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Turbulent flow in smooth and rough pipes
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Recent experiments at Princeton University have revealed aspects of smooth pipe flow
behaviour that suggest a more complex scaling than previously noted. In particular, the
pressure gradient results yield a new friction factor relationship for smooth pipes, and the
velocity profiles indicate the presence of a power-law region near the wall and, for Reynolds
numbers greater than about 400!103 (RCO9!103), a logarithmic region further out. New
experiments on a rough pipe with a honed surface finish with k rms/DZ19.4!10K6, over a
Reynolds number range of 57!103–21!106, show that in the transitionally rough regime
this surface follows an inflectional friction factor relationship rather than the monotonic
relationship given in theMoody diagram.Outer-layer scaling of themean velocity data and
streamwise turbulence intensities for the rough pipe show excellent collapse and provide
strong support for Townsend’s outer-layer similarity hypothesis for rough-walled flows.
The streamwise rough-wall spectra also agree well with the corresponding smooth-wall
data. The pipe exhibited smooth behaviour for kCs %3:5, which supports the suggestion that
the original smooth pipe was indeed hydraulically smooth for ReD%24!106. The
relationship between the velocity shift, DU/ut, and the roughness Reynolds number, kCs ,
has been used to generalize the form of the transition from smooth to fully rough flow for an
arbitrary relative roughness k rms/D. These predictions apply for honed pipes when the
separation of pipe diameter to roughness height is large, and they differ significantly from
the traditional Moody curves.
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1. Introduction

The lawof thewall is a description of themeanvelocity profile inwall-boundedflows
and has been accepted as one of the most important concepts in the turbulence
community for at least 70 years. Barenblatt et al. (1997) and Barenblatt & Chorin
(1998) however proposed that the velocity profile is not universal but in fact a
weakly varying power law with coefficients that vary with the Reynolds number.
This suggestion has important implications for the prediction of high Reynolds
number flows because the correct formulation of scaling laws enables us to make
Phil. Trans. R. Soc. A (2007) 365, 699–714

doi:10.1098/rsta.2006.1939
Published online 16 January 2007
e contribution of 14 to a Theme Issue ‘Scaling and structure in high Reynolds number wall-
nded flows’.

uthor for correspondence (asmits@princeton.edu).

699 This journal is q 2007 The Royal Society

http://rsta.royalsocietypublishing.org/


J. J. Allen et al.700

 on July 5, 2017http://rsta.royalsocietypublishing.org/Downloaded from 
predictions beyond the range of Reynolds numbers achievable in the laboratory.
For example, according to the specification listed on EuRoPol GAZ’s website, the
Yamal–Europe pipeline operates at Reynolds numbers greater than 50!106.With
a volume flow rate of 32.3!109 m3 of gas per year, accurate drag prediction is of the
utmost importance.

Running counter to the power-law claims are the results of Zagarola & Smits
(1998), and more recently by McKeon et al. (2004a), who found strong
experimental evidence for the existence of the law of the wall in pipe flow over
three orders of magnitude in Reynolds number, supporting the arguments made
earlier by George & Castillo (1997). More precisely, the results indicate
the presence of a power-law region near the wall and, for Reynolds numbers
greater than 400!103 (RCO9!103), a logarithmic region further out. Here,
RCZRut/n, where utZ

ffiffiffiffiffiffiffiffiffiffi
tw=r

p
is the friction velocity,R is the pipe radius (ZD/2)

and n is the kinematic viscosity. In other words, in inner-layer variables,

U

u t

Z
1

k
ln

yu t

n
CB;

or

UCZ
1

k
ln yCCB; ð1:1Þ
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whereUCL is the centreline velocity. The log law was found for 600!yC!0.12RC,
and the vonKármán constant k, the additive constantB for the log law using inner-
layer scaling and the additive constant B0 for the log law using outer-layer scaling
were found to be 0.421G0.002, 5.60G0.08 and 1.20G0.10, respectively. These data
were obtained in the Princeton/ONR Superpipe, which uses compressed air up
to 20 MPa in a 129 mm diameter pipe to achieve the Reynolds numbers ReD up
to 35!106. Here, ReDZD �U=n, where U is the velocity averaged over the pipe
cross-section.

These experimental datasets however have not led to a full resolution of the
controversy in relation to the nature of the mean profile since there is a
continuing debate on the effects of surface roughness. Although it is intuitive
that flow over a rough surface will experience a larger drag than a smooth
surface, it is not completely clear when and how a rough surface begins to affect
the mean velocity profile, much less the higher order moments and turbulence
structure. As the Reynolds number increases, a point is reached where the size of
the smallest eddies in the flow is comparable to the size of the roughness elements
k, and viscous effects are no longer sufficient to damp the effects of the
perturbation. Beyond this transitional regime, a point is reached at higher
Reynolds numbers where the flow becomes fully rough, and further increases in
Reynolds number no longer have an effect on the friction factor. In the fully
rough regime, the wall shear stress varies quadratically with the velocity,
implying that form drag on the roughness elements is the principal source of the
axial pressure drop. All flows eventually become rough as the Reynolds number
increases and the relative size of the smallest scales in the flow decreases.
Phil. Trans. R. Soc. A (2007)
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Whether roughness becomes relevant above a specific Reynolds number, or
whether it is always present and just difficult to detect, has been raised in a
recent paper by Bradshaw (2000).

Experimentally, the symptoms of roughness in pipe flows can be detected by a
number of means. First, there is a departure of the friction factor–Reynolds
number relationship above that for hydraulically smooth turbulent pipe flow.
Second, there is a downward shift in the logarithmic layer (equivalently, a
decrease in the additive constant in the log law). In the outer region of the flow,
however, it is expected that roughness manifests itself only in terms of a changing
wall stress, so that the mean velocity and the turbulence intensity profiles in
outer-layer variables are unaffected by roughness, assuming, of course, that k
remains small compared with D. This is known as Townsend’s hypothesis of
outer-layer similarity (Townsend 1976).

The recent work of Perry et al. (2001) raised the possibility of roughness being
present in the data of Zagarola & Smits (1998) for Reynolds numbers greater
than 400!103. This conclusion was based principally on (i) the use of the
MacMillan (1956) Pitot probe corrections, (ii) the observation that the datasets
of Zagarola & Smits (1998) appeared to be departing from Prandtl’s ‘universal’
friction relationship (Schlichting 1979) and began following Colebrook’s
transitional roughness function (Colebrook 1939), and (iii) the presence of a
small downward shift in the velocity profiles at high Reynolds numbers (called
‘steps’). Although these issues were comprehensively resolved by McKeon et al.
(2004a), the work of Perry et al. (2001) draws into the spotlight the use and the
validity of the Colebrook functions to describe transitional flows.

Historically, the behaviour of an arbitrary surface in the fully rough regime has
been related to an ‘equivalent sand-grain roughness value’ from the work of
Nikuradse (1933). Nikuradse conducted experiments with a series of pipes, each of
whichwas coatedwith sandwith a narrow size distribution. Nikuradse’s data in the
transitionally rough regime show the friction factor gradually increasing above the
smooth curve, reaching a minimum value, before rising and levelling off to the fully
rough value.We call this behaviour ‘inflectional’. Almost all the subsequent rough-
wall studies compare the value of the friction factor in the fully rough regime with
Nikuradse’s values and hence assign an equivalent sand-grain roughness to the
surface under consideration. The transitional behaviour for a particular surface
depends critically on the geometric nature of the roughness and hence any
discussion regarding the onset of rough-wall behaviour needs to consider this
particular aspect. In an attempt to classify the data available at the time,Colebrook
(1939) developed a curvefit to describe transitional roughness,which is expressed as

1ffiffiffi
l

p Z 1:74K2 log
ks
R
C

18:6

ReD
ffiffiffi
l

p
� �

; ð1:3Þ

where k s is the equivalent Nikuradse sand-grain roughness value for the surface and
l is the friction factor, defined by

lZ
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1
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where dp/dx represents the pressure gradient in the pipe. Equation (1.3) describes
a monotonic change in the friction factor from smooth to fully rough, in that the
fully rough value is approached from above, and held by Colebrook to be
Phil. Trans. R. Soc. A (2007)
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representative of ‘natural or commercial surface finishes’. It is also the basis for the
widely used Moody diagram (Moody 1944). A key element of the argument given
by Perry et al. (2001) is that the data of Zagarola & Smits (1998) follow a
Colebrook-type curve for the stated value of k sZ3k rmsZ0.45 mm. In order to
verify this assumption, experiments were performed to determine the nature of the
transitionally rough regime for a surface of similar geometric distribution to that
used in the experiments of Zagarola & Smits (1998) and McKeon et al. (2004a).
The results are described in detail by Shockling (2005) and Shockling et al. (2006).
2. Experiments and results

The experiments were performed in the Princeton University Superpipe facility,
capable of generatingReynolds numbers from31!103 to 35!106 (figure 1).Details
of the operation of this unique high-pressure facility can be found inZagarola (1996)
and Zagarola & Smits (1998).

(a ) Smooth pipe

We use as a basis for comparison the smooth pipe results presented by
McKeon et al. (2004a,b) and Morrison et al. (2002, 2004). Figure 2a shows the
friction factor data for the smooth pipe compared to the Blasius and Prandtl
correlations. The Blasius relation is valid for a Reynolds number up to 105.
Prandtl’s ‘universal’ correlation is given by

1ffiffiffi
l

p Z 2:0 log ReD
ffiffiffi
l

p� �
K0:8: ð2:1Þ

The constants suggested by Prandtl were found by curve fitting the smooth-wall
pipe data of Nikuradse (1932) over the Reynolds number range 3.1!103!ReD!
3.2!106. For Reynolds numbers greater than about 106, the Superpipe data lie
above this line, and McKeon et al. (2005) proposed a new correlation for smooth
pipe flow, given by

1ffiffiffi
l

p Z 1:930 log ReD
ffiffiffi
l

p� �
K0:537; ð2:2Þ

which fit their data for 31!103%ReD%35!106 to within 1.25%.
The mean velocity profiles for the smooth pipe are shown in figure 2b. The

profiles were obtained using a Pitot probe in combination with a wall static
pressure tapping and are subject to corrections for the effects of Reynolds
number, wall proximity and velocity gradient. The original dataset presented by
Zagarola & Smits (1998) was based on an inadequate understanding of the
Reynolds number effects on the static pressure reading, and as a result showed a
systematic decrease in the additive constant in the logarithmic law (steps), which
can be interpreted as the onset of roughness. However, McKeon & Smits (2002)
determined the corrections appropriate to high Reynolds number, and
demonstrated that when these corrections were applied to the data the steps
became negligible, concluding that the surface was smooth for ReD%18!106 (at
least). Nevertheless, the higher friction factors observed at higher Reynolds
numbers still suggest the influence of roughness.
Phil. Trans. R. Soc. A (2007)
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Figure 2. (a) Smooth-wall friction factor data compared with the Blasius (dashed line) and Prandtl
friction factor relationships (dashed–dotted line). (b) Smooth-wall mean velocity profiles for every
second Reynolds number, starting from ReDZ31!106 to ReDZ18!106. Figures from McKeon
et al. (2004a).
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(b ) Rough pipe

The difficulty in making conclusive statements regarding the characteristics
of the original Superpipe surface is that little is known on the behaviour of
surfaces with extremely small values of k/D and, more particularly, on the
behaviour of flow in pipes with honed surface finishes. For the smooth pipe flow
experiments, k rms/DZ1.16!10K6 (determined independently using comparator
plates, surface stylus measurements and optical imaging of the surface). This is
a very small value, and one where little previous knowledge exists, and so an
experiment was performed to study these flows in detail (see Shockling (2005)
and Shockling et al. (2006) for further details). Given the capabilities of the
Superpipe facility, it is possible, in a single apparatus, to study the effects of
roughness from the hydraulically smooth regime to the fully rough regime. Of
particular interest here is the transitional roughness behaviour at small values
of the roughness parameter k/D.
Phil. Trans. R. Soc. A (2007)
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Figure 3. Two-dimensional surface plots. (a) Original ‘smooth’ surface studied by Zagarola & Smits
(1998) and (b) surface of rough pipe studied by Shockling et al. (2006).

J. J. Allen et al.704

 on July 5, 2017http://rsta.royalsocietypublishing.org/Downloaded from 
Developing transitional roughness relationships for a surface finish of the type
used byZagarola&Smits (1998) requires accurate knowledge of the original surface
geometry. Non-interfering optical measurements were therefore made of the
surface, and a typical image of the original Superpipe surface is shown in figure 3a.
The mean amplitude of the Superpipe roughness was 0.15 mm (6 min.), with a
characteristic wavelength of order 0.01 mm. The presence of this characteristic
wavelength is thought to be a consequence of the honing process used to produce the
pipes. To examine the nature of the transition for this surface, a geometrically
similar surface with a larger physical scale was needed. A new pipe was fabricated,
with a diameter of 128 mm, for installation in the Princeton Superpipe high-
pressure facility. An optical image of the new ‘rough’ surface is shown in figure 3b.
The mean roughness height of this new surface is 2.5 mm with an associated
wavelength of order 0.09 mm. The characteristic grooves imparted by the honing
tool in figure 3b are inclined relative to the vertical, when compared to figure 3a.
This is due to the requirement of moving the honing tool at a more rapid speed
through the pipe in the rough-wall case. The selection of this surface roughness was
predicated on the honing tools available, but it represents a reasonable scaling of
both the wavelength and the amplitude of the original Superpipe surface.

The data reported here consist of measurements of the friction factor, mean
velocity profile, streamwise turbulence intensity profile and one-dimensional
spectrum in a honed pipe with k rms/DZ19.4!10K6 (about 17 times larger than
the original smooth Superpipe surface), over a range of Reynolds numbers
from 57!103 to 21.2!106, where kCs varies from 0.17 to 44.4 (k s is the equivalent
sand-grain roughness). All the measurements were made at a location 191D
downstream from the inlet contraction.

Figure 4 shows the friction factor behaviour over the full range of Reynolds
number. The friction factor was determined by evaluating the pressure gradient
along the pipe from a series of static pressure port measurements that commenced
at 163D downstream from the contraction, at 0.3D intervals to 191D. Error
bars have only been shown on l and not on ReD, which shows negligible error on a
semi-logarithmic plot. The data agree well with the smooth curve relationship of
Phil. Trans. R. Soc. A (2007)

http://rsta.royalsocietypublishing.org/


0.008

0.010

0.012

0.014

0.016

0.018

0.020

l

0.022

105

ReD

106 107

McKeon smooth
Colebrook rough
Nikuradse, r/k = 507
rough pipe

Figure 4. Friction factor l for the present surface, compared with the rough-wall relations of Colebrook
(1939) for the same ks, the smooth-wall relation of McKeon et al. (2005) (equation (2.2)) and the results
for the smallest sand-grain roughness used by Nikuradse (1933). Figure from Shockling et al. (2006).

705Turbulent flow in smooth and rough pipes

 on July 5, 2017http://rsta.royalsocietypublishing.org/Downloaded from 
McKeon et al. (2004b) (equation (2.2)) up to ReD!1.6!106, where the friction
factor begins to depart from the smooth curve, reaching a local minimum of
lx0.0106 in the region 3.1!106!ReD!4.0!106. The friction factor then rises to
a constant value of lx0.0108 for ReDO10!106. The equivalent sand-grain
roughness for this surface, defined by the friction factor in the fully rough regime, is
ksZ7.4 mm,which is in good agreementwith the estimate of Zagarola&Smits (1998)
of ksx3.0krms for the smooth pipe data.

The Colebrook curve corresponding to ksZ7.5 mm is also shown in figure 4.
Clearly, the monotonic Colebrook curve makes a poor prediction for the
transitionally rough behaviour of this surface. At the point of departure from the
smooth regime, at ReDx1.5!106, the Colebrook relation overestimates
the friction factor by approximately 10%. In the transitional regime, instead of
following the Colebrook correlation, the data display an inflectional roughness,
similar to the behaviour of the sand-grain roughness tested by Nikuradse (1933),
despite the fact that honed surfaces are often classified as, in Colebrook’s terms,
‘natural’ or ‘commercial’ roughness.

A more sensitive indicator for the effects of roughness is the behaviour of the
velocity profiles (figure 5). For yCR600, corresponding to ReDR2.3!105, the
profiles demonstrate the presence of a logarithmic region, which is in agreement
with the earlier results of the smooth pipe.
Phil. Trans. R. Soc. A (2007)
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The downward shift of the velocity profile due to roughness can be
characterized by the Hama roughness function DUC, defined by writing the
logarithmic law for a rough surface as

UCZ
1

k
ln yCCBKDUC: ð2:3Þ

Here, DUC was determined by finding the best fit of the data to the log law, with
the assumption that kZ0.421 and BZ5.6 (McKeon et al. 2004a). The value of
0.421 came from the curve fit to equation (2.1). The behaviour of the Hama
roughness function is shown in figure 6a as a function of kCs . An alternative way
of writing equation (2.3) is to use the roughness height as the variable to non-
dimensionalize space. Hence,

UCZ
1

k
ln

y

ks
CB�: ð2:4Þ

As seen from figure 6b, the data in the transitional region for B� follow a curve
that resembles more closely the inflectional roughness of Nikuradse (1933) than
the monotonic roughness of Colebrook (1939), although the inflectional
behaviour does not appear as pronounced as Nikuradse’s sand-grain roughness.

Perry et al. (2001) claimed that the roughness effects were evident in the
smooth Superpipe at values of kCs as low as 0.05. This conclusion was based
principally on the assumption that honed surface roughness displays a
Colebrook-type transitional behaviour. The data presented here show that
honed surface roughness does not deviate from hydraulically smooth conditions
until kCs x3:5. The precise value of ks for the original Superpipe experiment is
unknown, since the fully rough condition was not attained in that experiment.
Nevertheless, an estimate can be made of the point of departure from smooth
Phil. Trans. R. Soc. A (2007)
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conditions by assuming that ksx3:0krms and using a critical kCs of 3.5 as found
here for a geometrically similar surface. We find that the original Superpipe
should demonstrate hydraulically smooth behaviour up to ReD%27!106. The
original work by Zagarola & Smits (1998) suggested that the pipe was smooth up
to the Reynolds numbers of 24!106, in good agreement with the prediction
made on the basis of the present work.

Figure 7 shows a collection of velocity profiles for ReDR3.5!106 scaled
with outer flow variables, y/R. It appears that profiles for the velocity defect,
(UclKU)/ut, collapse well, as expected according to Townsend’s outer flow
similarity hypothesis for rough-wall flows. The collapse in outer-layer variables
is comparable to that demonstrated by Zagarola & Smits (1998) for the
smooth Superpipe data and by Flack et al. (2005) in their rough-wall boundary
layer studies.

To further study the effects of roughness in the outer region of the flow and the
validity of Townsend’s outer flow similarity hypothesis, the rough pipe
streamwise turbulence intensity profiles and one-dimensional velocity spectra
are compared to similar results from the smooth pipe flow studied by Morrison
et al. (2004). The instantaneous data were acquired using standard hot-wire
anemometry practices with a 2.5 mm platinum/rhodium wire with a length-
to-diameter ratio of 160. The wires were operated with an AA Labs anemometer
at an over-heat ratio of 1.7. Further details of the hot-wire experiment can be
found in Kunkel & Smits (2006). Figure 8 shows the rough pipe turbulence
intensities with outer- and inner-layer scaling compared with the corresponding
smooth pipe results. The two Reynolds numbers correspond to hydrodynamically
smooth-wall (kCs Z2:1) and transitionally rough-wall (kCs Z11) conditions for the
rough pipe. The transitionally rough-wall turbulence intensities agree very well
with the results from the smooth pipe flow in the outer region of the flow (outer
logarithmic and wake region). As the wall is approached, however, the
transitionally rough-wall data begin to deviate and fall below the smooth pipe
data. As Kunkel & Smits (2006) explain, this deviation is most likely due to the
difficulties of conducting high-Reynolds number hot-wire measurements close to
Phil. Trans. R. Soc. A (2007)
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a wall. For the two Reynolds numbers shown, lCZ100 and 580, and l/hZ27 and
100, respectively. Here, l is the wire length and h is the Kolmogorov length-scale,
which was calculated assuming local equilibrium in the middle of the mean
velocity logarithmic region. For comparison, Ligrani & Bradshaw (1987) suggest
that lC!20–25 for the measured near-wall turbulence level measurement to be
affected less than 4%. Our wire lengths are much larger and this will obviously
inhibit near-wall measurements. The precise location where the results are free
from resolution effects is not known, but it is assumed that this effect is negligible
in the outer logarithmic and wake regions of the flow. Aside from the near-wall
issues, the data in the outer region are in agreement with Townsend’s outer flow
Phil. Trans. R. Soc. A (2007)
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similarity hypothesis and the findings of Flack et al. (2005); namely, the rough
wall does not appear to affect the turbulence intensities in the outer part of the
flow (i.e. it simply sets the value of the wall shear stress).

The streamwise velocity spectra are also analysed to investigate any possible
structural changes in the flow. Figure 9 shows the comparison of the rough and
smooth pipe premultiplied spectra with outer- and inner-layer scaling for the
hydrodynamically transitionally rough flow; the agreement is reasonably good. In
particular, the energy-containing region of the roughpipeflow is not shifted towards
higher wave-numbers, as was found in Krogstad & Antonia (1999). At higher non-
dimensional wave-numbers, however, the rough pipe spectra deviate slightly from
the smooth pipe spectra. Again, this is thought to be caused by measurement
difficulties, especially the physical size of the wire. Kunkel & Smits (2006) found
that the attenuation of the spectra at highwave-numbers follows the physical size of
the probe (i.e. the larger probe attenuates more high wave-number energy). Also
note that the actual energy contribution from the high wave-number region where
the attenuation occurs is less than 5% of the total energy (i.e. turbulence intensity)
for all datasets, and the overall differences between the smooth and the rough pipe
data are less than 2%, which is the measurement accuracy of the turbulence
intensities. Therefore, the spectra also appear to support the notion that there is no
change in the structure of the flow due to the wall roughness.
3. Generalization of rough pipe results

The rough pipe results bring into the question the validity of the Moody diagram
to describe the transitional process in honed pipes with small values of relative
roughness. Here, we describe a process that generalizes the rough pipe results to a
surface with similar roughness geometry for arbitrary values of relative
roughness. This technique assumes a universal wake function, a logarithmic
overlap region and a power fit in the viscous and the buffer layers. Full details of
the technique are described by Allen et al. (2005).
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Figure 10. (a) Rough pipe universal wake function and (b) universal resistance diagram for honed
pipes of small relative roughness from Allen et al. (2005).
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The measurements of Shockling et al. (2006) were obtained at one value of
relative roughness c1Zk rms/D. Generation of the friction factor curve for other
values of c1 for a honed surface requires a general expression for the mean velocity
profile which can be integrated over the pipe area. The point of departure from the
smooth friction factor curve occurs at kCs x3:5. Based on a given c1 and using k sZ
3k rms, we obtainutZ1.167n/(Dc1). Substitution into the smoothpipe friction factor
relationship (equation (2.2)) results in an expression for the Reynolds number at
which the data will depart the smooth curve for a prescribed surface roughness,
ReDSZ(6.37/c1)ln(3.3/c1)K1.77/c1. For a given relative roughness c1 with
ksZ3k rms, the Nikuradse fully rough correlation 1=

ffiffiffi
l

p
Z2 lnð0:5D=k sÞC1:74 can

be used to generate the fully rough l for a prescribed surface roughness, which is
expressed as 1=

ffiffiffi
l

p
Z2 lnð0:167=c1ÞC1:74. Data from Shockling et al. (2006) show

that the honed pipe flow is fully rough at kCs x60, so that utZ20n/(Dc1).
Substituting into the relationship for the fully rough friction factor gives
ReDRZ(113.14/c1)ln(0.167/c1)C98.42/c1, where ReDR is the Reynolds number
at which fully rough flow commences. Determination of the transitional behaviour
between these two limits requires knowledge of the boundary layer profile in the
transitional regime, so that one can integrate forU . Shockling et al. (2006) showed
that in the overlap region, equation (2.3) fits the data well at all the Reynolds
numbers. Since the velocity defect data show universal collapse for all the Reynolds
numbers in outer-layer variables, the wake function, defined by Coles (1956), was
evaluated by subtracting equation (2.3) from the experimental data. The wake
function,W(yC), is shown in figure 10 plotted against log(yC)Klog(DC/2), where
DC is the pipe diameter in viscous units, so that the ranges are identical for all the
datasets. This function is independent of viscosity as shown by the universal
collapse, for Reynolds numbers greater than 181!103.

To evaluate the friction factor and the Reynolds number for a given c1 and
roughness Reynolds number kCs , we need to reconstruct a velocity profile that can
be integrated to evaluate �U . The expression for the mean velocity in terms of
integration over inner variables is

�U Z
n8

D

ðDC=2

0

1

2
K

yCn

Du t

� �
UCðyCÞdyC: ð3:1Þ
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For a given roughness Reynolds number in the transitional regime, c2ZkCs , we
have an associated velocity profile shift, c3ZDU/ut, as shown in figure 6a. For a
specified relative roughness c1, we have ut/nZc2/(3c1D). Hence, the limit of
integration of equation (3.1) is DC/2Zc2/(6c1) and therefore

ReD Z
�UD

n
Z 8

ð0:167c2=c1
0

1

2
K

3c1
c2

yC
� �

UCðyCÞdyC: ð3:2Þ

The functional form of the full velocity profile, UC(yC), is then a combination
of the shifted (relative to smooth wall) logarithmic function and the universal
wake function,

UCZ f ðyCÞZ 1

k
lnðyCÞCBCc3CPðhÞ: ð3:3Þ

The span of the wake function is log(yC)Klog(DC/2)ZK2. Since the end
point of the wake function is DC/2, we can solve for the yC upper limit of the
log-law region and construct UC(yC) explicitly. Equation (3.2) is then integrated
to solve for ReD. For y

C!60, a power-law fit was made to the data of the form
UCZB(yC)a to blend smoothly from the wall to the log law. The results for the
friction factor are relatively insensitive to the nature of the near-wall fit.

Once the Reynolds number has been found, the associated friction factor can
be determined from

lZ 8
ðu t=nÞ2

Re2D
Z

8

9

ðc2=c1Þ2

Re2D
; ð3:4Þ

and the friction factor–Reynolds number relationship in transitional region for an
arbitrary relative roughness, c1Zkrms/D, can be evaluated. Calculated
transitional to fully rough curves for a honed surface are shown in figure 10b
for a number of relative roughness values. The beginning and end points of the
transition are marked by open symbols. Figure 10b also shows the Colebrook
curves for the equivalent sand-grain roughnesses. In the transitional regime, the
disparities between the Colebrook curves and those calculated with the method
used here are significant. Whereas honed surface roughness displays an
inflectional friction factor relationship, the Colebrook curves monotonically
depart from the smooth curve and approach the fully rough value from above.
This technique can be applied to generate a series of curves once a single velocity
shift DU/ut versus roughness Reynolds number kCs relationship has been
determined. Allen et al. (2005) shows how this technique can be applied to the
datasets of Nikuradse (1933) to produce a family of friction factor curves.

In the spirit of developing a model for the way the flow imparts shear stress,
the work of Gioia & Chakraborty (2006) represents the first attempt to give a
physical basis to the collection of resistance curves of Nikuradse (1933). The
analysis proceeds using the energy spectrum to determine the velocity of eddies
of size s as usZ

Ð s
0 EðsÞsK2ds, where E(s) represents the energy spectrum of

eddies of size s. E(s) was approximated using the Kolmogorov inertial spectrum
with corrections to model the dissipative and inertial range, giving

u2
s Z

2

3
ku �U

2
ðs=R
0

xK1=3cd
bRe

K3=4
R

x

 !
ceðxÞdx: ð3:5Þ

The functions cd and ce represent the dissipative and energy spectrum
corrections, expressed as cd(h/s)Zexp(Kbh/s), where h is the Kolmogorov
length-scale and ce(s/R)Z(1Cg(s/R)2)K17/6. Using a physical argument that
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relates the transfer of momentum across a roughness element of size s, Gioia &
Chakraborty (2006) showed that the shear stress on the surface scales as
txr �Uus, which can be transformed into the friction factor as lfus= �U . The
expression for us was then integrated to derive an expression for l. The resulting
calculations showed the presence of an inflectional regime in the friction factor.
This was explained in terms of the shear stress in this regime being dominated by
eddies of a dissipative scale. The analysis of Gioia & Chakraborty (2006) deals
with the shear stress imparted to a roughness element of a specific size. However,
this formulation also allows for the inclusion of a probability distribution of
roughness sizes, as suggested in Gioia & Bombardelli (2002), which may be more
representative of natural or commercial roughness. To extend the analysis of
Gioia & Chakraborty (2006), two types of multiple scale surface distributions
were investigated, one bimodal and the other Gaussian. The bimodal distribution
consisted of equal number of cavities of relative sizes R/kZ252 and R/kZ126.
The shapes of the cavities are shown in figure 11a. The results for the associated
friction factor (figure 11b) show a shift towards the monodisperse R/kZ126
results, indicating a disproportionate effect from the larger cavity in determining
the wall shear stress. The distribution of cavity sizes for the second simulation
was Gaussian, more representative of the honed rough pipe surface, centred on a
mean value of R/kZ190. The relative roughnesses R/kZ126 and 252 represent
one standard deviation away from the mean. The results for friction factor again
fall between the two monodisperse distributions. What may be significant from
these preliminary calculations with representative surface distributions is that
the ‘depth’ of the troughs in the friction factor results does not appear to be
affected by the presence of multiple scales. It also appears that the incorporation
of multiple scales into the model has not resulted in multiple regions of inflection.
The presence of the inflection in the model of Gioia & Chakraborty (2006)
appears to be invariant with respect to a variation of surface geometry. This may
in turn suggest that eddies of a dissipative scale are always important in the
production of shear stress over rough surfaces, provided the ratio of R/k is large.
Phil. Trans. R. Soc. A (2007)
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4. Conclusions

We have used the Princeton University Superpipe, capable of generating
Reynolds numbers from 31!103 to 35!106, to study the effects of a honed
surface roughness on fully developed turbulent pipe flow. The Reynolds number
range for the experiment was 50!103–30!106. Over this range of Reynolds
number, the flow exhibits three turbulent regimes: hydraulically smooth;
transitional; and fully rough. The results indicate the following.

—The friction factor behaviour of a honed surface in the transitional regime does
not follow the Colebrook relationship (Colebrook & White 1937; Colebrook
1939) and instead exhibits behaviour more typical of Nikuradse’s sand-grain
roughness (Nikuradse 1932, 1933).

—The equivalent sand-grain roughness of the surface was found to be k sx3.0k rms,
and the flow showed the first symptoms of roughness when kCs z3:5.

—The original Superpipe experiments were hydraulically smooth forReD%27!106

(as argued by Zagarola & Smits 1998 and also Wosnik et al. 2000).
—For all conditions of roughness, logarithmic scaling was apparent at higher

Reynolds numbers with the same constants determined for smooth pipes.
—The mean velocity and turbulence intensity profiles in outer-layer scaling

collapse on the same scaling as for smooth surfaces, providing strong support for
Townsend’s hypothesis for this particular roughness. The streamwise rough pipe
spectra also agree with the previous smooth pipe data, indicating that there is no
change in the structure of the turbulence in the outer region of the flow.

—The data for the size of the velocity shift DU/ut versus k
C
s have been used to

develop a series of transitional friction factor curves for honed pipes of
arbitrary relative roughness. This technique relies on the universal features of
the velocity profiles, rather than an arbitrary curve fit to experimental data.

—The inflection in the transitional regime predicted by the model of Gioia &
Chakraborty (2006) appears to be invariant with respect to a variation of
surface geometry, which may suggest that eddies of a dissipative scale are
always important in the production of shear stress over rough surfaces,
provided the ratio of R/k is large.
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