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Abstract—In this work the dynamic compressive sensing (CS)
problem of recovering sparse, correlated, time-varying signals
from sub-Nyquist, non-adaptive, linear measurements is explored
from a Bayesian perspective. While there has been a handful
of previously proposed Bayesian dynamic CS algorithms in the
literature, the ability to perform inference on high-dimensional
problems in a computationally efficient manner remains elusive.
In response, we propose a probabilistic dynamic CS signal model
that captures both amplitude and support correlation structure,
and describe an approximate message passing algorithm that
performs soft signal estimation and support detection with a
computational complexity that is linear in all problem dimensions.
The algorithm, DCS-AMP, can perform either causal filtering
or non-causal smoothing, and is capable of learning model
parameters adaptively from the data through an expectation-max-
imization learning procedure. We provide numerical evidence that
DCS-AMP performs within 3 dB of oracle bounds on synthetic
data under a variety of operating conditions. We further describe
the result of applying DCS-AMP to two real dynamic CS datasets,
as well as a frequency estimation task, to bolster our claim that
DCS-AMP is capable of offering state-of-the-art performance and
speed on real-world high-dimensional problems.

Index Terms—Approximate message passing (AMP), belief
propagation, compressed sensing, expectation-maximization al-
gorithms, time-varying sparse signals, Kalman filters, dynamic
compressive sensing, statistical signal processing.

I. INTRODUCTION

I N this work, we consider the dynamic compressive sensing
(dynamic CS) problem, in which a sparse, vector-valued

time series is recovered from a second time series of noisy, sub-

Nyquist, linear measurements. Such a problem finds application
in, e.g., dynamic MRI [2], high-speed video capture [3], and

underwater channel estimation [4].

Framed mathematically, the objective of the dynamic CS

problem is to recover the time series , where

is the signal at timestep , from a time series of

Manuscript received May 18, 2012; revised April 15, 2013; accepted June

29, 2013. Date of publication July 11, 2013; date of current version September

23, 2013. The associate editor coordinating the review of this manuscript and

approving it for publication was Dr. Piotr Indyk. This work was supported

in part by the NSF-I/UCRC Grant IIP-0968910, NSF Grant CCF-1018368,

DARPA/ONR Grant N66001-10-1-4090, and an allocation of computing time

from the Ohio Supercomputer Center. Portions of this paper were previously

presented at the Asilomar Conference on Signals, Systems, and Computing,

Pacific Grove, CA, USA, November 2010 [1].
The authors are with the Department of Electrical and Computer Engineering,

The Ohio State University, Columbus, OH 43210 USA (e-mail: zinielj@ece.

osu.edu; schniter@ece.osu.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2013.2273196

measurements, . Each is obtained

from the linear measurement process,

(1)

with representing corrupting noise. The measurement

matrix (which may be time-varying or time-invariant,

i.e., ) is known in advance, and is generally

wide, leading to an underdetermined system of equations. The

problem is regularized by assuming that is sparse (or com-

pressible),1 having relatively few non-zero (or large) entries.

In many real-world scenarios, the underlying time-varying

sparse signal exhibits substantial temporal correlation. This

temporal correlation may manifest itself in two interrelated

ways: (i) the support of the signal may change slowly over time
[2], [3], [5], and (ii) the amplitudes of the large coefficients
may vary smoothly in time.

In such scenarios, incorporating an appropriate model of tem-

poral structure into a recovery technique makes it possible to

drastically outperform structure-agnostic CS algorithms. From

an analytical standpoint,Vaswani andLudemonstrate that the re-

stricted isometry property (RIP) sufficient conditions for perfect
recovery in the dynamic CS problem are significantly weaker
than those found in the traditional single measurement vector

(SMV) CS problem when accounting for the additional struc-

ture [6]. In this work, we take a Bayesian approach to modeling

this structure, which contrasts those dynamic CS algorithms in-

spired by convex relaxation, such as the Dynamic LASSO [5]

and the Modified-CS algorithm [6]. Our Bayesian framework is
also distinct from those hybrid techniques that blend elements

of Bayesian dynamical models like the Kalman filter with more
traditional CS approaches of exploiting sparsity through convex

relaxation [2], [7] or greedy methods [8].

In particular, we propose a probabilistic model that treats

the time-varying signal support as a set of independent binary

Markov processes and the time-varying coefficient amplitudes
as a set of independent Gauss-Markov processes. As detailed in

Section II, this model leads to coefficient marginal distributions
that are Bernoulli-Gaussian (i.e., “spike-and-slab”). Later, in

Section V, we describe a generalization of the aforementioned

model that yields Bernoulli-Gaussian-mixture coefficient
marginals with an arbitrary number of mixture components.

The models that we propose thus differ substantially from

those used in other Bayesian approaches to dynamic CS, [9]

and [10]. In particular, Sejdinoviü et al. [9] combine a linear
Gaussian dynamical system model with a sparsity-promoting

1Without loss of generality, we assume is sparse/compressible in the

canonical basis. Other sparsifying bases can be incorporated into the measure-

ment matrix without changing our model.
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Gaussian-scale-mixture prior, while Shahrasbi et al. [10] em-
ploy a particular spike-and-slab Markov model that couples

amplitude evolution together with support evolution.

Our inference method also differs from those used in the al-

ternative Bayesian dynamic CS algorithms [9] and [10]. In [9],

Sejdinoviü et al. perform inference via a sequential Monte Carlo
sampler [11]. Sequential Monte Carlo techniques are appealing

for their applicability to complicated non-linear, non-Gaussian

inference tasks like the Bayesian dynamic CS problem. Never-

theless, there are a number of important practical issues related to

selection of the importance distribution, choice of the resampling

method, and the number of sample points to track, since in prin-

ciple one must increase the number of points exponentially over

time to combat degeneracy [11].Additionally,MonteCarlo tech-

niques can be computationally expensive in high-dimensional

inference problems. An alternative inference procedure that has

recently proven successful in a number of applications is loopy

belief propagation (LBP) [12]. In [10], Shahrasbi et al. extend
the conventional LBP method proposed in [13] for standard CS

under a sparse measurement matrix to the case of dynamic CS

under sparse . Nevertheless, the confinement to sparse mea-
surementmatrices isvery restrictive, and,without this restriction,

the methods of [10], [13] become computationally intractable.

Our inference procedure is based on the recently proposed

framework of approximate message passing (AMP) [14], and in

particular its “turbo” extension [15]. AMP, an unconventional

form of LBP, was originally proposed for standard CS with a

dense measurement matrix [14], and its noteworthy properties

include: (i) a rigorous analysis (as with fixed,
under i.i.d. sub-Gaussian ) establishing that its solutions are

governed by a state-evolution whose fixed points are optimal in
several respects [16], and (ii) extremely fast runtimes (as a con-
sequence of the fact that it needs relatively few iterations, each

requiring only one multiplication by and its transpose). The

turbo-AMP framework originally proposed in [15] offers a way

to extend AMP to structured-sparsity problems such as com-

pressive imaging [17], joint communication channel/symbol es-

timation [18], and—as we shall see in this work—the dynamic

CS problem.

Our work makes several contributions to the existing lit-

erature on dynamic CS. First and foremost, the DCS-AMP

algorithm that we develop offers an unrivaled combination of

speed (e.g., its computational complexity grows only linearly

in the problem dimensions , and ) and reconstruction

accuracy, as we demonstrate on both synthetic and real-world

signals. Ours is the first work to exploit the speed and accuracy
of loopy belief propagation (and, in particular, AMP) in the

dynamic CS setting, accomplished by embedding AMP within

a larger Bayesian inference algorithm. Second, we propose

an expectation-maximization [19] procedure to automatically

learn the parameters of our statistical model, as described

in Section IV, avoiding a potentially complicated “tuning”

problem. The ability to automatically calibrate algorithm pa-

rameters is especially important when working with real-world

data, but is not provided by many of the existing dynamic CS

algorithms (e.g., [2], [5]–[9]). In addition, our learned model

parameters provide a convenient and interpretable character-

ization of time-varying signals in a way that, e.g., Lagrange

multipliers do not. Third, DCS-AMP provides a unified means
of performing both filtering, where estimates are obtained se-
quentially using only past observations, and smoothing, where

each estimate enjoys the knowledge of past, current, and future

observations. In contrast, the existing dynamic CS schemes can

support either filtering, or smoothing, but not both.

A. Notation
Boldfaced lower-case letters, e.g., , denote column vectors,

while boldfaced upper-case letters, e.g., , denote matrices. The

letter is strictly used to index a timestep, ,

the letter is strictly used to index the coefficients of a signal,
, and the letter is strictly used to index the

measurements, . The superscript indicates a

timestep-dependent quantity, while a superscript without paren-

theses, such as , indicates a quantity whose value changes ac-

cording to some algorithmic iteration index . Subscript no-

tations such as are used to denote the th element of the

vector , while set subscript notation, e.g., , denotes the

sub-vector of consisting of indices contained in . The th

row of the matrix is denoted by , an -by- identity ma-

trix is denoted by , and a length- vector of ones is given

by . Finally, refers to the circularly symmetric

complex normal distribution that is a function of the vector ,

with mean and covariance matrix .

II. SIGNAL MODEL

We assume that the measurement process can be accurately

described by the linear model of (1). We further assume that

are measurement matrices

known in advance, whose columns have been scaled to be

of unit norm.2 We model the noise as a stationary, circularly

symmetric, additive white Gaussian noise (AWGN) process,

with .

As noted in Section I, the sparse time series, , often

exhibits a high degree of correlation from one timestep to the

next. In this work, we model this correlation through a slow

time-variation of the signal support, and a smooth evolution of

the amplitudes of the non-zero coefficients. To do so, we in-
troduce two hidden random processes, and .

The binary vector describes the support of ,

denoted , while the vector describes the am-

plitudes of the active elements of . Together, and

completely characterize as follows:

(2)

Therefore, sets and , while

sets and .

To model slow changes in the support over time, we

model the th coefficient’s support across time, , as

a Markov chain defined by two transition probabilities:
, and

, and employ independent chains across . We

further assume that each Markov chain operates in steady-state,

2Our algorithm can be generalized to support without equal-norm

columns, a time-varying number of measurements, , and real-valued

matrices/signals as well.
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such that . This steady-state assump-

tion implies that these Markov chains are completely specified
by the parameters and , which together determine the re-

maining transition probability . Depending

on how is chosen, the prior distribution can favor signals

that exhibit a nearly static support across time, or it can allow

for signal supports that change substantially from timestep to

timestep. For example, it can be shown that specifies the
average run length of a sequence of ones in the Markov chains.

The second form of temporal structure that we capture in

our signal model is the correlation in active coefficient ampli-
tudes across time. We model this correlation through indepen-

dent stationary steady-state Gauss-Markov processes for each

, wherein evolves in time according to

(3)

where is the mean of the process, is

an i.i.d. circular white Gaussian perturbation, and

controls the temporal correlation. At one extreme, , the

amplitudes are totally correlated, (i.e., ), while at

the other extreme, , the amplitudes evolve according to

an uncorrelated Gaussian random process with mean .

At this point, we would like to make a few remarks about our

signal model. First, due to (2), it is clear that

, where is the Dirac delta function. By

marginalizing out and , one finds that

(4)

where is the steady-state variance of . Equa-

tion (4) is a Bernoulli-Gaussian or “spike-and-slab” distribu-

tion, which is an effective sparsity-promoting prior due to the

point-mass at . Second, we observe that the ampli-

tude random process, , evolves independently from

the sparsity pattern random process, . As a result of

this modeling choice, there can be significant hidden amplitudes
associated with inactive coefficients (those for which

). Consequently, should be viewed as the amplitude of

conditioned on . Lastly, we note that higher-order

Markov processes and/or more complex coefficient marginals
could be considered within the framework we propose, how-

ever, to keep development simple, we restrict our attention to

first-order Markov processes and Bernoulli-Gaussian marginals
until Section V, where we describe an extension of the above

signal model that yields Bernoulli-Gaussian-mixture marginals.

III. THE DCS-AMP ALGORITHM

In this section we will describe the DCS-AMP algorithm,

which efficiently and accurately estimates the marginal poste-
rior distributions of , and from the observed

measurements , thus enabling both soft estimation and

soft support detection. The use of soft support information is

particularly advantageous, as it means that the algorithm need

never make a firm (and possibly erroneous) decision about the
support that can propagate errors across many timesteps. As

mentioned in Section I, DCS-AMP can perform either filtering
or smoothing.

Fig. 1. Factor graph representation of the joint posterior distribution of (5).

The algorithmwe develop is designed to exploit the statistical

structure inherent in our signal model. By defining to be the

collection of all measurements, (and defining ,

and similarly), the posterior joint distribution of the signal,

support, and amplitude time series, given the measurement time

series, can be expressed using Bayes’ rule as

(5)

where indicates proportionality up to a constant scale factor,

, and . By in-

specting (5), we see that the posterior joint distribution decom-

poses into the product of many distributions that only depend on

small subsets of variables. A graphical representation of such

decompositions is given by the factor graph, which is an undi-
rected bipartite graph that connects the pdf “factors” of (5) with

the random variables that constitute their arguments [20]. In

Table I, we introduce the notation that we will use for the factors

of our signal model, showing the correspondence between the

factor labels and the underlying distributions they represent, as

well as the specific functional form assumed by each factor. The
associated factor graph for the posterior joint distribution of (5)

is shown in Fig. 1, labeled according to Table I. Filled squares

represent factors, while circles represent random variables.

As seen in Fig. 1, all of the variables needed at a given

timestep can be visualized as lying in a plane, with successive

planes stacked one after another in time. We will refer to these

planes as “frames”. The temporal correlation of the signal

supports is illustrated by the factor nodes that connect the

variable nodes between neighboring frames. Likewise,

the temporal correlation of the signal amplitudes is expressed

by the interconnection of factor nodes and variable

nodes. For visual clarity, these factor nodes have been omitted

from the middle portion of the factor graph, appearing only at
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TABLE I

THE FACTORS, UNDERLYING DISTRIBUTIONS, AND FUNCTIONAL FORMS ASSOCIATED WITH OUR SIGNAL MODEL

indices and , but should in fact be present for

all indices . Since the measurements are

observed variables, they have been incorporated into the

factor nodes.

The algorithm that we develop can be viewed as an approxi-

mate implementation of belief propagation (BP) [21], a message

passing algorithm for performing inference on factor graphs

that describe probabilistic models. When the factor graph is

cycle-free, belief propagation is equivalent to the more general

sum-product algorithm [20], which is a means of computing the

marginal functions that result from summing (or integrating) a

multivariate function over all possible input arguments, with

one argument held fixed, (i.e., marginalizing out all but one
variable). In the context of BP, these marginal functions are the

marginal distributions of random variables. Thus, given mea-

surements and the factorization of the posterior joint distri-

bution , DCS-AMP computes (approximate) poste-

rior marginals of , and . In “filtering” mode, our al-
gorithm would therefore return, e.g., , while

in “smoothing” mode it would return . From

thesemarginals, one can compute, e.g., minimummean-squared

error (MMSE) estimates. The factor graph of Fig. 1 contains

many short cycles, however, and thus the convergence of loopy

BP cannot be guaranteed [20].3 Despite this, loopy BP has been

shown to perform extremely well in a number of different ap-

plications, including turbo decoding [26], computer vision [27],

and compressive sensing [13]–[15], [17], [28]–[30].

A. Message Scheduling

In loopy factor graphs, there are a number of ways to

schedule, or sequence, the messages that are exchanged be-

tween nodes. The choice of a schedule can impact not only the

rate of convergence of the algorithm, but also the likelihood of

convergence as well [31]. We propose a schedule (an evolution

of the “turbo” schedule proposed in [15]) for DCS-AMP that

is straightforward to implement, suitable for both filtering
and smoothing applications, and empirically yields quickly

converging estimates under a variety of diverse operating

conditions.

Our proposed schedule can be broken down into four distinct

steps, which we will refer to using the mnemonics (into),
(within), (out), and (across). At a particular timestep , the

3However, it is worth noting that in the past decade much work has been

accomplished in identifying specific situations under which loopy BP is guar-
anteed to converge, e.g., [16], [22]–[25].

(into) step involves passing messages that provide current be-
liefs about the state of the relevant support variables, ,

and amplitude variables, , laterally into the dashed
AMP box within frame . (Recall Fig. 1.) The (within) step
makes use of these incoming messages, together with the

observations available in that frame, , to exchange

messages within the dashed AMP box of frame , thus gener-
ating estimates of the marginal posteriors of the signal variables

. Using these posterior estimates, the (out) step
propagates messages out of the dashed AMP box, providing
updated beliefs about the state of and .

Lastly, the (across) step involves transmitting messages across
neighboring frames, using the updated beliefs about

and to influence the beliefs about and

(or and ).

The procedures for filtering and smoothing both start in the
same way. At the initial frame, steps (into), (within)
and (out) are performed in succession. Next, step (across) is
performed to pass messages from and to

and . Then at frame the same set

of steps are executed, concluding with messages propagating

to and . This process continues until steps

(into), (within) and (out) have been completed at the terminal
frame, . At this point, DCS-AMP has completed what we call

a single forward pass. If the objective was to perform filtering,
DCS-AMP terminates at this point, since only causal measure-

ments have been used to estimate the marginal posteriors. If in-

stead the objective is to obtain smoothed, non-causal estimates,

then information begins to propagate backwards in time, i.e.,

step (across) moves messages from and

to and . Steps (into), (within), (out),
and (across) are performed at frame , with messages bound

for frame . This continues until the initial frame is reached.

At this point DCS-AMP has completed what we term as a single

forward/backward pass. Multiple such passes, indexed by the

variable , can be carried out until a convergence criterion is

met or a maximum number of passes has been performed.

B. Implementing the Message Passes
We now provide some additional details as to how the above

four steps are implemented. To aid our discussion, in Fig. 2 we

summarize the form of the messages that pass between the var-

ious factor graph nodes, focusing primarily on a single coef-

ficient index at an intermediate frame . Directed edges in-

dicate the direction that messages are moving. In the (across)
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Fig. 2. A summary of the four message passing phases, including message no-

tation and form. See the pseudocode of Table II for the precise message update

computations.

phase, we only illustrate the messages involved in a forward

pass for the amplitude variables, and leave out a graphic for

the corresponding backward pass, as well as graphics for the

support variable (across) phase. Note that, to be applicable at
frame , the factor node and its associated edge should

be removed. The figure also introduces the notation that we
adopt for the different variables that serve to parameterize the

messages. We use the notation to denote a message

passing from node to a connected node . For Bernoulli mes-

sage pdfs, we show only the non-zero probability, e.g.,

.

To perform step (into), the messages from the factors
and to are used to set , the message from to

. Likewise, the messages from the factors and to

are used to determine the message from to . When

performing filtering, or the first forward pass of smoothing, no
meaningful information should be conveyed from the

and factors. This can be accomplished by initializing

with the values .

In step (within), messages must be exchanged between the
and nodes. When is not a sparse ma-

trix, this will imply a dense network of connections between

these nodes. Consequently, the standard sum-product algorithm

would require us to evaluate multi-dimensional integrals of non-

Gaussian messages that grow exponentially in number in both

and . This approach is clearly infeasible for problems of

any appreciable size, and thus we turn to a simplification known
as approximate message passing (AMP) [14], [28].
At a high-level, AMP can be viewed as a simplification of

loopy BP, employing central limit theorem arguments to ap-

proximate the sum of many non-Gaussian random variables as

a Gaussian. Through a series of principled approximation steps

(which become exact for sub-Gaussian matrices in the large-

system limit [16]), AMP produces an iterative thresholding al-

gorithm that requires only operations, dominated by

matrix-vector products, to obtain posteriors on the

TABLE II

DCS-AMP STEPS FOR FILTERING MODE, OR THE FORWARD PORTION

OF A SINGLE FORWARD/BACKWARD PASS IN SMOOTHING MODE.

SEE FIG. 2 TO ASSOCIATE QUANTITIES WITH THE MESSAGES

TRAVERSING THE FACTOR GRAPH

variable nodes. The specifics of the iterative thresholding algo-
rithm will depend on the signal prior under which AMP is op-

erating [28], but it is assumed that the joint prior decouples into

independent (but not necessarily i.i.d.) priors on each coefficient
. See Appendix A for additional background on AMP.

By viewing as a “local prior”4 for , we can

readily apply an off-the-shelf AMP algorithm (e.g., [28], [32],

[33]) as a means of performing the message passes within the

portions of the factor graph enclosed within the dashed boxes of

Fig. 1 (only one such box is visible). The use of AMP with de-

coupled local priors within a larger message passing algorithm

that accounts for statistical dependencies between signal coef-

ficients was first proposed in [15], and further studied in [17],
4The AMP algorithm is conventionally run with static, i.i.d., priors for each

signal coefficient.When utilized as a sub-component of a larger message passing
algorithm on an expanded factor graph, the signal priors (from AMP’s perspec-

tive) will be changing in response to messages from the rest of the factor graph.

We refer to these changing AMP priors as local priors.
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[18], [29], [34], [35]. Here, we exploit this powerful “turbo” in-

ference approach to account for the strong temporal dependen-

cies inherent in the dynamic CS problem.

The local prior for our signal model is a Bernoulli-Gaussian,

namely

The appropriate AMP message update equations for this local

prior follow a straightforward extension of the derivations out-

lined in [15], which considered the special case of a zero-mean

Bernoulli-Gaussian prior. The specific AMP updates for our
model are given by (A4)–(A8) in Table II.

After employing AMP to manage the message passing be-

tween the and nodes in step (within),
messages must be propagated out of the dashed AMP box of

frame (step (out)) and either forward or backward in time (step
(across)). While step (across) simply requires a straightforward
application of the sum-product message computation rules, step

(out) imposes several difficulties which we must address. For
the remainder of this discussion, we focus on a novel approxi-

mation scheme for specifying the message . Our

objective is to arrive at a message approximation that intro-

duces negligible error while still leading to a computationally

efficient algorithm. A Gaussian message approximation is a nat-
ural choice, given the marginally Gaussian distribution of .

As we shall soon see, it is also a highly justifiable choice.
A routine application of the sum-product rules to the

-to- message would produce the following expression:

(6)

Unfortunately, the term prevents us from nor-

malizing , because it is constant with respect to

. Therefore, the distribution on represented by (6) is im-

proper. To provide intuition into why this is the case, it is helpful

to think of as a message that conveys informa-

tion about the value of based on the values of and .

If , then by (2), , thus making unobserv-

able. The constant term in (6) reflects the uncertainty due to this
unobservability through an infinitely broad, uninformative dis-
tribution for .

To avoid an improper pdf, we modify how this message is

derived by regarding our assumed signal model, in which

, as a limiting case of the model with as

. For any fixed positive , the resulting message

is proper, given by

(7)

where

(8)

The pdf in (7) is that of a binary Gaussian mixture. If we con-

sider , the first mixture component is extremely broad,
while the second is more “informative,” with mean and

variance . The relative weight assigned to each component

Gaussian is determined by the term . Notice that the

limit of this weighting term is the simple indicator function

(9)

Since we cannot set , we instead fix a small positive
value, e.g., . In this case, (7) could then be used as the

outgoing message. However, this presents a further difficulty:
propagating a binary Gaussian mixture forward in time would

lead to an exponential growth in the number of mixture compo-

nents at subsequent timesteps. This difficulty is a familiar one
in the context of switched linear dynamical systems based on

conditional Gaussian models, since such models are not closed

under marginalization [36]. To avoid the exponential growth

in the number of mixture components, we collapse our binary

Gaussian mixture to a single Gaussian component, an approach

sometimes referred to as a Gaussian sum approximation [37],

[38]. This can be justified by the fact that, for be-

haves nearly like the indicator function in (9), in which case one

of the two Gaussian components will typically have negligible

mass.

To carry out the Gaussian sum approximation, we propose

the following two schemes. The first is to simply choose a
threshold that is slightly smaller than 1 and, using (9) as

a guide, threshold to choose between the two Gaussian

components of (7). The resultant message is thus

(10)

with and chosen according to

(11)

The second approach is to perform a second-order Taylor series

approximation of with respect to . The

resultant quadratic form in can be viewed as the logarithm

of a Gaussian kernel with a particular mean and variance, which

can be used to parameterize a single Gaussian message, as de-

scribed in [29]. The latter approach has the advantage of being

parameter-free. Empirically, we find that this latter approach
works well when changes in the support occur infrequently, e.g.,

, while the former approach is better suited to more

dynamic environments.

In Table II we provide a pseudo-code implementation of our

proposed DCS-AMP algorithm that gives the explicit message

update equations appropriate for performing a single forward

pass. The interested reader can find an expanded derivation
of the messages in [39]. The primary computational burden
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of DCS-AMP is computing the messages passing between the

and nodes, a task which can be performed effi-
ciently using matrix-vector products involving and .

The resulting overall complexity of DCS-AMP is therefore

flops (flops-per-pass) when filtering (smoothing).5
The storage requirements are and complex

numbers when filtering and smoothing, respectively.

IV. LEARNING THE SIGNAL MODEL PARAMETERS

The signal model of Section II is specified by the Markov
chain parameters , the Gauss-Markov parameters

, and the AWGN variance . It is likely that some or all of

these parameters will require tuning in order to best match the

unknown signal. To this end, we develop an expectation-maxi-

mization (EM) [19] algorithm that works together with the mes-

sage passing procedure described in Section III-A to learn all of

the model parameters in an iterative fashion from the data.

The EM algorithm is appealing for two principal reasons.

First, the EM algorithm is a well-studied and principled means

of parameter estimation. At every EM iteration, the likelihood

is guaranteed to increase until convergence to a local maximum

occurs [40]. For multimodal likelihoods, local maxima will, in

general, not coincide with the global maximum, but a judicious

initialization of parameters can help in ensuring the EM algo-

rithm reaches the global maximum [40]. The second appealing

feature of the EM algorithm lies in the fact that its expectation

step leverages quantities that have already been computed in

the process of executing DCS-AMP, making the EM procedure

computationally efficient.
We let denote the set of all model

parameters, and let denote the set of parameter estimates

at the th EM iteration. The objective of the EM procedure is

to find parameter estimates that maximize the data likelihood
. Since it is often computationally intractable to perform

this maximization, the EM algorithm incorporates additional

“hidden” data and iterates between two steps: (i) evaluating the
conditional expectation of the log likelihood of the hidden data

given the observed data, , and the current estimates of the pa-

rameters, , and (ii) maximizing this expected log likelihood
with respect to the model parameters. For all parameters except

the noise variance, , we use and as the hidden data, while

for we use .

Before running DCS-AMP, the model parameters are ini-

tialized using any available prior knowledge. If operating in

smoothing mode, DCS-AMP performs an initial forward/back-

ward pass, as described in Section III-A. Upon completing

this first pass, estimates of the marginal posterior distributions
are available for each of the underlying random variables.

Additionally, belief propagation can provide pairwise joint

posterior distributions, e.g., , for any variable

nodes connected by a common factor node [41]. With these

marginal, and pairwise joint, posterior distributions, it is pos-

sible to produce closed-form solutions for performing steps (i)
5When they exist, fast implicit operators can provide significant compu-

tational savings in high-dimensional problems. Implementing a Fourier trans-

form as a fast Fourier transform (FFT) subroutine, for example, would drop

DCS-AMP’s complexity from to .

TABLE III

EM UPDATE EQUATIONS FOR THE SIGNAL MODEL PARAMETERS OF SECTION II

and (ii) above. We adopt a Gauss-Seidel scheme, performing
coordinate-wise maximization, e.g.,

The EM procedure is performed after each forward/backward

pass, leading to a convergent sequence of parameter estimates.

If operating in filtering mode, the procedure is similar, however
the EM procedure is run after each recovered timestep using

only causally available posterior estimates.

In Table III, we provide the EM update equations for each

of the parameters of our signal model, assuming DCS-AMP is

operating in smoothing mode. A complete derivation of each

update can be found in [39].

V. INCORPORATING ADDITIONAL STRUCTURE

In Sections II–IV we described a signal model for the dy-

namic CS problem and summarized a message passing algo-

rithm for making inferences under this model, while iteratively

learning the model parameters via EM. We also hinted that the

model could be generalized to incorporate additional, or more

complex, forms of structure. In this section we will elaborate on

this idea, and illustrate one such generalization.

Recall that, in Section II, we introduced hidden variables

and in order to characterize the structure in the signal coeffi-
cients. An important consequence of introducing these hidden
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variables was that they made each signal coefficient con-

ditionally independent of the remaining coefficients in , given

and . This conditional independence served an impor-

tant algorithmic purpose since it allowed us to apply the AMP

algorithm, which requires independent local priors, within our

larger inference procedure.

One way to incorporate additional structure into the signal

model of Section II is to generalize our choices of and .

As a concrete example, pairing the temporal support model pro-

posed in this work with the Markovian model of wavelet tree

inter-scale correlations described in [17] through a more com-

plex support prior, , could enable even greater undersam-

pling in a dynamic MRI setting. Performing inference on such

models could be accomplished through the general algorithmic

framework proposed in [35]. As another example, suppose that

we wish to expand our Bernoulli-Gaussian signal model to one

in which signal coefficients are marginally distributed according
to a Bernoulli-Gaussian-mixture, i.e.,

where . Since we still wish to preserve the

slow time-variations in the support and smooth evolution

of non-zero amplitudes, a natural choice of hidden vari-

ables is , where , and

. The relationship between and the

hidden variables then generalizes to:

To model the slowly changing support, we specify using

a -state Markov chain defined by the transition proba-
bilities and

. In this work, we assume that

state transitions cannot occur between active mixture compo-

nents, i.e., when

.6 For each amplitude time-series we again use independent

Gauss-Markov processes to model smooth evolutions in the am-

plitudes of active signal coefficients, i.e.,

where .

As a consequence of this generalized signal model, a number

of the message computations of Section III-B must be modi-

fied. For steps (into) and (across), it is largely straightforward
to extend the computations to account for the additional hidden

variables. For step (within), the modifications will affect the
AMP thresholding equations defined in (D1)–(D4) of Table II.
6By relaxing this restriction on active-to-active state transitions, we can

model signals whose coefficients tend to enter the support set at small am-
plitudes that grow larger over time through the use of a Gaussian mixture

component with a small variance that has a high probability of transitioning to

a higher variance mixture component.

Details on a Bernoulli-Gaussian-mixture AMP algorithm can

be found in [30]. For the (out) step, we will encounter diffi-
culties applying standard sum-product update rules to compute

themessages . As in the Bernoulli-Gaussian

case, we consider a modification of our assumed signal model
that incorporates an term, and use Taylor series approx-

imations of the resultant messages to collapse a -ary

Gaussian mixture to a single Gaussian.

VI. EMPIRICAL STUDY

We now describe the results of an empirical study of DCS-

AMP.7 The primary performance metric that we used in all of

our experiments, which we refer to as the time-averaged nor-

malized MSE (TNMSE), is defined as

where is an estimate of .

Unless otherwise noted, the following settings were used for

DCS-AMP in our experiments. First, DCS-AMP was run as

a smoother, with a total of 5 forward/backward passes. The

number of inner AMP iterations for each (within) step was
, with a possibility for early termination if the change in

the estimated signal, , fell below a predefined threshold from
one iteration to the next, i.e., . Equation

(A9) of Table II was used to produce , which corresponds to

an MMSE estimate of under DCS-AMP’s estimated poste-

riors . The amplitude approximation parameter from

(7) was set to , while the threshold from (11) was set

to . In our experiments, we found DCS-AMP’s perfor-

mance to be relatively insensitive to the value of provided that

. The choice of should be selected to provide a balance

between allowing DCS-AMP to track amplitude evolutions on

signals with rapidly varying supports and preventing DCS-AMP

from prematurely gaining too much confidence in its estimate of
the support. We found that the choice works well over

a broad range of problems. When the estimated transition prob-

ability , DCS-AMP automatically switched from

the threshold method to the Taylor series method of computing

(10), which is advantageous because it is parameter-free.

When learning model parameters adaptively from the data

using the EM updates of Table III, it is necessary to first ini-
tialize the parameters at reasonable values. Unless domain-spe-

cific knowledge suggests a particular initialization strategy, we
advocate using the following simple heuristics: The initial spar-

sity rate, , active mean, , active variance, , and noise

variance, , can be initialized according to the procedure

described in ([30], Section V).8 The Gauss-Markov correlation

parameter, , can be initialized as

(12)

7Code for reproducing our results is available at http://www.ece.osu.edu/

~schniter/turboAMPdcs.

8For problems with a high degree of undersampling and relatively non-sparse

signals, it may be necessary to threshold the value for suggested in [30] so

that it does not fall below, e.g., 0.10.
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Fig. 3. A plot of the TNMSE (in dB) of (from left) the SKS, DCS-AMP, EM-DCS-AMP, and BG-AMP across the sparsity-undersampling plane, for temporal

correlation parameters and .

The active-to-inactive transition probability, , is difficult to
gauge solely from sample statistics involving the available mea-

surements, . We used as a generic default choice,

based on the premise that it is easier for DCS-AMP to adjust to

more dynamic signals once it has a decent “lock” on the static

elements of the support, than it is for it to estimate relatively

static signals under an assumption of high dynamicity.

A. Performance Across the Sparsity-Undersampling Plane

Two factors that have a significant effect on the performance
of any CS algorithm are the sparsity of the underlying

signal, and the number of measurements . Consequently,

much can be learned about an algorithm by manipulating these

factors and observing the resulting change in performance.

To this end, we studied DCS-AMP’s performance across the

sparsity-undersampling plane [42], which is parameterized by

two quantities, the normalized sparsity ratio, ,

and the undersampling ratio, . For a given

pair (with fixed at 1500), sample realizations of , and

were drawn from their respective priors, and elements of a

time-varying were drawn from i.i.d. zero-mean complex

circular Gaussians, with all columns subsequently scaled to

have unit -norm, thus generating and .

As a performance benchmark, we used the support-aware

Kalman smoother. In the case of linear dynamical sys-

tems with jointly Gaussian signal and observations, the

Kalman filter (smoother) is known to provide MSE-optimal
causal (non-causal) signal estimates [43]. When the signal is

Bernoulli-Gaussian, the Kalman filter/smoother is no longer
optimal. However, a lower bound on the achievable MSE can

be obtained using the support-aware Kalman filter (SKF) or
smoother (SKS). Since the classical state-space formulation

of the Kalman filter does not easily yield the support-aware
bound, we turn to an alternative view of Kalman filtering as
an instance of message passing on an appropriate factor graph

[44]. For this, it suffices to use the factor graph of Fig. 1 with
treated as fixed, known quantities. Following the stan-

dard sum-product algorithm rules results in a message passing

algorithm in which all messages are Gaussian, and no message

approximations are required. Then, by running loopy Gaussian

belief propagation until convergence, we are guaranteed that

the resultant posterior means constitute the MMSE estimate of

([22], Claim 5).

To quantify the improvement obtained by exploiting tem-

poral correlation, signal recovery was also explored using the

Bernoulli-Gaussian AMP algorithm (BG-AMP) independently

at each timestep (i.e., ignoring temporal structure in the support

and amplitudes), accomplished by passingmessages onlywithin

the dashed boxes of Fig. 1 using from (4) as AMP’s

prior.9

In Fig. 3, we present four plots from a representative ex-

periment. {The TNMSE across the (logarithmically scaled)

sparsity-undersampling plane is shown for (working from left

to right) the SKS, DCS-AMP, EM-DCS-AMP (DCS-AMP

with EM parameter tuning), and BG-AMP. In order to

allow EM-DCS-AMP ample opportunity to converge to the

correct parameter values, it was allowed up to 300 EM itera-

tions/smoothing passes, although it would quite often terminate

much sooner if the parameter initializations were reasonably

close. The results shown were averaged over more than {300}

independent trials at each pair. For this experiment,

signal model parameters were set at

, and a noise variance, ,

chosen to yield a signal-to-noise ratio (SNR) of 25 dB.

were set based on specific pairs, and was set so as

to keep the expected number of active coefficients constant
across time. It is interesting to observe that the performance of

the SKS and (EM-)DCS-AMP are only weakly dependent on

the undersampling ratio . In contrast, the structure-agnostic

BG-AMP algorithm is strongly affected. This is one of the

principal benefits of incorporating temporal structure; it makes
it possible to tolerate more substantial amounts of undersam-

pling, particularly when the underlying signal is less sparse.

B. Performance vs and
The temporal correlation of our time-varying sparse signal

model is largely dictated by two parameters, the support tran-

sition probability and the amplitude forgetting factor .

Therefore, it is worth investigating how the performance of

(EM-)DCS-AMP is affected by these two parameters. In an

experiment similar to that of Fig. 3, we tracked the performance

of (EM-)DCS-AMP, the SKS, and BG-AMP across a plane

of pairs. The active-to-inactive transition probability

9Experiments were also run that compared performance against Basis Pur-

suit Denoising (BPDN) [45] with genie-aided parameter tuning (solved using

the SPGL1 solver [46]). However, this was found to yield higher TNMSE than

BG-AMP, and at higher computational cost.
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Fig. 4. TNMSE (in dB) of (from left) the SKS, DCS-AMP, and EM-DCS-AMP as a function of the model parameters and , for undersampling ratio

and sparsity ratio . BG-AMP achieved a TNMSE of dB across the plane.

was swept linearly over the range [0, 0.15], while the

Gauss-Markov amplitude forgetting factor was swept loga-

rithmically over the range [0.001, 0.95]. To help interpret the

meaning of these parameters, we note that the fraction of the

support that is expected to change from one timestep to the next

is given by , and that the Pearson correlation coefficient
between temporally adjacent amplitude variables is .

In Fig. 4 we plot the TNMSE (in dB) of the SKS and (EM-

)DCS-AMP as a function of the percentage of the support that

changes from one timestep to the next (i.e., ) and the

logarithmic value of for a signal model in which

and , with remaining parameters set as before. Since

BG-AMP is agnostic to temporal correlation, its performance

is insensitive to the values of and . Therefore, we do not

include a plot of the performance of BG-AMP, but note that it

achieved a TNMSE of dB across the plane. For the SKS

and (EM-)DCS-AMP, we see that performance improves with

increasing amplitude correlation (moving leftward). This be-

havior, although intuitive, is in contrast to the relationship be-

tween performance and correlation found in the MMV problem

[29], [47], primarily due to the fact that the measurement matrix

is static for all timesteps in the classicalMMVproblem, whereas

here it varies with time. Since the SKS has perfect knowledge

of the support, its performance is only weakly dependent on the

rate of support change. DCS-AMP performance shows a modest

dependence on the rate of support change, but nevertheless is

capable of managing rapid temporal changes in support, while

EM-DCS-AMP performs very near the level of the noise when

.

C. Recovery of an MRI Image Sequence
While the above simulations demonstrate the effectiveness

of DCS-AMP in recovering signals generated according to our

signal model, it remains to be seen whether the signal model it-

self is suitable for describing practical dynamic CS signals. To

address this question, we tested the performance of DCS-AMP

on a dynamic MRI experiment first performed in [48]. The ex-
periment consists of recovering a sequence of 10 MRI images

of the larynx, each 256 256 pixels in dimension. (See Fig. 5.)

The measurement matrices were never stored explicitly due to

the prohibitive sizes involves, but were instead treated as the

Fig. 5. Frames 1, 2, 5, and 10 of the dynamic MRI image sequence of (from

top to bottom): the fully sampled dataset, Basis Pursuit, Modified-CS, and DCS-
AMP, with increased sampling rate at initial timestep.

composition of three linear operations, . The first
operation, , was the synthesis of the underlying image from

a sparsifying 2-D, 2-level Daubechies-4 wavelet transform rep-

resentation. The second operation, , was a 2-D Fourier trans-

form that yielded the k-space coefficients of the image. The third
operation, , was a sub-sampling mask that kept only a frac-

tion of the available k-space data.

Since the image transform coefficients are compressible
rather than sparse, the SKF/SKS no longer serves as an

appropriate algorithmic benchmark. Instead, we compare

performance against Modified-CS [6], as well as timestep-in-
dependent Basis Pursuit.10 As reported in [6], Modified-CS
demonstrates that substantial improvements can be obtained

over temporally agnostic methods.

Since the statistics of wavelet coefficients at different scales
are often highly dissimilar (e.g., the coarsest-scale approxima-

tion coefficients are usually much less sparse than those at finer
10Modified-CS is available at http://home.engineering.iastate.edu/~luwei/

modcs/index.html. Basis Pursuit was solved using the -MAGIC equality-con-

strained primal-dual solver (chosen since it is used as a subroutine within

Modified-CS), available at http://users.ece.gatech.edu/~justin/l1magic/.
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TABLE IV

PERFORMANCE ON DYNAMIC MRI DATASET FROM [48] WITH INCREASED

SAMPLING RATE AT INITIAL TIMESTEP

TABLE V

PERFORMANCE ON DYNAMIC MRI DATASET FROM [48] WITH IDENTICAL

SAMPLING RATE AT EVERY TIMESTEP

scales, and are also substantially larger in magnitude), we al-

lowed our EM procedure to learn different parameters for dif-

ferent wavelet scales. Using to denote the indices of the

coarsest-scale “approximation” coefficients, and to denote

the finer-scale “wavelet” coefficients, DCS-AMP was initial-
ized with the following parameter choices:

, and , and run in filtering
mode with inner AMP iterations.

We note that our initializations were deliberately chosen to be

agnostic, but reasonable, values. In particular, observing that the

coarsest-scale approximation coefficients of a wavelet decom-
position are almost surely non-zero, we initialized the associated

group’s sparsity rate at , while the finer scale detail
coefficients were given an arbitrary sparsity-promoting rate of

. The choices of and were driven by an observa-

tion that the variance of coefficients across wavelet scales often
differs by an order-of-magnitude. The noise variance is arguably

the most important parameter to initialize properly, since it bal-

ances the conflicting objectives of fitting the data and adhering
to the assumed signal model. Our rule-of-thumb for initializing

this parameter was that it is best to err on the side of fitting the
data (since the SNR in this MRI data collection was high), and

thus we initialized the noise variance with a small value.

In Table IV we summarize the performance of three different

estimators: timestep-independent Basis Pursuit, which performs

independent minimizations at each timestep, Modified-CS,
and DCS-AMP (operating in filtering mode). In this experiment,
per the setup described in [48], the initial timestep was sampled

at 50% of the Nyquist rate, i.e., , while subsequent

timesteps were sampled at 16% of the Nyquist rate. Both Mod-

ified-CS and DCS-AMP substantially outperform Basis Pursuit
with respect to TNMSE, with DCS-AMP showing a slight ad-

vantage over Modified-CS. Despite the similar TNMSE perfor-
mance, note that DCS-AMP runs in seconds, whereas Modi-

fied-CS takes multiple hours. In Fig. 5, we plot the true images
along with the recoveries for this experiment, which show se-

vere degradation for Basis Pursuit on all but the initial timestep.

In practice, it may not be possible to acquire an increased

number of samples at the initial timestep. We therefore repeated

the experiment while sampling at 16% of the Nyquist rate at

every timestep. The results, shown in Table V, show that

Fig. 6. DCT coefficient magnitudes (in dB) of an audio signal.

DCS-AMP’s performance degrades by about 5 dB, while Mod-

ified-CS suffers a 14 dB reduction, illustrating that, when the
estimate of the initial support is poor, Modified-CS struggles to
outperform Basis Pursuit.

D. Recovery of a CS Audio Sequence

In another experiment using real-world data, we used

DCS-AMP to recover an audio signal from sub-Nyquist sam-

ples. In this case, we employ the Bernoulli-Gaussian-mixture

signal model proposed for DCS-AMP in Section V. The audio

clip is a 7 second recording of a trumpet solo, and contains

a succession of rapid changes in the trumpet’s pitch. Such a

recording presents a challenge for CS methods, since the signal

will be only compressible, and not sparse. The clip, sampled

at a rate of 11 kHz, was divided into non-overlapping

segments of length . Using the discrete cosine trans-

form (DCT) as a sparsifying basis, linear measurements were

obtained using a time-invariant i.i.d. Gaussian sensing matrix.

In Fig. 6 we plot the magnitude of the DCT coefficients of
the audio signal on a dB scale. Beyond the temporal correlation

evident in the plot, it is also interesting to observe that there is a

non-trivial amount of frequency correlation (correlation across

the index ), as well as a large dynamic range. We performed

recoveries using four techniques: BG-AMP, GM-AMP (a tem-

porally agnostic Bernoulli-Gaussian-mixture AMP algorithm

with Gaussian mixture components), DCS-(BG)-AMP,

and DCS-GM-AMP (the Bernoulli-Gaussian-mixture dynamic

CS model described in Section V, with ). For each al-

gorithm, EM learning of the model parameters was performed

using straightforward variations of the procedure described in

Section IV, with model parameters initialized automatically

using simple heuristics described in [30]. Moreover, unique

model parameters were learned at each timestep (with the

exception of support transition probabilities). Furthermore,

since our model of hidden amplitude evolutions was poorly

matched to this audio signal, we fixed .

In Table VI we present the results of applying each algorithm

to the audio dataset for three different undersampling rates, .
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TABLE VI

PERFORMANCE ON AUDIO CS DATASET (TNMSE (DB) RUNTIME (S)) OF TWO TEMPORALLY INDEPENDENT ALGORITHMS, BG-AMP AND

GM-AMP, AND TWO TEMPORALLY STRUCTURED ALGORITHMS, DCS-BG-AMP AND DCS-GM-AMP

For each algorithm, both the TNMSE in dB and the runtime

in seconds are provided. Overall, we see that performance im-

proves at each undersampling rate as the signal model becomes

more expressive. While GM-AMP outperforms BG-AMP at

all undersampling rates, it is surpassed by DCS-BG-AMP

and DCS-GM-AMP, with DCS-GM-AMP offering the best

TNMSE performance. Indeed, we observe that one can obtain

comparable, or even better, performance with an undersampling

rate using DCS-BG-AMP or DCS-GM-AMP, with that

obtained using BG-AMP with an undersampling rate .

E. Frequency Estimation

In a final experiment, we compared the performance of
DCS-AMP against techniques designed to solve the problem of

subspace identification and tracking from partial observations
(SITPO) [49], [50], which bears similarities to the dynamic

CS problem. In subspace identification, the goal is to learn the
low-dimensional subspace occupied by multi-timestep data

measured in a high ambient dimension, while in subspace

tracking, the goal is to track that subspace as it evolves over

time. In the partial observation setting, the high-dimensional

observations are sub-sampled using a mask that varies with

time. The dynamic CS problem can be viewed as a special

case of SITPO, wherein the time- subspace is spanned by a

subset of the columns of an a priori known matrix . One

problem that lies in the intersection of SITPO and dynamic CS

is frequency tracking from partial time-domain observations.

For comparison purposes, we replicated the “direction of ar-

rival analysis” experiment described in [50] where the observa-

tions at time take the form

(13)

where is a selection matrix with non-zero

column indices is a Van-

dermonde matrix of sampled complex sinusoids, i.e.,

(14)

with and

. is a vector of instantaneous amplitudes, and

is additive noise with i.i.d. elements.11

Here, is known, while and are

11Code for replicating the experiment provided by the authors of [50]. Unless

otherwise noted, specific choices regarding and were made by

the authors of [50] in a deterministic fashion, and can be found in the code.

unknown, and our goal is to estimate them. To assess perfor-

mance, we report TNMSE in the estimation of the “complete”

signal .

We compared DCS-AMP’s performance against two online

algorithms designed to solve the SITPO problem: GROUSE

[49] and PETRELS [50]. Both GROUSE and PETRELS return

time-varying subspace estimates, which were passed to an ES-

PRIT algorithm to generate time-varying frequency estimates

(as in [50]). Finally, time-varying amplitude estimates were

computed using least-squares. For DCS-AMP, we constructed

using a column-oversampled DFT matrix, keeping

only those rows indexed by . DCS-AMP was run in fil-
tering mode for fair comparison with the “online” operation of

GROUSE and PETRELS, with inner AMP iterations.

The results of performing the experiment for three different

problem configurations are presented in Table VII, with perfor-
mance averaged over 100 independent realizations. All three al-

gorithms were given the true value of . In the first problem
setup considered, we see that GROUSE operates the fastest, al-

though its TNMSE performance is noticeably inferior to that of

both PETRELS and DCS-AMP, which provide similar TNMSE

performance and complexity. In the second problem setup, we

reduce the number of measurements, , from 30 to 10, leaving

all other settings fixed. In this regime, both GROUSE and PE-
TRELS are unable to accurately estimate , and conse-

quently fail to accurately recover , in contrast to DCS-

AMP. In the third problem setup, we increased the problem

dimensions from the first problem setup by a factor of 4 to

understand how the complexity of each approach scales with

problem size. In order to increase the number of “active” fre-

quencies from to , 15 additional frequencies

and amplitudes were added uniformly at random to the 5 deter-

ministic trajectories of the preceding experiments. Interestingly,

DCS-AMP, which was the slowest at smaller problem dimen-

sions, becomes the fastest (and most accurate) in the higher-di-

mensional setting, scaling much better than either GROUSE or

PETRELS.

VII. CONCLUSION

In this work we proposed DCS-AMP, a novel approach to dy-

namic CS. Our technique merges ideas from the fields of belief
propagation and switched linear dynamical systems, together

with a computationally efficient inference method known as
AMP. Moreover, we proposed an EM approach that learns all

model parameters automatically from the data. In numerical

experiments on synthetic data, DCS-AMP performed within

3 dB of the support-aware Kalman smoother bound across



5282 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 21, NOVEMBER 1, 2013

TABLE VII

AVERAGE PERFORMANCE ON SYNTHETIC FREQUENCY ESTIMATION EXPERIMENT (TNMSE (DB) RUNTIME (S)) OF

GROUSE, PETRELS, AND DCS-AMP. IN ALL CASES,

the sparsity-undersampling plane. Repeating the dynamic

MRI experiment from [48], DCS-AMP slightly outperformed

Modified-CS in MSE, but required less than 10 seconds to
run, in comparison to more than 7 hours for Modified-CS.
For the compressive sensing of audio, we demonstrated sig-

nificant gains from the exploitation of temporal structure and
Gaussian-mixture learning of the signal prior. Lastly, we found

that DCS-AMP can outperform recent approaches to Subspace

Identification and Tracking from Partial Observations (SITPO)
when the underlying problem can be well-represented through

a dynamic CS model.

APPENDIX A

THE BASICS OF BELIEF PROPAGATION AND AMP

In this Appendix, we provide a brief primer on belief propa-

gation and the Bayesian approximate message passing (AMP)

algorithmic framework proposed by Donoho, Maleki, andMon-

tanari [28]. In what follows, we consider the task of estimating

a signal vector from linearly compressed and AWGN-

corrupted measurements:

(15)

AMP can be derived from the perspective of loopy belief

propagation (LBP) [20], a Bayesian inference strategy that is

based on a factorization of the signal posterior pdf, , into

a product of simpler pdfs that, together, reveal the probabilistic

structure in the problem. Concretely, if the signal coefficients, ,
and noise samples, , in (15) are jointly independent such that

and ,

then the posterior pdf factors as

(16)

yielding the factor graph in Fig. 7.

In belief propagation [21], messages representing beliefs

about the unknown variables are exchanged amongst the nodes

of the factor graph until convergence to a stable fixed point
occurs. The set of beliefs passed into a given variable node are

then used to infer statistical properties of the associated random

variable, e.g., the posterior mode, or a complete posterior

distribution. The sum-product algorithm [20] is perhaps the

most well-known approach to belief propagation, wherein the

messages take the form of probability distributions, and exact

posteriors are guaranteed whenever the graph does not have

cycles (“loops”). For graphs with cycles, exact inference is

Fig. 7. The factor graph representation of the decomposition of (16).

known to be NP-hard, and so LBP is not guaranteed to produce

correct posteriors. Still, it has shown state-of-the-art perfor-

mance on a wide array of challenging inference problems, as

noted in Section III.B.

The conventional wisdom surrounding LBP says that accu-

rate inference is possible only when the factor graph is locally

tree-like, i.e., the girth of any cycle is relatively large. With

(15), this would require that is an appropriately constructed

sparse matrix, which precludes some of the most interesting CS

problems. In a remarkable departure from convention, Donoho,

Maleki, Montanari, and Bayati demonstrated that LBP-based

compressive sensing is not only feasible [14], [28] for dense

matrices, but provably accurate [16]. In particular, they es-

tablished that, in the large-system limit (i.e., as

with fixed) and under i.i.d. sub-Gaussian , the itera-

tions of AMP are governed by a state-evolution whose fixed
point—when unique—yields the true posterior means. Beyond

its theoretical significance, AMP is important for its computa-
tional properties as well. As demonstrated in the original AMP

work [14], not only can LBP solve the compressive sensing

problem (15), but it can do so much faster, and more accu-

rately, than other state-of-the-art methods, whether optimiza-

tion-based, greedy, or Bayesian. To accomplish this feat, [14],

[28] proposed a specific set of approximations that become ac-
curate in the limit of large, dense matrices, yielding algo-

rithms that give accurate results using only flops-per-
iteration, and relatively few iterations (e.g., tens).

The specific implementation of any AMP algorithm will de-
pend on the particular choices of likelihood and prior, but ul-

timately amounts to an iterative, scalar soft-thresholding pro-

cedure with a carefully chosen adaptive thresholding strategy.

Deriving the appropriate thresholding functions for a partic-

ular signal model can be accomplished by computing scalar

sum-product, or max-sum, updates of a simple form (see, e.g.,

([33], Table I)).
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