
Converting a Rotation Matrix to a Quaternion

Mike Day, Insomniac Games
mday@insomniacgames.com

This article attempts to improve upon an existing method for extracting a unit quaternion from a
rotation matrix.

Summary of the problem

We will use as our starting point the following correspondence. (The reader is referred to
http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation for some background on how this
correspondence arises.)

Suppose we are given a unit quaternion , where is the real part. Then the rotation
matrix corresponding to takes the following form:

 (

)

(Note that here we adopt the convention of expressing vectors as rows, so that a vector is rotated by
post-multiplying it by a rotation matrix. This convention is opposite to the one used in the Wikipedia
article, so the matrix will appear transposed. This is done to ensure consistency with what seems to be
the most frequently-used form of the prior conversion code.)

The problem can now be stated as follows. Suppose we are given the values of the elements of the
rotation matrix :

 (

)

Then our task is to recover the components of the corresponding quaternion .

Equating the above two forms of the matrix, consider the following four expressions:

mailto:mday@insomniacgames.com
http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation

We can see that by forming a quaternion out of these 4 components in the order given we will generate
 . We have almost recovered the desired quaternion , but it has been scaled by a
factor , and we wish to remove this factor. One option would be to simply normalize the result, which
would require generating the reciprocal length. A cheaper option is to simply generate the reciprocal of
 | from the known value of :

 √

We can then scale all components by this factor.

This process immediately raises the question, what happens if ? Then all four expressions will
evaluate to zero, leading to a nonsense result. Even if the expressions are not actually zero but small in
magnitude, then they may have suffered catastrophic cancellation which can lead to an unstable result.

We can solve this problem via the following observation. One thing we can definitely say about a unit
quaternion is that there will always exist at least one component which is not close to zero – indeed
there must exist a component whose magnitude is at least . The expressions we used generated a
quaternion which had been scaled by . But there are other similar forms available which lead to
scaling factors of , , and . If we are prepared to branch in one of four ways, we can always pick a
branch where numerical instability is not an issue. Indeed this is the rationale behind the commonly
used conversion code.

Previous code

A web-search turns up a fairly standard piece of code, with minor variations here and there, which can
be paraphrased as follows:

 trace = m00 + m11 + m22;

 if (trace > 0.0f)

 {

 k = 0.5f / sqrt(1.0f + trace);

 q = quat(k * (m12 - m21), k * (m20 - m02), k * (m01 - m10), 0.25f / k);

 }

 else if ((m00 > m11) && (m00 > m22))

 {

 k = 0.5f / sqrt(1.0f + m00 - m11 - m22);

 q = quat(0.25f / k, k * (m10 + m01), k * (m20 + m02), k * (m12 - m21));

 }

 else if (m11 > m22)

 {

 k = 0.5f / sqrt(1.0f + m11 - m00 - m22);

 q = quat(k * (m10 + m01), 0.25f / k, k * (m21 + m12), k * (m20 - m02));

 }

 else

 {

 k = 0.5f / sqrt(1.0f + m22 - m00 - m11);

 q = quat(k * (m20 + m02), k * (m21 + m12), 0.25f / k, k * (m01 - m10));

 }

This seems to be less than ideal in a few ways:

1. It computes the sum upfront, but throws it away in three out of the four
cases.

2. There is an asymmetrical treatment of the 4 components: the first path is taken if

, but if

this condition fails then it will pick the path corresponding to the largest of .
3. A divide is always performed for one component.

New treatment

We shall look at how to address these objections. First, we ask: when is each of the diagonal elements
negative?

But we also have because is a unit quaternion. So, for example, is
negative when and together contribute more than half the magnitude of the quaternion, which is
enough to ensure that either or is big enough to avoid numerical instability; we just need a test to
determine which one. (Quite likely both are, but we need a guarantee.)

Now consider the pairwise differences of diagonal elements:

And finally the pairwise sums:

Thus, for any specific choice of two components, we can determine which one is greater in magnitude
just by comparing one particular diagonal element with another, or with its negative. For example,

Revised framework

Together, these observations suggest a divide-and-conquer strategy to select one of the four code
paths. Furthermore, the selection can be made solely by comparing diagonal elements with each other
(possibly after a negation) and with zero. Here is one possibility for implementing such a strategy:

 if (m22 < 0) // is |(x,y)| bigger than |(z,w)|?

 {

 if (m00 > m11) // is |x| bigger than |y|?

 // use x-form

 else

 // use y-form

 }

 else

 {

 if (m00 < -m11) // is |z| bigger than |w|?

 // use z-form

 else

 // use w-form

 }

This framework addresses the criticism over the lack of symmetry in the code. Also, since we are no
longer required to compute the trace of the matrix upfront, we will not be throwing away the computed
value – the trace will only be computed in one out of the four branches (the ‘w-form’ one). In each of
the other three branches the corresponding expression needed by just that branch will be computed.

Finally, the objection about the use of a divide operation can be addressed as follows. The original code
computes

 k = 0.5f / sqrt(t);

for each branch, where is some sum of terms, and then sets one component equal to (It is the
second of these divisions we are concerned with; the first is a reciprocal-square-root operation which is
normally performed directly without the use of a divide.) But note that

 √

 √

Thus the divide is replaced with a multiply. It is possible that the compiler may perform this
optimization, but this way we can ensure it.

New version

The revised code becomes:

 if (m22 < 0)

 {

 if (m00 > m11)

 {

 t = 1 + m00 - m11 - m22;

 q = quat(t, m01+m10, m20+m02, m12-m21);

 }

 else

 {

 t = 1 - m00 + m11 - m22;

 q = quat(m01+m10, t, m12+m21, m20-m02);

 }

 }

 else

 {

 if (m00 < -m11)

 {

 t = 1 - m00 - m11 + m22;

 q = quat(m20+m02, m12+m21, t, m01-m10);

 }

 else

 {

 t = 1 + m00 + m11 + m22;

 q = quat(m12-m21, m20-m02, m01-m10, t);

 }

 }

 q *= 0.5 / Sqrt(t);

