
An Aspect-Oriented Approach to the Modularisation of Context

Jennifer Munnelly, Serena Fritsch, Siobhán Clarke

Distributed Systems Group, Trinity College Dublin, Ireland

munnelj, fritschs, sclarke@cs.tcd.ie

Abstract

Handling context is required for applications to dynam-

ically and appropriately adapt to their changing environ-

ment. Incorporating context into applications involves the

consideration of a set of concerns related to the handling of

various context types and the adaptation of the application

behaviour relative to the current context. These concerns

are usually heavily tangled with the base code of the ap-

plications, resulting in code that is badly modularised and

therefore is hard to understand, manage and modify.

We propose a modularised design for the handling of dif-

ferent kinds of context using aspect-oriented programming

techniques. We demonstrate that a context-aware applica-

tion built in this manner exhibits improved modularity, with

corresponding improvements in comprehensibility, manage-

ability and maintainability.

The proposed aspect-oriented modularisation is eval-

uated against traditional object-oriented techniques, and

also against a popular context framework, using metrics

indicating coupling, cohesion and complexity. The results

show the positive effect of modular code on context-aware

applications by quantitatively illustrating the improvements

in modularisation quality factors.1

1 Introduction

As mobile technology becomes more popular, the need

for applications and services that take advantage of the

knowledge or context of the user’s environment is growing.

Context was defined in [1] as “any information that can be

1 c© 2007 IEEE. Personal use of this material is permitted. However,

permission to reprint/republish this material for advertising or promotional

purposes or for creating new collective works for resale or redistribution

to servers or lists, or to reuse any copyrighted component of this work in

other works must be obtained from the IEEE. This material is presented

to ensure timely dissemination of scholarly and technical work. Copyright

and all rights therein are retained by authors or by other copyright holders.

All persons copying this information are expected to adhere to the terms

and constraints invoked by each author’s copyright. In most cases, these

works may not ber eposted without the explicit permission of the copyright

holder.”

used to characterise an entity. An entity can be a person,

place, or object which is relevant between the user and the

application”. Incorporating context adaptation into services

is crucial to create systems that will significantly improve

the usefulness of such services to the mobile user.

It is likely that much of an application’s behaviour should

adapt according to context, leading to widespread adap-

tation that cuts across application code. In existing ap-

proaches, modularisation is poor as contextual adaptation

is heavily coupled with functional parts of an application.

Current research [2] takes an architectural approach to-

wards the design of context-aware applications. Acquisi-

tion of context is generally well separated from the core ap-

plication by using frameworks like the Java Context-Aware

Framework (JCAF) [3] or the Context Toolkit [4]. How-

ever, adapting to the current context must be handled by

the core application itself resulting in the context-handling

code remaining intertwined with the basic functionality of

the application.

Modularisation promotes the use of well defined, in-

dependent modules to increase the maintainability, man-

ageability and comprehensibility of applications [5]. To

achieve this, our approach divides context into smaller,

more manageable modules, each of which models all struc-

tural and behavioural context-awareness code related to a

specific context type. The types represent different facets of

context that may be encountered when developing context-

aware applications. We propose a modular design for these

context types using the Aspect-Oriented Software Devel-

opment (AOSD) paradigm [6]. AOSD’s modularisation

capabilities are used to separate the crosscutting context-

awareness adaptation code from the functional parts of the

application to achieve a more modular application.

Modularity is measured in terms of its software engi-

neering benefits, namely maintainability, manageability and

comprehensibility [7]. We implemented three versions of

a context-aware case study using an object-oriented de-

sign, a popular context framework and the proposed aspect-

oriented modularisation. The applications were evaluated

for modularity attributes using traditional object-oriented

metrics and metrics extended for aspect-oriented applica-

IEEE International Conference on Pervasive Computing and Communications (PerCom) 2007

tions. These include coupling (CAE, CMC, CBM, Ca, Ce),

cohesion (LCO, RFM) and complexity (CC).

The rest of this paper is structured as follows: Section 2

identifies the various context types and illustrates the mod-

ularisation of context based on aspect-oriented techniques.

It also discusses related work. Section 3 evaluates our ap-

proach. Section 4 concludes this paper.

2 Context Concerns

Existing research has attempted various classifications of

context. Dey et al. [1] classify context into four categories,

location, identity, activity and time, which enable a com-

plete characterisation of an entity’s situation. Schmidt et.

al. [8] propose a hierarchically defined context space, fea-

turing two main factors, human and physical context.

Following the approach of Schmidt et. al., we divided

the overall context space into eight sub-categories: de-

vice, location, user, social, environmental, system, tem-

poral, and application-specific context. Standard object-

oriented techniques did not allow us to modularise the con-

cerns as their behaviours cut across many of the objects’ be-

haviours (known as crosscutting). Instead, we used Aspect-

Oriented Software Development (AOSD), which provides

mechanisms to cleanly modularise these crosscutting con-

cerns. The adaptation of the application is realised by as-

pects and (helper) classes. The aspects augment the basic

application at appropriate points in the application’s execu-

tion.

In the following subsections, we describe briefly each

context and propose an aspect-oriented approach for the

adaptation of an application to the specific context. We

present a detailed design for device context only, for space

reasons. Finally, we discuss modularisation approaches for

existing frameworks related to each context type.

2.1 Device Context

Device context encapsulates all information for describ-

ing the user’s computing device including screen size,

colour depth, processing power, storage capacity, and cur-

rent network connections [8]. Scenarios where device con-

text is used include a change in a device’s energy level.

A device context module encapsulates the adaptation of

content with respect to the current capabilities of a de-

vice. The system structure is depicted in Figure 1, illustrat-

ing the ContentAdaptationEngine aspect and sev-

eral helper classes.

ContentAdaptationEngine is responsible for

adapting content based on the current capabilities of the de-

vice using artificial intelligence. Listing 1 demonstrates a

possible implementation using AspectJ 2 for the definition

2http://www.eclipse.org/aspectj

Figure 1. Device Context Module

of points in the application where the aspect can be applied.

ContentAdaptationEngine intercepts calls to all

methods that generate or display content. It then ob-

tains the current capabilities of the device from the

DeviceMonitor, which maintains the state and the capa-

bilities of the device currently in use. After having obtained

the current properties, ContentAdaptationEngine

reasons over all rules that relate to the current context of

the device and changes the content accordingly.

p u b l i c a s p e c t C o n t e n t A d a p t a t i o n E n g i n e

e x t e n d s RuleBas edE ng ine

implemen t s D e v i c e S t a t e L i s t e n e r {
DeviceM oni to r dm = new DeviceM oni to r () ;

C o n t e n t c u r r e n t C o n t e n t = new c o n t e n t () ;

O b j e c t [] r e s u l t s ;

O b j e c t [] r e n d e r i n g R u l e s ;

p o i n t c u t g e n e r a t e C o n t e n t (C o n t e n t c o n t e n t) :

c a l l (c r e a t e C o n t e n t (. .) | | d i s p l a y C o n t e n t (. .))

&& a r g s (c o n t e n t) ;

b e f o r e (C o n t e n t c o n t e n t) : g e n e r a t e C o n t e n t (c o n t e n t

){
C o n t e x t c o n t e x t = dm . g e t C u r r e n t C o n t e x t () ;

r e n d e r i n g R u l e s = d e t e r m i n e C o n t e x t R u l e s (

c o n t e x t) ;

c o n t e n t . s e t R e n d e r i n g R u l e s (r e n d e r i n g R u l e s) ;

}
}

Listing 1. Proactive Approach

2.2 Other Context Types

The following section briefly describes the remaining

context categories, i.e., location, user, social, environmen-

tal, system, temporal, and application context.

Location Context Location is a primary element of con-

text [1] that can serve as a source for higher-level contextual

information, e.g., proximity to other entities. Providing sup-

port for location can enable a new set of potential use cases

IEEE International Conference on Pervasive Computing and Communications (PerCom) 2007

that allow an application to adapt its behaviour based on the

device’s current location. The variety of location sensors

motivate a need for sensor fusion to gain more accurate and

higher-level location information.

The location context module proposed supports multiple

location data providers and performs sensor fusion on the

data received. It also provides means to translate between

different representations of a location.

User Context User context captures all knowledge per-

taining to the user that is known to an application i.e., the

physiological context, emotional state, current activity and

the user’s schedule. It is also often valuable to consider

long term user properties, like level of knowledge and per-

ceptual skills [9]. Our user context module encapsulates all

concerns dealing with the adaptation of content and func-

tionality to a specific user and his preferences.

Social Context Social context has been defined as any in-

formation that is relevant to the characterisation of a situ-

ation that influences the interactions of one user with other

users and that describes the relationships of the user to other

people.

Our social context module models the social context of a

user by using orthogonal statecharts [10]. Nodes from mul-

tiple statecharts are connected by associations using logical

operators. Associations express higher-level contextual in-

formation, e.g., a “free for lunch” context is represented by

the state “at lunch” in the user statechart and the state “in

room” in the co-worker statechart of a business chat client

application. After a statechart change, all relevant associa-

tions are reevaluated.

Environmental Context Environmental context is con-

text relating to the physical world in which the application

runs, e.g., temperature, noise and lighting conditions [1].

Our environmental context module encapsulates the acqui-

sition and handling of context from various physical sensor

sources. To prevent the application from flooding with per-

manent sensor updates, it allows applications to subscribe to

different levels of information. The module supports fusion

from multiple sensors to gain higher-level information.

System Context System context refers to all context re-

lated to the (technical) infrastructure in which an applica-

tion runs, e.g., available computation resources, communi-

cation capabilities, and information pertaining to the sys-

tem components and their configuration [8]. Our system

context module enables applications to run in different con-

figurations, based on performance requirements, hardware

availability and network conditions.

Temporal Context Temporal context includes all data re-

lated to time, e.g., current time, month or season of the year

[1]. Proactive applications can leverage temporal context to

enhance their usability. For example, a meeting reminder

application uses the current time to determine whether to

inform a user. Our temporal context module infers higher-

level information from lower-level temporal data by using

a rule-based approach. Each rule is responsible for inte-

grating contextual data from other entities, e.g., obtaining a

user’s current activity from a statechart.

Application Context Application context is all context

directly related to the core functionality of an application.

For example, in an auction system, application context is

the auctions currently available, the number of users in the

system and the items currently on sale. As this context is

heavily dependent on the semantics of an application, we

can only provide limited support. This can be provided

by the use of a framework that supports the modelling of

application-specific context, and provides part of its acqui-

sition with limited support for reasoning over this context.

2.3 Related Work

Device context is addressed in Lum and Lau [11], who

take a similar approach with a content adaptation system

based on a decision engine. However, their approach is cen-

tralised on a server and is less flexible than our approach.

All currently available frameworks support the modular-

isation of location acquisition. Wildcat [12] and the Con-

text Toolkit [4] both support the encapsulation of location

information. However, the adaptation based on location in-

formation remains tangled with the base application code.

For user context, the PACE middleware platform [13]

supports the adaptation of an application based on user pref-

erences. However, their approach does not modularise the

adaptation of the application towards a specific user context.

Environmental context is the most supported context, as

all currently available frameworks provide some mecha-

nisms to modularise the acquisition of contextual data from

physical sensors. For example, the Context Toolkit [4] pro-

vides the notion of context widgets that hide the details of

the underlying context-sensing mechanism. However, like

with user context, no approach supports the explicit modu-

larisation of application-specific adaptation to this context.

Few frameworks explicitly deal with social, system and

temporal context. The Java Context-Awareness Framework

(JCAF) [3] simulates the modeling of social context by al-

lowing an application developer to relate person entities

with each other. The Wildcat framework [12] provides a

context domain for system resources, e.g., memory, discs,

devices, that can be queried by the application. However,

dealing with adapting to the changed system context is part

IEEE International Conference on Pervasive Computing and Communications (PerCom) 2007

of the base code and therefore is not encapsulated cleanly.

The Context Toolkit [4] provides interpreters that can infer

higher-level contextual information. However, it remains

difficult to express higher-level context.

Socam [14] and MoCoA [15] are flexible middleware

platforms that both support the modelling of a variety of

context. Both platforms gain higher modularisation of con-

text handling than the frameworks discussed above, how-

ever in both approaches, adaptation decisions are still inter-

twined with the basic functionality of the application.

3 Evaluation

3.1 Modularisation

Modularisation involves the breaking up of an appli-

cation into smaller, more independent elements known as

modules. Modular code reduces the complexity of applica-

tions and enables the modules to be developed in isolation

as each concentrates and addresses a separate concern [5].

The expected benefits of modular programming are out-

lined by Parnas in [7]. The three primary advantages we

use as indicators to identify modularisation improvements

are well-known software quality factors:

• Manageability

• Maintainability

• Comprehensibility

Manageability relates to the ability to develop and com-

pose components easily. Applications that employ modu-

larisation can be developed more easily as each module can

be implemented independently.

Maintainability indicates the ease with which modifica-

tions and extensions can be made in the future. Modifica-

tions made to modular code affect fewer other modules and

so increase the flexibility of the overall application.

Comprehensibility affects how developers understand

applications, which in turn affects its modification. Sepa-

rating concerns into distinct modules enables developers to

view all related functionality in isolation making the appli-

cation as a whole easier to comprehend.

3.2 Case Study

To evaluate the benefits of modularisation, we used a

case study that illustrates various context handling issues.

It has been modified from an online auction site scenario 3.

We modularised the context handling into the eight separate

clusters mentioned above.

3http://lgl.ep.ch/research/fondue/case-studies/auction/index.html

The auction system (Dbay) was implemented using three

techniques: an Object-Oriented (OO) approach, the de-

scribed Aspect-Oriented (AO) approach, and using the Con-

text Toolkit [4]. The three approaches represent three levels

of modularisation.

Limited modularisation of context acquisition or han-

dling was gained by the the OO approach due to duplication

of adaptation code. The AO approach achieves a complete

modularisation of acquisition and adaptation code. The as-

pect code is weaved into the base auction system function-

ality at specified points of execution. The Context Toolkit

implementation encapsulates all concerns related to the ac-

quisition of the contextual information inside a correspond-

ing widget. However this approach only modularises the

acquisition of contextual data, as responsibility of the adap-

tation still lies within the base application and calls to this

class remain scattered across the base application classes.

3.3 Metrics

The AopMetric4 suite was used in conjunction with

other standard object-oriented metrics. This suite provides

aspect-oriented extensions to the following metrics suites:

• Chidamber and Kemerer metrics suite (CK metrics)

[16]

• Robert Martin’s metrics suite (package dependencies

metrics) [17]

• Henry and Li metrics suite [18]

Comprehensibility assesses the level of concern separa-

tion and the complexity of a module. If a module is highly

complex and deals with multiple concerns, the effort to un-

derstand the module is greatly increased. CC, LOC and

RFM indicate comprehensibility. Maintainability assesses

the modifiability of the code base and is negatively affected

by dependencies between modules. Coupling and cohesion

metrics CAE, CMC, CBM, Ca and Ce identify such depen-

dencies between modules. Manageability is measured by

metrics that can identify the independence of a module, en-

abling the module to be developed and modified in isolation

e.g., coupling metrics along with I and WOM.

Metrics were computed using various tools. CyVis5 is a

software metrics collection and analysis tool used to com-

pute metrics including cyclomatic complexity. AopMetrics

was used to calculate object-oriented metrics and aspect-

oriented metrics. JDepend6 traverses Java class file directo-

ries and generates design quality metrics for each Java pack-

age. These tools compute low-level measurements which

4http://aopmetrics.tigris.org/metrics.htm
5http://cyvis.sourceforge.net/index.html
6http://clarkware.com/software/JDepend.htm

IEEE International Conference on Pervasive Computing and Communications (PerCom) 2007

can be grouped to give indications of changes in ilities.

Changes in comprehensibility, manageability, and main-

tainability can be interpreted to quantify the results of each

modularisation technique.

Due to the size and design of the applications, some met-

rics were not applicable, and others yielded insignificant re-

sults due to the similarities of classes and packages unaf-

fected by the crosscutting context-handling concern. Met-

rics not detailed due to these factors include Depth of In-

heritance Tree (DIT), Number Of Children (NOC) and Ab-

stractness (A).

3.4 Results

3.4.1 Cyclomatic Complexity (CC)

Cyclomatic Complexity [19] measures the number of

unique paths that can be taken through code. Empirical

studies show a good correlation between cyclomatic com-

plexity and comprehensibility [19]. Complexity is clas-

sified here as high (cc≥7), moderate (4≤cc<7) and low

(0≤cc<4). In the OO approach, the classes User, and

BrowsingProcess were responsible for handling the

majority of the location context handling. The AO approach

significantly decreased the complexity of these classes by

extracting the context-handling behaviour. Userwas trans-

formed from having 7 moderate and 1 high complexity

methods to having only 2 moderately complex methods.

BrowsingProcesswas resolved from having 2 high and

1 moderate to having only 1 moderately complex method.

The Context Toolkit approach yielded decreased com-

plexity also due to the modularisation of the context acqui-

sition. The User class was reduced to having 6 moderately

complex methods, 4 more than the AO approach. From

these results, we can conclude that any modularisation of

context is preferable as complexity is reduced.

3.4.2 Coupling on Advice Execution (CAE)

CAE is the number of aspects that contain advice that may

be triggered by the execution of operations [20]. Oper-

ations known as joinpoints (i.e., points in program’s exe-

cution where aspect behaviour may be applied) that match

pointcuts (i.e., predicate for the selection of join points) dur-

ing execution are subject to alterations from advice. One

module was coupled with 3 aspects, showing that signif-

icant functionality may be added through advice. Three

other modules were coupled with aspects. CAE helps iden-

tify all possible execution paths, especially if due to modu-

lar development, the developer is unaware of the AO design

and the dependencies it may introduce.

3.4.3 Coupling on Method Call (CMC) & Coupling be-

tween Modules (CBM)

CMC and CBM measure the number of modules or inter-

faces declaring methods, or fields that are potentially called

by a given module [20]. AOP-based extensions of the C&K

CBO (Coupling Between Objects) metric were used to mea-

sure the dependence of modules on other modules, i.e., cou-

pling. CMC yielded the same results as CBM in all ap-

proaches indicating that all coupling occurred on methods,

not fields. As Figure 2 shows, the Context Toolkit approach

increased the coupling of the modules that were most af-

fected by context-handling. This is because these classes

acquire the context handling by using the widget and an

additional handling class located in another package. Al-

though the Context Toolkit adds modularisation, the calls

for both acquisition and handling remain scattered through-

out the base code causing coupling dependencies. The AO

approach significantly reduced this coupling as the base

code does not explicitly refer to the context-handling at any

time. However, dependencies are introduced in the oppo-

site direction from aspect to base code as shown in CAE.

The module most heavily coupled in the OO approach was

decreased by over 50% by AO.

Figure 2. Coupling on Method Call & Cou-
pling between Modules

3.4.4 Response for a Module (RFM)

RFM indicates the possible communication between mod-

ules [20]. Figure 3 summarises the results from all three

approaches. The RFM is reduced in the AO modularisation

by approximately 9% in each case as calls to other modules

were reduced. The Context Toolkit approach reduced the

RFM in the User module by reducing context acquisition

calls. However, it is increased in the BrowsingProcess

module as this approach introduced new calls to the widget

and supporting classes. The AO approach is more beneficial

here as the base code is made more independent of context

IEEE International Conference on Pervasive Computing and Communications (PerCom) 2007

resulting in reduced method calls in the base code.

Figure 3. Response for a Module (RFM)

3.4.5 Lack of Cohesion in Operations (LCO)

Lack of Cohesion in Operations, similarly to the OO metric

Lack of Cohesion in Methods (LCOM), counts the number

of method pairs whose similarity is zero, minus the count

of method pairs whose similarity is not zero. Similarity of

a pair of methods is the number of joint instance variables

used by both methods. Cohesion is a strong indicator of

good modularity. The modules in the OO approach are per-

forming several different unrelated tasks and so have a high

lack of cohesion. The module with the highest LCO value

in the OO approach was reduced by 18% by the AO ap-

proach, due to removing the use of the location classes. The

Context Toolkit approach causes the lowest lack of cohe-

sion measure, improving the OO reading by 23%. The in-

troduction of the widget means that the modules make use

of a common data structure which affects cohesion mea-

surements positively.

3.4.6 Afferent Couplings (CA)

Ca is the number of external modules that depend on mod-

ules within a package. A high value is an indicator of re-

sponsibility, therefore reducing maintainability.

As illustrated in Figure 4, Package 1, which contains the

base functionality, has very few incoming dependencies in

the OO approach as all the context functionality is tangled

internally. The Context Toolkit approach does not increase

this, as the widget does not rely on the base code. In the

AO approach, dependencies on Package 1 are increased as

the aspect makes use of information from the base classes.

The dependency is mainly due to the use of syntactical el-

ements such as method names in pointcut designators. The

dependency here is a trade off for the modularisation that is

achieved by the removal of all context functionality out of

the base classes.

The dependencies on Package 2 do not differ in the OO

and AO approach as Package 1 has no additional dependen-

cies because aspects do not impose any requirements on the

base application. Using the Context Toolkit, Package 2 con-

tains the widget that Package 1 uses for context acquisition.

This increases the dependencies on the package containing

the widget, which is evident in the afferent coupling results.

Figure 4. Afferent Coupling

3.4.7 Efferent Couplings (CE)

Ce is the number of modules inside the package that depend

on modules outside the package. The lower the value, the

more independent the module, increasing both manageabil-

ity and maintainability.

As shown in Figure 5, the OO approach has a high exter-

nal dependency for Package 1, as it relies on other modules

for its context acquisition and handling. The AO approach

provides context handling through aspects, which Package

1 is not dependent on, therefore reducing Package 1’s de-

pendencies. The Context Toolkit increases Package 1’s de-

pendencies as it makes calls to the external widget that per-

forms the context acquisition. These results illustrate the

modularisation benefits of AOP on the base classes, as they

can be oblivious to the functionality in the aspects.

Package 2 contains the context-handling behaviour i.e.,

some classes in OO, aspects in AO and the widget in the

Context Toolkit approach. Package 2 in the OO approach

has a low Ce as it has minimal external dependencies. This

package’s dependencies increase in both the AO and Con-

text Toolkit. In AO, this is due to the use of base class in-

formation in the aspects. The Context Toolkit also increases

external dependencies from Package 2, as the widget uses

various modules from the Toolkit framework.

3.4.8 Instability (I)

I is the ratio of efferent coupling (Ce) to total coupling (Ce

+ Ca) such that I = Ce/(Ce + Ca). This metric is an indi-

cator of a module’s resilience to change. Instability metric

IEEE International Conference on Pervasive Computing and Communications (PerCom) 2007

Figure 5. Efferent Coupling

results are within a range of < 0 ; 1 > increasing in in-

stability. As shown in Figure 6 the OO application had a

very instable Package 1 and a stable Package 2. This is

due to the dependencies of Package 1 on Package 2 for the

location acquisition and handling. The AO approach sig-

nificantly increases the stability of Package 1 by modularis-

ing the context functionality externally. Package 2 becomes

more unstable using AO as the aspect is dependent on base

application information. Despite the increased dependen-

cies, the comprehensibility of both packages is increased

as the modules address separate, modular concerns. The

Context Toolkit approach decreases the stability of the core

application in Package 1 as it is dependent on the widget

as well as the location handling classes. Package 2 is also

more unstable as the widget is located within the package,

and this relies on many Context Toolkit classes.

Figure 6. Instability

3.4.9 Other Metrics

Lines of Code (LOC) measures the number of lines of class

code and indicates its comprehensibility. The AO approach

decreased the base code by 12% but did not decrease the ap-

plication as a whole significantly as context handling code

exists in the aspects. The Context Toolkit reduced the base

code by 15% but increased the entire application due to the

inclusion of the entire framework.

Weighted Operations in a Module (WOM) counts the

number of operations in a given module and is equivalent

to the WMC metric from CK metrics suite and is an indi-

cation of manageability and maintainability. The AO and

Context Toolkit approaches yielded similar results reducing

the context handling module’s complexity by 7% and 23%

due to more modular designs.

3.5 Summary

This section summarises the results of the metrics under

the headings of the three software quality factors identified

as indicators of good modularity.

Comprehensibility Complexity in the base code was de-

creased by the AO approach slightly more than the Context

Toolkit approach by the removal of adaptation functional-

ity. The complexity measures showed that any modularisa-

tion has positive effects, but that the AO approach was more

effective in reducing complexity, and therefore increasing

comprehensibility. The RFM results showed that the AO

approach improved the independence of all modules. The

reduced number of methods invoked leads to a less compli-

cated application. However the Context Toolkit approach

had some negative effect in RFM results due to the intro-

duction of dependencies on its classes reducing the com-

prehensibility of the application.

Maintainability Almost 20% of the base code was mod-

ularised into the aspects removing the scattered code and

making modifications to the application easier. Module

coupling was increased by the Context Toolkit approach due

to the introduction of the widget and supporting classes.

The AO approach reduced coupling by up to 50% in the

base modules. The base package’s dependencies on exter-

nal modules, measured by efferent coupling, were reduced

by the AO approach and showed no change in the Context

Toolkit approach. The second package’s dependencies were

increased in both cases as both the aspects and widget use

additional external modules. Incoming dependencies for the

base package remained unchanged by the Context Toolkit

approach. The AO approach increased this as the aspect

uses base code information. The incoming dependencies of

Package 2 were reduced by AO as it was no longer cou-

pled with the base code. The Context Toolkit increased this

package’s Ca as both Package 1 and Context Toolkit classes

make use of the widget in Package 2.

Manageability Instability is an indicator of manageabil-

ity. The Context Toolkit did not improve the stability of

any part of the application. Using the AO approach, the

package containing the base code was made 3 times more

stable than both the OO approach and the Context Toolkit

IEEE International Conference on Pervasive Computing and Communications (PerCom) 2007

approach. This is due to the encapsulation of all context

handling outside the base code.

4 Conclusion

In this paper, we present a modularisation for context-

aware systems by means of encapsulating different types of

context using an aspect-oriented approach. Concerns are

separated as the adaptation logic of an application for each

context type is cleanly encapsulated inside its own mod-

ule. The module augments the basic application at specific

points in the execution of the application.

We have identified eight subcategories of context: user,

social, location, device, environmental, infrastructural, tem-

poral and application-specific. For each category, we pro-

vided a modular design and a discussion of related work in

this area and their modularisation approaches.

We have evaluated our approach using a context-aware

case study. The case study was implemented using the

proposed AO design, a traditional OO design and a popu-

lar context-aware framework. All three applications were

evaluated by metrics measuring software characteristics in-

cluding coupling, cohesion and complexity. These were

analysed and compared against modularisation indicators:

maintainability, manageability and comprehensibility. Our

results show that any modularisation of context is beneficial

to applications, but that the AO approach modularises both

the acquisition and adaptation of context outside the base

application in a more comprehensive manner.

5 Acknowledgements

This work is funded by Science Foundation Ireland un-

der the Research Frontiers Program. The authors would like

to thank Audrey Colomies for programming input and An-

drew Jackson and Neil Hatton for insights on this paper.

References

[1] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies,

M. Smith, and P. Steggles, “Towards a better under-

standing of context and context-awareness,” in HUC

’99, 1999.

[2] M. Baldauf and S. Dustdar, “A survey on context-

aware systems,” Tech. Rep. TUV-1841-2004-24,

Technical University Vienna, 2004.

[3] J. E. Bardram, “The java context awareness frame-

work (jcaf) – a service infrastructure and program-

ming framework for context-aware applications,” in

Pervasive 2005, 2005.

[4] D. Salber, A. Dey, and G. Abowd, “The context

toolkit: aiding the development of context-enabled ap-

plications,” in CHI ’99, 1999.

[5] C. Y. Baldwin and K. B. Clark, Design Rules vol I, The

Power of Modularity. MIT Press, 2001.

[6] R. Filman, T. Elrad, S. Clarke, and M. Akşit, Aspect-

oriented Software Development. Addison-Wesley,

2005.

[7] D. L. Parnas, “On the criteria to be used in decompos-

ing systems into modules,” Commun. ACM, vol. 15,

no. 12, pp. 1053–1058, 1972.

[8] A. Schmidt, M. Beigl, and H.-W. Gellersen, “There is

more to context than location,” Computers and Graph-

ics, vol. 23, no. 6, pp. 893–901, 1999.

[9] A. Jameson, “Modeling both the context and the user,”

Personal Technologies, vol. 5, no. 1, pp. 29–33, 2001.

[10] M. Mahoney and T. Elrad, “Distributing statecharts

to handle pervasive crosscutting concerns,” in OOP-

SLA 05: Workshop on Building Software for Pervasive

Compting, 2005.

[11] W. Y. Lum and F. C. M. Lau, “A context-aware de-

cision engine for content adaptation,” IEEE Pervasive

Computing, vol. 1, no. 3, pp. 41–49, 2002.

[12] P.-C. David and T. Ledoux, “Wildcat: a generic frame-

work for context-aware applications,” in MPAC ’05,

pp. 1–7, 2005.

[13] K. Henricksen, J. Indulska, T. McFadden, and S. Bal-

asubramaniam, “Middleware for distributed context-

aware systems.,” in DOA, pp. 846–863, 2005.

[14] T. Gu, H. Pung, and D. Zhang, “A middleware for

building context-aware mobile services,” in IEEE Ve-

hicular Technology Conference, Milan, Italy, 2004.

[15] A. Senart, R. Cunningham, M. Bouroche,

N. O’Connor, V. Reynolds, and V. Cahill, “Mo-

CoA: Customisable middleware for context-aware

mobile applications,” in International Symposium on

Distributed Objects and Applications (DOA), 2006.

[16] S. Chidamber and C. Kemerer, “A metrics suite for ob-

ject oriented design,” IEEE Transactions on Software

Engineering, vol. 20, no. 6, pp. 476–493, 1994.

[17] R. Martin, “OO design quality metrics-an analysis of

dependencies,” in Workshop Pragmatic and Theoret-

ical Directions in Object-Oriented Software Metrics,

1994.

IEEE International Conference on Pervasive Computing and Communications (PerCom) 2007

[18] W. Li and S. Henry, “Object-oriented metrics that pre-

dict maintainability,” J. Syst. Softw., vol. 23, no. 2,

pp. 111–122, 1993.

[19] T. J. McCabe, “A complexity measure.,” IEEE Trans.

Software Eng., vol. 2, no. 4, pp. 308–320, 1976.

[20] M. Ceccato and P. Tonella, “Measuring the effects of

software aspectization,” in WARE ’04, 2004.

