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ABSTRACT

We study the Hausdorff Voronoi diagram of a set S of polygonal objects in the plane,
a generalization of Voronoi diagrams based on the maximum distance of a point from a
polygon, and show that it is equivalent to the Voronoi diagram of S under the Hausdorff
distance function. We investigate the structural and combinatorial properties of the
Hausdorff Voronoi diagram and give a divide and conquer algorithm for the construction
of this diagram that improves upon previous results. As a byproduct we introduce the
Hausdorff hull, a structure that relates to the Hausdorff Voronoi diagram in the same
way as a convex hull relates to the ordinary Voronoi diagram. The Hausdorff Voronoi
diagram finds direct application in the problem of computing the critical area of a VLSI
Layout, a measure reflecting the sensitivity of a VLSI design to random manufacturing
defects, described in a companion paper.13

Keywords: Voronoi diagram; Hausdorff distance; Hausdorff-hull; divide and conquer;
VLSI yield; VLSI critical area; via-block defects.

1. Introduction

The Hausdorff Voronoi diagram of a set S of polygonal objects in the plane is a

subdivision of the plane into regions such that the Voronoi region of a polygon

∗Preliminary version: “The Min-Max Voronoi diagram of polygonal objects and applications in
VLSI manufacturing” appeared in Proc. 13th International Symposium on Algorithms and Com-
putation – ISAAC’02, November 2002, Vancouver, Canada.
†Supported in part by the National Science Council under the Grants NSC-93-2213-E-001-013,
NSC-93-2422-H-001-0001, and NSC-93-2752-E-002-005-PAE.
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P ∈ S is the locus of points whose maximum distance from P is less than their

maximum distance from any other object in S. The Hausdorff Voronoi diagram

can be defined equivalently in terms of the Hausdorff distance, where the (directed)

Hausdorff distance from a set of points P to a set of points Q is the maximum

distance from any point in P to its nearest neighbor in Q (see Section 2). The

(undirected) Hausdorff distance between P and Q is the maximum between the two

directed distances from P to Q and from Q to P . The Hausdorff Voronoi region of a

polygon P ∈ S is subdivided into finer regions by the farthest point Voronoi diagram

of the vertex set of P . This structure generalizes both the ordinary Voronoi diagram

of points and the farthest-point Voronoi diagram. If shapes degenerate to points,

we obtain the ordinary Voronoi diagram, and in case where S consists of a single

shape (|S| = 1), we have the farthest-point Voronoi diagram. The definition can be

given equivalently on a set S of clusters of points instead of polygonal objects. This

diagram represents the reverse of the farthest color Voronoi diagram of Abellanas

et al.2 that had also been considered in Ref. [6]. This paper is a companion paper

to Ref. [13] which provides a plane sweep construction to the Hausdorff Voronoi

diagram and a direct application in computing the critical area for via-blocks of a

VLSI Layout.

The Hausdorff Voronoi diagram was first considered in Ref. [5], where it was

termed the Voronoi diagram of point clusters, and later in Ref. [1] where it was

termed the closest covered set diagram. In Ref. [14], a simpler L∞ version of the

problem for non-crossing rectangles was termed the min-max Voronoi diagram. The

min-max Voronoi diagram was formulated to address the critical area computation

problem for via-blocks in VLSI designs. The term min-max Voronoi diagram was

also followed in a preliminary version of this paper.15 In Ref. [5] the size of the

Hausdorff Voronoi diagram was shown to be O(n2α(n)) for any arbitrary S, and

O(n) for clusters of points with disjoint convex hulls, where n is the number of

points on the convex hulls of shapes in S, and α(n) is the inverse of Ackermann’s

function. The O(n) bound was also shown in Ref. [1] for disjoint convex shapes and

arbitrary convex distance functions. Using a powerful geometric transformation in

three dimensions,5 and a divide and conquer algorithm for computing the upper

envelope of piecewise linear functions in three dimensions, the Hausdorff Voronoi

diagram was shown in Ref. [5] to be constructed in O(n2α(n)) time, with O(n2)

time being sufficient if S consisted of disjoint segments. In Ref. [1] the problem for

disjoint convex sets was reduced to abstract Voronoi diagrams and the randomized

incremental construction of Ref. [9] was proposed for its computation, resulting

in an O(kn log n)-expected time algorithm, where k is the time to construct the

Hausdorff bisector between two disjoint convex polygons. In Ref. [14] a plane sweep

algorithm was given for the simpler L∞ non-crossinga version of the problem of

aTwo polygons P,Q are called non-crossing if their convex hulls admit at most two supporting
segments appearing on the convex hull of P ∪Q (see Def. 4 and Def. 6).
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time complexity O((n+K) logn), where K was the number of interactingb pairs of

shapes. The plane sweep approach was generalized in Ref. [13] for arbitrary clusters

of points and the Euclidean metric with time complexity as given below.

In this paper we list the structural properties of the Hausdorff Voronoi diagram

and provide tighter combinatorial bounds and algorithms. Specifically, we show

that for arbitrary polygons or arbitrary clusters of points, the size of the Hausdorff

Voronoi diagram is O(n+m), where m is O(n2) and reflects the number of crossings

among shapes in S (see Theorem 1 for a precise definition of m). In the case of non-

crossing polygons, not necessarily disjoint, Hausdorff Voronoi regions are shown to

remain connected and thus, the size of the Hausdorff Voronoi diagram is shown

to be O(n). That is, the connectivity and linearity of the diagram is established

for a more general class of polygonal objects than the ones shown in Refs. [1, 5].

This bound automatically improves the time complexity of the algorithm of Ref. [5]

to O(n2). We present a divide and conquer algorithm to construct the Hausdorff

Voronoi diagram of time complexity O(M + n log2 n + (m + K) log n), where n

is the number of points on the convex hulls of shapes in S, K = ΣP∈SK(P ),

M = ΣP∈SM(P ), where K(P ) is the number of shapes enclosed in the minimum

enclosing circle of P , and M(P ) is the number of convex hull points q ∈ Q that

are interacting with P that is, q is enclosed in the minimum enclosing circle of

P and either Q is entirely enclosed in the minimum enclosing circle of P or Q

is crossing with P . The algorithm assumes an O(|S| log n) preprocessing time to

compute the convex hulls of input shapes. Note that this is an improvement over

the bound given in a preliminary version of this paper.15 In addition we introduce

the Hausdorff hull, a structure that relates to the Hausdorff Voronoi diagram in the

same way as a convex hull relates to the ordinary Voronoi diagram (see Def. 8), and

show that it can be computed in O(n log n) time. In Ref. [13] we refine the O(n+m)

bound on the size of the Hausdorff Voronoi digram and show that it is tight in the

worst case. We also present a simple plane sweep algorithm of comparable time

complexity O(Ma + (n + m + Ka) log m), where Ma and Ka are defined similarly

to M and K with the difference that they are defined over the anchor circle of P ,

a specially defined enclosing circle, generally different from the minimum enclosing

circle of P .

Our motivation for studying the Hausdorff Voronoi diagram comes from an ap-

plication in VLSI manufacturing, namely VLSI yield prediction, as explained in our

companion paper.13 The problem statement is repeated here for completeness. The

main computational bottleneck in predicting the yield of a VLSI chip is the extrac-

tion of critical area, a measure reflecting the sensitivity of the design to random

defects during manufacturing (see e.g. Refs. [10, 12, 19, 20, 11, 14, 16]). In Refs. [14,

16] the critical area computation problem for the three main types of defect mech-

anisms: shorts, opens, and via-blocks, was reduced to variations of L∞ Voronoi

bIn Ref. [14], a shape Q is called interacting with P if Q is enclosed in a minimum enclosing square
of P (see also Def. 12).
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unified contactsredundant vias

Fig. 1. Contacts as groups of redundant vias.

diagrams of segments. The L∞ metric reflected a natural model of square manufac-

turing defects and considerably simplified the construction of Voronoi diagrams.17

However, the square defect model has been criticized in the case of via-blocks (see

e.g. Ref. [12]), and thus the Euclidean version of the problem needs also to be ad-

dressed in this case. The construction of the Euclidean Hausdorff Voronoi diagram

is realistic as robustness issues are similar to the construction of Voronoi diagrams

of points and not to those of segments.

The critical area problem for via-blocks is as follows. In a VLSI layout contacts

between different layers are realized by square shapes called vias. To achieve a de-

sired resistance or to reduce the probability of missing contacts, designers often use

redundant vias, a group of multiple vias that connect the same shapes on differ-

ent layers. Redundant vias are usually grouped together side by side and they are

regarded as a single contact of larger size (see Figure 1). After preprocessing to

identify redundant vias, a via layer consists of rectilinear shapes. The majority of

these shapes are disjoint but some may be crossing in case of redundant vias located

further apart. A via-block is a defect that completely covers an entire contact.11,20

A defect of size r is a circle of radius r. The critical radius of a point t on a via layer

is the radius of the smallest defect centered at t causing a via-block. The problem

is to compute the critical radius for via-blocks of every point on a via layer, as we

need to integrate to compute the total critical area for all possible defect sizes fol-

lowing a given defect distribution. That is, the problem is to compute the Hausdorff

Voronoi diagram of the unified contact shapes on a via layer. Once this diagram is

available the critical area integral can be computed as shown in Refs. [14, 16, 19].

This paper is organized as follows. Section 2 provides preliminary definitions.

In Section 3 we list the structural and combinatorial properties of the Hausdorff

Voronoi diagram and introduce the concept of the Hausdorff hull. In Section 4 we

give a divide and conquer algorithm for the Hausdorff Voronoi diagram. The main

difficulty of the divide and conquer scheme is that the standard merge curve contains

multiple connected components including cycles. Tracing the multiple components

in linear time is shown in Section 4. In sub-Section 4.1 we show how to compute

starting points for the unbounded portions of merge curve and in sub-Section 4.2

we show how to compute starting points for cycles. Section 5 provides concluding

remarks.
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2. Preliminaries

Let d(p, q) denote the ordinary distance between two points p, q. The ordinary

bisector between p and q, denoted as b(p, q), is the locus of points equidistant

from p and q. The bisector b(p, q) partitions the plane into two half-planes, one

associated with p and the other with q. The farthest distance of a point p from a

shape Q is df(p, Q) = max{d(p, q), ∀q ∈ Q}. It is well known that df(p, Q) = d(p, q)

for some vertex q on the convex hull of Q. It is also well known that df(p, Q)

can be determined by the farthest point Voronoi diagram of the vertex set of Q,

denoted as f-Vor(Q) (see e.g. Ref. [18]). Any region of f-Vor(Q) is denoted by

freg(q), for any point q on the convex hull of Q. The convex hull of Q is denoted

as CH(Q). The (directed) Hausdorff distance from a shape P to Q is h(P, Q) =

maxp∈P minq∈Q d(p, q). The (undirected) Hausdorff distance between P and Q is

dh(P, Q) = max{h(P, Q), h(Q, P )}.

Definition 1. The farthest (resp. Hausdorff) bisector, denoted bf(P, Q) (resp.

bh(P, Q)), between P and Q is the locus of points equidistant from P and Q ac-

cording to df(P, Q) (resp. dh(P, Q)). That is, bf(P, Q) = {y | df(y, P ) = df(y, Q)}

and bh(P, Q) = {y | dh(y, P ) = dh(y, Q)}.

Lemma 1. bf(P, Q) and bh(P, Q) are equivalent. That is, for any point y,

df(y, P ) < df(y, Q) iff dh(y, P ) < dh(y, Q)).

Proof. For any point y, h(y, P ) = d(y, P ), where d(y, P ) = minp∈P {d(y, p)},

and h(P, y) = df(y, P ). But df(y, P ) ≥ d(y, P ). Thus, dh(y, P ) =

max{h(y, P ), h(P, y)} = df(y, P ).

Definition 2. The Hausdorff Voronoi diagram of S, denoted as H-Vor(S), is a

subdivision of the plane into regions such that the Hausdorff Voronoi region of a

polygon P , denoted as hreg(P ), is the locus of points closer to P , according to df

(equivalently dh), than to any other shape in S i.e., hreg(P ) = {y | df(y, P ) ≤

df(y, Q), ∀Q ∈ S, Q 6= P}. The Hausdorff Voronoi region of P is subdivided into

finer regions by the farthest point Voronoi diagram of the vertex set of P . That is, for

p ∈ CH(P ), hreg(p) = hreg(P )∩ freg(p) = {y | d(y, p) = df(y, P ) ≤ df(y, Q), ∀Q ∈

S, Q 6= P}. The Voronoi edges on the boundary of hreg(P ) are portions of Hausdorff

bisectors between P and other objects in S, referred to as inter-bisectors. The

bisectors in the interior of hreg(P ) are portions of bisectors in f-Vor(P) and are

called intra-bisectors.

Figure 2 illustrates the Hausdorff Voronoi diagram of S = {P1, P2, P3}. The

shaded regions depict hreg(P1) and hreg(P3); the unshaded portion corresponds to

hreg(P2). Inter-bisectors are shown in solid lines and intra-bisectors are depicted in

dashed lines. Figure 3 illustrates the Hausdorff Voronoi diagram of two intersecting

segments P and Q, where hreg(P ) is illustrated shaded. Any portion of an intra-

or inter-bisector segment correspond to a portion of an ordinary bisector b(p, q)
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hreg(P )2

hreg(P )1 hreg(P )

Fig. 2. The Hausdorff Voronoi diagram of S = {P1, P2, P3}.
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Fig. 3. The Hausdorff Voronoi diagram of two intersecting segments.

between two points p, q. For an inter-bisector, the half-plane associated with p is

the locus of points closer to p than q, and p, q are points of different shapes. For an

intra-bisector, the half-plane associated with p is the locus of points farther from

p than q, and p, q are points of the same shape. We also distinguish between three

types of vertices: inter-vertices where at least three inter-bisectors meet, intra-

vertices where at least three intra-bisectors meet, and mixed-vertices where one

intra-bisector and two inter-bisectors meet.

Definition 3. The circle Ky, centered at an intra-bisector point y of radius df(y, P )

is called a P -circle. A P -circle that encloses no shape other than P is called empty.

Definition 4. A supporting line of a convex polygon P is a straight line l passing

through a vertex v of P such that the interior of P lies entirely on one side of l.

Vertex v is called a supporting vertex. Directed line l and vertex v are called left

(resp. right) supporting if P lies to the right (resp. left) of l. The portion of the

supporting line l between the supporting vertices of two convex polygons such that

both polygons lie on the same side of l is called a supporting segment.

Definition 5. Any segment pipj for pi, pj ∈ CH(P ) is called a chord. Two in-

tersecting chords pipj ∈ P and qiqj ∈ Q are called crossing if all their endpoints

pi, pj , qi, qj appear on the convex hull of P ∪Q. Otherwise pipj and qiqj are called
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non-crossing.

Definition 6. A polygon Q is called crossing with chord pipj ∈ P if there exists a

chord qiqj ∈ Q that is crossing with pipj . Otherwise Q is called non-crossing with

pipj . Two polygons P and Q are called crossing if they admit a pair of crossing

chords pipj ∈ P and qiqj ∈ Q. Otherwise they are called non-crossing.

Note that two polygons are non-crossing if and only if their convex hulls admit at

most two supporting segments. An example of non-crossing and crossing polygons

can be seen in Figure 5. In Figures 5(a) and 5(b) all polygons are non-crossing; in

Figure 5(c) polygons C and D are crossing.

Definition 7. A chain is a simple polygonal line. A chain C is monotone with

respect to a line l if every line orthogonal to l intersects C in at most one point.

3. Structure and Properties

In this section we list the structural properties of the Hausdorff Voronoi diagram.

These properties are then used throughout the divide and conquer construction

of our algorithm. Unless explicitly mentioned otherwise, these properties have not

been identified in Refs. [1, 5].

Property 1. The farthest bisector bf(P, Q), and equivalently the Hausdorff bisector

bh(P, Q), is a subgraph of f-Vor(P ∪Q) consisting of edge disjoint monotone chains.

If a chain has just one edge, this is a straight line; otherwise its two extreme edges

are semi-infinite rays.

Proof. Let t be a point along bf(P, Q). Then there is a vertex p ∈ P and a

vertex q ∈ Q such that df(t, P ) = d(t, p) = d(t, q) = df(t, Q). But then df(t, P∪Q) =

d(t, p) = d(t, q). Thus, t must be on the border of freg(p) and freg(q) in f-Vor(P∪Q).

Thus, bf(P, Q) must be a subgraph of f-Vor(P∪Q). By assigning two different colors

to the regions of P and Q in f-Vor(P ∪Q), bf(P, Q) consists of boundaries between

regions of different colors. Since f-Vor(P ∪ Q) is a two colorable map consisting

only of unbounded regions, bf(P, Q) must consist of edge-disjoint chains extending

to infinity (similarly to the ordinary Voronoi diagram18). If points are assumed to

be in general position i.e., there are no four co-circular points, the chains in bf(P, Q)

must also be vertex-disjoint.

Let’s now show that the chains constituting bf(P, Q) are monotone. Any semi-

infinite ray of f-Vor(P ∪Q) corresponds to the perpendicular bisector of a distinct

convex hull edge of CH(P ∪Q). Thus, any semi-infinite edge of bf(P, Q) is the per-

pendicular bisector of a distinct supporting segment between CH(P ) and CH(Q).

Let C be a chain of bf(P, Q) and let the two corresponding pairs of supporting

segments be piqi and qjpj , where pi, pj ∈ P , qi, qj ∈ Q, and pi, qi, qj , and pj appear

in counterclockwise order on CH(P ∪ Q). Let L and R denote the set of vertices

on CH(P ∪ Q) that lie between vertices qi and qj , and between vertices pi and
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hreg(p)
x

p

Fig. 4. The structure of hreg(p)

pj respectively in counterclockwise order. Consider f-Vor(R) and f-Vor(L). Then

C coincides with the polygonal dividing line σ which is obtained by merging f-

Vor(R) and f-Vor(L). Since R and L are linearly separable it is well known (see

e.g. Ref. [18]) that σ, and therefore C, is monotone.

Corollary 1. Any semi-infinite ray of bf(P, Q) corresponds to the perpendicular

bisector induced by a distinct supporting segment between CH(P ) and CH(Q).

The number of chains constituting bf(P, Q) is derived by the number of supporting

segments between CH(P ) and CH(Q).

Property 2. For any point x ∈ hreg(p) the segment px ∩ freg(p) lies entirely in

hreg(p).

Proof. Suppose to the contrary that there is a point y on px∩ freg(p) such that

y ∈ hreg(q), where p ∈ P and q ∈ Q 6= P . By definition of x, we have d(x, p) =

df(x, P ) < df(x, Q), and the circle Kx centered at x of radius d(x, p) contains P

totally in its interior, but not Q. Since y ∈ hreg(q), d(y, q) < d(y, p) < d(x, p).

Circle Ky centered at y of radius d(y, q) contains Q totally in its interior. However,

circle K′y centered at y of radius d(y, p), which contains Ky, is contained in Kx. In

other words, Kx contains Q in its interior, which is a contradiction.

Property 3. The boundary of any connected component of hreg(p), p ∈ P , p 6= P ,

consists of a sequence of outward convex chains, each one corresponding to an

inter-bisector bf(p, Qi), Qi ∈ S, Qi 6= P , and exactly one inward convex chain

corresponding to the intra-bisector bf(p, P ). (Convexity is characterized as seen from

the interior of hreg(p). See Figure 4 where the intra-bisector chain of hreg(p) is

shown thickened).

Proof. By Property 1, the farthest bisector of a point p and a shape Q, p 6∈

CH(Q), must be a convex unbounded chain with convexity facing away from p.

The property is derived by the fact that hreg(p) = (∩Q∈SH(p, Q))∩ freg(p) for any

p ∈ P , where H(p, Q) denotes the half-plane associated with p as partitioned by

bf(p, Q).
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Fig. 5. The Hausdorff hull.
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Fig. 6. The Hausdorff hull of pairwise crossing shapes.

Let’s now define the Hausdorff hull, or H-hull for short, of S, denoted as HH(S).

The H-hull is related to the H-Vor(S) as the ordinary convex hull is related to the

ordinary Voronoi diagram. Examples are depicted in Figure 5 and Figure 6.

Definition 8. A shape P ∈ S, in particular a vertex p ∈ P , is said to be on the H-

hull of S, if and only if p admits a supporting line ` such that CH(P ) lies totally on

one side of ` and none of the rest of shapes in S lie totally on the same side, except

possibly from a shape having its boundary common to ` and its interior lying on

the same side of ` as CH(P ). A segment pq joining two H-hull vertices p ∈ P, q ∈ Q

such that pq is a supporting segment of P, Q is called an H-hull supporting segment.

An H-hull edge is either a convex hull edge joining H-hull vertices of one shape or

an H-hull supporting segment joining H-hull vertices of different shapes.

By Definition 8, a supporting segment pq, p ∈ P and q ∈ Q, is an edge of the

H-hull of S if and only if CH(P ) and CH(Q) lie totally on one side of the line

`pq passing through pq and no other shape in S lies totally on the same side of `pq

(except possibly from a shape having its boundary common to `pq). Furthermore,

a convex hull edge pr ∈ CH(P ), is an H-hull edge if and only if CH(P ) is the only

shape in S lying entirely on one side of the underlying line `pr . Thus, the boundary

of the H-hull consists of a sequence of supporting segments, interleaved with a sub-

sequence of convex chains. The order of traversal, say clockwise, of the H-hull edges

satisfies the property that each edge defines a supporting line of a shape P on the
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H-hull: a right supporting line for H-hull supporting segments and a left supporting

line for convex hull chains. Figure 5 illustrates the H-hulls of (a) disjoint, (b) non-

crossing, and (c) crossing shapes respectively. Supporting segments are illustrated

in arrows according to a clockwise traversal. Figure 6 depicts the H-hull of pairwise

crossing shapes. For clarity Figure 6(a) depicts only the three shapes, Figure 6(b)

illustrates the supporting segments of the H-hull, and Figure 6(c) illustrates the

whole H-hull in bold.

Property 4. Region hreg(p) is unbounded if and only if vertex p lies on the H-hull

of S.

Proof. Suppose p ∈ P is a vertex of HH(S). Then by Definition 8 there exists

a supporting line ` to CH(P ) passing through p that satisfies the condition stated.

Consider the ray perpendicular to ` that is emanating from p into the half-plane

where CH(P ) lies. Then for point x on the ray with d(x, p) being sufficiently large,

the circle Kx centered at x of radius d(x, p) contains only shape P in its interior.

That is, point x belongs in hreg(p) ⊂ hreg(P ). Thus, hreg(p), and therefore hreg(P ),

is unbounded.

Conversely suppose hreg(p) is unbounded. Consider one of the unbounded edges

of the boundary of hreg(p). It may be an inter- or an intra-bisector b. If b is an intra-

bisector then it is the perpendicular bisector of an edge s = pp′ on CH(P ). If b

is an inter-bisector, portion of bf(P, Q), then b is the perpendicular bisector of a

supporting segment s = pq between CH(P ) and CH(Q). For any point x on b,

the circle Kx of radius d(x, p) entirely contains P . In case b is an inter-bisector,

Kx also contains Q. However Kx can not contain any other shape, otherwise b

would not be a Voronoi edge of the H-Vor(S). Let ` be the line passing through

the supporting segment s. Clearly any shape on the same side of ` as P would

eventually be contained in Kx for some x ∈ b. Thus, ` must be a supporting line

satisfying the condition of the H-hull definition that is, p ∈ HH(S).

Corollary 2. All unbounded bisectors of H-Vor(S) (both inter- and intra-bisectors)

are cyclically ordered in the same way as the H-hull edges are ordered on the bound-

ary of HH(S).

Definition 9. The tree structure of f-Vor(P) is called the intra-bisector tree of P

and it is denoted as T (P ). The root of T (P ) is assumed to be the center of the

minimum enclosing circle of P .

Every point y of the intra-bisector tree T (P ) corresponds to the center of a

P -circle and it is weighted by df(y, P ). The point of minimum weight along T (P )

is the center of the minimum enclosing circle of P and it is regarded as the root of

T (P ). Note that root of T (P ) may be a point of degree 2. Let yryk ∈ T (P ) be the

intra-bisector segment of chord pipj , where yr is the parent of yk in T (P ). Let y be

an arbitrary point on yryk. Point y partitions T (P ) in two parts. Let T (y) denote
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pj

ip

P

Q2

yQ1

Fig. 7. Q1 ∈ Kr
y ∪ CH(P ) and Q2 ∈ K

f
y ∪ CH(P ).

the part containing the descendents of y in the rooted T (P ) i.e., the subtree of

T (P ) rooted at y that contains segment yyk, and let Tc(y) denote the complement

of T (y). T (y) is referred to as the subtree of T (P ) rooted at y. In Figure 7, T (y),

for the intra-bisector point y ∈ b(pi, pj), is shown in dashed bold lines. Let Ky

be the P -circle centered at y. Chord pipj partitions Ky in two parts Kf
y and Kr

y,

where Kr
y is the rear part, enclosing the portion of CH(P ) inducing T (y), and Kf

y is

the forward part, enclosing the portion of CH(P ) inducing Tc(y). Figure 7 depicts

Kf
y ∪ CH(P ) shaded.

Definition 10. A shape Q ∈ S is called limiting with respect to chord pipj ∈ P ,

if Q is enclosed within a P -circle K passing through pi, pj , and Q is non-crossing

with pipj . (Note that Q may be limiting with respect to pipj , but still be crossing

with P due to some other pkpl). Q is called forward limiting if Q ∈ Kf
y ∪CH(P ) or

rear limiting if Q ∈ Kr
y ∪ CH(P ), where y is a point on the intra-bisector segment

of pipj .

Note that any shape enclosed in a P -circle through pipj must be forward limit-

ing, rear limiting, or crossing with pipj . In Figure 7, shape Q1 is rear limiting and

shape Q2 is forward limiting with respect to y and chord pipj .

Lemma 2. Let Q ∈ S be a limiting shape with respect to chord pipj ∈ P and

let y ∈ T (P ) be the center of a P -circle enclosing Q. If Q is forward (resp. rear)

limiting then the entire T (y) (resp. Tc(y)) is closer to Q than to P .

Proof. Let yk ∈ T (y). P -circle Kyk
must pass through pi, pj ∈ CH(P ) such

that pi, pj ∈ Kr
y . But then Kf

y ⊂ Kyk
. Similarly, it is easy to see that Kr

y ⊂ Kyl
, for

any yl ∈ Tc(y). By definition, CH(P ) ⊂ Kx for any x ∈ T (P ). Thus, the lemma

follows by the definition of forward and rear limiting shapes.

Lemma 2 implies a sufficient condition for a Voronoi region to be empty which

is given in Property 5. In the case of non-crossing shapes it is easy to see that the

condition is also necessary. For the subclass of disjoint convex shapes the condition

had also been identified in Ref. [1]. Property 6 can be easily derived by the proof
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of Lemma 2 and it will be used throughout the time complexity analysis of our

algorithm.

Property 5. H-V or(P ) = ∅ if there exist two limiting shapes Q, R, enclosed in

the same P -circle Ky, y ∈ b(pi, pj), pipj ∈ P , such that Q ∈ Kf
y ∪ CH(P ) and

R ∈ Kr
y ∪ CH(P ). In case of a non-crossing S the condition is also necessary

(except from the trivial case where CH(P ) entirely contains another shape).

Property 6. Any rear limiting shape with respect to a chord pipj ∈ P must be

enclosed in the minimum enclosing circle of P .

We now derive an improved upper bound on the structural complexity of H-

Vor(S). Recall that the case of interest for our application is the case of non-crossing

polygons and the case of polygons with only a small number of crossings.

Theorem 1. The Hausdorff Voronoi diagram of an arbitrary set of polygons S has

size O(n+m), where n is the number of vertices on the convex hulls of shapes in S

and m = Σ(P,Q)m(P, Q), where m(P, Q) is the number of crossing mixed verticesc

on bf(P, Q) for any pair of crossing shapes (P, Q). In the worst case, m is O(n2).

In the case of a non-crossing S, there is at most one connected Voronoi region for

each polygon P ∈ S, and H-Vor(S) has size O(n).

Proof. By Euler’s theorem for planar graphs and since any vertex of H-Vor(S)

has degree at least 3, the size of H-Vor(S) must be proportional to the number of

its faces. By Property 3, each face hreg(p), p ∈ P , is bounded by exactly one intra-

bisector chain whose endpoints are mixed Voronoi vertices or extend to infinity.

Hence, the size of H-Vor(S) is proportional to the total number of mixed Voronoi

vertices in H-Vor(S), including those at infinity. A mixed Voronoi vertex y is the

center of a P -circle, Ky, passing through the endpoints of chord pipj ∈ P and a

vertex q ∈ Q, Q 6= P , such that both P and Q are enclosed in Ky . Vertex y can be

of two types: crossing, if Q is crossing pipj , or non-crossing, otherwise. In the latter

case, Q must be limiting with respect to pipj . By Lemma 2, if Q is forward (resp.

rear) limiting then the entire T (y) (resp. Tc(y)) gets eliminated from H-Vor(S).

Thus, the number of non-crossing mixed Voronoi vertices on T (P ) is upper-bounded

by |T (P )|. Hence, the total number of non-crossing mixed Voronoi vertices is O(n).

Since any crossing mixed Voronoi vertex in H-Vor(S) corresponds to a crossing

vertex of some inter-bisector bf(P, Q), the bound is derived. By Lemma 1 any mixed

vertex is part of f-Vor(P ∪Q) and thus the total number of mixed Voronoi vertices

cannot exceed O(n2).

For a non-crossing S, there are no crossing mixed Voronoi vertices and thus

the size of H-Vor(S) is O(n). The connectivity of Voronoi regions follows from

Properties 2 and 3.

cA mixed vertex v induced by points pi, pj ∈ P and qr ∈ Q is called crossing if Q is crossing with
pipj .
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Fig. 8. Proof of Lemma 3.

The bound of Theorem 1 has been refined to a tight bound in a recent companion

paper.13 In Ref. [13] it is shown that m = Θ(mr), where mr is the number of crossing

mixed Voronoi vertices that are rear, where a mixed Voronoi vertex v induced by

pi, pj ∈ P and qr ∈ Q is called rear (resp. forward) if qr ∈ Kr
v (resp. qr ∈ Kf

v ). It is

also shown that every rear mixed Voronoi vertex on T (P ) corresponds to a unique

pair of supporting segments between CH(P ) and CH(Q), called crucial, entirely

enclosed in the minimum enclosing circle of P . In Ref. [13] an example is given

showing that the size of H-Vor(S) is Ω(n + mr), that is, Ω(n + m) as m = Θ(mr).

Hausdorff Voronoi regions are disconnected in general and thus the methodology

of abstract Voronoi diagrams is not applicable for an arbitrary set S. If S is non-

crossing, however, the conditions of abstract Voronoi diagrams (as given in Ref. [9])

are satisfied (see Property 1, Corollary 1, Theorem 1, and Property 3) and thus

generic techniques for the construction of abstract Voronoi diagrams can be applied.

The property required by abstract Voronoi diagrams that any two bisecting curves

can intersect at most a constant number of times is shown in the following lemma.

The direct algorithm given in the following section is more efficient however.

Lemma 3. The farthest bisectors of three pairwise non-crossing polygons P, Q, R,

bf(P, Q) and bf(P, R), may intersect at most twice.

Proof. Suppose to the contrary that there exist three pairwise non-crossing

shapes, P, Q, R, such that bf(P, Q) and bf(P, R) intersect three times. Let Ii, i =

1, 2, 3, denote the intersection points. Then Ii corresponds to the center of a circle

Ci defined by three points, one on each shape, such that Ci entirely encloses all

three shapes. That is, P, Q and R must be totally enclosed within the common

intersection of the circles, A = ∩iCi. A is shown shaded in Figure 8. Furthermore,

each circular arc bounding area A must contain at least one point from each shape.

But then shapes P, Q, R cannot be non-crossing; a contradiction.

4. A Divide and Conquer Algorithm

Given a vertical dividing line L, let Sl and Sr be the sets of shapes in S to the left

and to the right respectively of L, where a shape P is said to be to the left (resp.

right) of L if the leftmost x-coordinate of P is to the left (resp. right) of L. Note
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that unlike shapes in Sr, shapes in Sl may intersect L. Let’s assume that H-Vor(Sl)

and H-Vor(Sr) have been computed. We shall compute H-Vor(S) by merging H-

Vor(Sl) and H-Vor(Sr). Let σ(Sl, Sr) denote the merge curve between H-Vor(Sl)

and H-Vor(Sr), that is, σ(Sl, Sr) is the collection of bisectors b(pl, pr) in H-Vor(S)

such that pl ∈ Sl and pr ∈ Sr. The merge curve has the following property.

Lemma 4. The merge curve σ(Sl, Sr) is a collection of edge disjoint unbounded

chains and cycles. The cycles can only enclose regions of shapes in Sl that intersect

the dividing line and regions of shapes in Sr that are crossing with shapes in Sl (if

any). σ(Sl, Sr) must consist of at least one unbounded chain unless HH(S)=HH(Sr).

Proof. The first statement is derived by the the fact that H-Vor(S) is a two-

colorable map, similarly to the ordinary Voronoi diagram case.18 Suppose now that

shapes in Sr are non-crossing with shapes in Sl. Let τ be a cycle in σ(Sl, Sr) and let

Sτ denote the subset of S consisting of shapes whose regions border τ or are enclosed

by τ . Suppose to the contrary that τ encloses regions of Sr. Consider H-Vor(Sτ ).

Since any region enclosed by τ is bounded, all regions of shapes in Sτ ∩Sr must be

bounded. Let Qr be the rightmost shape in Sτ ∩Sr (The x-coordinate of a shape is

implied by its leftmost point). Qr is the only shape in Sτ entirely lying to the right

of the vertical line through the leftmost x-coordinate of Qr. Thus, Qr must be on

the H-hull of Sτ . That is, hreg(Qr) must be unbounded, a contradiction. Thus, τ

cannot enclose any regions of shapes in Sr that are non-crossing with shapes in Sl.

It can be shown similarly that τ can not enclose the region of any shape P in Sl

unless P intersects the dividing vertical line L between Sl and Sr.

By Corollary 2, any unbounded inter-bisector of σ(Sl, Sr) corresponds to a sup-

porting segment piqj of the H-hull of S such that pi ∈ Sl and qj ∈ Sr. Thus,

if HH(S) 6= HH(Sl) and HH(S) 6= HH(Sr), σ(Sl, Sr) must consist of at least

one unbounded portion. Otherwise, σ(Sl, Sr) can have no unbounded portion and

thus σ(Sl, Sr) must consist solely of cycles. But since the entire Sr is to the

right of the dividing line L, HH(S) must contain at least one vertex in Sr that

is, HH(S) 6= HH(Sl). The same need not hold for Sl if no shape in S lies en-

tirely to the left of L. Hence, σ(Sl, Sr) contains no unbounded chain if and only if

HH(S) = HH(Sr).

Figure 9 and Figure 10 indicate that σ(Sl, Sr) may indeed contain cycles. In

particular, Figure 9 shows H-Vor(S), S = {P1, P2, Q1, Q2} with hreg(P2) depicted

shaded. Dividing S as Sl = {P1, P2} and Sr = {Q1, Q2} shows that σ(Sl, Sr) can

have cycles enclosing regions of shapes in Sl that intersect L. In Figure 10 the

shaded regions depict hreg(Q). Dividing S as Sl = {P1, P2} and Sr = {Q} shows

that, in case of crossing shapes, a cycle in σ(Sl, Sr) can enclose regions of shapes

in Sr. Identifying the cycles of σ(Sl, Sr) poses the main computational difficulty of

the divide and conquer algorithm.

To trace the merge curve σ(Sl, Sr) we need to identify a starting point on

every connected component of σ(Sl, Sr). Then each component can be traced in
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Fig. 9. H-Vor(S), S = {P1, P2,Q1, Q2}.

Q
1

2P

P

Fig. 10. H-Vor(S), S = {P1, P2, Q}.

linear time as in the ordinary Voronoi diagram case. The tracing algorithm for

the Hausdorff Voronoi diagram however is different as the properties that induce

the linear-time tracing in the ordinary Voronoi diagram case (see e.g. Ref. [18])

are no longer valid. Furthermore, the same Voronoi region may participate in the

tracing of several components of σ(Sl, Sr). To maintain the linear time complexity

of the tracing phase we exploit Properties 2 and 3 of the previous section. In the

following, let P ∈ S be a shape whose region may be enclosed in a cycle. To avoid

differentiating between Sl and Sr, let SP = Sl and SQ = Sr (resp. SP = Sr and

SQ = Sl) if P ∈ Sl (resp. P ∈ Sr). To distinguish between the Voronoi region(s)

of a shape P in H-Vor(SP ) and H-Vor(S) we use a prime. That is, hreg(p), p ∈ P ,

denotes the region of p in H-Vor(S) and hreg ′(p), denotes the region of p in H-

Vor(SP ). The following property shows that a linear-time tracing of the components

σ(Sl, Sr) is possible.

Lemma 5. For any point x ∈ hreg ′(p), σ(Sl, Sr) may intersect segment px ∩

hreg ′(p) at most once.

Proof. Let y be the intersection point px∩ freg(p). By Property 2, segment yx

lies entirely in hreg ′(p) (yx = px∩ hreg ′(p)). Suppose to the contrary that σ(Sl, Sr)

intersects yx twice at points r1 and r2 such that r1 is closer to P than r2 and

there are no other intersection points on r1r2. Then either both yr1 and r2x or only

r1r2 must remain in hreg(p). But neither option is possible as hreg(p) must satisfy

Property 2.
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p

Fig. 11. The visibility-based decomposition of hreg(p).

(b)
pp

(a)

Fig. 12. Examples of σ(Sl, Sr) in hreg(p).

Definition 11. The visibility-based decomposition of hreg(p), p ∈ P is a decom-

position of hreg(p) into quasi-triangles obtained by drawing segments pv for every

vertex v on the boundary of hreg(p) (see Figure 11).

The tracing of any component ρ of σ(Sl, Sr) can be performed using the

visibility-based decomposition. Recall that during tracing we will always follow

a bisector bf(p, q) in regions hreg ′(p) and hreg ′(q), p ∈ SP , q ∈ SQ. While in region

hreg ′(p) and hreg ′(q), ρ moves from quasi-triangle to quasi-triangle until it hits the

boundary of either hreg ′(p) or hreg ′(q). Every time ρ hits the boundary of a region,

a vertex (mixed or inter-vertex) of ρ is determined and the tracing continues at

the neighboring region. By Lemma 5, no backtracking of ρ to an already visited

quasi-triangle is possible. Also by Lemma 5, the quasi-triangles visited by different

components of σ(Sl, Sr) (except from those containing endpoints of different com-

ponents) must be disjoint. Thus, the tracing of all components of σ(Sl, Sr) can be

done in linear time even in case of regions intersected by multiple components of

σ(Sl, Sr). Figure 12 illustrates, in bold lines, examples of σ(Sl, Sr) in a connected

component of hreg ′(p), where turning points occur at the boundary of hreg ′(q) for

some q . Note that after tracing σ(Sl, Sr), hreg ′(p) may be decomposed into multiple

disjoint areas (see e.g. Figure 12(a)).

The remaining problem for computing σ(Sl, Sr) is to determine a starting point

on every component. A starting point on the unbounded portions of σ(Sl, Sr) can be

determined by the H-hull as shown by Corollary 2. As it will be shown in Section 4.1,

the H-hull of S can be derived by merging HH(Sl) and HH(Sr) in linear time. Thus,

starting points on the unbounded portions of σ(Sl, Sr) can be computed in linear
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Fig. 13. The Gaussian maps of HH({A,B, C, D}) and HH({F,H, G}).

time. In Section 4.2 we show how to identify a starting point on every cycle of

σ(Sl, Sr). Identifying starting points for cycles is the main computational bottleneck

of our algorithm.

4.1. Merging two H-hulls

The H-hull of S is represented by an ordered (e.g. clockwise) list of its vertices. An

alternative representation can be obtained by the Gaussian Map3 of S, for short

GMap(S), onto the unit circle. In the Gaussian Map every H-hull edge ei is mapped

to a point ν(ei) on the circumference of a unit circle Ko as obtained by the outward

pointing unit normal. That is, point ν(ei) represents a normal vector pointing in

the half-plane bordered by the supporting line `ei
through ei away from the H-hull

i.e., towards the interior of the shape(s) where the endpoints of ei belong. We will

use the same notation to denote both the vector and the corresponding point in the

GMap. The arc of Ko from ν(ei) to ν(ei+1) for any two consecutive H-hull edges

ei and ei+1 is denoted by α(mi), where mi is the common H-hull vertex between

ei and ei+1. Figure 13 illustrates two H-hulls and their respective Gaussian maps.

In the Gaussian maps of Figure 13 the supporting segments are represented by

longer arrows and are marked by the names of the two shapes they support. In the

following, unless explicitly noted otherwise, we assume a clockwise ordering of both

the H-hull and the GMap of S.

Lemma 6. The normal vectors in GMap(S) appear in the same cyclic order (e.g.

clockwise) as the respective cyclic traversal of the boundary of HH(S).

Proof. Let’s assume without loss of generality that HH(S) follows a clockwise

ordering. Consider the GMap points ν(ei) and ν(ei+1) of any two consecutive edges

ei = mi−1mi and ei+1 = mimi+1 of the HH(S). We shall show that ν(ei) and

ν(ei+1) are also consecutive on Ko. Let Pi ∈ S be the shape containing vertex mi

and let lei
, lei+1

denote the supporting lines through ei and ei+1 respectively. By

definition, lei+1
can be reached by rotating lei

clockwise around mi. Thus, any point

along the arc of Ko between ν(ei) and ν(ei+1) corresponds to the normal vector of

a supporting line lmi
, through mi, with slope in-between the slopes of lei

and lei+1
.
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Fig. 14. Merging HH(Sl) and HH(Sr).

Suppose to the contrary that there is an H-hull edge ej , ej 6= ei, ei+1, parallel to

lmi
such that ν(ej) is in between ν(ei) and ν(ei+1). Then ej must be supporting to

at least one different shape Pj . However, if ej were in the same side of lmi
as Pi,

mi would not be an H-hull vertex. Similarly, if ej were at the opposite side of lmi
,

ej could not be an H-hull edge. Thus, ej must be on lmi
i.e., it must be incident to

mi, a contradiction.

Corollary 3. The cyclic ordering of the arcs around Ko coincides with the cyclic

ordering of the vertices of HH(S).

By Lemma 6 and Corollary 3 it is clear that merging two H-hulls is equivalent to

merging their Gaussian maps. Because of the cyclic ordering, merging the Gaussian

maps of two H-hulls becomes similar to merging two ordinary convex hulls. An edge

or vertex of HH(Sl) and HH(Sr) is called valid if it also belongs in HH(S), otherwise

it is called invalid. To merge GMap(Sl) and GMap(Sr) we simply need to identify

their valid portions, merge them in cyclic order, and add vectors of the new support-

ing segments between HH(Sl) or HH(Sr). Figure 14 illustrates the merging process

of the two H-hulls appearing in Figure 13. In particular, Figure 14(a) illustrates

HH(S), S = Sl ∪ Sr, Sl = {A, B, C, D}, Sr = {G, F, H}, Figure 14(b) illustrates

GMap(S), and Figures 14(c) and 14(d) illustrate GMap(Sl) and GMap(Sr) re-

spectively. In Figures 14(c) and 14(d) the invalid vectors are shown crossed out.

The new vectors corresponding to the new supporting segments between HH(Sl)

and HH(Sr) are indicated by thicker arrows.

We now present the details of the merging process. For an H-hull edge e ∈

HH(Sl) (resp. HH(Sr)) let the neighboring edges of e in HH(Sr) (resp. HH(Sl))

be fj , fj+1 ∈ HH(Sr) (resp. HH(Sl)) such that ν(e) is located between ν(fj) and

ν(fj+1) in a clockwise traversal of GMap(Sr) (resp. GMap(Sl)). The common

vertex mj of (fj , fj+1) is said to be the vertex neighboring e in HH(Sr) (resp.

HH(Sl)). Note that ν(e) falls on arc α(mj).

Lemma 7. Edge e ∈ HH(Sl) (resp. HH(Sr)) remains valid iff the vertex q neigh-

boring e in HH(Sr) (resp. HH(Sl)) lies on the opposite side of the supporting line

le through e as vector ν(e) i.e., q lies on the side of le towards the interior of the
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H-hull.

Proof. Let e ∈ HH(Sl) and let fj , fj+1 be the neighboring edges of e in

HH(Sr). Let q be the common endpoint of fj and fj+1 and let q ∈ Q. Let e have an

endpoint on shape P and let le denote the line through e. Since ν(e) defines a point

on α(q), the line lq parallel to le passing through q must be supporting CH(Q)

and must leave all shapes in Sr \Q entirely or partially at opposite side of lq as Q.

Thus, if q lies on opposite sides of le as P then all shapes in Sr (including Q) must

lie partially or entirely on opposite sides of le as P . Thus, e must remain a valid

edge. If q lies on the same side of le as P then Q must also lie entirely on the same

side. Thus, at least one endpoint of e can not remain on the H-hull of Sr ∪ Sl and

thus, e must be invalid.

Lemma 8. Let ei, ei+1 be two consecutive H-hull edges in HH(Sl) (resp. HH(Sr)).

If at least one of ei, ei+1 remains valid then their common vertex mi also remains

valid. If both ei and ei+1 are invalid, then mi remains valid iff there is an invalid

edge fj ∈ HH(Sr) (resp. HH(Sl)) such that ν(fj) is between ν(ei) and ν(ei+1).

Proof. The first statement is trivially true as both endpoints of an H-hull edge

must be H-hull vertices. Suppose that ei and ei+1 are invalid. Let mi ∈ P , P ∈ Sl.

The following notation is used. Let le denote the line through any H-hull edge e.

Let H(e) (resp. H(l)) denote the half plane on the same side of le (resp. line l) as

the shape supported by le (resp. l).

Suppose that there is a vector ν(fj) ∈ GMap(Sr), such that mi is the neigh-

boring vertex of fj in GMap(Sl) i.e., ν(fj) is located between ν(ei) and ν(ei+1),

and suppose that fj has been determined invalid. Since fj is invalid, P ∈ H(fj).

Since fj ∈ HH(Sr), no shape in Sr can lie in H(fj). Since ν(fj) is between ν(ei)

and ν(ei+1) the line through mi parallel to lfj
, denoted as lmi

, must fall between

lei
and lei+1

and must be supporting to P . Thus, no other shape in Sl can lie at the

same side of lmi
as P . Since no shape in Sr can be in H(fj), no shape in Sr can lie

at the same side of lmi
as P . Thus, mi must be a valid vertex in the H-hull of S.

Conversely suppose that mi is valid (see Figure 15). Then there is a line lmi
that

is supporting P at mi, lmi
lies between lei

and lei+1
, and lmi

leaves no shape in S

other than P on the same side as P . Figure 15 shows several combinations of ei, ei+1

as supporting or convex hull edges. In Figure 15(a), ei is a supporting segment and

ei+1 is convex hull edge. In Figures 15(b) and 15(c), both ei and ei+1 are convex hull

edges and supporting segments respectively. Since ei and ei+1 are both invalid there

must be two shapes Q1, Q2 ∈ Sr, Q1 6= Q2, such that Q1 ∈ H(ei), Q2 ∈ H(ei+1),

and the supporting segment between Q1 and Q2 is an H-hull edge fj ∈ HH(Sr).

But Q1 and Q2 must lie at least partially in the complement of H(lmi
), since P

is the only shape in S lying entirely in H(lmi
). Thus, the endpoints of fj must be

in H(ei) \H(lmi
) and H(ei+1) \H(lmi

) respectively. This area is shown shaded in

Figure 15. Hence, P must lie entirely on the same side of lfj
, as Q1, Q2, and the
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Fig. 15. Proof of Lemma 8.

slope of fj must be between the slopes of ei and ei+1. Thus, fj is invalid and ν(fj)

is between ν(ei) and ν(ei+1).

Lemma 7 and Lemma 8 indicate an algorithm to determine the valid vertices

of HH(Sl) and HH(Sr). Those are exactly the vertices of the H-hull of S since any

such vertex must necessarily be a valid vertex in HH(Sl) or HH(Sr). To complete

the construction, for any pair of consecutive valid H-hull vertices (pi, qj) such that

pi ∈ Sl (resp. pi ∈ Sr) and qj ∈ Sr (resp. qj ∈ Sl), segment piqj must be added

to HH(S) and ν(piqj) must be added to GMap(S). In detail, let GMapv(Sl) (resp.

GMapv(Sr)) denote the valid portion of GMap(Sl) (resp. GMap(Sr)) where valid

vectors remain unchanged and invalid vectors represent their neighboring vertex in

Sr (resp. Sl) that is, the vertex in Sr that made them invalid. Consider GMapv(Sl)∪

GMapv(Sr) as a cyclic collection of valid and invalid vectors around the origin o.

As the following lemma shows, GMapv(Sl)∪GMapv(Sr) indicates the ordering of

the vertices of HH(S). Note that any valid vector in GMapv(Sl) (resp. GMapv(Sr))

corresponds to an ordered pair of valid vertices in Sl (resp. Sr) and any invalid vector

corresponds to the neighboring valid vertex in Sr (resp. Sl) that made it invalid (see

Lemma 9). GMap(S) can now trivially be derived from GMapv(Sl) ∪GMapv(Sr)

by adding ν(piqj) for any pair of consecutive vertices (pi, qj) such that pi ∈ Sl (resp.

pi ∈ Sr) and qj ∈ Sr (resp. qj ∈ Sl) and deleting all invalid vectors.

Lemma 9. For any pair of consecutive vertices (pi, qj) indicated by the cyclic or-

dering of GMapv(Sl)∪GMapv(Sr), segment piqj must be an edge on the H-hull of

S.
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Proof. Consider an invalid vector ν(ei) ∈ GMap(Sl) and let qj ∈ Q be the

neighboring vertex of ei in GMap(Sr). By Lemma 8, qj is a valid vertex and the line

lqj
through qj of slope normal to ν(ei) must be supporting to Q, with Q being the

only shape at the same side of lqj
as ν(ei). Thus, α(qj) ∈ HH(S) must contain the

endpoint of ν(ei). Thus, GMapv(Sl) ∪GMapv(Sr) indicates the vertices of HH(S)

in their correct cyclic order. Since no additional vertex that is not represented

in GMapv(Sl) ∪ GMapv(Sr) can be part of HH(S), the segment joining any two

consecutive vertices must be an H-hull edge.

Lemma 7, Lemma 8 and Lemma 9 clearly indicate a linear time algorithm

to derive HH(S) from HH(Sl) and HH(Sr). We thus conclude with the following

theorem.

Theorem 2. Merging HH(Sl) and HH(Sr) into HH(S) can be computed in linear

time.

4.2. Tracing the cycles of σ(Sl, Sr)

Suppose that the unbounded components of σ(Sl, Sr) have been traced. Our goal

is to identify a starting point on every cycle of σ(Sl, Sr). Recall (Lemma 4) that

cycles can only enclose regions of shapes in Sl that intersect the dividing line L and

regions of shapes in Sr that are crossing with shapes in Sl (if any). Let this set of

shapes be denoted as SL.

Let H-Vorσ(S) denote the intermediate diagram derived by merging the com-

ponents of σ(Sl, Sr) computed so far with the relevant portions of H-Vor(Sl) and

H-Vor(Sr), and let H-Vor∗σ(S) denote the complement diagram derived by merging

the components of σ(Sl, Sr) computed so far with the remaining portions of H-

Vor(Sl) and H-Vor(Sr). That is, H-Vor∗σ(S) =H-Vor(Sl) ∪ H-Vor(Sr)− H-Vorσ(S)

plus the components of σ(Sl, Sr) computed so far. When all components of σ(Sl, Sr)

are computed, H-Vorσ(S) = H-Vor(S), and H-Vor∗σ(S)= H-Vor∗(S), where H-

Vor∗(S) denotes the final diagram to be discarded i.e., H-Vor∗(S) =H-Vor(Sl) ∪

H-Vor(Sr) ∪ σ(Sl, Sr)− H-Vor(S). When a new cycle τ of σ(Sl, Sr) is determined,

the regions of H-Vor∗σ(S) enclosed in τ become part of H-Vorσ(S) and the respec-

tive regions of H-Vorσ(S) become part of H-Vor∗σ(S). H-Vorσ(S) and H-Vor∗σ(S)

are well defined initially if σ(Sl, Sr) consists of at least one unbounded merge curve.

Otherwise, H-Vorσ(S) and H-Vor∗σ(S) are initialized to H-Vor(Sr) and H-Vor(Sl)

respectively as indicated by Lemma 4. Every time a component of σ(Sl, Sr) is

identified, both H-Vorσ(S) and H-Vor∗σ(S) get updated. At the end, when no more

cycles can be determined, H-Vor∗(S) can be safely discarded.

Consider an intra-bisector segment yiyj ∈ H-Vor∗σ(S) induced by pi, pj ∈ P ,

P ∈ SL, such that yi is an ancestor of yj in T (P ) (i.e., df(yi, P ) < df(yj , P )). Let

SP denote the portion of S containing P and SQ denote the complement of SP ,

that is, let SP = Sl, SQ = Sr (resp. SP = Sr, SQ = Sl) if P ∈ Sl (resp. P ∈ Sr).

Let qi ∈ Qi and qj ∈ Qj be the owners of yi and yj respectively in H-Vor(SQ) i.e.,
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yi ∈ hreg ′(qi) and yj ∈ hreg ′(qj), where Qi and Qj may or may not be equal. (Recall

that a prime is used to distinguish the Voronoi region(s) of a shape P in H-Vor(SP )

from the Voronoi region(s) of P in H-Vor(S)). Comparing d(yk, pi) and d(yk, qk) for

k = i, j, we can easily determine whether yk is closer to P or Qk, that is, whether

yk ∈ hreg(P ) or yk ∈ hreg(Qk). If yk is equidistant from P and Qk and yk is not a

point of an already computed component of σ(Sl, Sr), then yk must be the starting

point of a new cycle. By default, if yk is a point of an already computed component

of σ(Sl, Sr), yk is assumed to be closer to P than its (equidistant) owner in SQ.

The following lemma gives conditions under which a cycle may intersect yiyj . It is

important to note that yiyj is an intra-bisector segment of H-Vor∗σ(S) and not one

of H-Vorσ(S).

Lemma 10. Let yiyj be an intra-bisector segment in H-Vor∗σ(S) induced by pi, pj ∈

P , P ∈ SL, such that df(yi, P ) < df(yj , P ).

(1) If yi ∈ hreg(P ) and yj ∈ hreg(Qj) (resp. yj ∈ hreg(P ) and yi ∈ hreg(Qi)) then

there exists a cycle τ intersecting yiyj enclosing yi (resp. yj).

(2) If both yi, yj ∈ hreg(P ) and no shapes in SQ are crossing with chord pipj,

then there can be no cycle intersecting yiyj ; the entire yiyj ∈ H-Vor(S) and it

must be enclosed in a merge cycle τ . Note that no conclusion regarding cycles

intersecting yiyj can be made if pipj is crossing with shapes in SQ.

(3) Suppose yi ∈ hreg(Qi) and yj ∈ hreg(Qj). If Qi = Qj , or if Qi is for-

ward limiting, or if Qj is rear limiting, or if df(yi, Qj) < df(yi, P ), or if

df(yj , Qi) < df(yj , P ), then there can be no cycle intersecting yiyj ; the en-

tire yiyj must remain in H-Vor∗(S). Furthermore, if Qi is forward limiting,

T (yi) 6∈ H-Vor(S), and if Qj is rear limiting, Tc(yj) 6∈ H-Vor(S).

(4) If yi ∈ hreg(Qi) and yj ∈ hreg(Qj) but the conditions of item 3 do not hold,

then there may be a cycle τ intersecting yiyj . This cycle must intersect yiyj

twice (Figure 16(b)) or it must be part of a pair of nested cycles as shown

in Figure 16(a),(c). In the non-crossing case, there is either exactly one cycle

intersecting yiyj twice or hreg(P ) = ∅.

Proof. The first item of this lemma is trivially true. When the conditions of

item 2 are satisfied the entire yiyj must be in hreg(P ) as both yi, yj ∈ hreg(P )

and, by Lemma 2, no two components of σ(Sl, Sr) may intersect b(pi, pj) when no

shape in SQ is crossing with pipj . Since yiyj ∈ H-Vor∗σ(S), the entire segment must

be enclosed in a cycle of σ(Sl, Sr). Let’s now assume that the conditions of item

3 are satisfied. By Lemma 2, if Qi is forward limiting for yi then the entire T (yi)

must be closer to Qi than to P and thus, no cycle can intersect the entire T (yi).

Since yiyj ∈ H-Vor∗σ(S), no portion of T (yi) can be part of H-Vor(S). Similarly if

Qj is rear limiting for yj , no portion of Tc(yj) can be part of H-Vor(S). If yi ∈

hreg(Qi), yj ∈ hreg(Qj), and df(yj , Qi) < df(yj , P ) (resp. df(yi, Qj) < df(yj , P )),

then Qi ∈ Kyi
and Qi ∈ Kyj

(resp. Qj ∈ Kyj
and Qj ∈ Kyi

). But then, by the proof

of Lemma 2, Qi (resp. Qj) must be enclosed in Ky for every y ∈ yiyj , and thus,
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Fig. 16. A type 2 intra-bisector segment yiyj ∈ T (P ) can be intersected by a single cycle twice or
by a pair of nested cycles.

the entire yiyj must be closer to Qi (resp. Qj) than P , that is, yiyj ∈ H-Vor∗(S).

Similarly for Qi = Qj . Hence in all cases of item 3, no cycle can intersect or enclose

yiyj and thus, yiyj must remain entirely in H-Vor∗(S).

In case of item 4, there may be one or more cycles intersecting yiyj . Let τ be

such a cycle (if any). Since yi ∈ hreg(Qi) and yj ∈ hreg(Qj), either τ must intersect

yiyj twice, as shown in Figure 16(b), or τ must be part of a nested pair of cycles

(τ, τ ′), both intersecting yiyj once as shown in Figures 16(a),(c), such that the one

is enclosed within the other. Note that in the general crossing case it is conceivable

for a cycle of σ(Sl, Sr) to be enclosed in another cycle. In the non-crossing case,

Qi and Qj must be rear and forward limiting respectively, and thus we must have

a P -circle Ky, y ∈ yiyj , which is either empty or it contains two limiting shapes

Qr, Qt ∈ SQ, such that one is rear limiting and the other is forward limiting. In the

former case τ must intersect yiyj twice, and in the latter hreg(P ) = ∅ (Property 5).

By Lemma 10 we have two types of intra-bisector segments in H-Vor∗σ(S) that

may contain the starting point of a cycle or be entirely enclosed in a cycle: those

with at least one endpoint in H-Vor(S) (see items 1,2 of Lemma 10), referred to as

type 1, and those with no endpoint in H-Vor(S) satisfying the conditions of item 4 of

Lemma 10, referred to as type 2. A cycle intersecting or enclosing an intra-bisector

segment of type 1 is referred to as a cycle of type 1, and a cycle intersecting an

intra-bisector segment of type 2 is referred to as a cycle of type 2. Figure 16 depicts

possible cycles of type 2. In the following we are giving algorithms to identify cycles

of type 1 and type 2 respectively.

Algorithm 1 – Identify a cycle of type 1.

Let yiyj ∈ H-Vor∗σ(S) be an intra-bisector segment of type 1, induced by pi, pj ∈

P , such that yi ∈ hreg(P ). Locate yi in H-Vor(SQ) and traverse segment yiyj

through the visibility based decomposition of H-Vor(SQ) until a point y is

reached that is equidistant from pi and SQ or y = yj . In the former case,

point y is the starting point of a cycle intersecting yiyj . In the latter case, yiyj

becomes known to be entirely in H-Vor(S) and thus, it must be entirely enclosed

in a cycle. In the latter case, lets assume that a point x on the boundary of the
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region of pi in H-Vor∗σ(S) is known to be in H-Vor∗(S). Let y be point yiyj∩pix.

It is easy to see that a cycle must intersect yx. Traverse segment yx through

the visibility-based decomposition of H-Vor(SQ), starting at y, until a point

equidistant from pi and SQ (i.e., the starting point of a cycle) is encountered.

End

Algorithm 2 – Identify a cycle (or a pair of cycles) of type 2.

Let yiyj ∈ H-Vorσ(S) be an intra-bisector segment of type 2. That is, yiyj is

induced by pi, pj ∈ P , yi ∈ hreg(Qi), yj ∈ hreg(Qj), where Qi, Qj ∈ SQ, Qi is

rear limiting or crossing with pipj , and Qj is forward limiting or crossing with

pipj . Furthermore, Qi 6= Qj , df(yi, Qj) > df(yj , P ), and df(yj , Qi) > df(yj , P ).

Segment yiyj is assumed to be oriented from yi to yj , where yi is the ancestor

of yj in T (P ) (i.e., df(yi, P ) < df(yj , P )). Let yk be the first intersection of yiyj

with a cycle τ of σ(Sl, Sr) (if any). Determine yk as follows:

• Let y′k ∈ yiyj be a point equidistant from P and Qi (i.e., y′k = bf(P, Qi)∩

yiyj). Since df(yj , Qi) > df(yj , P ) and df(yi, Qi) < df(yi, P ), such a point

must exist and no cycle can intersect yiy
′
k. To determine y′k we simply tra-

verse yiyj against f-Vor(Qi). To bound the time complexity, the traversal

starts at yj and not at yi (see Lemma 12 and Ref. [13]). Segment yiy
′
k is

now known to be in H-Vor∗(S).

• Locate y′k in H-Vor(SQ) and let qk ∈ Qk be the owner of y′k. If Qk = Qi

then clearly yk = y′k. Otherwise proceed as follows:

– If y′kyj satisfies the conditions of item 3 of Lemma 10 then there can

be no cycle intersecting y′kyj . The entire yiyj must be in H-Vor∗(S).

– Else the conditions of item 4 of Lemma 10 must be satisfied. Repeat

the algorithm for segment y′kyj .

If yk exists, let yr denote the next intersection of yiyj with a cycle (see Fig-

ure 16). By Lemma 10, yr is either the second intersection of τ with yiyj (see

Figure 16(b)) or yr is the intersection of yiyj with a cycle τ ′ that forms a nested

pair with τ (see Figure 16(a)(c)). Point yr can be easily identified either as the

second point of intersection of τ with yiyj in the case of Figure 16(b), or by ap-

plying Algorithm 1 on the type 1 segment ykyj in the case of Figures 16(a),(c).

End

Let’s now discuss the entire algorithm to identify the cycles of σ(Sl, Sr). For clar-

ity, subdivisions H-Vorσ(S) and H-Vor∗σ(S) are assumed to be explicitly maintained

throughout the algorithm and be augmented with their visibility-based decompo-

sition. Alternatively, the computation of H-Vorσ(S) could be delayed for the end

after all components of σ(Sl, Sr) were computed. In that case, H-Vorσ(S) and H-

Vor∗σ(S) could be maintained implicitly by augmenting H-Vor(Sl) and H-Vor(Sr)

with the mixed Voronoi vertices of the components of σ(Sl, Sr) computed so far.

For clarity, in the following we explicitly maintain H-Vorσ(S) and H-Vor∗σ(S) as

there is no loss in time complexity. At the end, H-Vorσ(S) is readily available and
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H-Vor∗σ(S) can be immediately discarded.

To identify cycles we simply traverse subdivision H-Vor∗σ(S) and make use of

Lemma 10 to characterize intra-bisector segments as type 1, type 2, or mark them

as permanently residing in H-Vor∗(S). In particular, H-Vor∗σ(S) consists of two

types of edges: those that are known to be in H-Vor∗(S) and need not be consid-

ered again, and those that have not been determined yet i.e., those that may be

enclosed in a new cycle of σ(Sl, Sr). Any edge that is known to be in H-Vor∗(S)

gets marked as such. Otherwise it remains unmarked. Initially, all components of

σ(Sl, Sr) computed so far as well as all bisectors involving shapes of S − SL can

safely be marked as being in H-Vor∗(S). The traversal of H-Vor∗σ(S) can start at

any region adjacent to a marked edge or vertex. If σ(Sl, Sr) consists of at least

one unbounded component, there must be a number of marked edges in the begin-

ning of the traversal. Otherwise, as indicated by Lemma 4, H-Vor(Sl) is used to

initialize H-Vor∗σ(S) and all its unbounded portions can be marked. The traversal

proceeds by visiting regions neighboring an already marked edge. When a region is

visited, the intra-bisector segments of that region get traversed, and get character-

ized as type 1, or type 2, or as being part of H-Vor∗(S), by using Lemma 10 and

performing point location of their endpoints in the opposite diagram. Algorithm 1

or Algorithm 2 is then applied to identify cycles. During this process, new edges

of H-Vor∗σ(S) get marked as part of H-Vor∗(S) and the traversal continues until

there are no more edges in H-Vor∗σ(S) left unmarked. Every time a new cycle is

identified, the cycle gets traversed as shown in Section 4 and both subdivisions H-

Vor∗σ(S) and H-Vorσ(S) get updated by exchanging regions enclosed in that cycle.

When all edges in H-Vor∗σ(S) get marked the search for cycles ends and H-Vor∗(S)

can be discarded. Note that once the intra-bisectors of a region have been marked

as being in H-Vor∗(S) the entire region can also be marked as such. Note also

that it is enough to search H-Vor∗σ(S) for cycles as, by Lemma 2, any new cycle of

σ(Sl, Sr) must enclose at least one intra-bisector segment of H-Vor∗σ(S). In detail

the algorithm is as follows:

Algorithm 3 – Determine the cycles of σ(Sl, Sr).

Let hreg ′(pi) be an (unmarked) region of pi ∈ P ∈ SL in H-Vor∗σ(S), neighbor-

ing a marked bisector segment vivj . Let yiyj be the intra-bisector segment of

hreg ′(pi) intersected by pivi and let yiyj be a portion of b(pi, pj). Segment yiyj

is readily available from the visibility-based decomposition of hreg ′(pi). Note

that yi or yj may be identical to vi or vj respectively. Do the following:

(1) Locate yi and yj in H-Vor(SQ), if yi, yj have not already been located or

marked. Let qi ∈ Qi and qj ∈ Qj be the owners of yi and yj respectively

in H-Vor(SQ). If d(yi, qi) < d(yi, pi) (resp. d(yj , qj) < d(yj , pi)), mark yi

(resp. yj) to be in H-Vor∗(S).

(2) If the conditions of item 3 of Lemma 10 are met, mark the entire yiyj

as being part H-Vor∗(S). Mark also all inter-bisectors of hreg ′(pi) and

hreg ′(pj) forming quasi-triangles with yiyj .
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(3) If yiyj is of type 1, apply Algorithm 1 to determine the starting point of

a cycle τ intersecting or entirely enclosing yiyj . Pass vertex vi or vj to

Algorithm 1 as a vertex on the boundary of hreg ′(pi) that has already

been marked. Go to step 5 to trace τ and update the diagrams.

(4) If yiyj is of type 2, apply Algorithm 2 to determine the first intersection

point yk of a cycle τ on yiyj . If no cycle exists mark the entire yiyj as being

part of H-Vor∗(S). Otherwise mark yiyk (assuming that yi is an ancestor

of yj in T (P )). Mark also all inter-bisectors of hreg ′(pi) and hreg ′(pj)

forming quasi-triangles with yiyk.

(5) Trace cycle τ (or the nested pair of cycles τ and τ ′ in case of Algorithm 2)

as described in Section 4. For every quasi-triangle ∆ intersected by τ mark

the portion of the inter-bisector segment remaining at the opposite side

of τ as being in H-Vor∗(S).

(6) Update H-Vorσ(S) and H-Vor∗σ(S) by adding the cycle τ (or the nested

pair of cycles (τ, τ ′)), and exchanging the regions enclosed by τ (or pair

(τ, τ ′)) between H-Vorσ(S) and H-Vor∗σ(S). Note that only regions in both

diagrams intersected by τ (or pair (τ, τ ′)) need to be visited to perform

the update. The actual update can be done as follows using standard

operations of planar subdivision data-structures (see e.g. Refs. [4, 7]):

For any quasi-triangle ∆ intersected by τ , split ∆ in finer quasi-triangles to

include all vertices of τ so that there is at least one quasi-triangle in each

subdivision for every segment of τ . For every pair of quasi-triangles, one

in H-Vor∗σ(S) and one in H-Vorσ(S), intersected by a segment of τ split

them along τ and produce four new faces: two quasi-triangles that join

H-Vorσ(S) and the two remaining portions that join H-Vor∗σ(S). The two

remaining portions that join H-Vor∗σ(S) can directly be marked as being

in H-Vor∗(S) as they contain no intra-bisectors. Update the adjacencies

between the four produced faces to complete the update. Clean-up by

merging into one any two neighboring quasi-triangles that after the update

border the same inter-bisector segment. Figure 17 illustrates the splitting

and the updating of a quasi-triangle by two examples of τ .

(7) While there are still unmarked edges in H-Vor∗σ(S) proceed to a region

neighboring an already marked edge and repeat the process.

End

In the following we bound the time complexity of the above algorithm.

Lemma 11. The total time spent to compute starting points for cycles of σ(Sl, Sr)

of type 1, throughout the entire algorithm, is O(n log n + m), plus an additional

O((n log n) + m) log n)-time for point location.

Proof. Let yiyj ∈ H-Vor∗σ(S) be an intra-bisector segment of type 1 considered

by Algorithm 1. To determine the starting point of a cycle, segment yiyj is traversed

through the visibility based decomposition of H-Vor(SQ). Let v be a vertex of
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Fig. 17. Two examples of splitting of a quasi-triangle ∆ intersected by τ into three new quasi-
triangles bounding τ .

hreg ′(qi) ∈ H-Vor(SQ) considered during the traversal of yiyj . We claim that unless

a cycle is determined when v is considered, v can never be considered again during

the search for some other cycle of type 1 within this or any other merge step of the

divide and conquer algorithm. This can be shown as follows: When v is considered,

either a starting point on yiyj of a cycle is detected, or the point y = qiv ∩ yiyj

is determined to be in hreg(P ). Thus, v ∈ H-Vor∗(S) and v must be enclosed in

the cycle τ that will be determined by Algorithm 1. Suppose v is considered again

by Algorithm 1 while considering a different intra-bisector segment y′iy
′
j ∈ T (P ′)

during the search for another cycle τ ′ of type 1. Then v must also be enclosed in

τ ′ and point y′ = qiv ∩ y′iy
′
j must be in hreg(P ′). As a result, cycles τ and τ ′ must

be enclosed within one another and the inner one must intersect segment yy′. But

then a portion of segment qiv between y and y′ must remain in hreg(qi) which is

impossible by Property 2.

Thus, the number of vertices considered during the search for cycles of type 1 is

upper bounded by the total number of vertices appearing in H-Vor(S) throughout

the algorithm, plus the total number of cycles of type 1 discovered throughout

the algorithm. But by Theorem 1, the number of Voronoi vertices in H-Vor(S)

during one merge step of the divide and conquer algorithm, excluding crossing

mixed vertices, is O(n), and thus O(n log n) throughout the divide and conquer

algorithm. Since any Voronoi vertex can be generated only once, the total number

of crossing mixed Voronoi vertices that get generated throughout the algorithm

can not exceed m. Thus the total number of vertices ever appearing in H-Vor(S)

throughout the algorithm is O(n log n + m). Similarly the total number of cycles

generated throughout the algorithm can not exceed O(n log n + m).

For every intra-bisector segment of type 1 that gets considered, point location of

its endpoints is performed in H-Vor(SQ) to determine its type. The number of point

locations performed for identifying cycles of type 1 is upper bounded by the number

of intra- and mixed Voronoi vertices in H-Vor∗σ(S). Following the same argument

as above the total number of vertices ever appearing in H-Vor∗σ(S) throughout the

algorithm is O(n log n+m). Since point location can be performed in O(log n) time
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the bound is derived.

Definition 12. A point q ∈ CH(Q), Q ∈ S is called interacting with P ∈ S if q is

enclosed in the minimum enclosing circle of P , and either Q is entirely enclosed in

the minimum enclosing circle of P or Q is crossing with P . Shape Q is also called

interacting with P . The number of points interacting with P is denoted by M(P ).

The number of shapes entirely enclosed within the minimum enclosing circle of P

is denoted by K(P ). Let M = ΣP∈SM(P ) and K = ΣP∈SK(P ).

Lemma 12. The total time spent to compute starting points for cycles of σ(Sl, Sr)

of type 2, throughout the entire algorithm, is O(M +m+n log n) plus an additional

O((K +(n log n)+m) log n) time for point location, where M and K are as defined

in Definition 12.

Proof. Similarly to Lemma 11, a total O(n log n+m) time is spent throughout

the divide and conquer algorithm to simply traverse H-Vor∗σ(S) searching for cycles.

In addition, to determine starting points of cycles of type 2, Algorithm 2 generates

additional mixed vertices that need not be part of H-Vor∗σ(S) nor H-Vorσ(S). Let

yiyj be an intra-bisector segment of type 2 under consideration by Algorithm 2

such that yiyj ∈ b(pi, pj), pi, pj ∈ P , and yi is an ancestor of yj in T (P ). Let y′k
be a mixed vertex generated by Algorithm 2 on yiyj induced by Qi ∈ SQ. Since

P and Qi are at opposite sides of the dividing line, pair (P, Qi) can be considered

with respect to only one dividing line. Furthermore, P and Qi can have at most

one equidistant point along the same intra-bisector segment yiyj . Thus, y′k can be

generated once throughout the algorithm. Hence, the number of additional crossing

mixed vertices ever generated by Algorithm 2 cannot exceed O(m). Suppose now

that y′k is non-crossing. Then Qi must be rear limiting with respect to yi ∈ yiyj .

But then by Property 6, Qi must be enclosed in the minimum enclosing circle of

P . Furthermore, by Lemma 2 (see also Ref. [ 13]), Qi can induce at most one rear

non-crossing mixed vertex on T (P ). Thus, the number of additional non-crossing

vertices generated on T (P ) by Algorithm 2 throughout the divide and conquer

construction can not exceed K(P ). Hence, the total number of additional mixed

vertices generated by Algorithm 2 throughout all merge steps is O(m + K).

Let’s now derive the total time needed to generate those additional mixed ver-

tices. As shown above, Qi is either crossing pipj or Qi must be entirely contained

in the minimum enclosing circle of P . Thus, Qi must be interacting with P . Vertex

y′k can be clearly determined in O(|CH(Qi)|) time by walking on yiyj and con-

sidering intersections with f-Vor(Qi), until y′k is determined. If y′k is non-crossing

then, as shown above, CH(Qi) is enclosed in the minimum enclosing circle of P

and Qi is considered only once with respect to T (P ). But if y′k is crossing, Qi may

be considered a number of times during the search for different cycles of type 2

intersecting T (P ). However, we claim that any qr ∈ Qi visited while determining

y′k can not be considered again, and qr must be enclosed in the minimum enclosing

circle of P . This was basically shown in Lemma 9 of Ref. [13] and it is repeated
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here for completeness. Assuming that this claim is true, the total time to compute

any mixed vertex induced by Qi on T (P ) during the search for a cycle of type 2

is O(|CH(Qi) ∩K0(P )|), where K0(P ) denotes the minimum enclosing circle of P .

As a result, and since pair (P, Qi) can be considered with respect to a single di-

viding line, the total time to generate the additional mixed vertices of Algorithm 2

on T (P ) is O(M(P )). Thus, the total time for the generation of additional mixed

vertices spent by Algorithm 2 is O(M).

We now prove the claim that any qr ∈ Qi visited while determining y′k can only

be considered once, furthermore, qr ∈ K0(P ) (see also Lemma 9 of Ref. [13]). Recall

that in Algorithm 2 the traversal of yiyj over f-Vor(Qi) starts at yj and that the

entire segment y′kyj is closer to P than Qi. Thus, the owner qr of any y ∈ y′kyj

in f-Vor(Qi) must have the property that qr 6∈ Ky (with the exception of y′k) and

qr ∈ Kyi
. Since Kf

yi
⊂ Ky, for any y ∈ y′kyj (see the proof of Lemma 2), we conclude

that qr ∈ Kr
yi

while qr 6∈ Kyj
. Thus, qr 6∈ Kr

y for any y ∈ T (yj), as Kr
yj
⊂ Kr

y (see

Lemma 1 of Ref. [13]). In addition, for any y ∈ Tc(yi) that is not an ancestor of yi,

Kr
yi
⊂ Kf

y (see Lemma 1 of Ref. [13]), and thus qr ∈ Kf
y , i.e., qr 6∈ Kr

y. Hence, qr can

not be considered again with respect to any other intra-bisector segment of T (P ).

Furthermore, since qr ∈ Kr
yi

, by Property 6, qr must be enclosed in the minimum

enclosing circle of P . The claim is now shown.

For every mixed vertex generated by Algorithm 2, point location in H-Vor(SQ)

is performed, thus, O((m + K) log n) time is attributed to point location of the

additional vertices. In addition, point location is performed for the endpoints of

yiyj in order for algorithm 2 to be invoked. Following the same reasoning as in

Lemma 11 this requires an additional O((n log n + m) log n) time.

The following lemma illustrates how to determine whether a shape Q is limiting

or crossing with respect to a a chord pipj ∈ P .

Lemma 13. Let P, Q ∈ S such that Q is entirely enclosed in a P -circle through

pi, pj ∈ P and qi ∈ Q. Whether Q is limiting or crossing with pipj can be determined

in O(log n) time.

Proof. We first need to determine whether there is a vertex qj ∈ Q, at opposite

side of pipj as qi, i.e., if pipj crosses Q. This can be done in O(log |Q|) time. If there

is no intersection, Q is limiting. If so, we need to check whether qi 6∈ CH(P ) or

whether there exists a qj at the opposite side of pipj as qi such that qj 6∈ CH(P ).

This can be done as follows: Shoot from pi and pj the supporting rays to CH(Q).

This can be done by binary search on CH(Q) in logarithmic time. Let Cp be the

chain of CH(P ) between pi and pj at opposite side of qi. Let Cq be the chain of

CH(Q), including the supporting segments, between pi and pj at opposite side of

qi. In Figure 18, Cp is shown in bold and the supporting segments from pi, pj to

CH(Q) are shown dashed. We need to determine whether Cp and Cq , two convex

chains with the same endpoints, intersect. This can be done in logarithmic time
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Fig. 18. The proof of Lemma 13.

using binary search. The same is then done for the other side of pipj to check if

qi 6∈ CH(P ).

Theorem 3. The Hausdorff Voronoi diagram of S can be computed by divide and

conquer in time O(M + n log2 n + (m + K) log n), where n is the number of points

on the convex hulls of input shapes, O(n+m) is the worst case bound on the size of

H-Vor(S) given in Theorem 1 and Ref. [13], M = ΣP∈SM(P ), K = ΣP∈SK(P ),

where M(P ) is the number of vertices in the minimum enclosing circle of P inter-

acting with P , and K(P ) is the number of shapes enclosed in the minimum enclosing

circle of P (see Def. 12). An O(|S| log n) preprocessing to identify the convex hulls

of input shapes is assumed.

Proof. The time complexity in the merge step of the divide and conquer scheme

is dominated by the time to compute starting points for the cycles of σ(Sl, Sr).

Recall that starting points on the unbounded portions of σ(Sl, Sr) can be computed

in O(n)-time by the use of the H-hull as shown in Theorem 2. Recall also that the

actual tracing of the components of σ(Sl, Sr) can be done in O(n + m) time as a

consequence of Lemma 5. Furthermore, by Lemma 5, any vertex of H-Vorσ(S) and

H-Vor∗σ(S) visited during the tracing of a component of σ(Sl, Sr) will not be visited

again during the tracing of another component of σ(Sl, Sr). Thus the total time

spent on the tracing of merge curves throughout the divide and conquer algorithm

cannot exceed the total number of vertices ever appearing in H-Vor∗σ(S) or H-

Vorσ(S). But this number was shown in Lemma 11 to be O(n log n+m). Similarly,

the update of H-Vorσ(S) and H-Vor∗σ(S) can be done in total O(n log n + m) time

throughout the algorithm as the actual splitting of a quasi-triangle by a segment

requires only constant time. Checking whether a shape is crossing with respect to

chord can be done in O(log n) time as shown in Lemma 13. Thus, the total time

complexity of the algorithm is derived by Lemma 11 and Lemma 12. The correctness

of the algorithm follows from Lemma 10, the proof of Lemma 11, and the proof of

Lemma 12.

In the case of non-crossing shapes, SL consists only of shapes in Sl intersecting

the dividing line L and SL is easy to identify. Thus, point location needs only be

performed for shapes in SL. Since there are no crossing shapes the time complexity
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simplifies to O(M+(n+N+K) log n), where N denotes the total number of vertices

of the convex hulls in SL. Asymptotically N remains O(n log n).

5. Conclusion

In this paper we have formulated the Hausdorff Voronoi diagram of a set S of

polygonal objects in the plane and investigated its structural and combinatorial

properties. Our study of this type of diagram was motivated by the critical area

computation problem for via-blocks in VLSI designs. We have presented a divide and

conquer algorithm for the construction of this diagram improving upon previous

results. In particular, we have shown that the size of the Hausdorff Voronoi diagram

is O(n + m), where n is the number of points on the convex hulls of the polygons

in S, and m is the total number of crossing mixed vertices on the inter-bisectors

between pairs of crossing shapes. The term m is O(n2) in the worst case, and reflects

the number of crossings among shapes in S. This bound has since been refined and

shown to be tight in a companion paper.13 For a non-crossing set S, Hausdorff

Voronoi regions remain connected and the size of the diagram has been shown to

be O(n). The time complexity of our algorithm is O(M +n log2 n+(m+K) logn),

where M = ΣP∈SM(P ), K = ΣP∈SK(P ), M(P ) is the number of vertices in the

minimum enclosing circle of P interacting with P , and K(P ) is the number of

shapes enclosed in the minimum enclosing circle of P (see Def. 12). We have also

introduced the Hausdorff-hull, a structure that relates to the Hausdorff Voronoi

diagram in the same way as an ordinary convex hull relates to the ordinary Voronoi

diagram. Whether the terms M, K, and n log2 n can be eliminated from the time

complexity remains an open problem even in the case of non-crossing polygonal

objects.
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