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Abstract. The concept of semantic and context aware intelligent systems 
provides a vision for the Information Society where the emphasis lays on 
computing applications that can sense context from the people and the 
environment and wrap that knowledge into adaptable behavior. In this 
framework the proper and automatic classification of data gathered by sensors 
is of major importance. Our approach describes a model that operates as a self-
evaluating classifier using on-line re-clustering, addressing adequately the basic 
issues of modern demands. The novelty of the model lies in a flexible and 
efficient initialization technique that first partitions the data space utilizing 
Gaussian distributions and then merges clusters so as to produce an effective 
partitioning. 

1 Introduction 

The area of context-aware computing is aimed at the adaptation of the behavior of an 
application as a function of its current environment [1]. This environment can be 
characterized as a physical location, a semantic data space or a user profile. A 
context-aware application can sense the environment and interpret the events that 
occur within it, reacting accordingly. In heterogeneous environments where semantic 
integration is often required, the information to be accessed is heterogeneous and 
attribute correspondences could be fuzzy. In this framework, applications and 
algorithms should be able to automatically analyze vast amounts of data, extract or 
exchange knowledge and make decisions in a given context. 

Fuzzy neural models have the ability to operate and adapt in both numeric as well 
as linguistic environments. In addition, they can handle fuzzy attributes and can be 
adaptive through learning from data. Therefore, in a context-aware computing 
environment, an adaptive neuro-fuzzy model should be self-evaluating and able to 
facilitate fast learning through data-driven knowledge embedded in its architecture. 
More specifically, in order to embed data-driven or expert knowledge in a neuro- 
fuzzy model, the usual way is to apply a clustering or partitioning method. In the 
clustering approach the centers of fuzzy rules are initialized as cluster vectors 
extracted from the input data set [2]. A learning algorithm is utilized then to fine tune 
the rules based on the available training data. Partitioning methods divide the input-



output cross space into finer regions. Each partition is supposed to represent an if-then 
rule [3]. Both approaches present low adaptability: The number of rules that describe 
the physical phenomenon under examination is estimated heuristically and does not 
change during the learning phase. 

Our approach includes a context-aware intelligent classifier model that provides 
self-awareness by reconfiguring its “weak” fuzzy rules when necessary. The proposed 
system is trained using a novel initialization procedure. This procedure combines both 
a partitioning method and a clustering algorithm capable of extracting fuzzy rules 
from a well-fined partitioned dataset in a non-heuristic way.  

2 The Integrated Classifier Model  

The proposed model consists of three components: the trained classifier module, the 
Observer and the Catalyst (Fig. 1). The trained classifier could be any of the 
classifiers proposed in the literature [4]. We chose to use the Subsethood-Product 
Fuzzy Neural Inference System (SuPFuNIS, [5]), since it utilizes Gaussian 
distributions and performs very well as a classifier. The Observer is an incorporated 
mechanism that is constantly aware about the output status, tracks down the history of 
the data and is responsible for Catalyst’s activation. This activation takes place when 
we have a great number of input patterns that produce inaccurate or too fuzzy outputs. 
The Observer, having located the area of effect in the input-output cross space, sends 
this information to the Catalyst.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The classifier model  

The role of Catalyst is simple. It undertakes the task to reconstruct the rule(s) in 
question. How? By modifying the rule-cluster scenery in the most appropriate way. A 
new cluster could emerge, or an old one could be erased, a cluster could be sliced in 
two, or two could be merged, as indicated. The philosophy of this cluster 
reconfiguration is based on the general idea presented in section 3. 

Since this model could be implemented in context-aware systems, such as health 
monitoring devices, or car status interfaces (see [10]), the computational error should 
be kept minimal and the model should be adaptive. The above model adequately 



addresses each of these aspects.  A short description of the classifier module used is 
following. 

2.1 The classifier module 

Based on the SuPFuNIS model we implemented a subsethood product fuzzy neural 
classifier with the architecture shown in Figure 2 and the following characteristics: 

(a) SuPFuNIS uses a tunable input fuzzifier that is responsible for fuzzification of 
numeric data. Numeric inputs are fuzzified using a feature-specific Gaussian 
spread. 

(b) All information that propagates from the input layer is fuzzy. The model uses a 
composition mechanism employing a fuzzy mutual subsethood measure to 
define the activation that propagates to a rule node along a fuzzy connection. 

(c) It aggregates activities at a rule node using a fuzzy inner product: a product of 
mutual subsethoods, which is different from the most common approach to use 
a fuzzy min conjunction operator. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. Architecture of the SuPFuNIS model 

Learning. Learning is incorporated into SuPFuNIS using the gradient descent method. 
A squared error criterion is used as a training performance parameter. The squared 
error )(te  at iteration t is computed in the standard way: 
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where )(tdk  is the desired output and )(tyk the defuzzified output at node k. The 
error is evaluated over all p outputs for a specific pattern input x(t).  
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The free parameters of the system, meaning both the centers c
ijw  ( c

jkv ) and spreads 
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ix  of the input 

features, are modified on the basis of update equations. Evaluation of partial 
derivatives required in weight update equations, as well as the analytic computations 
of the mutual subsethood, the net activation product and the defuzzified output, can be 
found in [5]. 
SuPFuNIS initialization method. In the SuPFuNIS model, the number of clusters 
determines the number of rules and the clustering is done in the input-output cross 
space. Thus, the centroids and boundaries of clusters can be applied as the values of 
the centers and spreads of fuzzy weights that fan in and out of a rule node.  The 
employed clustering technique is the fuzzy c-means (FCM) algorithm [6] in 
conjunction with the Xie-Beni validity index [7] to cluster the given dataset and 
choose the best cluster, respectively. 

3 Knowledge Extraction from Numeric Data 

One of the methods to extract initial knowledge from the training data set is to cluster 
the data using a clustering technique. Cluster-based initialization has been known to 
improve the rate of learning as well as the performance of the system.  

It is evident, though, that different clustering algorithms and even multiple 
replications of the same algorithm produce different partitioning results, due to 
random or parameterized initialization. For instance, SuPFuNIS employs the FCM 
algorithm, as described above, to partition the data set because it is simple and fast. 
Nevertheless, its performance depends on the initial cluster centers and, in addition, 
the user predefines the number of clusters. Therefore, it is necessary to run FCM 
several times, each time with a different number of clusters, to discover the right 
figure that results in the best performance of the classification system (Fig. 3).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To overcome these rigid restrictions we developed a multi-clustering fusion 

algorithm. A variant of this algorithm has been firstly introduced in [8], while, in this 

Fig. 4. Partitioning same data 
using Multi-Clustering Gaussian 
Fusion resulting in 4 clusters 

Fig. 3. Partitioning artificial data
using FCM with Xie-Beni index 
for 4 clusters (predefined)           

1 2 3 4 5 6 7
1

2

3

4

5

6

7

8

1 2 3 4 5 6 7
1

2

3

4

5

6

7



paper, we present a different configuration of the method, including adoption of 
Gaussian distributions as well as a new approach for specifying merging criteria for 
ellipsoid clusters (Fig. 4). According to this technique, the data are assumed to have 
been generated by several parameterized Gaussian distributions, so the data points are 
assigned to different clusters based on their posterior probabilities. In this direction, 
we believe that finding the optimal number of ellipsoid clusters in the data set can 
improve the robustness of the classification system. The proposed partitioning 
approach consists of two main phases: the partitioning and the fusion procedure.  

3.1 Partitioning Procedure 

In the Partitioning procedure, a basic clustering algorithm is applied for a number of 
iterations, Iter, so as to accomplish a distinct partitioning of N data points to a 
predefined number C of clusters. In our implementation, we incorporate the proposed 
methodology in the context of k-means as the basic clustering algorithm. The basic 
clustering algorithm partitions the data set in a different way for each iteration, 
creating a problem of deciding which cluster of one run corresponds to which in 
another run. This algorithm tackles this problem using the similarity between the 
clusters produced during successive runs. By determining the percentage of points of 
a cluster in the t-th run belonging to clusters of the t-1-th run, each cluster of the new 
run is assigned to one of the previous run, resulting in a cluster renumbering process.  

After renumbering, if pattern xr  is assigned to cluster q, then a positive vote is 
given to cluster q and a negative one to all other clusters. This process defines a 
voting scheme, during which a voting table VT (of dimension N×C) is updated, so that 
VT(i,j) denotes the membership degree of pattern ixr  to cluster j, where i=1,…,N, and 
j=1,…,C. Using the VT table and the relation between the data points of one cluster 
with all the remaining clusters, a table NRT (of dimension C×C) can be produced, so 
that NRT(i,j) represents the neighbourhood relation between clusters i and j. 

For each cluster, a different Gaussian distribution (ellipsoid) is assigned and the 
specification of the Gaussian parameters is based on the expectation-minimization 
algorithm (EM, [9]). Thus, based on regular EM steps, fine-tuning of the parameters 
is carried out until convergence.   

3.2 Fusion Procedure 

After the parameters for each Gaussian distribution are specified, the Fusion 
procedure takes place and finds the optimal number of ellipsoids in the data set 
according to some predefined criteria. From the decomposition of the covariance 

matrix Kj of the j-th ellipsoid, we compute the angle 





−∈

2
,

2
ππφ kij

 between the k 

major axis’ eigenvector and the i-th dimension for each ellipsoid.  
Given also the neighbourhood relation (table NRT) among ellipsoids, the fusion 
procedure commences with the predefined number C of ellipsoids and merges the 
ones that fulfill the following conditions:  



1.  Both ellipsoids are neighbour to each other, 
2.  The two angle vectors (φ1i, φ2i), where i=1...(d-1), between the two ellipsoids 

satisfy one from the rules below for every i (d is the problem dimensionality): 

A) φ1i and φ2i have the same sign, and abs (φ1i-φ2i)<70o       , or (2) 

B) φ1i and φ2i have different sign, and                                                                  
(180o –[abs (φ1i) + abs (φ2i)] <20o or   [abs (φ1i) + abs (φ2i)] <20o) 

(3) 

The next step is to merge these ellipsoids into one and to reconfigure the voting 
table accordingly, by adding the votes of the second ellipsoid to the first one. The 
fusion procedure is running iteratively until the algorithm fails to find any pair of 
ellipsoids to merge.    

4 Experimental Results 

This section presents a comparative experimental evaluation of the proposed approach 
using different initialization techniques. Results concern the effectiveness of the 
classification module rather than the integrated classifier model as described in 
Section 2. A systematic assessment of the latter based on an involved experimental 
setup is ongoing [10]. In the following, the case of random initialization will be 
referred to as Random-SuPFuNIS, whereas the classifier resulting from using the 
FCM partitioning method combined with the Xie-Beni index will be referred to as 
FCM-SuPFuNIS. Similarly, using the proposed multi-clustering gaussian fusion 
algorithm for partitioning and for initializing the classifier will be referred to as Multi-
Fusion-SuPFuNIS. 

Two benchmark data sets were used to demonstrate the performance of the Multi-
Fusion-SuPFuNIS: the Clouds and Pima Indians data sets. The Clouds artificial data 
from the ELENA project, ftp://ftp.dice.ucl.ac.be/pub/neural-nets/ELENA/databases, 
are two-dimensional produced by three different Gaussian distributions. There are 
5000 samples in the data set belonging to three clusters, which are relatively highly 
overlapped (see Fig.5). The Pima Indians set contains 8-dimensional data and can be 
obtained from the UCI data set repository ftp://ftp.ics.edu/pub/machine-learning-
databases. It is based on personal data from 768 Pima Indians obtained by the 
National Institute of Diabetes and Digestive and Kidney Diseases. For each data set 
and for each number of rules, five experiments were performed with random splits of 
the data into training and test sets of fixed size, from which mean classification 
accuracy was calculated. More specifically, for the Clouds we used 2500 for training 
and 2500 for testing, while for the Pima Indians we used 500 for training and 268 for 
testing respectively. The results of our experiments are shown in Tables 1 and 2. Both 
number of clusters (rules) produced by each partitioning method and test accuracy of 
the respective classifier system are shown. Note that, for the Random-SuPFuNIS and 
for the FCM-SuPFuNIS, we give several results according to the number of rules, 
contrary to the Multi-Fusion-SuPFuNIS where the number of rules is computed in 
advance. For all the experimental cases considered we used twenty training epochs for 
the classifier. 



Fig. 6. Scenery after Partitioning 
Procedure                                         

Fig. 5. Categorized patterns of 
clouds dataset                                  

Table 1. Experimental results for the Clouds data set 

Number of Rules 3 5 8 10 15 20 
Random-SuPFuNIS 78.58% 79.07% 72.3% 79.62% 85.96% 87.44% 

FCM-SuPFuNIS 75.72% 88.40% 88.30% 88.90% 88.10% 88.70% 

Multi-Fusion-SuPFuNIS Number of Rules produced = 5 
Generalization accuracy      = 89.36% 

 Table 2. Experimental results for the Pima Indians data set 

 

Number of Rules 3 5 
Random-SuPFuNIS 75.8% 76.63% 
FCM-SuPFuNIS 76.2% 76.13% 
Multi-Fusion-SuPFuNIS Number of Rules produced = 4 

Generalization accuracy      = 79.48% 

Fig. 8. Best Partitioning result of 
FCM – Xie-Beni index for the 
same number of clusters                  

Fig. 7. Scenery after Fusion 
Process resulting in five clusters 



Figures 6 and 7 show the application of the proposed approach to Clouds data at 
the end of each procedure, respectively, whereas Fig. 8 presents the best partitioning 
obtained by FCM – Xie-Beni combination. It is clear that the multi-clustering 
gaussian fusion method yields a much more accurate partitioning result with respect 
to the actual dataset structure. 

5 Conclusions  

In this paper we propose a classifier model that employs a novel multi-clustering 
initialization procedure. The major strengths of this intelligent model are its economy 
of parameters, fast learning and the ability to learn and adequately perform even in 
heterogeneous environments, where significant changes of the sensed data 
characteristics can be manifested. Ongoing and future work includes experimental 
evaluation of the integrated model using real-data test sets in non-stationary 
environments.  
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