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1. INTRODUCTION

Considerable attention has been devoted to the classification of reduction strategies
in type-free *-calculus [4, 6, 7, 15, 38, 44, 81]��see also [2, Chap. 13]. We are
concerned with strategies differing in the length of reduction paths.

(i) A maximal strategy computes for a term a longest reduction path to
normal form, if one exists, otherwise some infinite reduction path.

(ii) A minimal strategy computes for a term a shortest reduction path to
normal form, if one exists, otherwise some infinite reduction path.

(iii) A perpetual strategy computes for a term an infinite reduction path, if
one exists, otherwise some finite reduction path to normal form.

(iv) A normalizing strategy computes for a term a finite reduction path to
normal form, if one exists, otherwise some infinite reduction path.1

Perpetual and normalizing strategies are opposite, in some sense, as are maximal
and minimal strategies.

Another classification is concerned with redexes rather than strategies. For
instance, a redex 2 with contractum 2$ is perpetual if, for any context C such that
C[2] has an infinite reduction path, C[2$] also has an infinite reduction path.

This paper presents a theory of perpetual and maximal ;-reduction strategies and
;-redexes. The paper not only recasts in a unified setting classical theorems due to
Barendregt, Bergstra, Klop, and Volken, to Church and Rosser, to Curry and Feys,
and to de Vrijer, but also presents new results, proofs, and techniques, as well as
a number of applications to problems in *-calculus and type theory, demonstrating
the elegance and relevance of the theory.

The paper is organized as follows. Section 2 classifies reduction strategies and
redexes in *-calculus and proves equivalence between different formulations from
the literature of perpetual and maximal strategies and redexes.

Section 3 is about perpetual and maximal ;-reduction strategies. This is a central
theme in work of de Vrijer [78, 79, 81], who uses the technique of counting steps
to establish several strong normalization results. The counting functions in fact
define reduction strategies.

We first prove a result which we call the fundamental lemma of perpetuality.
The lemma is used��often implicitly��in many strong normalization proofs in the
literature. An attempt is then made to show that the core of the recent techniques
by van Raamsdonk and Severi and by Xi for proving strong normalization results
is captured by this lemma. The section presents several perpetual reduction strategies;
perpetuality is in each case an immediate consequence of the fundamental lemma
of perpetuality.

The section then proves a stronger form of the fundamental lemma of perpetuality
which we call the fundamental lemma of maximality. This result is often used implicitly
in strong normalization proofs which establish upper bounds for the lengths of
reduction paths. We use the lemma to show maximality of a certain reduction
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also studies infinite reductions ending in infinite normal forms.



strategy and to give a certain, trivial technique for computing upper bounds for the
lengths of reduction paths from *-terms without infinite reduction paths. We also
prove that, in a certain sense, the trivial technique cannot be improved.

Sections 4�6 present applications of perpetual and maximal ;-reduction strategies.
Section 4 presents the recent 0-theorem, due to So% rensen, stating that every *-term
in every infinite reduction path contains the *-term 0 as a substring. The proof uses
a certain perpetual reduction strategy. Section 5 studies approaches to proving
strong normalization of simply typed *-calculus based on the fundamental lemma of
perpetuality and based on the related techniques by van Raamsdonk and Severi
and by Xi. In particular, a new perspicuous proof is presented. Section 6 similarly
studies approaches to proving finiteness of developments and in particular gives a
new, perspicuous proof of this theorem.

Section 7 is about perpetual ;-redexes (as we shall see, maximal ;-redexes turn
out to be trivial). A well-known proof technique is refined and used to give smooth
proofs of the conservation theorem for 4I , of the conservation theorem for 4K , and
of a related theorem due to Bergstra and Klop; these results together give charac-
terizations of perpetual redexes in 4I and 4K . The technique is also demonstrated
to yield the normalization theorem with little effort. The section ends with a very
short proof of the conservation theorem for 4I using the normalization theorem.

Klop [39] surveys some results about reduction strategies in first-order term
rewriting systems. Due to the absence of abstractions and the presence of patterns
in the term language, some parts of that theory are rather different from what is
presented in this paper; therefore, we shall not consider such systems any further.
Several notions of higher-order term rewriting system exist, some of which contain
as special cases *-calculus with ;-reduction. We will not consider such systems,
although we do try to give references to results that generalize those for *-calculus
presented in this paper.

2. CLASSIFICATION OF STRATEGIES AND REDEXES

In this section we classify strategies and redexes as outlined in the Introduction.
The first subsection reviews preliminary notions. The second subsection introduces
some notation and properties pertaining to reductions. The third and fourth subsec-
tions then classify strategies and redexes and prove equivalence between different
classifications from the literature.

2.1. Preliminaries

Most notation, terminology, and conventions are adopted from [2]; in this
subsection we merely fix the notation for some well-known concepts.

4K is the set of type-free *-terms. Some example terms are K#*x .*y .x, I#*x .x,
|#*x .x x, and 0#||. We use x, y, z, ... to range over the set V of variables.
Familiarity is assumed with conventions for omitting parentheses in *-terms.
Familiarity is also assumed with the notions of free and bound variables, the
variable convention, substitution, and the subterm relation, which is denoted by �.
Syntactic equality up to renaming of bound variables is denoted by #. FV(M)
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denotes the set of free variables in M. &M&x denotes the number of free occurrences
of x in M. &M& denotes the size of M, i.e., the number of occurrences of abstrac-
tions, applications, and variables in M. 4I is the set of all *-terms where for every
subterm *x .M, x # FV(M). Thus, I, |, 0 # 4I , whereas K � 4I . A *-context C is
a term with a single occurrence of the symbol [ ]; the result of replacing [ ] by
the term M in C is denoted by C[M]. Occasionally the name of bound variables
matters, e.g., when dealing with contexts. In such cases, BV(M) denotes the set of
variables bound in M.

We occasionally use vector notation P for a sequence of terms P1 } } } Pn (where
n�0), e.g., QP for QP1 } } } Pn , and P # S for P1 , ..., Pn # S.

A notion of reduction on a set S is a binary relation R�S_S. If MRN, then M
is an R-redex and N its R-contractum. By R1R2 we denote the union of two notions
of reduction R1 and R2 . For a notion of reduction R, the corresponding reduction
relation �R is the compatible closure (relative to some set of contexts). For a
reduction relation �R , ��R is the reflexive, transitive closure, ��+

R is the transitive
closure, and =R is the transitive, reflexive, symmetric closure. We assume that the
reader is familiar with the notion of reduction ; on 4K . Several elementary proper-
ties about substitution and ;-reduction will be used implicitly.

Let N+=N _ [�]. The following calculation rules are convenient: min <=
max <=�. Moreover, max U=� if U�N is unbounded, i.e., if, for all m # U,
there is an n # U with n>m. Also, �&k=�+k=�+�=k } �=�, for any
k # N. Finally, for m*, n* # N+ we write m*<n* iff either m*{� and n*=�, or
m*, n* # N and m*<n* by the usual ordering on N. We write m*�n* iff m*<n*
or m*=n*.

We use O , � , 6, \, _ as connectives and quantifiers in the informal meta-
language. For a map F : S � S on some set S, we define F 0(M)=M and F n+1(M)
=F(F n(M)).

2.2. Some Notation Concerning Normalization

In this subsection R denotes a notion of reduction on some set S, and �R

denotes the corresponding reduction relation.

2.1. Definition. A finite or infinite sequence

M0 �R M1 �R } } }

is called an R-reduction path from M0 . We say that M0 has this R-reduction path.
If the sequence is finite it ends in the last term Mn and has length n, and then we
write M0 ��n

R Mn . If the sequence is infinite, it has length �.

2.2. Definition.

�R=[M | M has an infinite R-reduction path]

nR=[M | M has an R-reduction path of length n]

NFR=[M | M has no R-reduction path of length 1 or more]
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SNR=[M | M has no infinite R-reduction path]

WNR=[M | M has a finite R-reduction path ending in an N # NFR],

where n # N in the notation nR .

2.3. Definition.

CRR=[M | M for all L, N, if L R�� M ��R N then L ��R K R�� N for a K]

FBR =[M | M �R N for only finitely many different N].

2.4. Terminology.

(i) M # NFR � M is an R-normal form;

(ii) M # SNR � M is R-strongly normalizing;

(iii) M # WNR � M is R-weakly normalizing;

(iv) M # CRR � M is R-Church�Rosser;

(v) M # FBR � M is R-finitely branching.

We often omit R, relying on the context to resolve the ambiguity. When R is a
notion of reduction on a set S, and M # FBR for all M # S, we simply write FBR .
Similarly with the other sets introduced above.

2.5. Lemma. Assume FBR . Then M # �R � \n # N: M # nR .

Proof. `` O '' is obvious; `` o '' is by Ko� nig's lemma. K

We shall denote by sR(M) # N* the length of a shortest finite reduction path from
M to normal form, if a finite reduction path to normal form exists; otherwise
sR(M)=�. Also, lR(M) # N* denotes the length of a longest finite reduction path
from M to normal form, if there is an upper bound on the length of these reduction
paths; otherwise lR(M)=�. In symbols:

2.6. Definition.

(i) sR(M)=min[n | _N # NFR : M ��n
R N].

(ii) lR(M)=max[n | _N # NFR : M ��n
R N].

2.7. Lemma. Assume CRR , FBR . Then

(i) M # WNR � sR(M)<�;

(ii) M # �R � lR(M)=�.

Proof. (i) `` O '': If M # WNR then M ��n
R N # NFR for some n # N, so

sR(M)<�.

`` o '': If sR(M)<� then M ��n
R N # NFR for some n # N, so M # WNR .

(ii) `` O '': Assume M # �R .

1. M � WNR . Then lR(M)=�.

2. M # WNR . Then M ��R N # NFR for some N. Since M # �R , for any
n # N there is K such that M ��n

R K. By CRR , K ��R N. Thus, for any m # N there
is n>m such that M ��n

R N # NFR . Then lR(M)=�.
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`` o '': Assume lR(M)=�. There are two ways this can happen.

1. M � WNR . Then M # �R .

2. For arbitrarily large n # N there is N # NF; with M ��n
R N. Then

M # �R by Lemma 2.5. K

2.8. Remark. Although seemingly trivial, the above proof uses the rules min <
=max <=max U=� (U unbounded) in subtle ways. For instance, as shown in
(ii) `` O '', if m # �R , then [n | _N # NFR : M ��n

R N] is either empty (if M � WNR)
or unbounded (if M # WNR). In either event, the two latter conventions imply
lR(M)=�.

2.9. Remark. The statement formulated in Lemma 2.7(ii) will be used at various
places later; an equivalent statement is M # SNR � lR(M)<�.

2.3. Classification of Strategies

In this subsection we introduce rigorously the classification of reduction strategies
that was mentioned informally in the Introduction. Throughout the subsection, R
denotes a notion of reduction on some set S, and �R denotes the corresponding
reduction relation.

2.10. Definition. (Barendregt et al. [2, 4]). (i) An R-reduction strategy is a
map F: S � S such that M �R F(M) if M � NFR , and F(M)=M otherwise.

(ii) Let F be an R-reduction strategy. Define

LF (M)=min[n | F n(M) # NFR].

The F-reduction path from M is the reduction path

M �R F(M) �R F 2(N) �R } } }

of length LF (M).

2.11. Remark. Reduction strategies are history insensitive; that is, given some
M # 4K , the act of a reduction strategy on M is independent on how we might have
arrived at M. For instance, ``for any M # 4K , reduce alternately the left-most and
right-most ;-redex, beginning with the left-most one'' does not specify a reduction
strategy; a reduction strategy receives a term as input and must return as output
another term that arises from the former by one reduction step.

Barendregt et al. [2, 4] use the terminology one-step reduction strategy for what
we call reduction strategy. In the following definition, (ii)�(iv) are also taken
from [2, 4], but what we call minimal is there called L-1-optimal.

2.12. Definition. Let F be an R-reduction strategy.

(i) F is R-maximal iff LF (M)=lR(M);

(ii) F is R-minimal iff LF (M)=sR(M);
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(iii) F is R-perpetual iff M # �R O LF (M)=�;

(iv) F is R-normalizing iff M # WNR O LF (M)<�.

This classification of strategies is ``global'' in that it is formulated in terms of the
whole reduction path of the strategy. The following formulations of minimality and
maximality are ``local'' in that they are formulated in terms of one step of the
strategy. The local classifications have the advantage that they give rise to analogous
classifications of redexes.

2.13. Lemma. Assume CRR , FBR . Let F be an R-reduction strategy.

(i) F is R-minimal iff for all M � NFR : sR(M)=sR(F(M))+1.

(ii) F is R-maximal iff for all M � NFR : lR(M)=lR(F(M))+1.

Proof. (i) `` O '': Assume that F is R-minimal. Then, for any M � NFR ,

sR(M)=LF (M)

=min[n | F n(M) # NFR]

=min[n | F n(F(M)) # NFR]+1

=LF (F(M))+1

=sR(F(M))+1.

`` o '': Assume for all M � NFR that sR(M)=sR(F(M))+1. If sR(M)=�,
then also LF (M)=�. Now assume that sR(M)<�. We show by induc-
tion on sR(M) that sR(M)=LF (M).

1. sR(M)=0. Then M # NFR , so LF (M)=0.

2. 0<sR(M)<�. Then M � NFR . By the induction hypothesis,

sR(M)=sR(F(M))+1

=LF (F(M))+1

=LF (M).

(ii) `` O '': Assume that F is maximal. Then, for any M � NFR ,

lR(M)=LF (M)

=LF (F(M))+1

=lR(F(M))+1

`` o '': Assume for all M � NFR that lR(M)=lR(F(M))+1. If LF (M)=�,
then, by Lemma 2.7, also lR(M)=�. Now assume that LF (M)<�. We
show lR(M)=LF (M) by induction on LF (M).
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1. LF (M)=0. Then M # NFR , so lR(M)=0.

2. 0<LF (M)<�. Then N � NFR . By the induction hypothesis,

LF (M)=LF (F(M))+1

=lR(F(M))+1

=lR(M)

Note that we need Lemma 2.7 in (ii), but not in (i). K

The following gives another local formulation of perpetuality and maximality,
due to Bergstra and Klop [7] and Regnier [60], respectively.

2.14. Lemma. Assume CRR , FBR . Let F be an R-reduction strategy.

(i) F is R-perpetual iff for all M: M # �R O F(M) # �R ;

(ii) F is R-maximal iff for all M and n�1: M # nR O F(M) # (n&1)R .

Proof. (i) `` O '': Assume M # �R . By assumption, LF (M)=�; i.e., the path
M �R F(M) �R F 2(M) �R } } } is infinite, so F(M) # �R .

`` o '': Assume M # �R . By induction on n show that F n(M) # �R , in
particular F n(M) � NFR , so LF (M)=�.

(ii) `` O '': Assume that M # nR . By CRR , n�lR(M)=LF (M), i.e., F n&1(M)
� NFR , so F(M) # (n&1)R .

`` o '': If LF (M)=�, then, by Lemma 2.7, lR(M)=�. Assume
LF (M)<�. We show LF (M)=lR(M) by induction on LF (M).

1. LF (M)=0. Then M # NFR , so lR(M)=0.

2. 0<LF (M)<�. Then M � NFR . By the induction hypothesis and
Lemma 2.13,

LF (M)=LF (F(M))+1

=lR(F(M))+1

=lR(M). K

2.15. Proposition. Assume CRR , FBR . Let F be an R-reduction strategy.

(i) If F is R-maximal then F is R-perpetual.

(ii) If F is R-minimal then F is R-normalizing.

Proof. (i) If M # �R then, by Lemma 2.7, LF (M)=lR(M)=�.

(ii) If M # WNR then, by Lemma 2.7, LF (M)=sR(M)<�. K

2.16. Remark. No other general containment exists between our four types of
strategies than the two mentioned above.

Perpetual reduction strategies are often useful to prove properties about infinite
reduction paths. In these cases we are usually not interested in how the strategy
behaves on strongly normalizing terms. This motivates the following.
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2.17. Definition. A partial, perpetual R-reduction strategy is a mapping
F: �R � �R such that for all M # �R : M �R F(M).

2.4. Classification of Redexes

In this subsection we introduce rigorously the classification of redexes from the
Introduction. Throughout the subsection, R denotes a notion of reduction on 4K ,
and �R denotes the corresponding reduction relation.

In the following definition, (i) is taken from [7].

2.18. Definition. Let 2 be an R-redex with contractum 2$.

(i) 2 is R-perpetual iff, for all C: C[2] # �R O C[2$] # �R ;

(ii) 2 is R-maximal iff, for all n�1 and C: C[2] # nR O C[2$] # (n&1)R .

2.19. Remark. As was the case for strategies, one can vary the formulation of
perpetual and maximal redexes; we shall not study such equivalent formulations.

2.20. Definition. Let 2 be an R-redex with contractum 2$. Then 2 is R-minimal
iff for all C: sR(C[2])=sR(C[2$])+1.

2.21. Discussion. A strategy that always contracts perpetual redexes is perpetual.
Similarly, strategies that always contract maximal and minimal redexes are maximal
and minimal, respectively. This is easy to verify simply by noting the analogy between
on the one hand the local formulations of perpetual, maximal, and minimal strategies
in Lemmas 2.13 and 2.14, and on the other hand the formulations of perpetual,
maximal, and minimal redexes in Definitions 2.18 and 2.20.

Perpetual strategies may also contract non-perpetual redexes. The reason is that
a strategy is confronted with a redex in a given context, and needs only to make
sure that contracting the redex in this particular context preserves the possibility,
if present, of an infinite reduction. A perpetual redex, on the other hand, must
preserve the existence of infinite reduction paths in all contexts. Similar remarks
apply to maximal and minimal strategies.

We do not know how to give a formulation of the notion of a normalizing redex
which satisfies the property that a strategy contracting only normalizing redexes is
itself normalizing. This problem stems from the fact that the above classifications of
redexes were derived from local formulations of the notions of a perpetual, maximal,
and minimal strategy, whereas we have no local formulation of the notion of a
normalizing strategy.

2.22. Proposition. Assume FBR . A redex which is R-maximal is also R-perpetual.

Proof. Given R-maximal redex 2 with contractum 2$ and a context C, assume
C[2] # �R . To prove C[2$] # �R it suffices by Lemma 2.5 to show that C[2$] #
nR for all n # N. Since C[2] # �R we have by Lemma 2.5 for all n # N, C[2] # nR

and thereby C[2] # (n+1)R . Thus C[2$] # nR for all n # N by maximality. K

2.23. Remark. The converse of the preceding proposition does not hold.
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3. PERPETUAL AND MAXIMAL STRATEGIES

In this section we study perpetual and maximal ;-reduction strategies. The first
subsection presents the fundamental lemma of perpetuality. The second subsection
presents two recent characterizations of strongly normalizing terms due to van
Raamsdonk and Severi and to Xi, respectively, and shows that the core of these
characterizations is made up of the fundamental lemma of perpetuality and a certain
lexicographic induction principle. The third subsection presents two (partial) perpetual
;-reduction strategies; the proof of perpetuality in each case uses the fundamental
lemma of perpetuality.

The fourth subsection presents the fundamental lemma of maximality, analogous
to the fundamental lemma of perpetuality. The fifth subsection presents an effective,
maximal ;-reduction strategy; the proof of maximality uses the fundamental lemma
of maximality. The sixth subsection shows that to compute an upper bound on the
length of a longest ;-reduction path for some term, one cannot do better, in a certain
sense, than try to reduce the term to normal form and count the number of steps
along the way.

The property CR; is used freely in this and the following sections.

3.1. The Fundamental Lemma of Perpetuality

The following lemma is used in many strong normalization proofs in the
literature��see Section 5. As will be seen below, the lemma is also useful to show
that reduction strategies are perpetual.

3.1. Lemma (Fundamental Lemma of Perpetuality). Assume that M1 # SN; if
x � FV(M0). For all n�1,

M0[x :=M1 ] M2 } } } Mn # SN; O (*x .M0) M1 } } } Mn # SN; .

Proof. Let M0[x :=M1 ] M2 } } } Mn # SN; . Then M0 , M2 , ..., Mn # SN; . If
x � FV(M0), then, by assumption, M1 # SN; . If x # FV(M0), then also M1 �
M0[x :=M1 ] M2 } } } Mn , so M1 # SN; . If (*x .M0) M1 } } } Mn # �; , then any
infinite reduction must therefore have the form

(*x .M0) M1 } } } Mn ��; (*x .M$0) M$1 } } } M$n

�; M$0[x :=M$1] M$2 } } } M$n

�; } } } .

Since

M ��; M$ 6 N ��; N$ O M[x :=N] ��; M$[x :=N$]
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there is an infinite reduction sequence

M0[x :=M1] M2 } } } Mn ��; M$0[x :=M$1] M$2 } } } M$n

�; } } }

contradicting M0[x :=M1] M2 } } } Mn # SN; . K

3.2. Corollary. If M1 # SN; , then for all n�1,

M0[x :=M1 ] M2 } } } Mn # SN; O (*x .M0) M1 } } } Mn # SN; .

Proof. By the fundamental lemma of perpetuality. K

3.3. Remark. The fundamental lemma of perpetuality gives a condition ensuring
that a contraction (*x .M0) M1 } } } Mn �; M0[x :=M1] M2 } } } Mn preserves the
possibility, if present, of an infinite reduction. The corollary requires a slightly
simpler condition.

3.2. Two Characterizations of Strongly Normalizing Terms

Next we introduce two characterizations of SN; due to van Raamsdonk and
Severi [59] (also [58, 65]) and to Xi [82], respectively.

3.4. Definition. Let X�4K be the smallest set closed under:

(i) M1 , ..., Mn # X O xM1 } } } Mn # X;

(ii) M # X O *x .M # X;

(iii) M1 # X 6 M0[x :=M1 ] M2 } } } Mn # X O (*x .M0) M1 } } } Mn # X.

3.5. Proposition. SN;=X.

Proof. We first prove M # SN; O M # X by induction on lexicographically
ordered pairs (l;(M), &M&).

1. M#xP1 } } } Pn . Then P1 , ..., Pn # SN; . By the induction hypothesis
P1 , ..., Pn # X, so M # X.

2. M#*x .P. Similar to Case 1.

3. M#(*x .P0) P1 } } } Pn . Then P1 # SN; , P0[x :=P1] P2 } } } Pn # SN; , so by
the induction hypothesis, P1 # X, P0[x :=P1] P2 } } } Pn # X, so M # X.

It remains to prove M # X O M # SN; . We proceed by induction on the derivation
of M # X.

1. M#xP1 } } } Pn , where P1 , ..., Pn # X. By the induction hypothesis P1 , ..., Pn

# SN; , so M # SN; .

2. M#*x .P. Similar to Case 1.

3. M#(*x .P0) P1 } } } Pn , where P1 # X, P0[x :=P1 ] P2 } } } Pn # X. By the
induction hypothesis, P1 # SN; , P0[x :=P1 ] P2 } } } Pn # SN; , so by the fundamen-
tal lemma of perpetuality, M # SN; . K
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3.6. Remark. Given an assertion of form M # SN; O P(M), we may prove
instead M # X O P(M) by induction on the derivation of M # X; this is very similar
to proving the original assertion by induction on lexicographically ordered pairs
(l;(M), &M&) . Given an assertion of form P(M) O M # SN; , we may prove instead
P(M) O M # X ; this is very similar to proving the original assertion and using
the fundamental lemma of perpetuality in the case M#(*x .P0) P1 } } } Pn . Thus, the
two main ingredients in the proof of Proposition 3.5��lexicographic induction on
(l;(M), &M&) and the fundamental lemma of perpetuality��are used implicitly
when one uses X to reason about SN; . Van Raamsdonk and Severi [59] prove
strong normalization results in *-calculus using this characterization��see Sections
5 and 6.

3.7. Definition. Define Fl : 4K � 4K as follows. If M # NF; then F l (M)=M;
otherwise,

Fl (xPQR)=xPFl (Q) R if P # NF; , Q � NF;

Fl (*x .P)=*x .Fl (P)

Fl ((*x .P) QR)=P[x :=Q] R.

Write M �l N if M � NF; and Fl (M)#N, and M # �l if LFl
(M)=�.

3.8. Definition. Define the relation i by:

i =c& _ �l ,

where c& denotes the smallest relation closed under the rules

*x .M c& M M1 M2 c& M1 M1M2 c& M2 .

Define

H(M0)=max[n | M0 i M1 i } } } i Mn] # N*.

3.9. Proposition. SN;=[M # 4K | H(M)<�].

Proof. We first prove M # SN; O H(M)<� by induction on lexicographically
ordered pairs (l;(M), &M&) . First note that if H(M0)=� then by Ko� nig's lemma
there is an infinite sequence M0 i M1 i } } } , and so there is an M1 with M0 i M1

and H(M1)=�.

1. M#x. Then H(M)=0<�.

2. M#PQ. Then P, Q # SN; . Moreover, if M �l M$ then M$ # SN; . By the
induction hypothesis H(P)<�, H(Q)<�, and H(M$)<�. Thus, for all N with
Mi N, H(N)<�. Thus, H(M)<�.

3. M#*x .P. Similar to Case 2.
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Next we prove H(M)<� O M # SN; by induction on H(M).

1. M#xP1 } } } Pn . Then H(P1)<�, ..., H(Pn)<�. By the induction hypo-
thesis P1 , ..., Pn # SN; , so M # SN; .

2. M#*x .P. Similar to Case 1.

3. M#(*x .P0) P1 } } } Pn . Then H(P0[x :=P1] P2 } } } Pn)<� and H(P1)<�.
By the induction hypothesis, P0[x :=P1] P2 } } } Pn # SN; and P1 # SN; . By the
fundamental lemma of perpetuality it then follows that M # SN; . K

3.10. Remark. The point in Remark 3.6 may be repeated with ``M # X '' replaced
by ``H(M)<�.'' Xi [82] proves strong normalization results in *-calculus using
this characterization��see Sections 5 and 6.

3.11. Remark. The above characterizations of SN; , especially the second one,
are similar to the successor relation, defined by Terlouw [75], who proves this
relation to be well-founded and uses it to show a connection between higher type
levels and transfinite recursion (see also [77]).

Whether one should prove results in *-calculus using the fundamental lemma of
perpetuality and lexicographic induction, or one should use one of the characteriza-
tions by van Raamsdonk and Severi and by Xi, seems to be a matter of taste.

3.3. Some Perpetual ;-Reduction Strategies

The following strategy is due to Bergstra and Klop [7].

3.12. Definition. Define F1 : �; � 4K by:

F1(xPQR) = xP F1(Q) R if P # SN; , Q � SN;

F1(*x .P) = *x .F1(P)

F1((*x .P) QR) = P[x :=Q] R if Q # SN;

F1((*x .P) QR) = (*x .P) F1(Q)R if Q � SN; .

3.13. Remark. For every M # �; either M#xP1 } } } Pn , where n�1 and Pi # �;

for some i, or M#*x .P, or M#(*x .P0) P1 } } } Pn , where n�1. It follows that F1

is defined on all elements of �; .

3.14. Proposition. F1 is a partial, perpetual ;-reduction strategy.

Proof. By induction on the size of M prove that M # �; O F1(M) # �; ; the
only non-trivial case is when M#(*x .P) QR and Q # SN; , in which case use
Corollary 3.2. K

The following strategy is a variant of a strategy in [67].
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3.15. Definition. Define F2 : �; � 4K by:

F2(xPQR) = xPF2(Q) R if P # SN; , Q � SN;

F2(*x .P) = *x .F2(P)

F2((*x .P) QR) = P[x :=Q] R if P # SN; , Q # SN;

F2((*x .P) QR) = (*x .F2(P)) QR if P � SN;

F2((*x .P) QR) = (*x .P) F2(Q) R if P # SN; , Q � SN;

3.16. Proposition. F2 is a partial, perpetual ;-reduction strategy.

Proof. By induction on the size of M prove that M # �; O F2(M) # �; ; the
only non-trivial case is when M#(*x .P) QR and P, Q # SN; , in which case use
Corollary 3.2. K

3.4. The Fundamental Lemma of Maximality

The following lemma is used in some of the strong normalization proofs in the
literature which, in addition to proving strong normalization, establish upper
bounds for the length of reduction paths��see Section 5.

3.17. Definition. Define for any variable x the map �x : 4K � [0, 1] by

�x (M)={1
0

if x � FV(M)
if x # FV(M).

3.18. Lemma (Fundamental Lemma of Maximality). For all n�1,

l;((*x .M0) M1 } } } Mn)=l;(M0[x :=M1] M2 } } } Mn)+ � x (M0) } l;(M1)+1.

Proof. If l;((*x .M0) M1 } } } Mn)=�, then by Lemma 2.7 and the fundamental
lemma of perpetuality, also l;(M0[x :=M1 ] M2 } } } Mn)=� or �x(M1) } l;(M1)=�.
Thus, in this case the equality holds.

If l;((*x .M0) M1M2 } } } Mn)<�, then M0 , ..., Mn # SN; by Lemma 2.7. We
consider two cases.

1. x � FV(M0). A longest reduction from (*x .M0) M1 } } } Mn has the form

(*x .M0) M1 } } } Mn ��m
; (*x .M$0) M$1 } } } M$n

�; M$0M$2 } } } M$n

��k
; K # NF; ,

where M0 ��m0
; M$0 , ..., Mn ��mn

; M$n , and where m0+ } } } +mn=m, l;(M1)=m1 ,
and l;((*x .M0) M1 } } } Mn)=m+k+1. Then
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(*x .M0) M1 } } } Mn ��m1
; (*x .M0) M$1 M2 } } } Mn

�; M0M2 } } } Mn

��m&m1
; M$0M$2 } } } M$n

��k
; K # NF;

is another longest reduction path from (*x .M0) M1 } } } Mn . Thus, M0 M2 } } } Mn

��m&m1+k
; K is also a longest reduction path from M0M2 } } } Mn , i.e., l;(M0M2 } } } Mn)

=m&m1+k. Thus,

l;((*x .M0) M1 } } } Mn) = m+k+1

= (m&m1+k)+m1+1

= l;(M0M2 } } } Mn)+l;(M1)+1.

2. x # FV(M0). A longest reduction from (*x .M0) M1 } } } Mn has the form

(*x .M0) M1 } } } Mn ��m
; (*x .M$0) M$1 } } } M$n

�; M$0[x :=M$1] M$2 } } } M$n
��k

; K # NF; ,

where M0 ��m0
; M$0 , ..., Mn ��mn

; M$n , and where m0+ } } } +mn=m and l;((*x .M0)
M1 } } } Mn)=m+k+1. Since

M ��m
; M$ 6 N ��n

; N$ O M[x :=N] ��m+n } &M&x
; M$[x :=N$]

also

(*x .M0) M1 } } } Mn �; M0[x :=M1] M2 } } } Mn

��m0+m1 } &M0&x
; M$0[x :=M$1] M2 } } } Mn

��m2+ } } } +mn
; M$0[x :=M$1] M$2 } } } M$n

��k
; K # NF; .

Since &M0&x�1, m0+m1 } &M0 &x+m2 } } } +mn+k+1�m+k+1, so this is, in
fact, another longest reduction from (*x .M0) M1 } } } Mn , so l;(M0[x :=M1] M2

} } } Mn)=m0+m1 } &M0 &x+m2 } } } +mn+k. Thus,

l;((*x .M0) M1 } } } Mn) = m0+m1+ } } } +mn+k+1

� m0+m1 } &M0&x+m2+ } } } +mn+k+1

= l;(M0[x :=M1] M2 } } } Mn)+1

The converse inequality is trivial. K
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3.19. Corollary. For all n�1,

l;((*x .M0) M1 } } } Mn)�l;(M0[x :=M1] M2 } } } Mn)+l;(M1)+1.

Proof. By the fundamental lemma of maximality. K

3.20. Remark. The fundamental lemma of perpetuality and its corollary are
special cases of the fundamental lemma of maximality and its corollary, respectively.

3.5. An Effective Maximal Strategy

The following strategy is due to Barendregt et al. [2, 4].

3.21. Definition. Define F� : 4K � 4K as follows. If M # NF; then F�(M)=M;
otherwise

F�(xPQR) = xPF�(Q) R if P # NF; , Q � NF;

F�(*x .P) = *x .F�(P)

F�((*x .P) QR) = P[x :=Q] R if x # FV(P) or Q # NF;

F�((*x .P) QR) = (*x .P) F�(Q)R if x � FV(P) and Q � NF; .

The following theorem has been folklore for some time. De Vrijer [79, 81] uses
F� to calculate the maximal length of a reduction path of a simply typed *-term.
In fact, the proof of [79, Theorem 4.9] shows that F� is maximal��see also [79,
2.3.3 and 4.9.2], and the discussion of related work in Section 5. Later, the theorem
was proved independently by Regnier [60], Khasidashvili [34], van Raamsdonk
and Severi [59], and So% rensen [66]. The proof below is a simplification of the two
latter proofs.

3.22. Theorem. F� is an effective, maximal ;-reduction strategy.

Proof. It is clear that F� is an effective ;-reduction strategy. To prove maxi-
mality we use the formulation from Lemma 2.14. Given M # 4K and m�1, we must
show that M # m; O F�(M) # (m&1); . We proceed by induction on M.

1. M#xPQR, where P # NF; , Q � NF; . Let R=R1 , ..., Rn . Then Q # m0
; ,

R1 # m1
; , ..., Rn # mn

; , where m=m0+m1+ } } } +mn, and m0�1. By the induction
hypothesis, F�(Q) # (m0&1); . Then F�(M)=xPF�(Q) R # (m&1); .

2. M#*x .P. Similar to Case 1.

3. M#(*x .P) QR, where x # FV(P) or Q # NF; . By the fundamental lemma
of maximality,

l;(P[x :=Q] R)+1=l;(M)�m.

Therefore, l;(P[x :=Q] R)�m&1, i.e., F�(M) # (m&1); .
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4. M#(*x .P) QR, where x � FV(P) and Q � NF; . By the fundamental
lemma of maximality,

l;(PR)+l;(Q)+1=l;(M)�m.

We consider two cases.

4.1. Q # �; . Then, for any n�1, Q # n; . By the induction hypothesis, for
any n�1, F�(Q) # (n&1); . In particular, F�(Q) # (m&1); , and then F�(M)
# (m&1); .

4.2. Q � �; . Then l;(Q)<� by Lemma 2.7. By the induction hypothesis,
l;(F�(Q))�l;(Q)&1. Then

l;(F�(M)) = l;((*x .P) F�(Q)R)

= l;(PR)+l;(F�(Q))+1

� l;(PR)+l;(Q)

= l;(M)&1

� m&1.

Thus, F�(M) # (m&1); . K

3.23. Corollary (Barendregt et al. [2, 4]). F� is perpetual.

3.24. Remark. As pointed out by van Raamsdonk and Severi [59], the proof in
[2, 4] of this corollary can be simplified by using the fundamental lemma of
perpetuality or one of the related characterizations.

Khasidashvili [34] studies so-called limit reduction strategies in orthogonal
expression reduction systems (of which ;-reduction on 4K is a special case), and
shows that any limit reduction strategy is maximal and that F� is a limit reduction
strategy in *-calculus. So% rensen [66] presents a ;'-reduction strategy H� and
shows that it is ;'-maximal and thereby ;'-perpetual.

3.6. On Upper Bounds for Lengths of Reductions

One can effectively compute upper bounds for the length of longest developments
and longest reduction paths in several typed *-calculi (see Sections 5 and 6). This
raises the question whether there is some formula for upper bounds for lengths of
reduction paths in type-free *-calculus. In this subsection we give a positive and a
negative answer to this question.

The following definition gives the most obvious way of counting the number of
steps in a longest reduction to normal form.
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3.25. Definition. Define h: SN; � N by

h(xP1 } } } Pn) = h(P1)+ } } } +h(Pn)

h(*x .P) = h(P)
h((*x .P) QR) = h(P[x :=Q] R)+1 if x # FV(P) or Q # NF;

h((*x .P) QR) = h(PR)+h(Q)+1 if x � FV(P) and Q � NF; .

3.26. Proposition. For any M # SN; : h(M)=l;(M).

Proof. By induction on l;(M) using the fundamental lemma of maximality. K

The map h is defined only for elements in SN; . It is natural to ask whether there
is a ``simple formula'' f such that f (M) is the length of a longest ;-reduction from
M when M # SN; , and f (M) is some unpredictable number when M # �; . One
could hope that the freedom to return arbitrary values on terms with infinite reduc-
tions could give a simple formula on strongly normalizing terms. A reasonable
formalization of ``simple formula'' is the notion of a primitive recursive function.
The following proposition, which answers a more general question, shows that our
hopes are in vain.

3.27. Proposition. There is no total effective l: 4K � N such that, for all M # SN; ,

l(M)�l;(M).

Proof. Suppose that such an l existed and consider c: 4K � N:

c(M)={0
1

if F l(M)
� (M) # NF;

if F l(M)
� (M) � NF; .

Here c is total and effective. Consider the following two cases.

1. c(M)=0. Then F l(M)
� (M) # NF; , i.e., LF�

(M)�l(M)<�, so M # SN; by
perpetuality of F� .

2. c(M)=1. Then F l(M)
� (M) � NF; . By maximality of F� it follows that l;(M)

=LF�
(M)>l(M). By definition of l, M � SN; .

Thus, c gives a procedure to decide for any M whether M # SN; , which is known
to be impossible, a contradiction. K

4. THE 0-THEOREM

In the type-free *-calculus some terms have an infinite reduction path. The
simplest example is the term 0#| |, where |#*x .x x. It has an infinite reduction
path where the term reduces to itself in every step:

0 �; 0 �; } } } .
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There are terms that do have an infinite reduction path, but where the path does
not have this simple form.2 For instance, the term 9#� �, where �#*x .x x y, has
the infinite reduction path

9 �; 9 y �; 9 y y �; } } } .

In every step the redex 9 appears as a subterm, and the context of the redex is
extended with an application vy. As a more complicated example consider the term
" y ", where "#*a .*x .x(a y)x. It has the infinite reduction path

"y" �; (*x .x( y y)x)" �; "( y y)" �; (*x .x( yyy)x)" �; "( yyy)" �; } } } .

This path is similar to the preceding one, but the extra application vy is added
inside the redex.

Although these three reduction paths have their differences they have a common
property: in all three paths every term has 0 as a substring. It is natural to ask
whether this property is shared by all infinite reduction paths. In this section we
present the 0-theorem, due to So% rensen [67], which states that this is indeed the
case. The proof exploits perpetuality of the strategy F2 from Section 3.3.

The first subsection introduces the set of all terms that do not have 0 as sub-
string, and the second subsection shows that the elements of this set are strongly
normalizing. The third subsection studies applications.

4.1. The Set 40

We first formalize what it means that one term is a substring of another.

4.1. Definition. Define the relation \ (``substring'') on 4K by

x \x

P \Q O P \*x .Q if x � FV(P)

P \Q O P \Q Z

P \Q O P \Z Q

P \Q O *x .P \*x .Q

P1 \Q1 6 P2 \Q2 O P1P2 \Q1Q2 .

Example 4.2. (i) | \*x .x x Z;

(ii) 0 \(*x .x x Z)(* .x x Z);

(iii) | \*a .*x .x Z x;

(iv) 0 \(*a .*x .x Z x) Z(*a .*x .x Z x);

(v) | \*x .x(*y .x);

(vi) *x .x y \3 (*x .x) y;
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(vii) *x .y \3 (*x .x) y;

(viii) *x .x y \3 (*x .x) y;

(ix) | \3 *x .x(*x .x);

(x) 0 \3 *x . (x x)|.

It is convenient to introduce an inductively defined set 40 of all terms that do
not contain 0 as a substring, and show that all elements of this set are strongly
normalizing. The following auxiliary set 4| , studied by Komori [40], Hindley
[22], and Jacobs [28], is the set of all terms that do not contain | as a substring.

4.3. Definition. (i) Define 4| by

x # 4|

P # 4| , &P&x�1 O *x .P # 4|

P, Q # 4| O P Q # 4| .

(ii) Define, for M # 4K , &M&| # N by

&x&| = 0

&*x .P&| = {&P&|

1+&P&|

if &P&x�1
if &P&x>1

&P Q&| = &P&|+&Q&| .

(iii) An abstraction *x .P is duplicating if &P&x>1.

4.4. Remark. The following equivalences are easily established:

&M&|=0 � M # 4| � | \3 M.

Each of these equivalent conditions state that M does not contain a subterm which
is a duplicating abstraction.

One easily shows that 4| is closed under reduction. The intuition is that if
M # 4| and N � 4| , then M has no duplicating abstractions while N has at least
one. Thus, the reduction M �; N must duplicate a variable in the body of some
abstraction, but this would require a duplicating abstraction in M. It is also easy
to prove that reduction in 4| decreases term size, since every step removes an
application and an abstraction. With the preceding property this implies that every
term in 4| is strongly normalizing.

4.5. Definition. Define the set 40 as

(1) x # 40

(2) M # 40 O *x .M # 40

(3) M # 40 , N # 4| O M N # 40

(4) M # 4| , N # 40 O M N # 40 .
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4.6. Remark. It is easy to show 4| �40 and the following equivalence:

M # 40 � 0 \3 M.

Informally, these two equivalent conditions state that M does not contain two
disjoint subterms that are both duplicating abstractions.

Next we show that 40 is closed under reduction. The intuition is as follows. If
M # 40 and N � 40 , then M has no disjoint duplicating abstractions, while N has
at least two. If M �; N then non-disjoint duplicating abstractions in M are also
non-disjoint in N. Therefore, the two disjoint duplicating abstractions in N must
arise from M either by duplication into disjoint positions of a single duplicating
abstraction or by duplication of a variable in the body of a non-duplicating abstrac-
tion which is disjoint with a duplicating abstraction. Both cases are impossible
because they entail that M has two disjoint duplicating abstractions.

4.7. Lemma. M # 40 6 M �; N O N # 40 .

Proof. First prove by induction on the derivation of M # 4| that

M # 4| 6 N # 4| O M[x :=N] # 4| (1)

M # 4| 6 &M&x�1 6 N # 40 O M[x :=N] # 40 . (2)

Show by induction on the derivation of M # 40 , using (1) and 4|�40 ,

M # 40 , N # 4| O M[x:=N] # 40 . (4.3)

Now proceed by induction on the derivation of M �; N using (2) and (3). K

4.2. Strong Normalization of Terms in 40

As for 4| , the idea for proving that all terms in 40 are strongly normalizing is
to find a decreasing measure, but term size &v& does not work. Instead we consider
the lexicographically ordered measure (&v&| , &v&).

Suppose M �; N by contraction of the redex 2#(*x .P)Q. If *x .P is non-
duplicating, contraction of 2 creates no new duplicating abstractions. Moreover,
the size of N is strictly smaller than the size of M, so the reduction step decreases
the measure.

If *x .P is duplicating, the reduction step removes one duplicating abstraction,
and any new duplicating abstractions have to come either from proliferation of
duplicating abstractions in Q or from duplication of variables in the body of some
abstraction. The first case is impossible, since it implies that M has two disjoint
duplicating abstractions. In the second case, new duplicating abstractions may be
created, but they must have their * to the left of 2.

Recall that a standard reduction path M0 �; M1 �; } } } is such that whenever a
redex 2 is contracted in Mi all abstractions to the left of 2 are marked, and a redex
with marked abstraction is not allowed to be contracted in Mj for any j>i. If a
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term has an infinite reduction path, then it has a standard infinite reduction
path [7].

The idea then is as follows. Suppose that some M # 40 has an infinite reduction
path and hence a standard infinite reduction path. Then the measure (&v&, &v&)
is decreasing on this reduction path if we insist that &v&| count only non-marked
abstractions, and thus we arrive at a contradiction.

To formalize this reasoning we use the strategy F2 from Section 3.3, which com-
putes standard infinite reductions. The following map V isolates the part of a term
in which F2 contracts a redex. This part of the term contains all the abstractions
to be counted by our measure.

4.8. Definition. Define V: �; � 4K by

V(x P Q R) = V(Q) if P # SN; , Q � SN;

V(*x .P) = V(P)

V((*x .P) Q R) = (*x .P) QR if P # SN; , Q # SN;

V((*x .P) Q R) = V(P) if P � SN;

V((*x .P) Q R) = V(Q) if P # SN; , Q � SN; .

4.9. Lemma. For all M # �; : V(M)�M.

Proof. By induction on M. K

4.10. Lemma. For all M # �; ,

V(M)=(*y .K ) L N

for some K, L, N # 4K with

V(F2(M))�K[x :=L] N.

Proof. Induction on M using perpetuality of F2 .

1. M#x P Q R, where P # SN; , Q � SN; . By the induction hypothesis,

V(M)=V(Q)=(*y .K) L N

for some K, L, N. By the induction hypothesis and perpetuality of F2 ,

V(F2(M))=V(x P F2(Q) R)=V(F2(Q))�K[ y :=L] N.

2. M#*x .P. Similar to Case 1.

3. M#(*y .P) Q R, where P # SN; and Q # SN; . Then

V(M)=(*x .P) Q R
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and by Lemma 4.9,

V(F2(M))=V(P[x :=Q] R)�P[x :=Q] R.

The remaining two cases are similar to Case 1. K

4.11. Lemma. &P[x :=Q]&|=&P&|+&P&x } &Q&| .

Proof. By induction on P. K

4.12. Proposition. M # 40 O M # SN; .

Proof. Suppose that M # 40 and M # �; . By perpetuality of F2 , there is an
infinite reduction path

M0 �; M1 �; } } }

such that for all i, F2(Mi)=Mi+1 and, by Lemma 4.7, M i # 40 . We now claim that
for all i

(&V(Mi )&| , &V(Mi )&) >(&V(Mi+1)&| , &V(M i+1)&). (4)

This implies that we have an infinite sequence

(&V(M0)&| , &V(M0)&)>(&V(M1)&| , &V(M1)&)> } } }

which is clearly a contradiction. Thus M # SN; , provided that we can prove (4).
To prove this, first note that by Lemmas 4.4 and 4.9,

V(Mi)=(*y .K) L N�Mi (5)

V(Mi+1)�K[ y :=L] N (6)

for some K, L, N. Since (*y .K) L�Mi # 40 , also (*y .K) L # 40 . We now prove (4)
splitting into the following two cases. Let N=N1 , ..., Nn .

1. &K&y>1. Then *y .K # 40"4| , so L # 4| , and hence &L&|=0. By (6),
Lemma 4.11, and (5),

&V(Mi+1)&|�&K[ y :=L] N&|

=&K&+&K&y } &L&|+&N1&|+ } } } +&Nn&|

=&K&+&N1 &|+ } } } +&Nn &|

<&*y .K&|+&N1&|+ } } } +&Nn&|

=&(*y .K) L N&|

=&V(M i )&| .
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2. &K&y�1. Then by (6), Lemma 4.11, and (5),

&V(Mi+1)&|�&K[ y :=L] N&|

=&K&|+&K&y } &L&|+&N1&|+ } } } +&Nn&|

�&K&|+&L&|+&N1&|+ } } } +&Nn&|

=&(*y .K ) L N&|

=&V(Mi )&| .

Moreover, by (6) and (5),

&V(Mi+1)&�&K[ y :=L] N&

=&K&+&K&y } (&L&&1)+&N1 &+ } } } +&Nn &+n

<&K&+&L&+2+&N1&+ } } } +&Nn &+n

=&(*y .K) L N&

=&V(Mi )&

as required. K

We finally have the 0-theorem, due to So% rensen [67]:

4.13. Theorem. If M # �; then 0 \M.

Proof. By Remark 4.6 and Proposition 4.12. K

4.14. Remark. The term M#(*x .y x x)(*x .y x x) shows that 0 \M does not
generally imply M # �; . This should come as no surprise: if 0 \M had been
equivalent to M # �; , we would have had a simple syntactic (in particular effective)
algorithm for deciding whether M # SN; , which is an undecidable problem.

Following Gramlich [20] (see also Plaisted [54]) we call an infinite reduction
path constricting if it has the form

C1[M1] �; C1[C2[M2]] �; C1[C2[C3[M3]]] } } } ,

where Mi is the minimal superterm with an infinite reduction path of the redex
contracted in the step C1[ } } } C i[Mi] } } } ] �; C1[ } } } Ci[Ci+1[Mi+1]] } } } ].

Van Oostrom [50] sketches a variant of the above proof which, instead of using
the perpetual strategy F2 to obtain standard infinite reductions, uses a so-called
zoom-in strategy (see Mellie� s [45]). This is a constricting strategy which in each
term contracts the left-most redex of a minimal subterm with an infinite reduction
path. The proof presented above is very similar, since F2 is also constricting��indeed,
Lemma 4.10 expresses a very similar property. However, in (*x .x) z 0, F2 contracts
the left-most redex, so F2 is not a zoom-in strategy in the above sense. The follow-
ing variation F3 , studied by So% rensen [67], is a zoom-in strategy:
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4.15. Definition. Define F3 : �; � 4K by

F3(x P Q R) = x P F3(Q) R if P # SN; , Q � SN;

F3(*x .P) = *x .F3(P)

F3((*x .P) Q R) = P[x :=Q] R if P, Q, R # SN;

F3((*x .P) Q R) = (*x .F3(P)) Q R if P � SN;

F3((*x .P) R Q S) = (*x .P) R F3(Q) S if P, R # SN; , Q � SN;

Khasidashvili and Ogawa [37] study strategies which in a term contract a so-
called external redex of a minimal subterm of M with an infinite reduction path; in
particular, in *-terms the left-most redex of a minimal subterm with an infinite
reduction is external. They show that any such strategy is perpetual. They also
show that the strategy which in each step contracts the left-most among all such
redexes is constricting.

Xi [84] calls a reduction path M0 �; M1 �; } } } canonical if whenever a redex 2
is contracted in Mi all redexes containing 2 as a subterm have their abstractions
marked, and a redex with marked abstraction is not allowed to be contracted in Mj

for any j>i. Any standard reduction is also canonical, but the converse is not true,
since a canonical path may contract disjoint redexes from right to left. However,
whenever a term M has a canonical reduction which is infinite (or ends in N) then
M also has a standard reduction which is infinite (or ends in N). Xi uses canonical
reductions to give proofs of the finite developments theorem, the standardization
theorem, the conservation theorem for 4I , and the normalization theorem.

Bo� hm et al. [9] and Bo� hm and Dezani�Ciancaglini [10] give, for any ;-normal
form M, a constructive definition of a set of ;-normal forms N for which M N has
a ;-normal form. Since any *-term can be transformed to an equivalent term which
is an applicative combination of ;-normal forms, this can be used to generally
approximate whether a term has a ;-normal form or not. On the other hand, 40

directly characterizes a class of terms with arbitrary nesting of *'s and application
which are all ;-strongly normalizing.

4.3. Applications

An S-term in combinatory logic is a term built of only the S-combinator and
application, e.g., S(SS) SSSS and SSS(SS) SS. Barendregt et al. [4] show that
these two S-terms have infinite reduction paths. Duboue� has verified by computer
that the remaining 130 other S-terms with 7 or fewer occurrences of S are strongly
normalizing. The following shows that only one among the 2622 closed *-terms of
size 9 or less has an infinite reduction path.3
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3 T. Mogensen gives a formula f (n, m) for the number of *-terms of size n�1 with at most m�0 free
variables:

f (1, m) = m

f (n+1, m) = f (n, m+1)+ :

n&1

i=1

f (i, m) } f (n&i, m)



4.16. Corollary. Let M # �; . Then

(i) &0&�&M&.

(ii) &M&�&0& O M#0.

Proof. (i) By the 0-theorem, since O \M clearly implies &O&�&M&.

(ii) By the 0-theorem and (i) using the fact that O \M and &M&�&O&
implies M#O. K

The next application gives a technique to reduce proofs that some term is
strongly normalizing to proofs that terms are weakly normalizing. The latter is
usually easier.

4.17. Corollary. If N # WN; for all N \M, then M # SN; .

Proof. If M # �; then, by the 0-theorem, 0 \M, and 0 � WN; . K

The following shows how this corollary may be used to prove strong normaliza-
tion of a set of terms.

4.18. Proposition. Let S�4K and let P be a relation on 4K with

(i) if N # WN; for all NPM, then M # SN; ;

(ii) if M # S and NPM then N # S.

Then S�WN; O S�SN; .

Proof. Assume that P satisfies (i)�(ii) and assume S�WN; . Given an M # S.
By (ii), N # S for all NPM. Then, by assumption, N # WN; for all NPM. Then
by (i), M # SN; , as required. K

4.19. Remark. The previous result has motivated the search for relations satisfy-
ing (i)�(ii) for various sets S, notably the set 4� of terms typable in simply typed
*-calculus a� la Curry (see Section 5). With such a relation at hand, one can show
that all elements of 4� are strongly normalizing by demonstrating that they are all
weakly normalizing.

As Corollary 4.17 shows, \ satisfies (i). In fact, the proof of the corollary shows
that any relation P satisfying M # �; O 0PM also satisfies (i). However, \
does not satisfy (ii) for 4�. For instance, *x .x(x *y .y) has type ((: � :) � (: � :))
� (: � :) in simply typed *-calculus, but *x . x \*x .x(x *y .y) has no type.

So% rensen [69] and Xi [83, 86] study relations P satisfying (i) and (ii) for 4�

which are defined by translations, i.e., MPN iff t(N)=M for certain translations
t: 4K � 4I .

4.20. Problem. Hindley [22] shows that M # 4| O M # 4� ; i.e., every M # 4|

can be typed in simply typed *-calculus a� la Curry. Can every M in 40 be typed
in second-order typed *-calculus a� la Curry?
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5. STRONG NORMALIZATION IN TYPE THEORY

As mentioned in Section 3, many strong normalization proofs in the literature
make use of the fundamental lemma of perpetuality or the fundamental lemma of
maximality (see also Remarks 3.6 and 3.10). In this section we study such proofs in
more detail in the context of the simply typed *-calculus.

The first subsection presents the version of simply typed *-calculus with which we
shall be concerned. The second subsection presents a new proof of strong normaliza-
tion of simply typed *-calculus due to van Raamsdonk and Severi [59]. While their
original proof uses their characterization of SN; , the present version uses the
fundamental lemma of perpetuality. Other proofs are reviewed in less detail.

5.1. Simply Typed *-Calculus

5.1. Definition. Let T0 be a set of constants, called base types. The set T of
simple types is the smallest set such that

(i) T0 �T ;

(ii) A, B # T O A � B # T.

For A # T, &A& denotes the number of arrows in A.

We use association to the right, so A � B � C means A � (B � C).

5.2. Convention. It is convenient to assume that the set V (the set of variables
of 4K) is divided into mutually exclusive and together exhaustive non-empty classes
VA , where A # T, i.e.,

V= .
A # T

VA 6 A{B O VA{VB 6 VA{<.

5.3. Definition. For every A # T, the set of simply typed *-terms of type A,
written 4�

A , is the smallest set such that

(i) x # VA O x # 4�
A ;

(ii) x # VA 6 M # 4�
B O *x .M # 4�

A � B ;

(iii) M # 4�
B � A 6 N # 4�

B O M N # 4�
A .

The set of simply typed *-terms, written 4�, is defined by

4�= .
A # T

4�
A .

The following two properties, known as the substitution lemma and the unique-
ness of types property, will be used in the next subsection.

5.4. Lemma. (i) P # 4�
B 6 x # 4�

A 6 N # 4�
A O P[x :=N] # 4�

B ;

(ii) P # 4�
A 6 P # 4�

B O A=B.

Proof. (i)�(ii): by induction on the derivation of P # 4�
B . K
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5.2. Strong Normalization of Simply Typed *-Calculus

An attempt to prove directly, by induction on the derivation of M # 4�
A , that

M # SN; breaks down in the application case, where P # SN; and Q # SN; does not
imply P Q # SN; . One way of overcoming this difficulty is to introduce the set SN�

A

of strongly normalizing terms of type A and show that M # 4�
A implies M # SN�

A .
The crucial step then is to show for any M # SN�

A � B and N # SN�
A that

M N # SN�
B . This idea is carried out below, following [59].

5.5. Definition. For A # T define SN�
A =SN; & 4�

A , and

SN�= .
A # T

SN�
A .

5.6. Remark. For every type A: < / VA�SN�
A �4�

A .

5.7. Definition. For X, Y�4K define

X � Y=[M # 4K | \N # X : M N # Y].

5.8. Lemma. 4�
A � B=4�

A � 4�
B .

Proof. Let M # 4�
A � B . For all N # 4�

A , M N # 4�
B , so M # 4�

A � 4�
B . Hence

4�
A � B�4�

A � 4�
B . Conversely, let M # 4�

A � 4�
B . Pick some N # 4�

A . Then
M N # 4�

B . Therefore, M # 4�
C � B for some C # T with N # 4�

C . By uniqueness of
types, A=C, so M # 4�

A � B . Hence 4�
A � 4�

B �4�
A � B . K

5.9. Lemma. SN�
A � B$SN�

A � SN�
B .

Proof. Let M # SN�
A � SN�

B . Pick some N # SN�
A . Then M N # SN�

B . In
particular, M N # SN; , and then M # SN; . Moreover, since M N # 4�

B and N # 4�
A ,

also M # 4�
A � B by uniqueness of types. In conclusion, M # SN�

A � B . K

The converse of the preceding lemma is more difficult to prove. We need the
following lemma.

5.10. Lemma. Let P # SN�
B , x # 4�

A1 � } } } � Am
, and N # SN�

A1
� } } } � SN�

Am
,

where Am is a base type. Then P[x :=N] # SN�
B .

Proof. We use the abbreviation L*#L[x :=N] for any L # 4�. By Lemma 5.9,
N # SN�

A1 � } } } � Am
. By the substitution lemma, P* # 4�

B . It remains to show P* # SN; .
We show this by induction on lexicographically ordered pairs (l;(P), &P&).

1. P#y P1 } } } Pn . Then P1 , ..., Pn # SN; . Also, y # 4�
B1 � } } } � Bn � B and P1 #

4�
B1

, ..., Pn # 4�
Bn

, i.e., P1 # SN�
B1

, ..., Pn # SN�
Bn

. By the induction hypothesis,
P1*, ..., Pn* # SN; . Consider two subcases.

1.1. y�x. Then P*#y P1* } } } Pn* # SN; .

1.2. y#x. Then B1=A1 , ..., Bn=An and B=An+1 � } } } � Am . By Lemma
5.9, SN�

An+1
� } } } � SN�

Am
�SN�

B . Therefore, SN�
A1

� } } } � SN�
Am

�SN�
A1

� } } } �
SN�

An
� SN�

B . So N # SN�
A1

� } } } � SN�
An

� SN�
B . By the substitution lemma,
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P1* # 4�
B1

, ..., Pn* # 4�
Bn

, i.e., P1* # SN�
A1

, ..., Pn* # SN�
An

. Therefore, P*#NP1* } } } Pn*
# SN�

B .

2. P#*yP0 . Then P0 # SN; . Also, B=B1 � B0 and P0 # 4�
B0

, i.e., P0 # SN�
B0

.
By the induction hypothesis, P0* # SN; . Therefore also P*#*y .P0* # SN; .

3. P#(*y .P0) P1P2 } } } Pn . Then P0[ y :=P1] P2 } } } Pn # SN; , P1 # SN; .
Also, P1 # 4�

B1
, ..., Pn # 4�

Bn
, y # 4�

B1
, and P0 # 4�

B2 � } } } � Bn � B . By the induction
hypothesis,

(P0[ y :=P1 ] P2 } } } Pn)*#P0*[ y :=P1*] P2* } } } Pn* # SN;

and P1* # SN; . Then P*#(*y .P0*) P1*P2* } } } Pn* # SN; , by the fundamental lemma
of perpetuality. K

The following crucial lemma states that M # SN�
A � B and N # SN�

A implies
M N # SN�

B .

5.11. Lemma. SN�
A � B�SN�

A � SN�
B .

Proof. We prove that M # SN�
A � B implies M # SN�

A � SN�
B . The proof is by

induction on lexicographically ordered pairs (&A&, l;(M)). For each N # SN�
A we

must prove that M N # SN�
B . Since obviously M N # 4�

B , it suffices to show in each
case that M N # SN; .

1. M#y P1 } } } Pn . Then P1 , ..., Pn # SN; . Since N # SN; , it follows that
M N#y P1 } } } PnN # SN; .

2. M#*x .P. Then P # SN; . Since A=A1 � } } } � Am for some base type
Am , the induction hypothesis yields N # SN�

A1
� } } } � SN�

Am
. Since P # SN�

B ,
Lemma 5.10 implies that P[x :=N] # SN; . Then M N#(*x .P) N # SN; by the
fundamental lemma of perpetuality.

3. M#(*y .P0) P1P2 } } } Pn . Then P0[ y :=P1P2 } } } Pn # SN; and also P1 # SN; .
Since P0[ y :=P1] P2 } } } Pn # 4�

A � B , the induction hypothesis yields P0[ y :=P1]
P2 } } } PnN # SN; . Since P1 # SN; , also M N#(*y .P0) P1P2 } } } PnN # SN; by the
fundamental lemma of perpetuality. K

5.12. Theorem. Let A be a simple type. If M # 4�
A then M # SN; .

Proof. By induction on the derivation of M # 4�
A .

1. M#x # VA . Then x # SN; .

2. M=*x .P, where A=A0 � A1 and P # 4�
A1

. By the induction hypothesis,
P # SN; , and therefore *x .P # SN; .

3. M#P Q, where P # 4�
B � A and Q # 4�

B . By the induction hypothesis,
P # SN�

B � A and Q # SN�
B . By Lemma 5.11, P # SN�

B � SN�
A . Then P Q #

SN�
A �SN; . K

5.13. Remark. A similar technique for handling the difficult application case is
due to Xi [82].
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There are many other proofs of strong normalization of simply typed *-calculus.
The following is an incomplete list. Tait [73] proves (strong) normalization of
Go� del's system T, which extends simply typed *-calculus with primitive recursion.
The proof makes use of the notion of (strong) computability and is quite short but
complex. The proof uses the fundamental lemma of perpetuality to show that the
set of (strongly) computable terms is closed under certain expansions��see, e.g.,
[23, Appendix 2, Lemma 2].

Girard [19] introduces the notion of candidate of reducibility. He extends Tait's
method in order to prove strong normalization of second- and higher-order *-calculus.
In the version of this proof technique expressed in terms of saturated sets, the
fundamental lemma of perpetuality is used to show that SN; is a saturated set��see,
e.g., [3, Lemma 4.3.3].

Terlouw, [76] interprets Tait's proof of strong normalization of simply typed
*-calculus in a general model-theoretic framework. This yields a proof of strong
normalization of the Calculus of Constructions and other advanced type systems.

Gandy [17] interprets a term in a typed *-calculus by a strict monotonic func-
tional whose value is an upper bound for the length of reductions from the term
��the form of the upper bound is elaborated by Schwichtenberg [62]. Gandy's
technique uses implicitly the weak form of the fundamental lemma of maximality
(Corollary 3.19). The technique is generalized to higher-order rewrite systems by
van de Pol [55] and applied to a variety of systems by van de Pol and Schwichtenberg
[57]. Van de Pol [56] discusses the relationship between the proof by Gandy and
the proof by Tait.

De Vrijer [79, 81] proves strong normalization of simply typed *-calculus by
translating terms into functionals computing the exact length of the longest reduc-
tion path to normal form, and shows that F� computes this path. De Vrijer's proof
uses the fundamental lemma of maximality��see the proof of [79, Theorem 4.9],
and also [79, 2.3.3 and 4.9.2].

Another technique for computing upper bounds on lengths of reductions is due
to Howard [25] which is used by Schwichtenberg [63] to give upper bounds for
the length of reductions in simply typed *-calculus. Whereas the bound h from
Definition 3.25 implicitly reduces the term to normal form, i.e., h((*x .P)Q) is
expressed in terms of h(P[x :=Q]), the bounds for reductions of simply typed
terms can be expressed in such a way that the bound for (*x .P)Q is expressed in
terms of the bounds for P and Q. This technique uses implicitly a version of the
fundamental lemma of maximality��see the proof of the main lemma [63, p. 407].
Springintveld [71] applies the technique to the dependent system *P and to the
weak version *|

�
of higher-order typed *-calculus.

Xi [85] gives a proof of the standardization theorem which provides an upper
bound on the length of the standard reduction path obtained from any given reduc-
tion path, and Xi uses this to provide upper bounds for the length of reduction
paths in simply typed *-calculus.

Van Daalen proves strong normalization of simply typed *-calculus using induc-
tion on a certain triple��see [48, p. 507]. Le� vy [43] uses the technique to prove
strong normalization of a labeled *-calculus with a bounded predicate. This proof
yields also that all developments are finite, and standardization, as reported in [14].
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Capretta and Valentini [11] prove strong normalization of simply typed *-calculus
by showing strong normalization of an alternative formulation of simply typed
*-calculus which they prove is equivalent to the usual formulation; this latter part
is the difficult part of the proof.

Klop [38] shows strong normalization of a labeled *-calculus by an interpreta-
tion in 4I . Several of the above techniques also use translations from 4K to 4I . The
technique by Klop was discovered independently from a similar technique by
Nederpelt [47] and has been reinvented and extended by many researchers, e.g.,
Khasidashvili [32], Karr [29], de Groote [16], Kfoury and Wells [30], Xi [83, 86],
and So% rensen [69]; the latter paper gives a survey of some of the variations on the
technique.

6. DEVELOPMENTS

The preceding section analyzed approaches based on the fundamental lemma of
perpetuality, etc., to proving that all reductions of typed terms terminate. In the
present section we give a similar analysis for reduction of labeled terms, i.e., for
so-called developments.

The first subsection presents the fundamental lemma of perpetuality for develop-
ments along with two related characterizations due to van Raamsdonk and Severi
and to Xi, respectively. The second subsection presents a new proof, due independ-
ently to van Raamsdonk and Severi and to Xi, of the finite developments theorem.
Whereas the proof by van Raamsdonk and Severi and by Xi use their respective
characterizations, the proof presented here uses the fundamental lemma of perpetuality
for developments. Other proofs of the theorem are reviewed in less detail.

6.1. Developments

This subsection introduces developments in terms of labeled terms; we follow
Barendregt [2, 11.1�2], with some insignificant deviations.

6.1. Definition. (i) The set 4
�

K (*
�
-terms or labeled *-terms) is defined as

x # 4
�

K

P # 4
�

K O *x .P # 4
�

K

P, Q # 4
�

K O P Q # 4
�

K

P, Q # 4
�

K O (*
�
x .P)Q # 4

�
K .

In the last clause (*
�
x .P)Q is a labeled redex.

(ii) The notions of reduction ;
�
,; on 4

�
K are defined by

(*
�
x .P)Q ;

�
P[x :=Q]

(*x .P)Q ; P[x :=Q].
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(iii) The notion of reduction ;* is defined by

;*=;
�

_ ;.

6.2. Remark. As done for *-terms in Section 2.1 we briefly fix the terminology
and notation for some well-known concepts��see [2]. We assume familiarity with
conventions for omitting parentheses, with the notions of free and bound variables,
with the variable convention, and with substitution. Also, � denotes the subterm
relation,4 and # denotes syntactic equality up to renaming of bound variables.
FV(M) denotes the set of variables that occur free in M. A *

�
-context C is a *

�
-term

with a single occurrence of []; C[M] denotes the result of replacing the occurrence
of [] in C by M. &M& denotes the number of occurrences of abstractions (labeled
and unlabeled), applications, and variables in M. The set 4

�
I is the subset of 4

�
K ,

where, for every M # 4
�

I and every *x .P�M and (*
�
x .P)Q�M, x # FV(P).5

6.3. Lemma. (i) M, N # 4
�

K O M[x :=N] # 4
�

K ;

(ii) M # 4
�

K 6 M �;* N O N # 4
�

K .

Proof. (i) By induction on M.

(ii) By induction on the derivation of M �;* N, using (i). K

6.4. Definition. (i) A development of M # 4
�

K is a ;
�
-reduction path from M.

(ii) A complete development of M # 4
�

K is one which ends in an N # NF;
�
.

The finiteness of developments theorem states that all developments eventually
terminate, i.e., that M # SN;

�
for all M # 4

�
K . A stronger form asserts in addition that

the ;
�
-normal form of M # 4

�
K is unique.

6.2. Fundamental Lemma of Perpetuality and Developments

The following is an analog of the fundamental lemma of perpetuality for develop-
ments. It is used implicitly in several proofs in the literature of finite developments.

6.5. Lemma. Assume that N # SN;
�

if x � FV(M). Then

M[x :=N] # SN;
�
O (*

�
x .M) N # SN;

�
.

Proof. Suppose that M[x :=N] # SN;
�
. If x � FV(M), then, by assumption,

N # SN;
�
. If x # FV(M), then N�M[x :=N], so again N # SN;

�
. Also M # SN;

�
. If

(*
�
x .M) N # �;

�
, then any infinite reduction must have the form

(*
�
x .M)N ��;

�
(*

�
x .M$) N$

�;
�

M$[x :=N$]

�;
�

} } }
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4 Recall that the subterms of (*
�
x .P)Q are the subterms of P and Q and the term (*

�
x .P)Q itself; that

is, *
�
x .P is not a subterm.

5 In other words, 4
�

I is the set of all M # 4
�

K such that replacing every *
�

by * yields an element of 4I .



Since

M ��;
�

M$ 6 N ��;
�

N$ O M[x :=N] ��;
�

M$[x :=N$]

there is an infinite reduction sequence

M[x :=N] ��;
�

M$[x :=N$]

�;
�

} } }

contradicting M[x :=N] # SN;
�
. K

6.6. Corollary. If N # SN;
�
, then

M[x :=N] # SN;
�
O (*

�
x .M) N # SN;

�

Proof. By Lemma 6.5. K

6.7. Remark. Following van Raamsdonk and Severi [59] one can show that
SN;

�
is the smallest set closed under the rules:

(i) x # X ;

(ii) P # X O *x .P # X ;

(iii) P # X 6 Q # X O P Q # X ;

(iv) P[x :=Q] # X 6 Q # X O (*
�
x .P) Q # X.

The proof of this uses two principles: induction on lexicographically ordered pairs
(l;

�
( v), &v&) and the fundamental lemma of perpetuality for developments. Proofs

using the characterization correspond to direct proofs using the two principles, as
was the case for ;-reduction��see Remark 3.6.

6.8. Remark. Another characterization of SN;
�

is due to Xi [82], who considers
a relation + on 4

�
K defined by

+ =c= _ �l
�
,

where �l
�
denotes left-most ;

�
-reduction and where c= is the smallest relation closed

under the rules

*x .M c= M M N c= M M N c= N (*
�
x .M) N c= M (*x .M) N c= N.

Let H
�

(M0)=max[n | M0 + M1 + } } } + Mn] # N*. Then, for all M # 4
�

K ,

SN;
�
=[M # 4

�
K | H

�
(M)<�]

The proof and uses of this characterization are very similar to those of the charac-
terization in [59].
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6.3. A New Proof of the Finite Developments Theorem

The following proof of the finite developments theorem is due to van Raamsdonk
and Severi [59]; their proof uses their characterization of SN;

�
whereas the follow-

ing proof uses lexicographic induction and the fundamental lemma of perpetuality
��see Remark 6.7.

6.9. Lemma. M, N # SN;
�
O M [x :=N] # SN;

�
.

Proof. By induction on (l;
�
(M), &M&) . Let L*#L[x :=N].

1. M#x. Then M*#N # SN;
�
.

2. M#y. Then M*#y # SN;
�
.

3. M#*x .P. By the induction hypothesis, P* # SN;
�
. It follows that M*#

*x .P* # SN;
�
.

4. M#P Q. Similar to the preceding case.

5. M#(*
�
y .P)Q. Then P[ y :=Q] # SN;

�
and Q # SN;

�
. By the induction

hypothesis (P[ y :=Q])*#P*[ y :=Q*] # SN;
�

and Q* # SN;
�
. By the fundamental

lemma of perpetuality for developments it follows that ((*
�
y .P)Q)*#(*

�
y .P*)

Q* # SN;
�
. K

6.10. Theorem (Finite Developments). For all M # 4
�

K , M # SN;
�
.

Proof. By induction on M.

1. M#x. Then M # SN;
�
.

2. M#*x .P. By the induction hypothesis, P # SN;
�
, and therefore M # SN;

�
.

3. M#P Q. Similar to Case 2.

4. M#(*
�
x .P)Q. By the induction hypothesis P, Q # SN;

�
. By Lemma 6.9 also

P[x :=Q] # SN;
�
. By the fundamental lemma of perpetuality for developments,

M # SN;
�
. K

There are many proofs of the finite developments theorem in the literature; the
following is an incomplete list. The theorem was first proved by Church and
Rosser [12, 13] for 4I ; they also sketch a proof for 4K .6 Curry and Feys [15] and
Schroer [61] give full proofs of the theorem for 4K . Other proofs were later given
independently by Hyland [27] and Hindley [21]. Barendregt et al. [4] subsequently
simplified Hyland's proof��see also [2].

Xi [82] gives a proof similar to the above using instead of the fundamental lemma
of perpetuality for developments his characterization of SN;

�
��see Remark 6.8. Van

Oostrom [50, 51] shows that Lemma 6.9 can be eliminated by proving in Theorem
6.10 the stronger assertion: for all substitutions _ with _(x) # SN;

�
for all x, it holds

that M_ # SN;
�
.

Another proof due to van Oostrom [50] uses Klop's [38] technique for reducing
strong normalization to weak normalization. Other proofs that work by translation
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into strongly normalizing typed *-calculi are due to Parigot [53] (see also [41]),
van Oostrom and van Raamsdonk [52], van Raamsdonk and Severi [59],
Ghilezan [18], and Statman [72].

The theorem has also been proved in several ways for various notions of higher-
order rewrite systems. Klop [38] proves it for orthogonal combinatory reduction
systems by means of his technique to reduce weak normalization to strong normal-
ization. Van Oostrom [49, 51] proves finiteness of developments for orthogonal
higher-order rewriting systems and for pattern rewriting systems. Each of these two
results implies finite developments for orthogonal combinatory reduction systems.
Mellie� s [45] gives an axiomatic formulation of developments and shows finite
developments for this formulation, which includes orthogonal combinatory reduc-
tion systems, but apparently not pattern rewriting systems��see [51]. Khasidashvili
[32, 34] gives algorithms to compute longest developments and length of such
developments in orthogonal expression reduction systems; these algorithms are
special cases of methods to compute longest reductions and the length of such
reductions in certain restricted orthogonal expression reduction systems.

One can formulate a version of the fundamental lemma of maximality for
developments and use this to give a corresponding effective strategy F

�
� computing

longest developments and a map h: SN;
�
� N computing the length of longest

developments, similarly to the development in Sections 3.5 and 3.6. However, de
Vrijer [78] shows that in the case of developments one can do better; he gives a
map f : 4

�
K � N (called h in [78]) computing the length of longest developments

where f ((*
�
x .P)Q) is expressed in terms of f (P) and f (Q); this of course implies

finiteness of developments. He also shows that F
�

� computes longest developments.
So% rensen [70] applies to de Vrijer's technique a principle of duality thereby arriv-
ing at a technique to compute shortest development as well as the length of such
developments.

7. MAXIMAL AND PERPETUAL REDEXES

Having applied the techniques related to perpetual and maximal ;-reduction
strategies from Section 3. to various strong normalization problems in Sections 4�6,
we now return to study perpetual and maximal ;-redexes. This leads to some
conservation theorems.

The first subsection reviews some fundamental results relating reduction on terms
with and without labels, which will be used in the rest of the section. In particular,
a scheme employed in several proofs of conservation theorems in the literature is
made explicit. The next three subsections prove the conservation theorem for 4I ,
the conservation theorem for 4K , and a related conservation theorem due to
Bergstra and Klop, using this proof scheme. These results are used in the fifth sub-
section to characterize perpetual ;-redexes (the notion of maximal ;-redex turns
out to be trivial). The sixth subsection gives a proof of the normalization theorem
similar to the proofs of the conservation theorems, and the last subsection gives a
very short proof of the conservation theorem for 4I using the normalization
theorem.
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7.1. Reduction on Terms with and without Labels

There are two important ways to move from a term with labels to one without:
one can either erase all labels or reduce all labeled redexes. This is done by the two
maps | v|, .( v): 4

�
K � 4K , respectively, introduced below.

7.1. Definition. For M # 4
�

K define |M| # 4K as follows.

|x| = x

|*x .P| = *x . |P|

|P Q| = |P| |Q|

|(*
�
x .P)Q| = (*x . |P| ) |Q|.

7.2. Lemma. Let M, N # 4
�

K .

(i) |M| [x :=|N |]# |M[x :=N].

(ii) (Projection.) M �;* N O |M| �; |N|;

(iii) (Lifting.) |M| �; K O _N # 4
�

K : M �;* N 6 |N |#K.

Proof. (i) By induction on M. (ii) By induction on the derivation of M �;* N.
(iii) By induction on the derivation of |M| �; K. K

7.3. Corollary. Let M # 4
�

K .

(i) M # SN;* � |M| # SN; ;

(ii) M # NF;* � |M| # NF; .

The following map .(M) computes a complete inside-out development of
M # 4

�
K , whereas M ��;

�

N # NF;
�

means that N is the result of an arbitrary com-
plete development of M. In the last clause of the definition it is implicit that no
previous clause applies.

7.4. Definition. Define .: 4
�

K � 4K as

.(x) = x

.(*x .Q) = *x ..(Q)

.((*
�
x .P)Q) = .(P)[x :=.(Q)]

.(P Q) = .(P) .(Q).

7.5. Lemma. For all M, N # 4
�

K :

(i) .(M[x :=N])=.(M)[x :=.(N)];

(ii) M wwwww�
�;

�

N

. .

K
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(iii) M ww�
�;

N

. .

K ww�
��;

L

Proof. (i) By induction on M. (ii) By induction on the derivation of M �;
�

N
using (i). (iii) By induction on the derivation of M �; N using (i). K

The following expresses a relation between | v| and .( v).

7.6. Lemma. Let M#C[(*x .P)Q] # 4
�

K , N#C[P[x :=Q]] # 4K , and L#
C[(*

�
x .P)Q] # 4

�
K . Then

| v |

M

�; L

.

N

Proof. By induction on the derivation of M �; N. K

The following proposition expresses the core idea of several proofs of conserva-
tion theorems in the literature.

7.7. Proposition. Let M # 4K and M �; N. Then

M # �; O N # �;

if there is an S�4
�

K and F*: �;* � �;* with

(i) M#C[(*x .P)Q], C[P[x :=Q]]#N, C[(*
�
x .P)Q] # S for some C, P, Q;

(ii) L # S O F*(L) # S;

(iii) for all L # S: L �; F*(L) O .(L) ��+
; .(F*(L)).

Proof. Let M �; N, where M # �; , and let C, P, Q, S, and F* be as required
in (i)�(iii).

Let L0 #C[(*
�
x .P)Q], N0 #N, and M0 #M. By Corollary 7.3, L0 # �;* . Since

F* is perpetual,

L0 �;* L1 �;* L2 } } }

with Li=F*(Li&1) is infinite.
By Lemmas 7.5 and 7.6 and the assumptions we can erect the diagram.7
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| v| | v| | v|

. . .

�;

M0 wwww�
�;

M1 wwww�
�;

M2 wwww�
�;

} } }

L0 wwww�
�;

L1 wwww�
�;

�

L2 wwww�
�;

} } }

N0 wwww�
��;

+ N 1 wwww�
#

N2 wwww�
��;

+ } } }

Here

Li �; Li+1 O Ni ��+
; Ni+1

Li�;
�

Li+1 O Ni #Ni+1 .

By finiteness of developments Li �; Li+1 for infinitely many i, giving an infinite
;-reduction path from N0 . K

7.8. Remark. The diagram used in the above proof is an infinite version of the
diagram used by Barendregt [2, 11.1] to prove the strip lemma, the main lemma in
his proof of the Church�Rosser property.

7.2. The Conservation Theorem for 4I

We now use Proposition 7.7 to prove the conservation theorem for 4I .

7.9. Lemma. For any M # 4
�

I : M �;* N O N # 4
�

I .8

Proof. Show by induction on M that

M, N # 4
�

I O M[x :=N] # 4
�

I (V)

and by induction on the derivation of M �;* N that

FV(M)�FV(N). (+)

Using (V) and (+) proceed by induction on the derivation of M �;* N. K

7.10. Lemma. For any M # 4
�

I : M �; N O .(M) ��+
; .(N).

Proof. Show by induction on M that for all M # 4
�

I ,

FV(M)�FV(.(M)).

Using this property and Lemma 7.5(i), proceed by induction on the derivation of
M �; N. K
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7.11. Theorem (Conservation for 4I ). If M # 4I and M �; N, then

M # �; O N # �;

Proof. By the preceding two lemmas we can use Proposition 7.7 with S=4
�

I

and any partial, perpetual ;*-reduction strategy in the role of F*. K

7.12. Remark. Since 4I is closed under ;-reduction, we can view ; as a notion
of reduction on 4I , and we can view any ;-reduction strategy on 4K as a ;-reduc-
tion strategy on 4I . The conservation theorem for 4I states that in 4I , all ;-redexes
and ;-reduction strategies are perpetual.

7.13. Corollary. Let M # 4I .

(i) M # WN; O M # SN; ;

(ii) M # WN; 6 N�M O N # WN; .

Proof. (i) If M # WN; , then M ��; N # NF; , for some N. If M # �; , then by
the conservation theorem, N # �; , a contradiction.

(ii) If M # WN; and N�M, then M # SN; , and therefore N # SN; , in
particular N # WN; . K

As mentioned in Remark 4.19 and at the end of Section 5, a number of techni-
ques to prove strong normalization of typed *-calculi use translations from 4K

to 4I . Most of these techniques also use some variant of Corollary 7.13(i). For
instance, the techniques by So% rensen [69] and Xi [83, 86] use a translation
t: 4K � 4I such that t(M) # SN; O M # SN; . By the corollary, it then suffices to
show t(M) # WN; to infer M # SN; .

The conservation theorem for 4I is due to Church and Rosser [12, 13], and was
later proved by Curry and Feys [15]. A proof in the spirit of the former proof is
given by Barendregt et al. [2, 4]. These proofs are all by syntactic methods; a
semantic proof appears in [24]. Klop [38] proves a generalization of the theorem
for orthogonal non-erasing combinatory reduction systems.

The above proof is a slight simplification of the proof by Barendregt et al.; our
proof uses inside-out developments rather than arbitrary developments and avoids
the explicit notions of redex occurrence and residual (similarly, Takahashi [74]
proves Curry and Feys' standardization theorem using parallel reductions, arguing
that these are more convenient than the arbitrary developments used in, e.g.,
Mitschke's proof [46]��see also [2]). A very short proof will be given in the last
subsection.

7.3. The Conservation Theorem for 4K

We now use Proposition 7.7 to prove the conservation theorem for 4K .

7.14. Definition. (i) An I-redex is a term (*x .P)Q # 4K , where x # FV(P).
A K-redex is a term (*x .P)Q # 4K , where x � FV(P).
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(ii) We write K P Q for (*x .P)Q and K
�

P Q for (*
�
x .P)Q when x � FV(P)

and call P and Q the body and argument, respectively, of the redex.

(iii) 4
�

I is the subset of 4
�

K , where for each M # 4
�

I and each (*
�
x .P)Q�M,

it holds that x # FV(P).

(iv) We write M#(**x .P)Q if M#(*x .P)Q or M#(*
�
x .P)Q.

7.15. Definition. Define F1*: �;* � 4
�

K by

F1*(x P Q R) = x P F1*(Q) R if P # SN;* , Q � SN;*

F 1*(*x .P) = *x .F 1*(P)

F 1*((**x .P) Q R) = P[x :=Q] R if Q # SN;*

F 1*((**x .P) Q R) = (**x .P) F1*(Q) R if Q � SN;* .

7.16. Lemma. For all M # �;* : F1*(M) # �;* .

Proof. First show that, for all M # �;* ,

|F1*(M)|=F1( |M| ) (V)

by induction on M using Corollary 7.3. Since M # �;* , |M| # �; by Corollary 7.3.
By (V) and perpetuality of F1 , |F1*(M)|=F1( |M| ) # �; . Then by Corollary 7.3,
F1*(M) # �;* . K

7.17. Lemma. For all M # 4
�

I : F1*(M) # 4
�

I.

Proof. First prove by induction on M that

M, N # 4
�

I O M[x :=N] # 4
�

I.

Using this show F1*(M) # 4
�

I by induction on M. K

7.18. Lemma. For all M # 4
�

I : M �; F1*(M) O .(M) ��+
; .(F1*(M)).

Proof. By induction on M show that for all M # 4
�

I : FV(M)�FV(.(M)). Using
this and Lemma 7.5 proceed by induction on M. K

7.19. Theorem (Conservation for 4K ). If M#C[2] �; C[2$]#N, where
M # 4K and 2 is an I-redex, then

M # �; O N # �; .

Proof. By the preceding three lemmas we can use Proposition 7.7 with S=4
�

I

and F*=F1*. K
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7.20. Corollary. Any I-redex is perpetual.

7.21. Discussion (Barendregt et al. [2, 4]). The proof of the conservation
theorem for 4I does not carry over to 4K ; i.e., we cannot use Proposition 7.7 with
S=4

�
K and F* any partial, perpetual ;*-reduction strategy. For instance,

(*x .K I x)0 is an I-redex, but the diagram in the proof of Proposition 7.7 is

�;

| v| | v| | v|

. . .

(*x .K Ix)0 wwww�
�;

(*x .I)0 wwww�
�;

(*x .I)0 wwww�
�;

} } }

(*
�
x .K I x)0 wwww�

�;
(*

�
x .I)0 wwww�

�;
(*

�
x .I)0 wwww�

�;
} } }

K I 0
��;

I
#

I
��;

+ } } }

After one step, no reductions occur in the lower sequence. The problem is that
property (iii) in Proposition 7.7 fails for S=4

�
K if F* is arbitrary. This is because

in M �; N the reduction may take place in the argument Q of a labeled K-redex
K P Q, and then .(M)#.(N).

However, (iii) does hold for S=4
�

I ; i.e., when only I-redexes are labeled. The
rescue then is that labeling an I-redex yields a term in 4

�
I, so (i) also holds.

Moreover, to turn a 4
�

I term into a term outside 4
�

I would require a reduction step
inside P of (*

�
x .P)Q which erased all occurrences of x, but F1* never reduces a

redex inside P of a redex (*
�
x .P)Q, so (ii) holds too.

The conservation theorem for 4K is due to Barendregt et al. [2, 4]. Khasidashvili
[34] shows a version for orthogonal expression reduction systems, using perpetuality
of his limit strategies mentioned earlier (see the end of Section 3.5). Our proof is a
slight simplification of the proof by Barendregt et al.; apart from the simplifications
mentioned in the preceding subsection, our proof uses a simpler perpetual reduction
strategy than the proof by Barendregt et al.

7.4. Conservation under K-Reduction

The preceding two subsections characterized perpetual I-redexes in 4I and 4K .
Now we characterize perpetual K-redexes in 4K .

7.22. Definition. (i) 4
�

K is the subset of 4
�

K such that for all M # 4
�

K and all
(*

�
x .P)Q�M, it holds that x � FV(P).

(ii) For (L, R)=(4K , ;) and (L, R)=(4
�

K , ;*), an SNR-substitution is a sub-
stitution _ such that x_ # SNR for every variable x. For P, Q # L, we write P�R

� Q
iff for all SNR-substitutions _,

P_ # �R o Q_ # �R .

For Q # SNR , _+[x :=Q] maps x to Q and acts as _ on any other variable. By
projection and lifting P�;

� Q � P�;*
� Q for any P, Q # 4K .
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7.23. Definition. Define F2*: �;* � 4
�

K by

F2*(x P Q R) = x P F2*(Q)R if P # SN;* , Q � SN;*

F2*(*x .P) = *x .F2*(P)

F2*((**x .P) Q R) = P[x :=Q] R if P, Q # SN;*

F2*((**x .P) Q R) = (**x .F2*(P)) Q R if P � SN;*

F2*((**x .P) Q R) = (**x .P) F2*(Q)R if P # SN;* , Q � SN;* .

7.24. Lemma. For all M # �;* : F2*(M) # �;* .

Proof. First show that, for all M # �;* ,

|F2*(M)|=F2( |M| ) (V)

by induction on M using Corollary 7.3. Since M # �;* , |M| # �; by Corollary 7.3.
By (V) and perpetuality of F2 , |F2*(M)|=F2( |M| ) # �; . Then by Corollary 7.3,
F2*(M) # �;* . K

7.25. Lemma. For all M # 4
�

K, F2*(M) # 4
�

K.

Proof. First prove by induction on M that

M, N # 4
�

K O M[x :=N] # 4
�

K.

Using this property proceed by induction on M. K

7.26. Definition. Let X be a set of variables.

(i) An SN;*-substitution _ is X-neutral, if x_=x for all x # X;

(ii) M is X-good if, for all K
�
AB�M and X-neutral _, A_ # �;* o B_ # �;* ;

(iii) X respects M if FV(M)�X and X & BV(M)=[].

7.27. Definition. For M # �;* , define the set of variables V(M) by

V(x P Q R) = V(Q) if P # SN;* , Q � SN;*

V(*x .P) = [x] _ V(P)

V((**x .P) Q R) = [] if P, Q # SN;*

V((**x .P) Q R) = [x] _ V(P) if P � SN;*

V((**x .P) Q R) = V(Q) if P # SN;* , Q � SN;* .

7.28. Lemma. For all M # �;* : V(M)�V(F2*(M)).

Proof. By induction on M using perpetuality of F2*. K
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7.29. Lemma. Let M # �;* & 4
�

K, M be X _ V(M)-good, X respect M.

(i) F2*(M) is X _ V(F2*(M))-good, and X respects F2*(M);

(ii) M �; F2*(M) O .(M) ��+
; .(F2*(M)).

Proof. Let M # �;* & 4
�

K, M be X _ V(M)-good, X respect M.

(i) Since reduction does not invent new free variables, and new bound
variables are chosen fresh, X respects F2*(M).

We show that F2*(M) is X _ V(F2*(M))-good by induction on M. Let K A B�
F2*(M) and let _ be an X _ V(F2*(M))-neutral SN;*-substitution. We are to show
that A_ # �;* o B_ # �;* .

1. M#x P Q R, and P # SN;* , Q � SN;* . Then F2*(M)=x P F2*(Q) R.

1.1. K
�

A B�S, where P=P1 , S, P2 or R=R1 , S, R2 . Then, by Lemma
7.28, V(M)�V(F2*(M)). Therefore, _ is X _ V(M)-neutral. Since M is X _ V(M)-
good, A_ # �;* o B_ # �;* .

1.2. K
�

A B�F2*(Q). Since V(M)=V(Q), Q is X _ V(Q)-good. By the
induction hypothesis, F2*(Q) is X _ V(F2*(Q))-good. Since F2* is perpetual, V(F2*(M))
=V(F2*(Q)), so F2*(Q) is X _ V(F2*(M))-good. Therefore, A_ # �;* o B_ # �;* .

2. M#*x .P. Then F2*(M)=*x .F2*(P). Then K
�

A B�F2*(P). Since V(M)=
[x] _ V(P), P is X _ [x] _ V(P)-good. Here X _ [x] respects P, so by the induc-
tion hypothesis, F2*(P) is X _ [x] _ V(F2*(P))-good. Since V(F2*(M))=[x] _

V(F2*(P)), F2*(P) is X _ V(F2*(M))-good. Then A_ # �;* o B_ # �;* .

3. M#(**x .P) Q R. We consider three subcases.

3.1. P # �;* . Then F2*(M)=(**x .F2*(P)) Q R. There are, in turn, three
cases to consider.

3.1.1. K
�

A B�S, where S#Q or R=R1 , S, R2 . Similar to Case 1.1.

3.1.2. K
�

A B�F2*(P). Similar to Case 2.

3.1.3. K
�

A B#(**x .F2*(P))Q. Since F2* is perpetual, F2*(P) # �;* , i.e.,
A # �;* . Thus A_ # �;* , so A_ # �;* o B_ # �;* trivially.

3.2. P # SN;* , Q � SN;* . As in Case 3.1, there are three subcases.

3.2.1. K
�

A B�S, where S#P or R=R1 , S, R2 . Similar to Case 1.1.

3.2.2. K
�

A B�F2*(Q). Similar to Case 1.2.

3.2.3. K
�

A B#(**x .P) F2*(Q). This case is impossible. Indeed, suppose
that K

�
AB#(**x .P) F2*(Q), so K

�
AB$#(**x .P)Q�M. The identity substitution @

is clearly X _ V(M)-neutral, but according to the above, A@ � �:* and B$@ # �;*,
contradicting the assumption that M is X _ V(M)-good.

3.3. P, Q # SN;* . Then F2*(M)=P[x :=Q]R.

3.3.1. K
�

A B�S, where S # R. Similar to Case 1.1.

3.3.2. K
�

A B�P[x :=Q]. We consider three subcases.

(a) K
�

A B�Q. Similar to Case 1.1.

(b) K
�

A B�P. Similar to Case 1.1.
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(c) K
�

A B#K(I[x :=Q])(J[x :=Q]), where K I J�P. Since FV(Q)
�FV(M)�X, y_= y, for all y # FV(Q). Therefore, KA_ B_#K

�
I_$ J_$, where _$=

_+[x :=Q]. Since V(M)�V(F2*(M)), _ is X _ V(M)-neutral. Now x � V(M), and
x # BV(M) so x � X. Therefore _$ is X _ V(M)-neutral. Thus, since M is X _ V(M)-
good, A_#I_$ # �;* o B_#J_$ # �;* .

(ii) By induction on M. K

7.30. Theorem (Conservation of K-Redexes). Assume that P�;
� Q and M#

C[K P Q] �; C[P]#N, where M # 4K . Then

M # �; O N # �; .

Proof. Suppose that M # �; and M#C[K P Q] �; C[P]#N, where P�;
� Q.

Let F*=F2* and

S=[J # 4
�

K & �;* | J is FV(M) _ V(J)-good 6 FV(M) respects J].

Then condition (i) of Proposition 7.7 is clearly satisfied, and by Lemmas 7.24, 7.25,
and 7.29, conditions (ii) and (iii) are also satisfied. K

7.31. Corollary. A K-redex K P Q is perpetual if P�;
� Q.

7.32. Corollary. A K-redex K P Q is perpetual if one of the following condi-
tions is satisfied :

(i) P # �; ;

(ii) Q # SN; and FV(Q)=<.

7.33. Corollary. A redex (*x .P)Q is perpetual if

P_[x :=Q_] # �; o Q_ # �;

for all SN; -substitutions _.

Proof. If x # FV(P) then the redex is perpetual by the conservation theorem for
4K . If x � FV(P), then the condition of the theorem is equivalent to P�;

� Q, so the
redex is again perpetual by the preceding corollary. K

7.34. Discussion. It is not true that M # 4K and M � N by contraction of any
K-redex implies

M # �; O N # �; .

For instance, for the term M#K I 0 and the reduction step K I 0 �; I the asser-
tion is wrong. The diagram from the proof of Proposition 7.7 is
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�;

| v| | v| | v|

. . .

K I 0 wwww�
�;

K I 0 wwww�
�;

K I 0 wwww�
�;

} } }

K
�

I 0 wwww�
�;

K
�

I 0 wwww�
�;

K
�

I 0 wwww�
�;

} } }

I wwww�# I wwww�# I wwww�# } } }

In the lower sequence every term is identical to its successor, and the problem
evidently is the same as earlier: (ii) of Proposition 7.7 fails for S=4

�
K ; that is, in

M �; N the reduction step may occur in the argument of a labeled K-redex, and
then .(M)#.(N).

However, (ii) holds if the reduction step is not inside an argument of a labeled
K-redex.9 If the initial K-redex K P Q is such that P�;

� Q and we use F2* to com-
pute the middle reduction path, then no reduction will be inside the argument of
labeled K-redex. Indeed, when F2* contracts (**x .K)L, L # SN;* . Since F2* com-
putes standard reduction paths, this means, roughly, that every residual of the
initial labeled K-redex K

�
P Q has form K

�
P_ Q_, where _ is an SN;*-substitution.

Since P�;*
� Q, also P_ # �;* o Q_ # �;* . Therefore, F2* does not contract a redex

inside Q_. It may happen that F2* contracts a redex inside P_. In this case, all the
following reductions will also be inside P_.

Theorem 7.30 is due to Bergstra and Klop [7]. Our proof above is a simplifica-
tion of the proof of Bergstra and Klop. Xi [82] proves Corollary 7.33 directly,
instead of proving conservation for 4K and the Bergstra�Klop theorem separately.
Khasidashvili and Ogawa [37] independently prove Corollary 7.1, using a variant
of the strategy F2 , and study applications to various restricted *-calculi. Corollary
7.32(ii) is also taken from Khasidashvili and Ogawa [37].

7.5. Perpetual and Maximal Redexes

The following proposition shows that the converse of Theorem 7.30 also holds.
The idea of the proof is that one can simulate the effect of substitutions by means
of contexts and reductions.

7.35. Proposition (Bergstra and Klop [7]). Assume that

C[K P Q] # �; O C[P] # �;

for all contexts C. Then P�;
� Q.

Proof. To show P�;
� Q, let R # SN; , and suppose

Q[x :=R] # �; .
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Put C#(*x . [])R. Since

(*x . (K P Q)) R ��; K(P[x :=R])(Q[x :=R])

also

C[K P Q] # �; .

By our assumptions, this implies C[P] # �; , i.e., (*x .P)R # �; . Since R # SN; ,
for some n

F n
1((*x .P)R)=P[x :=R]

and by perpetuality of F1 , P[x :=R] # �; as required. K

The following corollary, in which (i) is due to Barendregt et al. [2, 4] and (ii)
is due to Bergstra and Klop [7], sums up the situation.

7.36. Corollary. A redex (*x .P)Q is perpetual iff

(i) (*x .P)Q is an I-redex; or

(ii) (*x .P)Q is a K-redex with P�;
� Q.

Proof. By Corollary 7.20, Corollary 7.31, and Proposition 7.35. K

We now proceed to characterize maximal redexes. The intuition is as follows.
Given a redex 2 with contractum 2$, we can conceive a context C which is such
that C[2] can duplicate 2. Therefore the longest reduction path from C[2] is
obtained only if we do not contract 2 until it has been duplicated. But then 2 is
not maximal. The only escape is when the contractum of 2 has an infinite reduction
path. Then C[2$] has arbitrarily long reduction paths, so 2 is maximal.

7.37. Proposition. Redex 2 with contractum 2$ is maximal iff 2$ # �; .

Proof. o: If 2$ # �; then for any n>0 and context C, C[2$] # (n&1); .

O : We assume 2$ # SN; and prove that 2 is not maximal by finding an n
such that C[2] # n; but not C[2$] # (n&1); .

Since 2$ # SN; there is by Ko� nig's lemma an m # N such that 2$ # (m&1); and
2$ � m; . Then 2 # m; . So for C#(*x .*y .y x x)[] we have for some Q

C[2] �; *y .y 2 2 ��2m
; *y .y Q Q,

that is, C[2] # (2m+1); .
On the other hand, any reduction of C[2$] has form

C[2$] ��k
; C[Q$] �; *y .y Q$ Q$ ��2l

; *y .y Q" Q"

for some Q$, Q", where k+l�m&1, and therefore k+1+2l<2m. So,
C[2$] � (2m); . K
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7.6. The Normalization Theorem

In this subsection we prove the normalization theorem for 4K which states that
repeated contraction of the left-most redex in a weakly normalizing term eventually
leads to a normal form. We use a technique very similar to that used to prove
conservation theorems in the preceding subsections.

7.38. Definition. Define F l*: 4
�

K � 4
�

K as follows. If M # NF;* then F l*(M)
=M; otherwise,

F l*(x P Q P) = x P F l*(Q) R if P # NF;* , Q � NF;*

F l*(*x .P) = *x .F l*(P)

F l*((**x .P) Q R) = P[x :=Q]R.

We write M �l* N if M � NF;* and F l*(M)=N. More specifically, if M#C[(*
�
x .P)Q]

and C[P[x :=Q]]#N we write M �l
�
N, and if M#C[(*x .P)Q] and

C[P[x :=Q]]#N we write M �l N.

7.39. Lemma. For all M # 4
�

K : |F l*(M)|=Fl ( |M| ).

Proof. By induction on M. K

7.40. Lemma. Let M # 4
�

K .

M ww�
�l

N

. .

K } } } } } } } }|
� l

L

Proof. By induction on M. K

We prove the contrapositive of the normalization theorem: if the left-most reduc-
tion path from M does not terminate, then no reduction path does. For this it
suffices to show the following result, very similar to the conservation theorems seen
earlier��this explains why the technique of the previous subsections is useful.

7.41. Theorem. If M # 4K and M �; N, then

M # �l O N # �l .

Proof. Let M#C[(*x .P)Q] �; C[P[x :=Q]]#N. Suppose M # �l , i.e.,

M#M0 � l M1 �l M2 � l } } } .

Let L0=C[(*
�
x .P)Q], and N0 #N. By Lemmas 7.5, 7.6, 7.39, and 7.40, we can

erect the diagram
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�;

| v| | v| | v|

. . .

M0 wwww�
�l

M1 wwww�
�l

M2 wwww�
�l

} } }

L0 wwww�
�l

L1 wwww�
�l

L2 wwww�
�l

} } }

N0 wwww�
�l

N1 wwww�# N2 wwww�
�l

} } }

where

Li �l Li+1 O Ni �l Ni+1

Li �l Li+1 O Ni #Ni+1 .

By finiteness of developments, Li �l Li+1 , for infinitely many i, giving an infinite
left-most reduction path from N0 . K

7.42. Corollary (Normalization of Left-most Reduction). Fl is normalizing.

Proof. Suppose M # WN; , i.e., M ��; N # NF; . If M had an infinite left-most
reduction, then by Theorem 7.41, so did N, a contradiction. K

7.43. Definition. Let M # 4K . A finite or infinite reduction path

M0 �; M1 �; M2 �; } } }

is quasi-left-most if it is finite or for all i # N there is j>i with Mj �l Mj+1 .

7.44. Corollary (Normalization of Quasi-Left-most Reductions). If M # WN; ,
then any quasi-left-most reduction from M is finite.

Proof. First show as in Theorem 7.41 that if M �; N and M has an infinite
quasi-left-most reduction, then so does N. Then proceed as in Corollary 7.42. K

The normalization theorem is due to Curry and Feys [15]. Barendregt [2] infers
the normalization theorem from the standardization theorem, and uses both of
these theorems to prove normalization of quasi-left-most reductions.

Barendregt et al. [5] define a ;-redex 2 to be needed in a term M, if 2 (or a
residual of 2) is contracted in every reduction of M to normal form. They then
show that every term not in normal form has at least one needed redex, and that
a reduction strategy that contracts only needed redexes is normalizing. They also
show that it is undecidable, in general, whether a redex is needed in a term;
however, the left-most redex is always needed, and this yields another proof of the
normalization theorem. Similar results were shown by Huet and Le� vy [26] in their
early study of neededness in the context of orthogonal term rewriting systems, and
much has been done since in various contexts��see [36] for references to some
papers. Similar results were discovered independently by Khasidashvili [31] (see
also [33, 35]); in particular, the proof of Theorem 7.41 can be viewed as a special
case of a proof due to Khasidashvili [31].

220 VAN RAAMSDONK ET AL.



For more on normalization, see [38, 58].

7.7. Conservation from Normalization

In this last subsection we give a very short proof of the conservation theorem for
4I , using the fact that F� is perpetual and F l is normalizing.

7.45. Lemma (Regnier [60]). For all M # 4I , F l (M)=F�(M).

Proof. If *x .P�M # 4I , then x # FV(P). K

7.46. Corollary. (i) For all M # 4I , M # WN; � M # SN; .

(ii) For all M # 4I , M # �; 6 M �; N O N # �; .

Proof. (i) Since F� is perpetual and F l is normalizing, Lemma 7.45 implies

M # WN; � _n: F n
l (M) # NF; � _n: F n

�(M) # NF; � M # SN; .

(ii) Suppose M �; N. If M # �; , then by (i), M � WN; . Hence N � WN; , in
particular N # �; . K

7.47. Remark. The same technique can be used to prove that in 4| (see Defini-
tion 4.3) all reduction paths have the same length: one proves directly that in 4| ,
F� is minimal. Since F� is also maximal, the longest and shortest reduction path
have the same length, and so all reduction paths have the same length.

7.48. Remark. Not all strategies are maximal in 4I ; for instance, the strategy
which always contracts the right-most redex is not maximal, as the example
(*x .*y .y x x)(II) ��3

l *y .y I I shows.

7.49. Remark. A simpler proof of the above corollary, which does not use F� ,
can be obtained by proving directly that Fl is perpetual in 4I using the fundamental
lemma of perpetuality, rather than inferring this from Fl=F� and perpetuality of
F� . Slight variations of this technique are due to Curry and Feys [15] and to van
Raamsdonk [58].

Barendregt et al. [5] show that leftmost reduction paths have maximal length
among all reduction paths in which only needed redexes are contracted, and that
in 4I all redexes are needed. This gives another proof that in 4I , Fl is maximal and
thereby perpetual.
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