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Abstract--Simple relations are established between isotropic functions and anisotropic functions through 
some vectors or tensors which characterized the anisotropy group. The results enable us to obtain 
representations of anisotropic functions using the much well-known tables for representations of isotropic 
functions. Transverse isotropy. orthotropy and crystal classes of triclinic. monoclinic and rhombic systems 
are considered. 

I. INTRODUCTION 

REPRESENTATIONS of isotropic functions have been extensively investigated in the past decade. 
Results for both functional bases [ 1,2] and integrity bases [3,4] are usually given in tables 
convenient for use. In fact, they have become indispensible in obtaining constitutive equations 
for isotropic materials, since constitutive equations must satisfy a combined objectivity- 

symmetry condition which requires them to be isotropic functions. For anisotropic materials in 
many cases, similar tables for integrity bases have also been obtained[4-IO]. However they are 
mostly for scalar-valued functions only. Although representations for vector-valued and tensor- 
valued functions can be obtained from these tables, the procedure is usually very tedious. 

The idea of my approach is to prove some results which enable us to obtain representations 
for some anisotropic invariant functions using the tables for isotropic ones. The procedure, 
given here can employ tables for either functional bases or integrity bases to obtain the desired 
representations. 

Let R be the reals, V be a 3-dimensional Euclidean space and L(V) be the space of second 
order tensors on V. Let 

D = V” x L(V)” 

and 

I/I: D-+R 

h:D+V (1.1) 

S: D-+L(V). 

We say that $, h and S are inuariant relative to the group G C O(3) respectively, if for any 

v E V”. A E L(V)” and for any Q E G, we have 

rlr(Qvv QAQ’) = NV, A) 

h(Qv, QAQT) = Qh(v, A) (1.2) 

S(Qv, QAQ’) = QS(v, A)QT 

where O(3) is the full orthogonal group on V. We have used the following abbreviations: 

v = (u,, . . . , u,) 
(1.3) 

A = (A,, . , A,) 
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and 

Qv=(Qq,....Qc,) 

sQAQ’ = (QA,QT,. . QA,Qr) 
(1.41 

where 

Vi E V, Aj E L(V). 

The invariants are usually called isotropic functions if G = O(3). Their representations are 
well-known and widely available in the literature [ l-41. Based on these representations, we shall 
consider representations of inv~iants relative to some subgroups of O(3) in this paper. 

2,HEMITROPIC FUNCTIONS 

Let IJ be a vector and W be its associated skew symmetric tensor, write 

u=(W). 

If Q E SO(3), then it is easy to verify that 

Qu = (QWQ=), 

(2.1) 

f2.2) 

where SO(3) is the proper orthogonal group. 
We shall call the invariants relative to SO(3) the he&tropic functions. 
It is known that one can obtain representations of hemitropic functions by replacing vectors 

with their associated skew symmetric tensors. More specifically, we can state the following 
trivial theorems. 

Theorem 2.1. For any scalar-valued or tensor-valued functions t+b(v, A), define 

&W, A) = Jt(v, A), v = (W) (2.3) 

Then 4(v, A) is a hemitropic function if and only if I&W, A) is an isotropic function. 
Theorem 2.2. For any vector-valued function h(v, A), let H be the skew symmetric tensor- 

valued function, such that h = (H) and define 

&(W, A) = W(v, A), v = (W). (2.4) 

Then h(v, A) is a vector-valued hemitropic function if and only if @(W, A) is a skew symmetric 
tensor-valued isotropic function. 

Based on the above theorems, one can obtain representations for any hemitropic functions. 
For example, from the tables given by Wang[l, 21, one can easily construct irreducible 
functional bases for hemitropic functions. Therefore, we do not bother to present them here, 
although such tables seem to have not been given explicitly elsewhere. However, the cor- 
responding tables of integrity bases can be found in[4]. 

3,GENERAL CONSIDERATIONS FOR ANISOTROPIC INVARIANTS 

Many anisotropic materials possess structures which can be characterized by certain 
directions, lines or planes, more specificly, say characterized by some unit vectors ml,. . . , mar 
and some tensors &f,, . . +, Mb. Let g be the group which preserves these characteristics, i.e. 

g={QEG,Qm=m,QMQT=M} (3.1) 

where we have used similar notations introduced in (1.3) and (1.4) and G is a sub~oup of O(3). 
Obviously, not every anisotropy material can be specified by symmetry group of the type 

(3.1). However, many materials do, among them, transversely isotropic, orthotropic materials, 
and some classes of crystalline solids. We shall treat these materials in the subsequent sections, 
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Now we shall prove that if the symmetry group g is of the type (3.1), one can obtain 
representations of invariant functions relative to g in terms of invariant functions relative to G. 

Lemma. Let $, h, S be inuariants relatioe to g, and R, R’E G. If R’Rr E g, then 

r//(Rv, RARr) = $(R’v, R’ARIT) 

RTh(Rv, RART) = R’rh(R’v, R’AR”‘) 

RTS(Rv, RARr)R = RfTS(R’v, R’ARIT)R’. 

(3.2) 

Proof. The proof is easy. For vector-valued function h, we have, since Q = R’Rr E g, 

h(R’v, R’ARfl‘) = h(R’RTRv, R’RrRARTRR’r) 

= h(QRv, QRARTQT) 

= Qh(Rv. RART) 

which gives (3.$ The proof for scalar-valued and tensor-valued functions are simi1ar.l 
Let M = {(Qm, QMQ’), VQ E G} and suppose that $, h and S are invariants relative to g, 

then we can define on D x A4 the following functions 4, h^ and S, 

&v. A, p, P) = $(Rv, RART) 

h^(v, A, p, P) = R ‘h(Rv, RAR’) 

S(v, A, p, P) = RrS(Rv, RARr)R 

(3.3) 

for any (v, A) E D, (p, P) E M and where R E G, is such that 

Rp=m, RPRT =M. (3.4) 

Clearly R is not uniquely determined by the condition (3.4) in general. However, if R’E G 
and satisfies 

R’p = m, R’PR” = M, (3.5) 

then it follows that R’RT E g, since 

R’RTm = R’(RTm) = R’p = m, 

R’RTMRRtT = R’(RTMR)RfT = R’PRIT = M. 
(3.6) 

Therefore, the lemma justifies the above definition (3.3). 
We have the following representation theorem: 
Theorem 3.1. A function f is intlariant relative to g if and only if it can be represent by 

f(v, A) = fCv, A, m, Ml (3.7) 

where f is invariant relative to G. 
In the above theorem, the function f stands for either 4, h or S, i.e. it is either scalar-valued, 

vector-valued or tensor-valued. 
Proof. We shall prove for vector-valued function only. The proof for scalar-valued and 

tensor-valued functions are similar. 
To prove the necessity, since (3.7) follows directly from the definition (3.3), we need only to 

show that 6 is invariant relative to G. i.e. 

f'i(Qv, QAQ’, Qp, QPQ’) = Qh(v, A, P, P), ‘jQ E G. (3.8) 



I IO! I-SHIH I.II’ 

For any Q E G, let R E G be such that 

R(Qp) = m. R(QPQ’)R r = M 

then we have by definition 

h^(Qv, QAQ’, Qp, QpQ“, = R”h(RQv, RQAQ’R’ 1. 

Let 

Then (3.9) implies that 

R’=RQ 

(3.Y) 

(3.10) 

(3.11) 

R’p=m, R’PRtT=M 

and hence, by (3.3)* 

h(R’v, R’AR”‘) = RV’i(v, A, p, P). 

Therefore (3.10) becomes 

h^(Qv, QAQ’, QP, QPQ ‘I= RTR’k A, P, P) 

which proves (3.8) by the use of (3.11). 
To prove the sufficiency, let @ E g. Since g C G, and h^ is invariant relative to G, (3.7) implies 

that 

h(Qv, QAQ’) = h(Qv, QAQ’, m, Ml 

= h^(Qv, QAQ“, QQTm, QQ’rMQQ’) (3.12) 

= Q&(v, A, QTm, Q’MQ). 

Since Q E g, we have 

Qm=m, QMQ’=M. 

Therefore 

h^(v, A, QTm, QTMQ) = h^(v, A, m, M) = h(v, A) 

which together with (3.12) show that 

MQv, QAQ’) = QMv, A), VQ E g. 

This completes the proof for vector-valued functions.1 
In the following sections, we shall consider several anisotropic groups which can be 

characterized by (3.1) with the group G being either O(3) or SO(3) and hence invariants can be 
represented as either isotropic or hemitropic functions respectively. 

4. TRANSVERSELY ISOTROPIC FUNCTIONS 

Transverse isotropy is characterized by a preferred direction. Its symmetry groups can be 
classified into the following five classes+ 

tThese classes are equivalent to the classes defined in Section 1.4 of[4]. 
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g, = {Q E SO(3), Qn = nl 

gz = IQ E O(3), Qn = nl 

g,={QEWLQEg, or -QEgJ 

g, = {Q E SO(3), Qn = n or Qn = -n} 

g<={Q~0(3),Qn=n orQn=-n} 

1103 

(4.1) 

where the unit vector n is the preferred direction. The smallest group g,, in which only 
rotations about n are allowed, is sometimes said to characterize rotational symmetry. The 
largest group g,, which contains all the other classes, is seem to be most suitable to characterize 
transverse isotropy of materials with uniaxial fibred or laminated structures. However, in the 
literature of representation theorems for transverse isotropy[4-71 the group mostly considered 
is gz. Here we shall give representations for all the five classes. 

We shall call the invariants relative to these groups the transversely isotropic functions. 
To apply the theorem of the previous section, we have to characterize the symmetry groups 

in the form of (3.1). Except gl and gZ which are already in the desired form, we need the 
following lemmas. 

Lemma 4.1. Let N be the skew-symmmetric tensor associated with the unit vector n, i.e. 
n = (N). If Q E O(3), then Q satisfies 

QNQ'= N (4.2) 

if and only if Q E g,. 
Proof. Let {n,, nz, n3} be an orthonormal basis such that n, = n. Then we have 

N=nz@n?-n,@nz. (4.3) 

Relative to this basis, one can easily show by direct computation that (4.2) holds if and only 
if Q takes the following form 

Q=[‘; ;o(i; -it;] VO. (4.4) 

In other words, if Q E SO(3) then Qn = n, and if -Q E SO(3) then Qn = -n. That is, we have 

either Q E g, or -Q E g,.W 
Lemma 4.2. lf Q E SO(3) (respectively O(3)), then Q satisfies 

Q(n 63 n)QT = n C3 n (4.5) 

if and only if Q E g, (respectively g5). 
Proof. rt@ n is a symmetric tensor and its characteristic space is the line of the vector n. 

Therefore, by a well-known theorem in linear algebra, Q commutes with n @I n if and only if Q 
preserves the line of n, i.e. Qn = n or Qn = -n.l 
Now, by the theorem (3.1), we have the following results: 

A transversely isotropic function f(v, A) can be represented by 

(i) relative to g, 

where f is a hemitropic function. 
(ii) relative to g, 

where f is an isotropic function. 
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f (v, A) = f(v, A, n), 

f(v. A) = f(v, A, n), 
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(iii) relative to g7 

f(v, A) = f(v, A, N), 07 = n, 

where f^ is an isotropic function. 
(iv) relative to g4 

f(v, A) = r*(v, A, n @ n), 

where f is a hemitropic function. 
(v) relative to g5 

f(v, A) = f(v, A, n @I n), 

where p is an isotropic function. 

5. ORTHOTROPIC FUNCTIONS 

Orthotropic symmetry is characterized by reflections on three mutually perpendicular 
planes. Let their unit normals be denoted by an orthonormal set {n,, n2, n3}, then the orthotropy 
group can be defined by 

g6 = {Q E o(3), Qni = ni or Qni = -ni, i = 1,2,3}. (5.1) 

In other words, Q E g6 if and only if relative to the basis {n,, nz, n3} the matrix of Q has the 
diagonal form 

(5.2) 

where the ? signs are not related in anyway. 
We shall call the invariants relative to the orthotropy group the orthotropic functions. 
Lemma 5.1. If Q E O(3) then Q satisfies 

Qnl @ nlQT = nl@ nl, 

Qn2 @ eQT = n? @ n2, 
(5.3) 

if and only if Q belongs to the orthotropy group g6. 
Proof. Q commutes with nl @I nl and n2@ n2 if and only if Q preserves lines of nl and nz, 

i.e. 

Qni = ni, Qni = -ni, i = 1,2. (5.4) 

However, (5.4) is also valid for i = 3 since Q E 0(3).M 
Therefore, we have the following result: 
An orthotropic function f(v, A) can be represented by 

f(v, A) = fCv, A, nl@ nl, n2@ n2), (5.5) 

where f is an isotropic function. 
Clearly nl @ n, + n2 @I n2 + n3 @I n3 = 1, therefore, although one can see from the proof 

of the lemma (5.1) that n3 @ n3 can be included in the variables of f, it is a redundant variable. 

6. SOME CRYSTAL CLASSES 

Besides the transverse isotropy and orthotropy groups, some crystal classes can also be 
described by groups of the type (3.1) 

g={QEG,Qm=m,QMQT=M} 

for a distinguished set of unit vectors m and symmetric or skew symmetric tensors M. 
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In other words g is characterized by the set {m, M} and the group G C O(3). Therefore, let 
us denote g simply by 

g=(G;m,M). (6.1) 

In the following we shall give a list of such groups including the transverse isotropy groups, 
orthotropy group and some crystal classes. This list does not mean to be exhaustive. Let 
{n,, n2, n3} be an orthonormal set, and Ni be the skew symmetric tensor associated with ni, i.e. 
(N,) = ni. The definitions of the groups of crystal classes can be found in Section 1.4 of [4]. 

(i) Transverse isotropy (see (4.1)) 

g, = (SO(3); n,) 

= (O(3); no, NJ 

g2 = (O(3); n,). 

g, = (O(3); N,) 

g4= (W3); nl@ nd 

g5 = (O(3); nl@ nd. 

(ii) Orthotropy (see (5.1)) 

(iii) Triclinic system 
Predial class 

g7 = (O(3); nl, n2, nd. 

Pinacoidal class 

g, = (O(3); N,, N,). 

(iv) Monoclinic system 
Domatic class 

g9 = (O(3); n2, nd 

Sphenoidal class 

glo = (O(3); nl, nz 8 nz, NJ 

= (SO(3k n2 @I n2, Nd. 

Prismatic class 

gll= (O(3); n2@ nl, Nd. 

(v) Rhombic system 
Pyramidal class 

Disphenoidal class 

Dipyramidal class 

g12 = (O(3); nl, n2 @ n2). 

a3 = (SO(3); n2 @ n2, n3 @ n3). 

a4 = g6 = (O(3); n2 @ n2, n3 69 n3). 
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Some of the groups are given by two different characterizations. In general such charac- 
terizations need not be unique. The proof of the above list is almost obvious from the lemmas 
of the two previous sections. 

7,EXAMPLES ANDREMARKS 

The results in the previous sections enable us to obtain representations for some anisotropic 
invariant functions from the much well-known representation theorems for isotropic functions 
by simply adding a few variables which characterize the symmetry groups. In other words, a set 
of invariants or generators for such a function can easily be obtained from the tables for that of 
isotropic functions. It must be noted that the representation obtained in this manner is not 
necessarily irreducible because the added variables are fixed vectors or tensors. 

The following examples are based on the tables of Wang[l, 21, therefore, the bases obtained 
are functional bases. 

Example 1. Scalar invariant functions of one symmetric tensor variable A and one vector 
variable v relative to the transverse isotropy groups g2 and g,. 

(i) Relative to g?; it can be represented as an isotropic function of (u, A, n). A basis of 
invariant are given as follows 

tr A, tr A’, tr A’ 

L’. 21, u . Au, v. A%, 

n. n, n.An, n . A%, 

n. v, n . Au, n A’v 

(7.1) 

It is obvious that the above list is not an irreducible set. In fact, trivially n . n = 1, and one can 
show that v. A*v is a redundant element (although can not be regarded as trivial?), therefore 
they can be removed. 

(ii) Relative to g,; it can be represented as an isotropic function of (v . A, n @ n). A basis of 
invariants are given as follows 

tr A, tr A’, tr A3, 

v . v, u Au, 1:. A’v, 

tr(n @ n), tr(n @ n)‘, tr(n @ n)7, 

v. (n @ n)v, v. (n @ n)2v, 

tr A(n @I n), tr A2(n @ n), tr A(n @ n)2, tr A2(n @I n)’ 

Av. (n @ n)o. 

(7.2) 

It is obvious that the underlined elements in (7.2) can all be removed because tr n @ n = 1 
and (n @ n)* = n @ n. Therefore, we can rewrite the basis as 

trA, trA’, trA’, 

u . v, u AU, v A%, 

(t.. n)2, 
(7.3) 

n . An, n A’n, 

(v. n)(n. Av). 

From this example, we note that there are some trivial redundant elements which can be 

tSince v. A*u = tr A*(o @ u), and it can be reduced relative to the rest of the elements in (7.1) to essentially 
2-dimensional case. Moreover, it is known that in 2-dimensional case, the trace of the product of three symmetric tensors is 
reducible to the traces of lower products (see[4], Section 3.2). 
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removed by inspection, however removing all such trivial redundant elements still does not 
necessarily render irreducibility of such representations due to the constancy of the added 
variables. We shall make no attempt for irreducibility in general in this paper. 

Example 2. Incariant functions of one vector variable t’ relative to the transverse isotropy and 
orthotropy groups. 

(i) g,-represented as hemitropic functions of (II, n) 

Functions Invariants or generators 
scalar C.U, c.n 
vector c n, vxn 
sym. tensor 1: a@o, n@n, v@n+n@v, 

c@(rXn)+(vXn)@v, n@(nXv)+(nXv)@n. 

(ii) g2-represented as isotropic functions of (v, n) 

Functions Invariants or generators 
scalar v . c‘, c.n 

vector U, n 
sym.tensor 1, v@v, n@n, v@n+n@v. 

(iii) g?--represented as isotropic functions of (v, N), n = (N) 

Functions Invariants or generators 
scalar c. v, (L’. n)’ 
vector U v X n, (t.. n)n 
sym. tensor 1: OQU, n C3 n, (tl x n) @ (v x n), 

v @ (v x n) + (v X n) @ v, 
(~.n)(n@(nXv)+(nXv)@n). 

(iv) g,--represented as hemitropic function of (0, n @ n) 

Functions lncariants or generators 
scalar L’. U, (tl. n)’ 
vector v. (c. n)n. (c. n)(c X n) 
sym. tensor 1, v @ v, n @ n, n@(nXv)+(nXv)@n 

(u. n)(v @ n + n @I tl), 
(c. n)(v @ (v x n) + (v x n) @ v). 

(v) g5---represented as isotropic function of (II, n @ n) 

Functions Invariants or generators 
scalar t’. c, (v. n)’ 
vector D, (P. n)n 

sym. tensor I, L’ @ c, n @ n, (v . n)(v @ n + n @ v). 

(vi) g,-represented as isotropic functions of (v, n, @I n,, n2 @ nz) 

Functions Invariants or generators 
scalar (v. n,)‘, (n. n2)2, (v. n$ 
vector (v. ndnl, Cu. n2h2, Cu. nh 

sym. tensor nl 63 nl, n2 @ n2, n3 @ n3, 
(v. nd(v @ nl+ nl @ u), 

(u . e)(v @ n2 + n2 @ u), 

(u. n3)(v @ 4 + n3 8 VI. 
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In the last case we have used the identities 

to rewrite the elements in a symmetric manner. 
In this example, the trivial redundant elements have already been removed. The invariants 

or generators given are in fact irreducible. 

Example 3. Scalar invariant function of two vector variables IA and u relative to the 
triciinic-pinacoidal class g,. 

It can be represented as an isotropic scalar-valued function of (u, u, N,, NJ where 

Nl = n2 @ n3 - n3 @ n2, 

N2 = n3 8 nl - nl @ n3. 

Eliminating trivial redundants and simplifying the results, we obtain a functional basis of 
invariants directly from [1] in terms of components of u and u as follows 

u:, u:, uf, uIu2, u2u3, u3uI, 

vf, 4, v:, VIZ'29 k?u3, u3vi, 

~lv2,~2~l,~2~3- u3v2, u3ul- ulu3. -- 

(7.4) 

Owing to the apparent cyclic appearence of the elements in (7.4), one is tempted to replace 
ulu2 and u22r, by a single element uluz- u2ul and hence obtain a smaller basis of 18 instead of 19 
elements. This is indeed possible as we can see below. 

We only have to show that if ul v2 - u2ul together with the un-underlined terms in (7.4) are 
invariants, then uIu2 and u2vl are also invariants. 

Suppose that (u, u) and (ii, 5) are equivalent, i.e. their corresponding invariants are equal. 
Then, in particular, we have 

and 

UIV2-- &VI = iilV2-- i&VI (7.5) 

Now suppose that 

By (7.5) we also have 

u: = u:, V[U2 = i&v2, UlVl = ii,Ul. (7.6) 

ulv2= tilv2+ k. (7.7) 

u2v1= ti2Vl + k. (7.8) 

If vl = 0, then (7.8) and (7.6), imply that k = 0. So let us assume that vl f 0. Multiplying (7.7) 
on both sides by UT and using (7.6), we get 

which by (7.6) leads to k = 0. Therefore 

UlV2 = 0152, u2v1= U2iTl. 

In other words, we have shown that both ulu2 and uzul are invariants. 



On representations of anisotropic invariants 1109 

For the same example, an irreducible integrity basis can be found in[9] (see also in[4]), 
where in the place of the last three elements uIu2- u2u,, ~2~3 - u3u2 and u3u, - u,u3 of the above 
functional basis, six elements are required. They are 

In other words, such an irreducible integrity basis contains 21 elements. 
Remark. During the course of the present study, the authors attention was called to some 

papers by Boelher[ll] who has taken a similar approach to the representation problems for 
some cases of anisotropy. Since he considered essentially symmetric tensor variables only 
(although its generalization is obviously inferred), the additional tensors which specify the 
orientation of the materials do not characterize the symmetry groups properly. The present 
paper gives a simple proof of the main idea and a complete treatment for functions of any 
number of variables: vectors, symmetric tensors and skew symmetric tensors. 
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