type systems [53] that violate this property (such as linear types)
are uncommon in practice.
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Additional notation:
f ∈ F configuration options
c ∈ C = 2F configurations
v ∈ V = 2C variability models
Γ ∈ C→ X→ T variable contexts
∆ ∈ C→ X→ E× T variable definitions
m = (v, Γ ,∆) ∈Mv module

Auxiliary functions:
Sig : (C→ X→ E× T)→ (C→ X→ T)
Sig(∆)(c)(x) = t where ∆(c)(x) = (e, t)

Module typing:
v ⊆ dom(Γ) v ⊆ dom(∆)
∀c∈ v. (Γ(c),∆(c)) OK v 6= ∅

(v, Γ ,∆) OK

conflictpresence(Γ1, Γ2) =
{
c ∈ dom(Γ1) ∩ dom(Γ2) | dom(Γ1(c)) ∩ dom(Γ2(c)) 6= ∅

}
conflicttype(Γ1, Γ2) =

{
c ∈ dom(Γ1) ∩ dom(Γ2) |

∃x∈ dom(Γ1(c)) ∩ dom(Γ2(c)). Γ1(c)(x) 6= Γ2(c)(x)
}

conflict(Γ1,∆1, Γ2,∆2) =
⋃{

conflictpresence(Sig(∆1),Sig(∆2)), conflicttype(Γ1, Γ2),
conflicttype(Γ1,Sig(∆2)), conflicttype(Sig(∆1), Γ2)

}
Module compatibility and composition:

v ′ =
⋃

x 6=y conflict(Γx,∆x, Γy,∆y)

v = v1 ∩ . . . ∩ vn v\v ′ 6= ∅
÷
{
(v1, Γ1,∆1), . . . , (vn, Γn,∆n)

}
v ′ = v1 ∩ v2 \ conflict(Γ1,∆1, Γ2,∆2)

Γ ′(c) = Γ1(c) ∪ Γ2(c) \ (sig(∆1(c)) ∪ sig(∆2(c)))
∆ ′(c) = ∆1(c) ∪ ∆2(c)

(v1, Γ1,∆1) • (v2, Γ2,∆2) = (v ′, Γ ′,∆ ′)

Figure 4: Module system Mv with inner-module variability.

from) configurations. It also leaves open the question of an efficient implementation,
since the formal definitions quantify over (possibly infinite) sets of configurations. We
will describe an efficient implementation strategy later in Section 5.1.
From the (countably infinite) set of names of configuration options F, we can derive

all possible configurations (c ∈ 2F). Of those, a variability model describes the subset of
intended valid configurations (v ⊆ 2F). A module is a 3-tuple (v, Γ ,∆) that consists of
a variability model v, imported function signatures Γ , and defined functions ∆. When
considering variability, a function may be imported only in a subset of all configurations
or may even be imported with different types in different configurations. Hence, we
model imports as a partial map from configurations and function names to types (Γ ∈
C → X → T). This model ensures the invariant that, in each configuration, each name
is mapped to at most one type. Similarly, we model function definitions as map from
configurations and function names to expressions with corresponding type declarations.
Despite variability, type checking (m OK) is still modular. Reusing the formalism of the

module system M without variability, we check that function definitions are well-typed
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and do not overlap with imports in all valid configurations described by the variability
model v. Furthermore, we assert that for each valid configuration the partial map of im-
ports and definitions is well-defined (v ⊆ dom(Γ)). Finally, we expect that the variability
model describes at least a single valid configuration (v 6= ∅, called ’model consistency’ in
[17, 37]) – otherwise module compatibility would be trivial.2

Based on well-typed modules, we define module compatibility and module composition.
There are actually different designs of compatibility and composition possible. Here, we
first introduce a notion with some resemblance to type inference: We infer a variability
model that describes valid configurations and only report an error when no valid con-
figurations remain. In Section 4.1, we discuss alternative designs and their benefits and
drawbacks.
Modules are incompatible if their variability models do not share a single configuration

(v1 ∩ . . . ∩ vn = ∅). In addition, modules are incompatible if all shared configurations
contain a function conflict (as inM, two modules define the same function, two modules
import the same function but with different types, or one module defines a function im-
ported by another module but with different types). Auxiliary function conflict returns
the set of configurations containing a function conflict. In this design, we allow con-
flicts in some configurations, as long as not all configurations are affected. Furthermore,
pairwise checking of compatibility is not sufficient to guarantee preservation of compati-
bility under composition (P6), because incompatibilities, say, due to a mutual exclusion
property asserted by one module, only show up when considering the compatibility of all
modules to be composed (see discussion in Section 4.1). Hence, we model compatibility
as predicate on a set of modules (÷

{
m1, . . . ,mn

}
).

Composing two compatible modules yields a new module. The new module contains
the common configurations of both modules, excluding configurations that contain func-
tion conflicts (v ′ = v1 ∩ v2 \ conflict(Γ1,∆1, Γ2,∆2); we essentially add additional con-
straints to the variability model for function conflicts). Imports are merged but reduced
by the corresponding function definitions for each valid configuration separately. The
exclusion of conflicting configurations from the new variability model v ′ ensures that
the partial mappings of imports and function definitions are well-defined on the full
variability model v ′.
Our module system Mv with variability preserves properties (P1)–(P5) of the module

system M. Since pairwise compatibility is not sufficient to preserve compatibility, as
argued above, we relax (P6) to (P6’):

(P6’) Module compatibility is closed under module composition
(÷

{
m1,m2, . . . ,mn

}
⇒ ÷

{
m1 •m2, . . . ,mn

}
).

Note that (P6’) is compatible with an open-world assumption because a composed module
can still be composed with arbitrary other modules (provided that they are compatible
with the composed module).
In addition, Mv satisfies a new property configuration preserves typing :

2Requiring a single valid configuration is merely a consistency check. Asserting that a module provides
specific configurations can be checked at composition-language level, see Section 3.4.
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Additional notation:
i ⊆ F configuration-option imports
j ⊆ F configuration-option definition
m = (v, i, j, Γ ,∆) ∈Mvl module

Module typing:

v ⊆ dom(Γ) v ⊆ dom(∆)
∀c∈ v. (Γ(c),∆(c)) OK v 6= ∅
i ∩ j = ∅ varmodel(v) ⊆ i ∪ j

varmap(v, Γ) ∪ varmap(v,∆) ⊆ i ∪ j
(v, i, j, Γ ,∆) OK

varmodel(v) =
{
f ∈ F | ∃c∈ v. (c \ {f}) /∈ v ∨ (c ∪ {f}) /∈ v

}
varmap(v,∆) =

{
f ∈ F | f /∈ varmodel(v) ∧ ∃c∈ v. ∆(c \ {f}) 6= ∆(c ∪ {f})

}
Module compatibility and composition:

mx = (vx, ix, jx, Γx,∆x)
v ′ =

⋃
x 6=y conflict(Γx,∆x, Γy,∆y)

v = v1 ∩ . . . ∩ vn
v\v ′ 6= ∅ ∀x 6= y. jx ∩ jy = ∅

÷
{
m1, . . . ,mn

}
m ′ = (v ′, i ′, j ′, Γ ′,∆ ′)

v ′ = v1 ∩ v2 \ conflict(Γ1,∆1, Γ2,∆2)
Γ ′(c) = Γ1(c) ∪ Γ2(c) \ (sig(∆1(c)) ∪ sig(∆2(c)))

∆ ′(c) = ∆1(c) ∪ ∆2(c)
i ′ = i1 ∪ i2 \ (j1 ∪ j2) j ′ = j1 ∪ j2

(v1, i1, j1, Γ1,∆1) • (v2, i2, j2, Γ2,∆2) = m ′

Figure 5: Module system Mvl extends Mv with scoped configuration options.

(P7) All module configurations derivable from a well-typed module are well-typed, that
is, ∀(v, Γ ,∆) ∈Mv. (v, Γ ,∆) OK⇒ ∀c∈ v. (Γ(c),∆(c)) OK.

Properties (P1)–(P3) and (P7) follow directly from the definition of Mv. Proofs of the
remaining properties can be found in the appendix.

3.3 Locality of configuration options in Mvl

So far, our module system has global configuration options. In a final step, we introduce
a scoping concept that allows declaring and explicitly importing configuration options,
as illustrated in our motivating example in Figure 2.
We model configuration options in direct analogy to functions: A configuration option

is defined in a module. Equivalent to a function body, a configuration option can provide
additional specifications, such as descriptions and defaults. Other modules can import a
configuration option to use it, and referencing a configuration option as part of a presence
condition is the equivalent of a function call. In line with functions, we check, in each
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module separately, that only defined or imported configuration options are referenced.
Similar to name clashes between functions, name clashes between configuration options
can be resolved with α-renaming (see Section 3.4). As function names in our basic
module system, configuration options share a global namespace; however, declarations
and imports provide a means to enforce scoping of names, so modules that declare the
same name are incompatible. As with functions, it does not technically matter which of
two modules defines and which imports a configuration option; selecting where to place
the definition is a design choice. For example, similar to bundling function definitions in
separate modules as libraries, designers may decide to bundle many configuration options
in one separate module.
We extend our module system to Mvl as specified in Figure 5. A module now ad-

ditionally contains imports (i ⊆ F) and definitions (j ⊆ F) of names of configuration
options. Since additional description or defaults of configuration options are relevant
only for external concerns, we omit them from our formalization. Locally, we check that
a configuration option is not both imported and declared (i ∩ j = ∅). Furthermore, vari-
ability in the variability model, in function imports, and in function declarations must
be expressed only in terms of declared or imported configuration options. Auxiliary
function varmodel yields all configuration options that affect the variability model and
varmap yields configuration options that make a difference in the definition of a variable
mapping (a configuration option f makes a difference if and only if two otherwise equal
configurations with and without f are distinguished by a model or mapping). This way,
we enforce well-defined scoping of configuration options. In a practical implementation,
in which sets of configuration options are represented by propositional formulas, these
checks can be conservatively approximated by considering the set of configuration options
that occur syntactically in presence conditions in the module.
Compatibility and composition require only minimal, straightforward extensions: Two

modules are incompatible if they declare the same configuration option. During compo-
sition, declarations and imports of configuration options are matched and merged like
functions. Mvl also preserves properties (P1)–(P5), (P6’), and (P7), as proved in the
appendix.

3.4 Composition language

So far, we have discussed the module-composition operator (• : M ×M → M) and
module compatibility. There are additional useful operators at the level of the composi-
tion language, such as renaming, hiding, partial configuration, and variability checking.
Here, we outline useful operators to give a more complete picture of typical and flex-
ible module composition. We have the following syntax of module expressions in the
module-composition language on top of Mvl:
Z ::= Mvl atomic modules

| Z • Z composed modules
| closed Z completeness check
| rename X→ X in Z function renaming
| renameC F→ F in Z configuration-option renaming
| hide X in Z function hiding
| configure F→ {>,⊥} in Z partial configuration
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| assert V in Z variability check

Since the operators and their formalization are straightforward, we provide only an in-
tuition of how they work.
A module is closed if it has no remaining imports (function imports or configuration-

option imports) in any configuration. The operation closed returns a closed module
unmodified and gets stuck on modules that are not closed. A module check is easy to
specify and implement by inspecting Γ and i of the module.

Operation rename takes a module and produces a new module in which all occurrences
of a function name (in function imports, function definitions, and function calls in all
configurations) are replaced by a different name. As precondition, we expect a well-typed
module in which the new function name is not already imported or defined. For example
to compose inmem and persist in Figure 1, we could rename functions write to writemem
and read to readmem: inmem • (rename read→readmem in (rename write→writemem in persist)).
Similarly, operation renameC renames all occurrences of a configuration option. The

operation assumes a well-typed module and a target name that is not yet imported or
defined as configuration option inside the module. Technically, we simply exchange the
names in configurations during lookups; in a more syntactic implementation, we would
rewrite variables in presence conditions. For example, in the source code in Figure 2, we
could simply replace all syntactic occurrences of readonly by db_readonly_access
to avoid possible name clashes with other modules that also have a configuration option
readonly.
Operation hide hides a function inside a module so that it is no longer exported.

The notion of hiding is especially useful in hierarchical module systems [11]. We can
either explicitly model private functions, or we implement hiding by inlining the function.
For example, after composing the modules core and inmem in Figure 1, we could hide
functions read and write to clean the namespace before further compositions.
Operation configure removes a configuration option from a well-typed module, by se-

lecting or deselecting it. As discussed previously, there are no private configuration
options, but every configuration option must be exported to enable a choice. Therefore,
we cannot hide a configuration option without deciding whether the corresponding code
should be included or not. Syntactically, this operation replaces all occurrences of the
configuration option in presence conditions by true or false and removes the correspond-
ing declaration. For example, we could decide to select feature readonly of module
storage in Figure 2 (note that on subsequent composition of that module with query, the
imported feature readonly would no longer be matched by a corresponding definition,
that is, the resulting module is not closed).
Finally, we provide a variability check for a module that asserts that the given module

provides expected variability (somewhat similar to a type cast). The operation simply
returns the module if the expected variability (provided as a variability model) is a
subset of the module’s variability model, or gets stuck otherwise. So, we can compare a
composed module with a separately defined specification, as we discuss in Section 4.2.
Based on this composition language and the formalization of Mvl, we could define a

type system that statically checks that a composition does not get stuck. However, such
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a type system adds little new to our discussion of variability, so it is outside the scope of
this paper.

3.5 Formalization summary

We have shown that it is possible to make modules variability-aware while preserving
the basic properties of traditional module systems. To do so, we replaced the globals of
traditional feature-oriented programming – variability model and scope of configuration
options – by modular counterparts and enriched the interface language with variability,
such that separate checking becomes possible.

4 Design decisions

The variability-aware module system we defined in the previous section makes several
design decisions that deserve discussion.

4.1 Constraint inference

The most controversial design decision of our calculus is to infer constraints during
composition when function conflicts are detected. In our calculus, two modules are
compatible even if they contain function conflicts, as long as at least one configuration
is without conflict.
As alternative design, we could regard two modules as incompatible, if they have

function conflicts in any configuration. We would define compatibility as follows:

v1 ∩ v2 ∩ conflict(Γ1,∆1, Γ2,∆2) = ∅ j1 ∩ j2 = ∅
(v1, i1, j1, Γ1,∆1)÷(v2, i2, j2, Γ2,∆2)∧

x 6=ymx÷my

÷
{
m1, . . . ,mn

}
A main difference between both designs is associativity of module composition (P5).

Consider the following modules:
a = (
config A;
fun foo(): Int
if A = ...;

)

b = (
config B;
fun foo(): Int
if B = ...;

)

vm = (
import config A,B;
variability

¬(A∧B);
)

Modules a and b export the same function in overlapping configuration sets, but module
vm excludes all overlapping configurations. In an open-world scenario, modules a and b
do not know about each other or their configuration options. Nevertheless, the inference-
based design decision allows us to compose modules a and b without knowing about a
dependency between configuration options a and b; the composition operator infers that
a and b must be mutually exclusive. In the alternative design, in which we do not allow
any function conflicts, we can compose a with b only after composing one of it with vm
(i.e., a • (b • vm) is a valid composition, whereas (a • b) • vm is undefined).
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In the inference-based design, the composition operator infers additional constraints
on the feature model. If needed, we can use the assert operator of the composition
language to ensure that we do not accidentally restrict the module’s variability model
too much (see Section 3.4). In contrast, in the alternative design, a developer is forced to
compose one module with a glue-code module before composing it with another module
with partial function conflicts. Along those lines, the variability model to be used as glue
code can be integrated into the composition operator, such as m1 •vm2 as shorthand for
(m1 • (v, ∅, ∅, ∅, ∅)) •m2.
There are trade-offs between both designs:

• Associativity vs. pairwise compatibility: On the one hand, the inference-based de-
sign enables associativity of module composition (P5). On the other hand, in the
alternative design, already pairwise module compatibility is closed under module
composition; thus it satisfies the stronger property (P6) in addition to (P6’).

• Local errors vs. specification effort: In the alternative design, function conflicts
are always reported locally when composing two modules. When these function
conflicts do not matter due to additional constraints, the developer must provide
additional specifications at composition time. Conceptually, the alternative design
roughly relates to explicit type annotations for type checking, where precise local
error messages are possible at the expense of additional specification effort. In
contrast, the inference-based design roughly aligns with type inference, because we
infer which compositions are correct but only report an error when we actually use
one of the excluded configurations. As in languages based on type inference, errors
are reported less immediate and less local, but less specifications are required.

Both designs have their merits. For us, flexible, associative composition (P5, P6’) was
the more important goal, so we decided to present and implement the inference-based
design as main mechanisms. Furthermore, our experimental evaluation suggests that
compatibility in the inference-based design is not trivial and can find type errors in real-
world code. Nevertheless, the alternative design is straightforward to formalize (actually,
the different compatibility rule above is the only necessary change) and to implement.
Finally, there is a third alternative that would allow both associativity (P5) and pair-

wise compatibility checks (P6): We could restrict variability models such that only posi-
tive constraints can be expressed, for example, by restricting constraints to Horn clauses.
Unfortunately, that design choice reduces expressiveness beyond what is acceptable in
product-line practice: We could not even express mutual exclusion as in module vm.

4.2 Local variability models and configuration-option imports

One of our design goals was to eliminate the inherently antimodular global variability
model, which is common in product line engineering [17]. A global variability model does
not align with the open-world design of our module system. Instead, we allow specifying
the relevant constraints distributedly in different modules. Thereby, our variability-
aware module system allows decomposing large global variability models into small local
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variability models. We believe that modules with local variability models can be more
easily reused, because local variability models make weaker assumptions on the context.
If desired, a global variability model can still be encoded as just another module. This

module would declare all configuration options and their constraints. The pattern of
having a separate variability model may be useful for the common case that a domain
expert models constraints not reflected or detected by the type system, such as “a read-
only database does not require transactions”. Such a additional variability model can
simply be linked into any other module to restrict valid configurations. Optionally, we
could extend our module system such that a module can specify expected variability in
form of a minimal configuration space that should not be restricted by other modules;
this can also be encoded with the assumes operator of the composition language (cf.
Section 3.4).
We could criticize that we still have a global namespace for configuration options.

While this is true, the same holds for the namespace of function names. In both cases,
we enforce scoping with explicit imports and compatibility checks detect accidental re-
definitions. Furthermore, renaming operations of the composition language can be used
to resolve naming conflicts.
An arguable aspect of our design is that we need to locally redeclare constraints be-

tween crosscutting configuration options in every module that needs those constraints
for modular type checking. This could easily be addressed by adding named imports in
which lists of constraints (and function signatures) or entire modules can be imported
with a single import statement. In principle, we could also infer a local variability model
that describes exactly all well-typed configurations (similar to how we infer constraints
during linking), but we prefer immediate modular error reporting. Arguably, repeating
constraints for modular type checking provides even useful documentation.

4.3 Abstraction from variability implementation

Our calculus abstracts from a concrete language and type system at expression level.
We intentionally focus on module interfaces to allow different inner implementation ap-
proaches and different strategies to type check all configurations of a module’s imple-
mentation.
There are many examples of how variability inside a module can be implemented and

type-checked.

• Conditional compilation as introduced in Section 2, even though usually frowned
upon from the research community [47], is a perfect match for our calculus: De-
velopers can encode presence conditions on code fragments with #ifdef directives.
Even variability at expression level is not uncommon in practice [34]. Variability-
aware type checking [28] can be used to type check all configurations efficiently as
we will show. Our implementation for C, discussed in Section 5.2, is entirely based
conditional compilation in C code. Although we do not want to encourage using
lexical preprocessors, we acknowledge their widespread use and the huge amount
of legacy code and provide corresponding tool support.
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• We can use a module-per-configuration-option approach (without variability inside
modules; cf. Section 2.1) to encode variability inside a composite module [52]. Sev-
eral mechanisms, called safe composition, can be used to efficiently check whether
all compositions of a fixed set of inner modules allowed by a local variability model
are well-typed [50, 20, 3, 15]. In our module system, we can nest even variable
modules and guarantee a common interface.

• Finally, we can use any other implementation strategy, including runtime vari-
ability [44], sophisticated metaprogramming systems [26, 31], and configuration
management systems [10, 32]. For most of these implementation mechanisms, no
efficient means to type check all configurations is available yet. However, if vari-
ability in each module is sufficiently restricted, a brute-force approach of checking
each distinct implementation of the module’s configurations may sufficiently scale.
Using our module system, we can apply brute-force type checking to each module
in isolation, whereas, once we determined that a module is well-typed, there is no
need to recheck it for composition (P3).

4.4 Product lines of product lines

Developing product lines of product lines (also known as nested product lines [32], multi
product lines [45], or product populations [52]) has received increasing attention as the
size of industrial product lines has grown and the need for a divide-and-conquer strategy
arose again. Since each module can be considered as a product line of its own, composing
multiple product lines and reusing product lines in different (even unplanned) contexts
is a natural use case of our module system. For example, we could reuse the storage-
subsystem product line from Figure 2 in a product line of consumer electronics. Our
module system offers a clean solution to decompose a product line into smaller subproduct
lines, including a suitable decomposition of the variability model, enforcing information
hiding with variable interfaces.
In this context, it is useful to adopt the notion of hierarchical modularity [11] and

provide a richer composition language as outlined in Section 3.4. Supporting composi-
tion in hierarchical form allows resolving possible composition conflicts locally, at lower
levels of the hierarchy. At each level, developers control what functions and variabil-
ity the composed module exposes. To that end, renaming, hiding exported functions
after composition and partially configuring a module by selecting or deselecting config-
uration options become essential operations to prepare modules for composition with
independently developed product lines. We believe that most concepts of the SML/NJ
compilation manager [11] can be adopted for product lines in our module system as well;
but an in-depth analysis is outside the scope of this work.

5 Implementation and practical scenario

We demonstrate a practical application of our variability-aware module system as follows.
First, we outline an implementation strategy that is sufficiently efficient for real-world
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product-line implementations. Second, we actually implemented a variant of the module
system for C code with #ifdef variability. Third, we apply our implementation to the
medium-size product line Busybox. We do not intend to perform rigorous benchmarks;
instead, we demonstrate that it is possible to implement such a module system efficiently,
and we illustrate practical potential of the module system in a realistic setting.

5.1 Implementation strategy

The calculus leaves open how to represent variability and describes checks by quantifying
over large configuration spaces (e.g., ∀c ∈ v. . . .). In our implementation, we encode sets
of configurations as propositional formulas (p ∈ P), in which variables are names of
configuration options, as exemplified already in Section 2.3. Each model of the formula
corresponds to a configuration. This allows us to encode module well-formedness and
compatibility as Boolean satisfiability problem. We describe an encoding in line with a
long tradition of prior work on variability-aware analysis [5, 18, 50, 3, 28, 29, 49, 15].
Despite exponential worst-case time, reasoning about all configurations induced by a

formula is sufficiently efficient in practice with modern Boolean satisfiability solvers [37].
An empty configuration set corresponds to an unsatisfiable formula (JfalseK = ∅), the
intersection of two configuration sets is equivalent to the conjunction of the corresponding
formula (Jp1 ∧ p2K = v1 ∩ v2), and so forth.
We encode the map from configurations and names to types (Γ ∈ C → X → T) as

a map from names and formulas to types (Υ ∈ X → P → T). This has two benefits:
We can iterate over a typically small set of formulas describing only distinct types, and,
due to the reversed mapping order, we do not need to copy the entire environment when
changing a single function. In this encoding we need to enforce the invariant that all
formulas for a name are mutually exclusive with a SAT solver. As optimization, two
entries with the same name pointing to the same type can be combined by disjuncting
their formulas.

Module compatibility. To determine compatibility between module interfaces, we check
whether there is at least one satisfiable configuration that satisfies both variability models
and is not a function conflict: SAT(p1 ∧ p2 ∧ ¬conflict(. . .)). To determine function
conflicts, we derive a formula that describes all conflicting configurations. Let us illustrate
this encoding with conflictpresence: For a name x, we determine the condition when x
is exported with any type (

∨
dom(Υi(x))); subsequently, we require exports from both

modules must be mutually exclusive (¬
(∨

dom(Υ1(x)) ∧
∨
dom(Υ2(x))

)
); finally, we

return the disjunction of these mutually-exclusive constraints for all x defined in both
modules. That is, to determine conflictpresence, we iterate over a small set of names
and with a small set of formulas per name to create a single formula describing all
configurations with conflicts. We encode conflicttype similarly, but additionally compare
(a usually small number of) types. All checks are performed solely on interfaces (P3).

Module composition. During module composition, we create a new variability model
as conjunction of the original ones without conflicts (p1 ∧ p2 ∧ ¬conflict(. . .)). When
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both modules import the same function with the same type, we import it only once using
the disjunction of the respective presence conditions. To remove a function import with
formula a by an export with formula b, the resulting module imports the function with
formula a∧¬b. Finally, all entries with formulas a that are unsatisfiable in the resulting
variability model p ′ (i.e., ¬SAT(p ′ ∧ ai)) can be removed.

Type checking all configurations of a module. As discussed in Section 4.3, many
different implementation mechanisms can be used inside a module; even a brute-force
approach to type check all configurations may be feasible in some cases. Still, more
sophisticated checks have been developed for certain variability-implementation ap-
proaches [5, 18, 50, 3, 28, 20, 15]. Here, we briefly outline how to type check code
with conditional compilation.
With variability, each expression can have alternative types, just as each name in

the current context can have alternative types. All expressions are type checked in
a variability context pctx (a formula describing the subset of configurations that are
checked, for example, the presence condition of the function that contains the expression).
When looking up a function call, we find all declared types ti with the corresponding
formulas pi. We can discard types with formulas never satisfiable in the current context
(¬SAT(pctx ∧ pi)). We raise an error if, in any configuration in the context, there is no
type (SAT(pctx∧¬p1∧ . . .∧¬pn)) and hence no function; a violation of a property that
we call reachability [28]. Again, the key idea is using propositional formulas to reason
about (typically few) alternative types instead of iterating over all configurations.
For operations that involve comparing two types, such as function application (e.g.,

e1(e2)), we look up alternative types for both subexpressions. We check all combinations
of both alternative types, if the conjunction of their formulas is satisfiable in the current
context. Worst-case effort is exponential and the number of types can explode, but, in
practice, both expressions have only few alternative types [3, 5, 15]. For more details on
variability-aware type checking see the rich body of prior work [5, 50, 3, 28, 20, 15].
We determine relevant configuration options (varmodel, varmap in Mvl) syntactically

with a sound and conservative approximation (all properties still hold): We collect all
variable names in formulas, including the variability model.
Due to SAT solving, determining compatibility and well-typedness of modules is NP-

complete. However, with modern SAT solvers, the complexity of SAT solving is not of
practical concern even for large product lines [37, 28, 50].

5.2 Implementation for C

We provide the first approach that can type check all configurations of realistic C code,
beyond actually preprocessing and checking all configurations in isolation in a brute-force
fashion (prior work focused on dialects of Java [50, 3, 28, 20], the lambda calculus [15],
and UML [18], or only sketched a possible strategy [5]). Our implementation of the
variability-aware module system supports both modular checking of all configurations of
a translation unit and variability-aware compatibility checks. The implementation is part
of the TypeChef project, which pursues variability-aware analysis of real-world C code.
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TypeChef is open source and available at http://ckaestne.github.com/TypeChef/. For
experimentation, a simple interactive online version is available at that site as well.
Based on the outlined implementation strategy, we implemented the variability-aware

module system M vl for C. Instead of modifying a C compiler and linker, we wrote
the module system as a separate analysis tool in Scala. It separately detects errors
that the normal compiler and linker would find when compiling and composing files in a
specific configuration. The implementation consists of four main parts: parsing, modular
variability-aware type checking of translation units, interface inference, and composition
checks between interfaces.

Variability-aware parsing. A challenge in analyzing #ifdef variability in C code, which
hampered prior approaches, is preserving variability during parsing. Conventional C
parsers only parse a single configuration after the preprocessor has inlined includes, ex-
panded macros, and evaluated conditional-compilation directives. Instead, we parse C
code without evaluating #ifdef directives and produce an abstract syntax tree that con-
tains variability information (including information from header files). In case of #ifdef
directives, we parse both branches and encode variability in the abstract syntax tree.
Typically only explicitly declared configuration options are considered for variability,
whereas other macros, such as included guards, are processed as in a traditional prepro-
cessor. The actual process is precise but much more complex, due to lexical use of #ifdef
directives on arbitrary tokens and because of interactions between macros, includes, and
conditional compilation. The parser has been discussed in detail in prior work [29]; here,
we use it as black-box component.

Modular variability-aware type checking. For each translation unit, we perform mod-
ular variability-aware type checking (m OK of Mvl) on the abstract syntax tree with
variability, as outlined above in Section 5.1. The type system determines (alternative)
types for all expressions. In C, this means it checks reachability (as described in Sec-
tion 5.1) of function calls and variables access, reachability of field access of structures,
and compatibility of types. In principle, a sound and complete variability-aware type
system is possible [28, 3, 20, 15]. However, due to the size and the informal descrip-
tion of the C standard, our prototype covers only a large subset of the standard but is
incomplete and unsound regarding, for example, goto labels, unreachable-code removal,
and several GNU C extensions. The type system incorporates a local variability model
(defined in a separate file for each translation unit) and reports errors only within valid
configurations. It checks each translation unit in isolation (P2).

Interface inference. Based on the type system’s result, we infer an interface for each
translation unit. C fits particularly well to our module-system design, because it dis-
tinguishes between function declarations without bodies (prototypes; typically defined
in header files) and function definitions with bodies. Function definitions are exported
unless marked static, whereas called functions that are declared but not defined are
imported. From the presence conditions of function definitions and function calls, we
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derive presence conditions for the interface; for imports, we derive a presence condition
as disjunction of all presence conditions of calls of this function within the translation
unit.3 Types of imports and exports are directly recognized from function declarations
and function definitions, respectively (i.e., no type inference and no investigation of other
modules is necessary). Furthermore, the interface contains imports for all configuration
options used within presence conditions in the translation unit. We do not automatically
infer declarations of configuration options or local variability models, but users can define
them manually if desired.
We decided to infer interfaces instead of writing them explicitly, because, except for

declarations of configuration options and variability model, all information is already
available in the C code. Developers can decide when to import a function by adding
an #ifdef around the prototype declaration and can explicitly decide when to export a
function with the static specifier, which can also be guarded by an #ifdef. Maintaining
a separate manual interface specification and checking it against the implementation is
possible, but does not provide additional benefits: An interface cannot be more restrictive
than the implementation, unless we change the C compiler to enforce interfaces as well.

Compatibility checks. Compatibility checks between inferred interfaces
(÷

{
m1, . . . ,mn

}
) implement M vl as outlined in Section 5.1. Our implementa-

tion works on inferred interfaces in separate files, not directly on C code.

5.3 Type checking Busybox

Finally, we used our variability-aware module system to parse all translation units in
Busybox, type check each translation unit in isolation, infer interfaces, and check the
composition of these interfaces.

Errors. In the analyzed release 0.18.5, all 522 translation units are syntactically correct
and well-typed in all valid configurations. The development process of Busybox, which
includes some random-configuration testing before releases, seems to catch most type
errors already. However, in recent development revisions, we found and reported three
compiler errors specific to certain configurations.4 In addition, occasionally compiler er-
rors in development revisions are reported on the mailing list; we reproduced some known
(and now fixed) compiler errors throughout the revision history. Here, we exemplify a
type problem and a linker problem.
In September 2011, a user reported compiler error of undeclared variables now and

info in file procps/ps.c.5 After some investigation, the user eventually traced down the
3In fact, the GNU C compiler creates symbols only for functions called after the optimizer removed
unreachable code. We do not yet perform such optimizations; so, functions called only from unreach-
able code are part of the inferred interface. Adopting constant folding and static analysis to detect
unreachable code in all configurations is an interesting avenue for future work.

4Bug reports https://bugs.busybox.net/show_bug.cgi?id=4994 and http://lists.busybox.
net/pipermail/busybox/2012-April/077683.html; fixed in subsequent commits.

5See http://lists.busybox.net/pipermail/busybox/2011-September/076730.html for the full
discussion and patch.
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problem to a configuration without feature feature_ps_long and posted a con-
figuration that would reproduce the error. The patch that fixed the problem adds
an additional #ifdef directive around the problematic code fragment. Running Type-
Chef on the revision at the time of the bug report (git commit b64bd16459 ) yields two
type errors in file procps/ps.c. In contrast to the manual investigation, TypeChef pin-
points the problem precisely to a set of configurations with the following constraint:
¬desktop ∧ ps ∧ ¬feature_ps_long ∧ (selinux ∨ feature_show_threads ∨
feature_ps_wide).
In the same month, another user provided a patch for a linker error.6 An incor-

rectly placed #ifdef (introduced in git commit 128543721 ) caused that library function
match_fstype was no longer exported (instead of being exported when feature plat-
form_linux is selected). At the same time, the function was still imported in modules
mount and umount, when the corresponding features mount or umount were selected.
In that revision, TypeChef reports that the composed module still conditionally im-
ports function match_fstype; that is, the module is not closed in configurations with
mount ∨ umount.
For other kinds of linker errors, such as conflicting types of imports, multiple function

exports with the same name, and type mismatch between imports and exports, we have
not found actual instances in Busybox. For testing purposes, we deliberately introduced
and detected several of them. Overall, our experiments confirm that TypeChef finds type
errors and linker errors in real-world product lines, which is especially helpful as rapid
feedback during the development process, for instance as part of an automated build in
a continuous-integration process.

Local and crosscutting variability. Our module system supports both local and cross-
cutting variability. In Section 2.4, we presented several metrics from Busybox that were
gathered ex post from our infrastructure. When taking the module-per-configuration-
option approach, we would have been forced to decompose translation units with local
inner variability into smaller modules, just for technical reasons. Furthermore, we would
have been forced to create many additional modules for configuration options that cross-
cut the entire implementation. Such encoding appears cumbersome and unpractical,
whereas our module system allows modular checks without restructuring the code.
Our module system explicitly supports encapsulating local inner variability, enables

variability to crosscut multiple modules, and supports variability in interfaces. Whereas
previously every configuration had to be checked in isolation in a brute-force fashion, we
can type check all configurations of each module in isolation and we can check compati-
bility of all modules with their variability.

Performance. The advantage of modular checks shows most prominently regarding
performance. In total, we need 57 minutes to type check all modules.7 On average

6http://lists.busybox.net/pipermail/busybox/2011-September/076576.html
7We measured performance on a normal lab computer (Intel quad-core 3.4 GHz with 8 GB RAM;
Linux; Java 1.6, OpenJDK). We did not perform low-level optimizations and still compute debug
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we need 5 seconds to parse a single translation unit with all its headers and with its
variability, 0.7 seconds to type check all configurations in a variability-aware fashion,
and 0.03 seconds to infer its interface. Compared to a brute-force approach of checking
all configurations in isolation, our analysis is extremely fast. The slow down compared to
conventional compilers is a tribute to the inherent complexity (we parse and type check
all, potentially billions of possible configurations) and the necessity to solve many Boolean
satisfiability problems. With our module system, we easily parallelize type checking with
multiple machines. Furthermore, after a change, we only need to recheck affected files
and corresponding compatibility checks instead of reperforming whole-program analysis.
Checking compatibility and composing all interfaces incrementally (in alphabetical or-

der) requires 29 seconds. Composing them in a divide and conquer fashion (pairwise
composition, then pairwise composition of the results, and so on) reduces effort to 4 sec-
onds, with additional potential for parallelization. Overall, the opportunity for quick
compatibility checks, for parallelization, and for incremental checking allows us to scale
variability-aware analysis to real-world C code.

6 Related work

Variable module composition. Product-line implementations that target some notion
of modularity (e.g., components, plug-ins, feature modules, functors, or aspects) typically
follow an approach in which compile-time variability is expressed during composition, not
inside modules [14, 42, 7, 26, 2, 46, 25, 17, 43]. Several of these approaches offer notions of
function refinement, orthogonal to our discussion, for which composition is not commu-
tative [4]. When constructing product lines from modules without inner variability, type
checking each module in isolation is usually straightforward; for languages without ex-
plicit module interfaces, such as AHEAD, AspectJ, and DeltaJ, corresponding interfaces
can be inferred [20, 46, 33]. However, since variability is encoded as variable composi-
tion, there is still an exponential number of possible configurations. Checking them all
is usually infeasible; modular type checking reduces the costs for each composition check
but does not reduce their number.
For a fixed set of modules, safe composition explores all configurations against a global

variability model using an encoding as Boolean satisfiability problem [50, 20, 3]. The same
technique was explored also as variability-aware type checking for closed-world nonmod-
ular implementations [18, 28, 5, 15] and for other analysis approaches [16, 12]. Although
following a different technical route, the implementation of our type-checking mechanism
inside modules with alternative types was particularly inspired by the structures of the
choice calculus [23, 15]. Overall, in our module system, we use similar algorithms, but
a closed world assumption is never required; an existing (composed) module can always
be composed with more modules while retaining the soundness guarantees.

information and statistics. Measured times provide only rough indicators about what performance
to expect and that variability-aware analysis is feasible; they are not meant as rigorous benchmarks.
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Variability inside modules. Variability inside modules has been explored in different
contexts. Our work was initially inspired by prior work on modular logic metaprogram-
ming [31]. In logic metaprogramming, programs are derived from a deductive database;
by using a logic to describe the effect of metaprograms in interfaces, sound modular type
checking can be achieved. We adopted the underlying idea of logic formulas in interfaces,
but restricted and specialized it to a level that is practical for large-scale product line
development and efficient to check with automated provers. From the perspective of logic
metaprograming, we reduce metaprogramming to propositional presence conditions over
configuration options and local variability models.
Several programming languages support some form of type-conditional methods, a form

of parametric polymorphism in which the applicability of a method call can depend on
the type parameter of the enclosing class [27, 35, 40, 21]. Invoking a conditional method
is only well-typed when the condition is satisfied in the context of the invocation. For
example, in a collection class, such as List, clients should only be allowed to invoke a
method print if the class is parameterized with a type that can be printed. The purpose
of type-conditional methods is to improve static type-safety; the operational semantics of
the language does not change. For instance, it is not possible to define several alternative
variants of a method (with different implementations or types) or to define dependencies
between configuration options. This means that the applicability of these approaches to
variability management for software product lines is rather limited.
Approaches to increase the flexibility of method dispatch, such as multi-methods [38],

predicate dispatch [22], or dependent classes [24] could be used for modules with inner
variability, but since the dispatch only depends on method arguments, it is not obvious
how to encode variability that can not be deduced from the dynamic arguments of a
method call. Furthermore, a set of methods with the same name typically needs a
default implementation, which is called if none of the other methods is applicable, which
is less safe than the checks in our approach, which do not need default implementations
but can detect statically when no applicable function exists. Also, modular type checking
of these approaches is quite hard [38, 39]. On the other hand, these approaches are much
more powerful with regard to expressing dynamic variability, which is not in the scope
of this work.
Compile-time metaprogramming, such as C++ templates or the C preprocessor, is

often used to express inner compile-time variability [17], but these approaches suffer
from the problem that type checking can only take place after specialization to a specific
instance of the product line.
Also the product-line community has explored components with inner variability. Most

prominently, the Koala component system has mechanisms for run-time and compile-time
variability inside a module, exposed through a diversity interface [52]. A Koala module
can express variable module composition of inner modules; the condition for the compo-
sition can be exposed in the diversity interface. If a configuration parameter is known
at compile-time, only the corresponding inner module is included (a specialized form of
partial evaluation), otherwise all modules are included and function calls are dispatched
at run-time. In contrast to our module system, Koala does not support variability in
the functional interface: Diversity interfaces may change the behavior (and which inner
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component is used to provide the behavior) but not the interface. Dependencies between
configuration options and crosscutting variability are not explicitly supported, but can be
encoded. Since compile-time variability is expressed with variable module composition
(possibly nested inside another module), Koala enforces a variability-induced dominant
decomposition.
Along similar lines, de Jonge [19] introduced configuration interfaces into a package

mechanism: Each package can declare configuration options and bind them in imported
packages. Similarly, plastic partial components [41] introduce variability interfaces for
architectural components and realize variability internally with aspect-oriented program-
ming. Van der Storm [51] subsequently extended this approach with local variability
models and configuration checks by encoding variability information as Boolean satisfi-
ability problem. However, all these approaches do not enforce modularity of the host
language modules with code-level interfaces; at most they check consistency between
packages.

Composing variability models. Finally, there are many mechanisms to specify and com-
pose variability models and to reason about them. In practice, some flavor of graphical
feature diagrams are typically used [17], which represent configuration options in a hier-
archical form and have a straightforward translation to propositional logic [51]. Busybox
uses the textual feature-modeling language KConfig with a similar concept and transla-
tion [9]. Advanced composition mechanisms attempt to retain the hierarchical form of
variability models [1]; they are orthogonal to our discussion. If variability model and
reasoning should include non-Boolean configuration options, other logics and solvers can
be used [8]. For our calculus and our implementation, composing propositional formulas
was sufficient.

7 Conclusion

We introduced a variability-aware module system for software product lines that over-
comes the variability-induced dominant decomposition of traditional module systems, by
allowing variability inside modules and in module interfaces. Each module can be type
checked in isolation, covering all configurations allowed by the module’s local variability
model. Composing two compatible well-typed modules with variability yields another
well-typed module with the combined variability. The module system breaks with the
product-line tradition of closed-world implementations with a global variability model
and takes it into an open environment, toward software ecosystems and product lines of
product lines. We defined the module system formally in a calculus, outlined a general
implementation strategy, and presented an implementation for C, which we applied to the
open source product line Busybox. Our next step is to type check the entire Linux kernel
with 10 000 configuration options, a task for which the module system is an important
foundation, but for which various engineering problems still have to be solved.
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A Proofs

A.1 Properties of M

Lemma 1. Let ` be a monotonic relation, (Γ1,∆1) ∈ M, (Γ2,∆2) ∈ M, (Γ1,∆1) OK,
(Γ2,∆2) OK, and dom(∆1) ∩ dom(∆2) = ∅. Then Γ1 ∪ Γ2 \ (sig(∆1) ∪ sig(∆2)) ` ∆1 ∪ ∆2.

Proof. Γ1 ∪ Γ2 \ (sig(∆1) ∪ sig(∆2)) ` ∆1 ∪∆2 if and only if ∀x∈ dom(∆1 ∪∆2). Γ1 ∪ Γ2 ∪
sig(∆1)∪sig(∆2) ` e : t where (∆1∪∆2)(x) = (e, t). Since dom(∆1)∩dom(∆2) = ∅, assume
x ∈ dom(∆1) with ∆1(x) = (e, t). Then, from (Γ1,∆1) OK it follows that Γ1∪sig(∆1) ` e : t.
Thus, by monotonicity, Γ1∪ Γ2∪ sig(∆1)∪ sig(∆2) ` e : t. Analogous for x ∈ dom(∆2).

Theorem 1 (P4: Composition preserves typing in M). Given a monotonic relation `,
module composition of well-typed, compatible modules preserves typing, that is, ∀m1,m2 ∈
M. m1 OK ∧ m2 OK ∧ m1÷m2 ⇒ m1 •m2 OK.

Proof. Let m1 = (Γ1,∆1), m2 = (Γ2,∆2), and m1 • m2 = (Γ ′,∆ ′). (Γ ′,∆ ′) OK if and
only if (dom(Γ ′) ∩ dom(∆ ′) = ∅) ∧ Γ ′ ` ∆ ′. We inline the definitions of Γ ′ =
Γ1 ∪ Γ2 \ (sig(∆1) ∪ sig(∆2)) and ∆ ′ = ∆1 ∪∆2. The first conjunct then follows from the
equation dom(sig(∆)) = dom(∆) for all ∆. The second conjunct follows by Lemma 1.

A.2 Properties of Mv

Lemma 2. Let m1 = (v1, Γ1,∆1) ∈Mv and m2 = (v2, Γ2,∆2) ∈Mv with m1 OK, m2 OK,
and (v ′, Γ ′,∆ ′) = m1 •m2. Then v ′ ⊆ dom(Γ ′) and v ′ ⊆ dom(∆ ′).

Proof. By m1 OK and m2 OK, we deduce v1 ⊆ Γ1, v1 ⊆ ∆1, v2 ⊆ Γ2, and v2 ⊆ ∆2.
v ′ ⊆ dom(Γ ′) and v ′ ⊆ dom(∆ ′) then follow from the definition of Γ ′ and ∆ ′.

Theorem 2 (P4: Composition preserves typing in Mv). Given a monotonic relation `,
module composition of well-typed, compatible modules preserves typing, that is, ∀m1,m2 ∈
Mv. m1 OK ∧ m2 OK ∧ m1÷m2 ⇒ m1 •m2 OK.
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Proof. Letm1 = (v1, Γ1,∆1),m2 = (v2, Γ2,∆2), andm1•m2 = (v ′, Γ ′,∆ ′). (v ′, Γ ′,∆ ′) OK
if and only if v ′ 6= ∅, v ′ ⊆ dom(Γ ′), v ′ ⊆ dom(∆ ′), and ∀c∈ v ′. (Γ ′(c),∆ ′(c)) OK. The first
constraint follows from m1÷m2. The second and third constraint follow from Lemma 2.
For the final constraint, note that (Γ ′(c),∆ ′(c)) = (Γ1(c)∪Γ2(c)\(∆1(c)∪∆2(c)), ∆1(c)∪
∆2(c)), which equals (Γ1(c),∆1(c))•(Γ2(c),∆2(c)). Thus, the final constraint follows from
the type-preservation Theorem 1 of module system M.

Lemma 3. For the computation of conflicts the following properties hold.

(i) conflictpresence and conflicttype are commutative

(ii) conflict(Γ1,∆1, Γ2,∆2) = conflict(Γ2,∆2, Γ1,∆1) for all Γ1, Γ2,∆1,∆2

(iii) conflictpresence(Γ ′, Γ) = conflictpresence(Γ1, Γ) ∪ conflictpresence(Γ2, Γ), where
Γ ′(c) = Γ1(c) ∪ Γ2(c)

(iv) conflicttype(Γ ′, Γ) = conflicttype(Γ1, Γ) ∪ conflicttype(Γ2, Γ), where Γ ′(c) = Γ1(c) ∪
Γ2(c)

(v) conflicttype(Γ ′, Γ) = conflicttype(Γ1, Γ) \ conflicttype(Γ2, Γ), where Γ ′(c) = Γ1(c) \
Γ2(c)

(vi) conflicttype(Γ1, Γ2) ⊆ conflictpresence(Γ1, Γ2)

(vii) conflict(Γ ′,∆ ′, Γ ,∆) = conflict(Γ1,∆1, Γ ,∆) ∪ conflict(Γ2,∆2, Γ ,∆), where Γ ′(c) =
Γ1(c) ∪ Γ2(c) \ (Sig(∆1(c)) ∪ Sig(∆2(c))) and ∆ ′(c) = ∆1(c) ∪ ∆2(c).

Proof. (i)–(vi) follow directly from the definition of conflictpresence, conflicttype, and
conflict. (vii) follows from the definition of conflict and properties (i)–(vi).

Theorem 3 (P6’: Composition preserves compatibility). The partial composition of
compatible modules only yields compatible modules, that is,
÷
{
m1,m2, . . . ,mn

}
⇒ ÷

{
m1 •m2, . . . ,mn

}
.

Proof. Let mi = (vi, Γi,∆i) and m1 •m2 = (v ′, Γ ′,∆ ′). ÷
{
m1 •m2, . . . ,mn

}
if and

only if va \ vb 6= ∅ where va = v ′ ∩ (
⋂

x>2 vx) =
⋂

x vx \ conflict(Γ1,∆1, Γ2,∆2) and vb =(⋃
y>2 conflict(Γ

′,∆ ′, Γy,∆y) ∪
⋃

2<x<y conflict(Γx,∆x, Γy,∆y)
)
. By Lemma 3 (vii), we

can simplify vb to
(⋃

x 6=y conflict(Γx,∆x, Γy,∆y)
)
. Since also conflict(Γ1,∆1, Γ2,∆2) ⊆ vb,

we get va \ vb =
(⋂

x vx
)
\
(⋃

x 6=y conflict(Γx,∆x, Γy,∆y)
)
, which is non-empty due to

the assumption ÷
{
m1,m2, . . . ,mn

}
.

Theorem 4 (P5: Commutativity and associativity of module composition). Module
composition is commutative (m1÷m2 ⇒ m1 • m2 = m2 • m1) and associative
(÷

{
m1,m2,m3

}
⇒ m1 • (m2 •m3) = (m1 •m2) •m3).

Proof. Commutativity is obvious from the definition of module composition. Associativ-
ity follows from Lemma 3 (ii), Lemma 3 (vii), and Theorem 3 by inlining the definition
of module composition.
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A.3 Properties of Mvl

Lemma 4. For varmodel and varmap, the following properties hold.

(i) varmodel(v1 ∩ v2) ⊆ varmodel(v1) ∪ varmodel(v2)

(ii) varmodel(v1 \ v2) ⊆ varmodel(v1)

(iii) varmap(v1 ∩ v2,∆) ⊆ varmap(v1,∆) ∪ varmap(v2,∆)

(iv) varmap(v1 \ v2,∆) ⊆ varmap(v1,∆)

(v) varmap(v,∆ ′) ⊆ varmap(v,∆1) ∪ varmap(v,∆2)
where ∆ ′(c) = ∆1(c) ∪ ∆2(c) well-defined on v

(vi) varmap(v,∆ ′) ⊆ varmap(v,∆1)
where ∆ ′(c) = ∆1(c) \ ∆2(c) well-defined on v

Proof. (i)–(iv) follow directly from the definition of varmodel and varmap. For (v), there
are four cases in which ∆1(c\{f})∪∆2(c\{f}) 6= ∆1(c∪{f})∪∆2(c∪{f}): For i ∈ {1, 2}, either
dom(∆i(c \ {f})) 6= dom(∆i(c∪ {f})) or for some variable x ∆i(c \ {f})(x) 6= ∆i(c∪ {f})(x).
Either case is subsumed by varmap(v,∆i). Similarly for the proof of (vi).

Theorem 5 (Composition preserves locality). Module composition of well-typed, com-
patible modules preserves the locality of configuration options, that is,

∀m1,m2 ∈Mvl. m1 OK ∧ m2 OK ∧ m1÷m2 ∧

m1 •m2 = (v ′, i ′, j ′, Γ ′,∆ ′)
⇒ varmodel(v ′) ∪ varmap(v ′, Γ ′)∪

varmap(v ′,∆ ′) ⊆ i ′ ∪ j ′

Proof. By Lemma 4, varmodel(v ′) ⊆ varmodel(v1) ∪ varmodel(v2), varmap(v ′, Γ ′) ⊆
varmap(v1, Γ1) ∪ varmap(v2, Γ2), and varmap(v ′,∆ ′) ⊆ varmap(v1,∆1) ∪ varmap(v2,∆2),
which respectively are subsets of i ′ ∪ j ′ = (i1 ∪ j1) ∪ (i2 ∪ j2) by m1 OK and m2 OK.

Theorem 6 (P4: Composition preserves typing inMvl). Given a monotonic relation `,
module composition of well-typed, compatible modules preserves typing, that is, ∀m1,m2 ∈
Mvl. m1 OK ∧ m2 OK ∧ m1÷m2 ⇒ m1 •m2 OK.

Proof. Follows directly from Theorem 2 and Theorem 5.
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