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Abstract

Tag handling accounts for a substantial amount of execution

cost in latently typed languages such as Common LISP and

Scheme, especially on architectures that provide no special

hardware support.

We present a tagging optimization algorithm based on

type inference that is

global: it traces tag information across procedure bound-

aries, not only within procedures;

efficient: it runs asymptotical y in almost-linear time with

excellent practical run-time behavior (e.g. 5,OOO line

Scheme programs are processed in a matter of sec-

onds);

useful: it eliminates at compile-time between 60 and 95% of

tag handling operations in nonnumerical Scheme code

(based on preliminary data);

structural: it traces tag information in higher order (pro-

cedure) values and especially in structured (e.g. list)

values, where reportedly 80~0 of tag handling opera-

tions take place;

well-founded: it is based on a formal static typing disc-

pline with a special type Dynamic that has a robust

and semantically sound “minimal typing” property;

implementation-independent: no tag implementation

technology is presupposed; the results are displayed as

an explicitly typed source program and can be inter-

faced with compiler backends of statically typed lan-

guages such as Standard ML;

user-friendly: no annotations by the programmer are nec-

essary; it operates on the program source, provides

useful type information to a programmer in the spirit

of ML’s type system, and makes all tag handling oper-

ations necessary at run-time explicit (and thus shows

which ones can be eliminated without endangering cor-

rectness of program execution).
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This agenda is accomplished by:

maintaining and tracing only a minimum of informa-

tion — no sets of abstract closures or cons points etc.

that may reach a program point are kept, only their

collective tagging information; no repeated analysis of

program points is performed;

scheduling processing steps such that each one con-

tributes to the final result — no idle or partially idle

traversals of the syntax tree are performed; instead all

relevant constraints are extracted in a single pass over

the syntax tree;

using theoretically and rmacticallv very efficient data
“-

structures; in par~icular, the union/find data structure

is used to maintain and solve the extracted constraints.

This improves and complements previous work on tag-

ging optimization in several respects.

●

●

●

In the LISP compiler for S1 [BGS82], in Orbit

[KKR*86], and in Screme [VP89,Ple91] tagging op-

timization (representation analysis) is typically per-

formed for atomic types (numbers), based on local

cent rol flow information. Our analysis is global and

based on abstract data flow information.

In TICL [MK90] type analysis of Common LISP pro-

grams relies on costly repeated analysis and program-

mer type declarations.

Shivers (Shi9 lal similarly uses ~otentiallv expensive. . .
and complicated data flow reanalysis for type recov-

ery in Scheme and relies to some degree on program-

mer type declarations; his analysis works on the CPS

transform of a Scheme program and as such the results

are not presentable to the user/programmer.

The main practical contribution of our tagging optimiza-

tion algorithm is likely to be its combination of execution

efficiency and ability to eliminate tag handling operations in

structured data, especially in lists: Steenkiste and Hennessy

report that 80~o of all dynamic type checking operations are

due to list operations, most of which are statically eliminated

by our type inference algorithm. The computed information

can also be used for nnboxing and closure allocation (refer-

ence escape) analysis, although this is not pursued in this

paper.
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1 Introduction

LISP and its modern-day incarnations such as Common

LISP [Ste84] and Scheme [Dyb87,Sch91] are latently typed

languages. This means that data values carry specific (t~pe)

tags at run-time that identify the type of the value. Such

a tag is chiefly used to type check the legality of operations

executed at run-time; e.g., the application of the integer

value 5 to the empty list () is illegal.1 This is in contrast

to statically typed languages such as Pascal and Standard

ML where this check is performed at compile-time and any

program containing a potentially type incorrect operation

is categorically rejected as a whole. The practical trade-

offs between latently typed and statically typed languages

are well-known: flexibility y and conciseness versus safety and

efficiency of execution.

Execution efficiency of statically typed languages is typi-

cally better than that of latently typed languages for several

reasons. First, static typing (usually) guarantees that all op-

erations performed are legal, and consequently no run-time

type checks need to be executed. Second, since tags and

tag checking operations are unnecessary, less space is used

for data and code, resulting in better data and code den-

sit y. Third, compile-time type information can be used for

type-specific storage management and instruction selection.

Steenkiste and Hennessy [SH87,Ste91] report that a RISC

implementation of Portable Standard LISP spends 9-25% of

execution time on tag handling depending on the degree to

which run-time type checking is actually performed. This

figure does not even account for the more indirect effects on

execution efficiency of reasons two and three above.

Static type information is also useful as a form of user-

readable program documentation: explicit typed variable

declarations (as in Pascal) specify programmer intent and

are checked at compile-time wit bout run-time penalty; in-

ferred types (as in Standard ML [MTH90]) provide helpful

information, both to the writer and other readers of a pro-

gram, about fundamental properties of individual program

parts.

In this paper we present a typing discipline and an effi-

cient type inference algorithm that bring the dual benefit of

execution efficiency and program documentation to latently

typed languages without restricting the language in any way

or requiring the programmer to provide explicit type infor-

mation. The type inference algorithm eliminates at compile

time most, but typically not all, tag handling operations.

We use Scheme as the language of discourse, but we wish

to emphasize that the principles of tagging optimization

based on “dynamic” type inference as expounded here are

also applicable, with some additional complications, to other

languages such as Common LISP, APL or SETL. Founded

in the dynamically typed A-calculus this tagging optimiza-

tion technology is very robust, flexible and amenable to

variations suitable to different languages and implementa-

tion technologies. For the same reason, however, it does not
handle nor even address optimization issues that are “non-

structural” in nature, such as the in practice very important

optimization of number representations in Scheme.

In Section 2 we give an example of tagging in Scheme.

We then describe the dynamically typed A-calculus (Section

3), which constitutes the theoretical foundation and the core

1Tags also serve the dual purpose of provldmg necessary informa-
tion to a garbage collector. In fact ur ‘(naked” execution of programs,
in which type checking operations are simply not performed, this may

be their primary purpose!

(clef ine lookup

(lambda (key env)

(if (equal? key (car (car env) ) )

(cdx (tax env) )

(lookup key (crir env) ) ) ) )

(clef ine env-O

(cons (cons ‘x 5)
(cons (cons ‘id (lambda (x) x))

‘())))

(define env-1

(cons (cons ‘y #t)

(cons (cons ‘x (lambda (n) (+ n l)))

‘())))

(+ (lookup ‘x env-0) 8)

((lookup ‘id env-0) 13)

(map (lambda (e) (lookup ‘x e))

(cons env-O (cons env-1 ‘())))

Figure 1: Scheme source code for environment management

language for global tagging optimization by type inference.

In Section 4 we show how the specific features of Scheme

not addressed in the framework of the dynamically typed A

calculus are handled. These are, amongst others, the initial

toplevel environment with its polymorphic primitive oper-

ations, side-effects, call-with-current-continuation, dynamic

binding of top-level defined variables, garbage collection,

type testing predicates and 1/0. In Section 5 we describe

the workings of the type inference algorithm that infers both

type information and “minimal” tagging/untagging annota-

tions. Section 6 presents data from a prototype implemen-

tation on the performance of global tagging optimization for

Scheme. Both the performance of the tagging optimization

algorithm andthequality of theoptimizations are reported.

Finally, Section 7 surveys related work and Section 8 con-

cludes with an outlook on future work.

2 Tagging in Scheme: An Example

Consider the Scheme code in Figure 1. This code might

be part of the environment management for a simple in-

terpreter. The top-level variables env-o and env-i con-

tain a list of pairs representing environments in which sym-

bols are bound to values; e.g., the symbol ~X i. bound

to the number 5 in env-o and to the (number-theoretic)

successor function in env-l; the symbol ‘id is bound to

the identity function in env-o. (The definitions of both

env-O and env-1 are written with cons operations instead

of using quasi-quotation or the list operation to per-
mit explicit indication of tag handling operations below. )

The procedure lookup returns the value associated with

an identifier. It assumes that such a value always exists,

So, the procedure call (+ (lookup ‘x env-0) 8) returns

13, and so does ((lookup ‘id env-0) 13). In the proce-

dure call (map (lambda (e) (lookup ‘x e)) (cons env-O

(cons env-1 ‘()))) the function (lambda (e) (lookup
‘x e)), which looks up the value bound to ‘x in its ar-

gument environment, is applied to both env–O and env-1

and the results are returned as a list; viz., the list (5
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(define lookup
[!pROCz

(lambda ([key: Dynamic] Cenv: Dynemicl)

(if (equal? key (car [?F’AIR (car [?PAIFtenvl)l))

(cdr C?PAIR (car [?PAIRenv])])

([?PRDC2100kup] key (cdr [?PAIRenv]))))])

(define env-O
[!pAIR (con. [!pAIR (con, [!sy~DL ,x] E!mER5])]

[!PAIR (cons [!PAIR (cons [!SYMBOL ‘id] [!PROC1 (lambda ([x: Dynamic]) x)])]
[!~L ~()])])])

(define env-1

[!PAIR (cons [!PAIR (cons [!SYMBOL ‘Y] [!BOOLEAF?#tI)l

[!PAIR (cons [!PAIR (cons [!SYMBOL ‘xI

[!PROCI (lambda ([n: Dynamic])
[!mER (+ [?mERn] [?mER [! NuMBERfJ] )])])]

[!MJLL ‘01)1)1)

[!NUMBER (+ [?NUMBER ([?PROC2 lookup] [!SYMBOL ‘xl env-0)] [?NU?4BER [!NUMBER 811)1

([?PROC1 ([?PROC2100kup] [!SYMBOL ‘id] env-0)] [!NUMBER 13])

(map [?PROCI [!PROCI (lambda ([e: Dynamic]) ([?PROC2 lookup] [!SYhf80L ‘xl e))]]

[!PAIR (cons env-o [!PAIR (cons env-i [!NULL ‘01)1)1)

Figure2: Scheme code with explicit tag handling operations

<successor-procedure>).

In Scheme, as in other latently-typed languages, values

are tagged when they are created, and they are checked and

untagged when they are destructed (used). For example, any

constant occurrence is a value creation point; so are cons-

(for pairs) and lambda-expressions (for procedures). Pro-

cedure calls (for procedures) and car and cdr applications

(for pairs) are destruction points; an addition operation de-

structs its arguments and creates its result. Note that pass-

ing a value to a user-defined procedure or returning it from

such a procedure are neither creation nor destruction points

for the value.

If we make the tagging and untagging operations explicit

in the Scheme code of Figure 1 then we get the annotated

code displayed in Figure 2. Here we write !T for a tagging

operation that tags its argument with type tag “T”, and

?T for the corresponding untagging operation that checks

whether the tag of its argument is “T” and strips the tag

if successful. For example, !PROCI is the tagging operation

for “procedure with exactly one argument” and ?PROC2is

the untagging operation checking its argument for being a

“procedure with exactly two arguments”.

The explicit annotations reveal how much tagging and

untaggingis actually performed in a(naive) implementation.

They also show places for opportunistic optimization. For

example, thesequence of first tagging and then immediately

untagging the constant number 8 in [? NUMBER [! NO’MBER

8]] can be simplified to the untagged value 8; similarly,

thesequence [?NUMBER [!NUM8ER l]] can be simplified tel.

Such local (intraprocedural) optimization for atomic types,

notably numbers, is performed in several optimizing Scheme

compilers; e.g., the S1 LISP compiler [BGS82] and Orbit

[KKR*86]. But no currently existing compiler seems teat-
tempt tagging optimization for structured or procedure val-

uesor to perform global (interprocedural) tagging optimiza-

tion - and this even though Steenkiste and Hennessy [SH87]

report that 80% of all dynamically executed type checking

operations are due to list operations!

Our type inference algorithm is global, and it analyzes

structured data such as lists and procedures. Furthermore

it executes asymptotically in almost-linear time with a small

constant factor and excellent run-time performance in prac-

tice (see Section 6). It manages to infer that lookupis only

called with symbols in its first argument and with lists of

pairs as its second argument where the first component of

each pair is also a symbol. Consequently all tag handling

operations in lookup can be eliminated and the dynami-

cally overloaded equal? predicate can be determined to

be an equality comparison on symbols, which may thenbe

inlined in the compiled code. Yet, it also discovers that

the second components of pairs in environments need to be

tagged at their creation points and untagged when they are

used. Specifically, it infers that only the explicit tag han-

dlingoperations in Figure 3 are necessary. Weuse the types

lJPair(t,u) = t*u+ Null and List(i) = pt.NPair(t,u) in

the annotated code; that is, NPair(t,u) is the type of(un-

tagged) pairs plus the empty list, ‘(), and List(t) is the

type of (untagged!) lists of element type t.

3 A core language: the dynamically typed X
calculus

We start with a minimal, but paradigmatic programming

language: the dynamically typed ~-calculus. This is an ex-

tension of the (statically) typed A-calculus with a distin-

guished type constant Dynemi.c representing tagged objects

and coercions between tagged and untagged values. For ev-

ery primitive type and type constructor we have exactly one

(type,) tag. Untagged values aretransformed into tagged val-

ues, and vice versa, by tag handhng operations (coercions):
a tagging operation takes as input an untagged value, adds
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(define lookup

(lambda ([key: Symbol] [env: List(Symbol, Dynamic)])

(if (equal? key (car (car env)))

(cdr (car env))

(lookup key (cti env)))))

(define env-O

(cons (cons ~x [!tWtlBIIIi 5])

(cons (cons ‘id [!PROC1 (lambda ([x: Dynamic]) x)])

‘())))

(define env-1
(cons (cons ~y [!BOOLEAN #t])

(cons (cons ‘x [!PROCI (lambda ([n: Dynamic]) [!NUMBER (+ [?NUMBER n] 1)1)1)

‘())))

(+ [?NUMBER (lookup ‘x env-0)] 8)

([?PROC1 (lookup ‘idenv-0)] [!NOMBER 13])

(map (lambda ([e: List(Symbol, Dynamic)]) (lookup ‘x e))

(cons env-O (cons env-1 ‘())))
-. —
Mgure 3: Kesult of-global tagging optimization

the corresponding tag and returns the tagged value; an un-

tagging operation takes as input a tagged value, checks the

value for a specific tag and, if successful, removes the tag

and returns the resulting untagged value; if unsuccessful, it

aborts the program.

Some of the basic theoretical and type inference proper-

ties of dynamic typed ~-calculus are investigated in [Hen92].

Note that for every primitive type and type constru~-

tor there is only one tag. This is in contrast to dy-

namic type systems that permit tagging with complete types

[MYc84,ACPP91,LW91].

Tag handling operations are implicit in latently typed

lantma~es. We make them exdicit in order to be able to

eli~inate (some of) them at compile-time – and to be sure

that they are really eliminated when they do not occur in

the final program. In Section 4 we discuss how type andco-

ercion inference for the dynamically typed J-calculus can be

extended to additional types as well as the imperative and

dynamic aspects of Scheme. In Section 5 we show how a

“minimum” number of such tag handling operations neces-

sary for static type correctness can be automatically inferred

in almost-linear time for a given program. Empirical results

suggest that 60-95% of all tag handling operations in non-

numerical programs, both in terms of syntactic occurrences

and execution frequency, can be eliminated in this fashion.

In the type inference system considered in [Hen92] ar-

bitary coercions may be inferred for arbitrary expressions;

even induced coercions asin [(?FUNC A !FUNC)j], which de-
notes the expression Az : Dynamic.[!FUNC (f[?PUNC z])]. For

tagging optimization we are only interested in completions

of untyped J-terms in which only primitive (no induced)

coercions occur, and those may only occur at creation and

destruction points, if at all. (See also Section 8 forapracti-

cally useful relaxation of this requirement. ) Specifically, for

the dynamically typed A-calculus this means that: a !FUNC

coercion may only occur applied to a lambda abstraction; a

?FUNC coercion may only occur applied to the function in a

function application; a !BOOL coercion may only occur ap-

plied totheconstantsxt and #f; and ?BOOL may only occur

applied to the test clause in a conditional; analogously for

other types. (In the terminology of [Hen92] this corresponds

totheclass of completions CPf. )

The resulting typing rules for the dynamic A-calculus

with Booleans are given in Figure 4. Note that we use

notational conventions familiar from the literature on type

inference systems, but adopt Scheme-like notation for the

program syntax. The type expressions in this language are

generated by the production

T ::=cr I Dynarrricl boon r’ ~ r“ I par’.

Here aranges over aset of type variables andpa. r’ denotes

a recursive type for which the equality a = r’ holds. Other

types andtype constructors can be treated analogously. The

special coercion NOOPisan improper-coercion. It models the

case when no tag handling operation is performed at all.

Thus we may simply write (ee’) instead of ([NOOP e]e’), etc,.

We call the other coercions proper.

A dynamically typed A-term is atermesuchthat AE

e : ~is derivable in this type inference system for some A,r.

Its er-asur-eis the underlying untyped J-term resulting from

erasing all type information and all occurrences of coercions

frome. Conversely, a dynamically typed ~-term~is acorn-

pletionof an untyped A-term e if e is the erasure of ~.

An untyped A-term may have several different comple-

tions. For example, the untyped A-term

eo =((((lambda (b)(lambda (z)(lambda (g)

(if b z y)))) #t)#t)#f)

has, amongst others, the completions displayed in Figure

5. The completion E: is canorzicalin the sense that every

subexpression of eo is coerced to a value of type Dynamic

and every function expects avalue oftype Dynamical input.

Wesay a completion ~ofanuntyped ~-termeis minimal

if for every subterm e’ in e a proper coercion C is applied to

e’ in =if and only if c is applied to e’ in all completions of e.

The completion @ is clearly minimal in this sense since it

uses no proper coercions at all, and thus also optimal since

all tag handling operations are eliminated.

208



e~ = ((( (lambda (~)(lambda (z)(lambda (Y)
(if b z y) )))

#t)#t)#f)

ET = ((( (lambda (b: Boolean) (lembda (s : Boolean) (lambda (y : Boolean)

(if b z V) )))

#t)#t)#f) : Boolean

% = (~~c (~~c ([?~c [! PUNC (lambda (b : Dynamic) [! FUNC (lambda (z : Dynamic) [! PUNC (lambda (y : Dynamic)
(if [?BIJOL b] z y))])])]]

[!BOOJ- #t])] [!BOOL *t])] [!BOOL tlf]) : Dynamic

Figure 5: Two possible completions of eo

A1-x:r ifx:r inA

A,x:r+e:r’

A 1- [C (lambda (x : r) e)] : T“
(c : (T -+ T-’)- r“)

A+e:r

AEe’:#

A > ([C e] e’) : r“
(c :7-- (7-’+ T“))

AE[C$tt]:r (C : Boolean-r)

AF[Cttf]:r (C : Boolean-r)

AEe:~

Ake’:#
~,+ e~~ : TJJ

(

r’ = T“

A 1- (if [C e] e’ e“) : r’ C : r + Boolean
)

! FUNC : (Dynamic -+ Dynamic) w Dynamic

?PUNC : Dynamic+ (Dynamic ~ Dynamic)

!BOOL : Boolean- Dynamic

?BOOL : Dynamic + Boolean

NOOP :TQT

Figure 4: Typing rules for the dynamically typed A-calculus

4 Extending the type system to Scheme

The dynamically typed A-calculus of Section 3 constitutes

the core of a type inference system for Scheme. The primz-

tive types for Scheme are Null, Number, Booleaq Character,

String, Symbol. They represent untagged atomic values.

The compound types are T1 * 7-z, T1 + rz, Vector T rep-

resenting untagged pairs, procedures and vectors, respec-

tively. Other types such as input and output ports, multi-

adic and variadic procedure types (see below) may be added

as needed, Finally, we add simple regular recursive types of
the form pf. r[t]. An initial type environment contains typ-

ings for the primitive operations on these types.

In this section we show how the dynamically typed J-

calculus can be extended to address the features of Scheme

that require special attention. These are:

1.

2.

3.

4.

5.

6.

4.1

multiadic and variadic procedure types;

primitive operations and polymorphism;

side effects, mutable objects, and continuations;

dynamically scoped top-level bindings;

garbage collection;

1/0 and type testing routines.

Multiadic and variadic procedure types

Scheme has multiadic and variadic procedures. We write

[a,... a~] ~ @ for the type of a k-ary procedure, and

[a,... cr~]a + j’ for the type of a variadic procedure with
at least k-arguments (writing a - ,B if k is O). That is, -+

actually represents a whole class of type constructors.

In the implementation of dynamic type inference we do

not need multiadic and variadic procedure types. We can

treat a Scheme procedure call (p el ez . . . e~) as a unary

procedure call to p with argument

(cons el(cons ez(... (cons ek ‘()).. .)))

and a lambda expression (lambda (z1 . . . z~ )e) correspond-

ingly as a “pattern-matching” definition of a unary proce-

dure

(lambda (cons zl(cons ZZ(. . . (cons Z1 ‘()) . . .)))e)

A variadic procedure definition (lambda (z1 . . . x~ . y) e)

is treated as

(lambda (cons z,(cons ZZ(. . . (cons z, y) . . .)))e)

, and (lambda ze) corresponds to itself. At first sight it may

seem surprising that this simple encoding should be correct

since list-valued objects are clearly different from formal and

actual argument lists in Scheme programs. The syntax of

Scheme guarantees, however, that all procedure calls must

have argument lists (not a single list-valued argument!) and

thus actual argument lists are matched correctly with for-

mal argument lists in the type inference system. W bile it

would be possible to handle multiadic and variadic proce-

dure types directly in the implementation, this treatment

as unary procedures is simple, especially for variadic proce-

dures. For example, the operation list can be given the

type scheme

list : Va. a --+ a.
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4.2 Primitive operations and polymorphism

Primitive operations for Scheme’s data types are frequently

polymorphic; that is, cons applied to two numbers returns

a pair of numbers whereas applied to two symbols it returns

a pair of symbols. Any attempt at successful tagging opti-

mization must recognize and take into account the funda-

mental polymorphic properties of the primitive operations.

Our type system presented above is monomorphic in the

sense that every user- defined object is required to have a

single non-polymorphic type. The initial type environment,

however, contains type schemes for the primitive operations.

For example, using the notation introduced in 4.1 it contains

car : vap. [cr* p] + c1

Cdr : vap.[cv* /3] + p

cons : Va’p.[ap] + (a* /3)

for the basic list operations. These types model the func-

tionality of the operations without any tag handling oper-

ations. Every occurrence of a primitive operation in a pro-

gram receives a fresh copy of this type, with suitable coer-

cion parameters to account for possible tagging/untagging

operations on its arguments, its result and itself. For car,

this is

car[c:([cr *o]+ a).-+ -/]:7

where a, ~, y are fresh type variables.

Application of car to a pair of numbers where the result

is added to another number results in the coercion param-

etrization c ar[NOOP] in the program’s minimal completion

whereas passing car to a procedure that expects a tagged

value results in car[ !PROC2 ]. The result of the parametri-

zation in the first case is an untagged procedure of type

[Number* Number] + Number and in the second case a tagged

object of type Dynamic. Note that the parameterizations

can be compiled to specialized code in accordance with the

actual coercion parameters.

4.3 Side effects, mutable objects and continuations

The well-known complications and dangers of polymorphic

type inference in the presence of pointers and side-effecting

operations [Tof9 O] occur only when a naive polymorphic

type generalization rule for user--definedobjects is used. The

same comment applies to the treatment of continuations

[HL].

Side effecting operations and mutable objects require

no special attention since our type inference system is

monomorphic: every user-defined object is required to have

a single type, not a type scheme. This may make tagging

elimination more conservative than necessary, but not un-

sound. Our initial environment cent tins the following type

schemes:

set ! : vCYp.[CYCl]--+/3
set-car ! : Vapy.[(a* /3)a] - -(
set-cdr ! : Vap-f. [(a * /3) p] --+ -/

calllcc : va13. [[[cr] + /3] + a] + a

Individual occurrences of these operations in a program are

t rested as indicated in the previous subsection. For exam-

ple, an instance of call/cc would be parameterized by three

coercions:

call/cc [cl : ([a] -+ /3) + -f,

C2 : ([Y]+ c1) + 7’,

C3 : ([7’] - a) - -/”]: -/’.

4.4 Dynamically scoped top-level bindings

Top-level bound variables are dynamically scoped in

Scheme. This provides a flexible programming environment,

but makes programming potentially hazardous and compila-

tion to efficient code very difficult. Our lookup definition of

Figure 1 is a case in point: after (clef ine lookup2 lookup)

(define lookup . . . ) the procedure bound to lookup2 is

not the one originally bound to lookup. Our dynamic type

inference algorithm takes a conservative approach to rebind-

ing of top-level variables: the object bound to a particular

variable before and after a rebinding must have the same

type. This may result in a more conservative completion

than strictly necessary, but not in an unsound one. It has

the advantage that constraint normalization (see Section 5)

can be performed on-line, processing one top-level Scheme

command at a time. Clearly, the benefits of global tagging

optimization are great est if we are allowed to “freeze” the

bindings of a Scheme program when compiling it.

4.5 Garbage collection

Even though it may be possible to eliminate some tag-

ging operations for typing purposes the garbage collector

may still require explicit tags on data objects. The main

benefits to be gained from tagging optimization, however,

are the elimination of unt agging operations since the cu-

mulative cost of tagging operations appears to be only

marginal [SH 87]. Dynamic type inference offers, however,

the prospect of bringing the newly emerging technology of

tag-free garbage collection for statically typed programming

languages to the realm of run-time typed languages [G0191].

4.6 1/0 and type testing routines

We give each of the type testing routines number?, symbol?

etc. the type [Dynamic] + Boolean. It is also possible (and

gives potentially better results) to give them the type scheme

Va. [a] ~ Boolean. In this case specialized code can be

generated for any nonvariable instantiation of a.

Similarly, the standard 1/0 routines read and writ e have

type/type scheme

read : [Null] ~ Dynamic

write : Va. [Dynamic] -+ cr

Again, we may give write the type scheme Va~.[~] ~ cr,
which corresponds to a typing for a family of specialized

output routines.

5 Dynamic type inference algorithm

Our type inference algorithm takes as input an (untyped)

Scheme program and computes its minimal completion

(minimal in the sense of Section 3). In particular, it com-

pu&.:

●

●

●

for every locally bound variable a simply typed vari-

able declaration;

a top-level environment of type bindings (binding top-

level variables to simple type expressions);

for every data construction point in the program

whether or not a proper tagging operation is neces-

sary;
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● for every data destruction point whether or not a

proper untagging operation is necessary.

The algorithm proceeds in four conceptual phases:z

Parsing: The input program is parsed and an abstract

syntax tree is const rutted. Variable occurrences are

classified into locally-bound and top-level occurrences;

locally-bound variable occurrences share the corre-

sponding binding occurrence. We associate a unique

type variable with every node in the abstract syntax

tree and every top-level variable; and a unique coer-

cion va riatde wit h every node to which a coercion may

potentially be applied; i.e., at the data creation and

destruction points.

Constraint generation: Based on the side conditions of

the typing rules constraints on the type variables and

coercion variables are generated whose solutions char-

acterize the set of allcompletions of the input program.

Constraint normalization: The set of type and coercion

constraints is normalized to an equivalent set of con-

straints using an efficient union/find based algorithm.

Minimal completion annotation and pretty printing:

The

The normalized set of constraints is s~lved fo~ its mz’n~

imal completion, which is then output as type decla-

rations of locally bound and top-level variables and

as explicit tag handling operations inserted into the

source program.

thus completed program is guaranteed to be statically

type correct; in particular, only ~hose type handling opera-

tions explicitly in the annotated program need to be imple-

mented.

We shall describe the first two phases by example. Con-

straint normalization, being the heart of the algorithm, is

presented in more detail after that.

5.1 Parsing and constraint generation

Consider the definition of lookup in Figure 1. After pars-

ing and annotation with type variables and coercion vari-

ables we obtain the abstract syntax tree shown in Figure

6. (The type variables associated with subexpressions are

omitted for reasons of readability. Below they are identified

by their subscripts.)

Every completion of lookup must have the form of the

annotated syntax tree. A completion is valid if and only if

the constraints listed as side conditions in the typing rules

of Figure 4 are satisfied. Some of these constraints for the

definition of lookup are listed in the left colum of Figure 7.

Let us define T s r’ if C : r + # where C is some

tagging operation or the improper coercion NOOP . Since a

coercion is completely identified by its type signature, it is

easy to see that the constraints listed in the right column of

Figure 7 are equivalent to the constraints in the left column.

Furthermore, all the constraints generated in this fashion

have one of the two forms

● f(~)(al, . ..ak) < a,

● Cr=a’

zThe first three phases can be executed m a single Pass Over the

input program.

where ~tk) is a k-ary type constructor (a primitive type, if

k = O, but not Dynamic), and a,. . . range over type variables

and Dynsrnic. A solution of a constraint system is a substitu-

tion of types for the type variables such that all constraints

are satisfied.

5.2 Constraint normalization and minimal solutions

The constraints generated from a program characterize

all its possible (valid) completions. Constraint normaliz a-

tion is the process of rewriting these constraints into an

equivalent normal form from which the minimal completion

can be easily constructed. This is analogous to the process

of unification in ML-like languages, with the difference that

coercions can be inserted as required instead of reporting a

complete type failure. The normalization can be specified

by a multiset rewriting system, given in Figure 8.

It is easy to check that the set of solutions is preserved by

rewriting steps. Due to the inequality constraint rules and

the availability of recursive types all inequality constraint

rules remaining in the normalized constraint system can be

solved equation ally; i.e., using the most general (circular)

unifier. Since an inequality solved equationally gives a NOOP

solution to the corresponding coercion constraint this gives

the desired minimal completion of the input program. When

applying this algorithm to the program in Figure 1 the re-
sulting minimal completion for our example program is the

one presented Figure 3.
In [Hen91] it is shown that, using an instrumented unifi-

cation closure algorithm and the union/find data structure

with ranked union and path compression [Tar83], constraint

normshzation can be implemented in almost linear time (in

terms of the size of the input program). This bound even

applies h the case when coercions are permitted anywhere,
not just at data creation and destruction points, and con-

straints of the form a ~ /3 must be considered. Furthermore,

this algorithm exhibits excellent practical run-time behavior

as evidenced in Section 6.

6 Status and experimental results

We have implemented a rudimentary version of dynamic

type inference for Scheme based on an implementation of

the union-find data structure with path compression and

union-by-rank (see, e.g., [Tar83, Section 2]). The prelim-

inary results are very encouraging: the current algorithm,

which still misses ample opportunities for eliminating tag

handling operations, eliminates typically more than 60% of

all occurrences of tag handling operations in nonnumerical

code. See Figure 1 for some results of tagging optimization

by dynamic type inference using a Scheme-based prototype

implement ation.

The first column in the table gives the name of the

Scheme program analyzed, the second its size in kilobytes,

the third the number of constraints generated, the fourth the

execution time of constraint normalization without garbage

collection, the fifth an averaged garbage collection time for

constraint normalization, the sixth the percentage of tag-

ging operations remaining in the program, the seventh the

percentage of tagging operations eliminated, the eighth the

percentage of untagging operations remaining, and the ninth

the percentage of untagging operations eliminated. Percent-

ages are rounded to the nearest s~o. Garbage collection time
is listed separately since it tends to vary widely between dif-

ferent test runs whereas execution time without it has shown
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(define (lookup: tO)

[CO (lambda ((key: tl) (env: t2))

(if [cl ([c2 equal?[C311 key ([C4 car[c511 ([c6 car[C711 env)))l

([C8 cdr[C9]] ([C1O car[cllll env))

([c12 lookup] key ([C13 cclr[C1411 env))))l)

Figure6: Type and coercion annotated definition oflookup

CO: [tlt2]+t(ii )-~(lambda.. ) [tlt2] ~ t(jf ., ) ~ t(,~~~d~ )

~o=t(lambd=. ,, )

cl : t(equal?)+ Boolean Boolean ~ t(,,.a,? .,, )

C2 : t,,..,.- [tlt(car(car.nv))]+ t(.qua,.,, [tlt(car(..,.nv))]+ t(eq”al?.,< L@?
... ...

Figure 7: Constraints for completions oflookup

itself to be more consistent. At present the running time of

constraint normahz ation is completely dominated by pars-

ing and pretty-printing. This is partly due to the fact that

the parser is coded without regard to efficiency (in partic-

ular, it generates a lot of garbage) and partly to the core

constraint normalization routines being coded rather care-

fully. All in all the parser takes about five times as long

as constraint normalization. This includes constraint gener-

ation, which accounts for roughly half this time. All tests

have been performed using Chez Scheme, version 3.2, on a

Sun SparcStation 2 under SunOS 4.1.1. The execution times

are as reported by the time procedure.

Here is a short description of the analyzed programs

(their authors are given in parentheses).

reg-int: A regular expression interpreter that accepts a

regular expression and a string as input and checks

whether the string is an element of the language gen-

erated by the regular expression (by Anders Bondorf,

Torben Mogensen and Jesper Jorgensen).

meta: A meta interpreter that translates a denotational

definition “(possibly with lazy functions) into a Scheme

interpreter (by Jesper Jorgensen) for the language.

specialize: The static execution and code generation com-

ponent of the specializing partial evaluator Similix

(version 4.o, by Anders Bondorf).

dyn-typ: The current implementation of dynamic type in-

ference, including parsing and pretty printing, which

accounts for 80% of the code (by the author).

cogen: A compiler generator generating compilers from in-

terpreters written in Scheme (generated from the par-

tial evaluator Similix by self-application, see [Bon91]).

crop: A complete script compiler for the lazy functional

programming language BAWL ( “Bird-and- Wadler lan-

guage” ) (by Jesper J@rgensen, generated from an in-

terpreter using Similix, see [Jr92]).

Similar numbers as for textual elimination of tag han-

dling operations appear to hold for the dynamic execution

of tag handling operations. So far we have only collected

preliminary run-time statistics when executing the dynamic

type inference system itself. Here the figures are: of all po-

tential tagging operations 60% of the executed ones are those

of the tagging operations left in the program, 40% of those

that are eliminated. For untagging operations this ratio is

45~o/55% in favor of eliminated untagging operations.

Even more encouraging are the figures on the perfor-

mance of the type inference algorithm itself, in particular

the constraint normalization algorithm: it solves more than

2,OOO constraints per second on a Sun SparcStation 2 dt9-

regarding garbage collection. Since a 100,000 line Scheme

program or set of programs generates about 200,000 con-

straints, this would predict a running time of less than 2

minutes, which appears acceptable for an optimizing com-

piler, especially since the constraints can be generated and

solved incrementally in a sequential pass over the source pro-

gram. The actual running time is bound to be slot worse

due to disproportionately increased garbage collection over-

head, swapping and loss of locality of reference, amongst

other things.

7 Related work

The dynamic A-calculus of Section 3 is reminiscent of a sub-

typing discipline, but it is critically different in that both

tagging anduntagging coercions are present. In this regard

it is closely related to Thatte’s notion of quasi-static typ-

ing [Tha90] where tagging and untagging are referred to as

positive and negative coercions, respectively. (A subtyping

discipline hasonly positive coercions.) In Thatte’s language,

however, thetypes of bound variables must be explicitly de-

clared and it is thus not suitable for application in automatic

tagging optimization. Gomard [Gom90] describes type in-

ference for implicitly typed programs with no required type

information at all. In his type system there are nountagging

operations for first-order values, but instead tagged versions

of base operations are used. As a consequence tagging may

“spread” to every point reachable from a single tagging op-

eration. Cartwright and Fagan [CF91] present a unification-

based “soft” typing system as an extension of MLin which

static typing failures are handIed during unification by op-
portunistic insertion of run-time type checks, Even though

their type inference algorithm collects very detailed type in-

formation it is not clear whether the result can be used for

tagging optimization; instead it appears that all values are

expected to be fully tagged at run-time.3

Collecting type information for latently typed languages

is far from new. Type finding based on classical data

flow analysis technology goes back to Tenenbaum [Ten74],

3The article [CF91] conta]ns some flaws and ]s currently under
revmon
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1. (Inequality constraint rules)

(a) CU{~(’)(aI . ..clk) < 7,f(k)(pl . ..ok)<y} +cu{f(k)(al . ..ak)<y. al =/31,..., ak3k}k}
(b) CU{~(k)(a,... a~) <y,g(~)(pl,...,~~) <~} =Cu{cu =Dynamic, . . ..cr~ =d?m,~l =Dyn~ic, ...,,& =

Dynamic, ~ = Dynamic} if $(k) # g(~);

2. (Equational constraint rules)

(a) CU{cr=a}*C;

(b) C U {Dynamic= a} + C U {a = Dynamic} if a is a type variable;

(c) C U {a = cr’} ~ C[Q’/cr] U {a = a’} if Q # cr’ and cr is a type variable with at least one occurrence in C.

Figure 8: Constr~”n t norm alization

name size (kByte) constraints time (gc) tags/no-tags untags no-untags

reg-int 0.7 31 0.0 o% 100% o% 100%

meta 4.3 336 0.1 25~o 75% 20% 80%

speciahzer 15.1 500 0.2 30% 70% 10% 90%

cogen 65.1 2,569 1.1 (1.2) 50% 50% 25% 75%

dyn-typ 66.2 2,685 1.0 (0.9) 35% 65% 35% 65%

cmp 232.6 8,946 4.3 (15,0) 15% 85% 35% 65%

Table 1: Statistics on performance of dynamic type inference prototype

Jones and Muchuick [JM76, JM82], and Kaplan and Unman
[KU80]; more recently it has been extended and adapted
to SETL by Weiss [Wei86]; to Icon by Walker [Wa188]; to

Common LISP by Ma and Kessler [MK90]; to Scheme by
Shivers [Shi91a] (see below). Type information is also in-
strumental in optimizing the implementation of functional

languages [AM91] and object-oriented languages; e.g., in
Smalltalk [JGZ88] and Self [CU90].

The application of type finding and type information to

tagging optimization can be traced to (at least) the early
work on SETL optimization [F SS75, SSS8 1], which is based
on Tenenbaum’s thesis referenced above. Int raprocedu-

ral representation analysis for local optimization of primi-
tive operations (operating on atomic data) is described in
Brooks, Gabriel and Steele’s S1 compiler for (an exten-
sion of) Common LISP [BGS82] and mentioned in Vegdahl

and Pleban’s article [VP89] on the run-time system of their

Screme compiler for Scheme. Ma and Kessler’s type infer-
ence system for Common LISP, TICL [MK90], seeks to prop-

agate programmer type declarations to other parts of Com-

mon LISP programs by forwards analysis, repeatedly ana-

lyzing procedure definitions in different call contexts. Their

reanalysis is potentially costly (exponential time), and the
combination of type information for a procedure from differ-
ent call contexts appears to yield potentially unsound typ-
ings.

The most comprehensive study to date on type analy-

sis in Scheme is Shivers’ work [Shi88jShi91a,Shi91 b]. He
extends a classical forward flow analysis to higher-order val-
ues by modeling procedures as abstract closures and using
a collecting abstract interpretation to associate sets of such

closures with every call point in a program; at these call
points the type analysis is repeatedly executed and the type

information updated until it stabilizes. The type informa-
tion his method computes appears better in some respects
than ours since he takes control flow information into ac-
count, which is ignored in our approach. The combination

of reDeated analvsis with the need to comrmte abstract clo-. “ .

sure sets suggests that his method may be inherently too

inefficient for medium- to large-sized programs, though, as
the fastest algorithm known to us for closure anaJysis [Ses89]

alone is very complicated and requires @(n3) time.
It is worthwhile pointing out that Peterson [Pet89] ad-

dresses the orthogonal problem of minimizing the (dynamic)
number of changes between the tagged and untagged repre-

sent ation of an object that is, in principle, tagged. It is con-
ceivable that his techniques can be combined with dynamic
type inference since they are based on local control flow
information, which is at present ignored in our approach;
however, in his model there are operations - notably the
list operations - that are required to take tagged operands,
which manifestly precludes tagging optimization of list op-

erations.

8 Conclusion

Dynamic type inference provides a robust, implementation-

independent, efficient way of eliminating tag handling oper-

ations in run-time typed languages. It facilitates the modu-
lar construction of compilers and other tools and bridges the

gap between statically typed and run-time typed languages,
both with regard to use and implementation. Much remains
to be done to turn dynamic type inference into a practical

technology, however. Some work that is underway in this
direction and some possible future work is outlined below.

● Relaxing the rules on where tag handling operations
may occur in a program may result in better comple-
tions. For example, in the type system described here
tagging operations may only be applied at data cre-

ation points. This entails that, e.g., a number that

is first used in arithmetic operations several times and
eventually written to the output must be tagged at the
creation point and repeatedly untagged by the arith-
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●

●

●

●

I

metic operations. It is clearly better to delay tagging
until the number is passed to the output routine, which
we assume requires a tagged input value. A type sys-
tem permitting coercions potentially at any point still

admits a very fast inference algorithm (see [Hen91] for
its use in binding-time analysis). We are in the process
of implementing this algorithm.

A project to use dynamic type inference to build a
translate from Scheme to the lambda intermediate
language of the SML/NJ compiler has just begun at

DIKU.

The outlines of a polymorphic dynamic typing disci-
pline with polymorphic objects parameterized by coer-

cions are already in [Hen92], but more work is neces-
sary. The possibility of parameterizing objects with
coercions and specializing the code with respect to

these may be relevant for the efficient compilation of
top-level Scheme definitions.

A form of strictness analysis, usually only used in lan-
guages with lazy evaluation, appears to be desirable to
“push” as many coercions as possible from inside pro-
cedure definitions back to their arguments or forwards
to their results and thus out of the definitions.

Dynamic type inference based tagging optimization
could be combined with flow control information and

data flow analysis, as in [Shi91a], to achieve better re-

sults. For example, when making the type handling
operations explicit in the intermediate code of a lan-

guage avoiding repeated (un)tagging of the same ob-
ject becomes an instance of the common subexpression
elimination problem.
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