
 
 
T. Mossakowski et al. (Eds.): CALCO 2007, LNCS 4624, pp. 194-208, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Structured Co-spans: 
An Algebra of Interaction Protocols† 

José Luiz Fiadeiro and Vincent Schmitt 

Department of Computer Science, University of Leicester 
University Road, Leicester LE1 7RH, UK 

{jose,vs27}@mcs.le.ac.uk  

Abstract. We extend the theory of (co-)spans as a means of providing an alge-
braic approach to complex interactions as they arise in software-intensive sys-
tems.  In order to make interconnections independent of the nature of compo-
nents involved, interaction protocols are formalised not in terms of morphisms 
(i.e. part-of relationships) but a generalised notion of (co-)span in which the 
arms are structured morphisms – the head (the glue of the protocol) and the 
hands (the interfaces of the protocol) belong to different categories, the cate-
gory of glues being coordinated over that of the interfaces.  The proposed gen-
eralisation sheds some additional light into adjunctions in bicategories, namely 
on the factorisation of left adjoint 2-sided enrichments. 

1 Introduction 

Software is becoming an integral part of a range of products and services performing 
vital functions in all sectors of economic and social activity.  In such software-
intensive systems, software applications are required to interact, in a seamless way, 
with other software components, devices, sensors, even humans.  The complexity 
involved in building the software components that will be deployed in such systems in 
not so much on the “size” of their code but on the number and intricacy on the inter-
actions in which they will be involved, what in [6] we have called social complexity.  
From an algebraic point of view, social complexity raises new challenges with respect 
to the more established physiological complexity, i.e. the fact that a complex whole 
can be understood as a composition of its parts.  The basic difference is that it does 
not make sense to see software-intensive systems as being compositions, in an alge-
braic sense, of simpler components.  There is not a notion of whole to which the parts 
contribute but, rather, a number of autonomous entities that interact with each other 
through external connectors. 

This is why it is so important to put the notion of interaction at the centre of re-
search in software-intensive system modelling, and to support methods and languages 
that separate interaction concerns from computational ones.  In the past, we developed 

                                                             
†  This work was partially supported through the IST-2005-16004 Integrated Project SENSORIA: Software 

Engineering for Service-Oriented Overlay Computers. 



 

a categorical framework supporting the separation between “computation” and “coor-
dination” as architectural dimensions in software development [9].  This framework is 
based on what we have called “coordinated categories” [5] – concrete categories 
(faithful functors) that externalise the interfaces used by components to interact with 
other components.  From an algebraic point of view, we propose to work with “struc-
tured morphisms”[1], i.e. pairs <f,S> where f:A→GS is a C-morphism, A:C, S:D, and 
G:D→C.  The motivation is that G “forgets” the computational part of the objects of 
D and returns their interfaces; structured morphisms capture interactions that do not 
depend on the computational processes involved in components. 

Ultimately, the (autonomic) entities that we wish to interconnect need not be or-
ganised in a category.  Typically, in a category of systems, morphisms capture a 
“component-of” or “sub-system” relationship.  As already motivated, in software-
intensive systems it does not make sense to talk about “component-of” relationships 
in an algebraic way.  Therefore, we decided to look for algebraic mechanisms of 
interconnection that can capture peer-to-peer interactions among autonomous compo-
nents.  That is why, in this paper, we report on the use of co-spans – pairs <fA,fB> 
where fA:A→S and fB:B→S are morphisms of a category D.  Co-spans (and their dual 
– spans) have been deserving increasing attention in computer science, namely when 
D is a category of graphs (or variants of graphs) as models of concurrent processes or 
reactive systems [14] – generalised automata or transition systems in one sense or 
another.  For instance, spans can be used for defining composition operations along 
interfaces, which capture the behaviour of communicating parallel processes [11]. 

Because we want the application of interaction protocols to be “agnostic” to the na-
ture of the computations that are performed by the peers, we want that the protocol be 
based on the interfaces that components have available for interacting with each other, 
not on the computations that they perform locally.  This suggests that the interactions 
should be established between objects of a category of interfaces, not between behav-
iours.  That is, we should work with co-spans based on structured morphisms – triples 
<fA,S,fB> where S is an object of D and fA:A→GS, fB:B→GS are structured morphisms 
of a coordinated category G:D→C. 

Our approach is also different to the traditional uses of (co-)spans in that we are in-
terested in a more declarative setting in which the objects of D are not operational 
models of behaviour (automata, transition systems, and so on), but specifications or 
designs of protocols.  This is why we are interested in other categories than that of 
graphs.  In fact, we will work over coordinated categories in general, which include 
graphs and other models of concurrency, but also logical and algebraic specifications 
[5,10,13]. 

Our purpose in this paper is to generalise the theory of co-spans to support an alge-
braic approach to interactions in software-intensive systems as discussed above.  In 
Section 2, for further motivation, we present a case study that we have been develop-
ing for service-oriented modelling in the context of the SENSORIA project.  In Sec-
tion 3, we discuss in more detail the notion of interaction protocol that we have in 
mind and the role played by structured co-spans.  Finally, in Section 4, we investigate 
the properties of bicategories of structured co-spans, which leads to some interesting 
new results in adjuncions of 2-sided enrichments.  



 

2 Modules for Software-Intensive Systems 

The work that we present in this paper has been inspired by research that we have 
been developing within the IST-FET Integrated Project SENSORIA – Software Engi-
neering for Service-Oriented Overlay Computers – on the emerging service-oriented 
computing paradigm, generalising methods and techniques already proposed for web-
service and grid technologies.  From the point of view of software-intensive systems, 
services can be understood as autonomous, platform-independent computational enti-
ties that can be described, published, discovered, and dynamically assembled for 
developing massively distributed, interoperable, evolvable systems.  In this paper, we 
do not address the publication and run-time discovery process that characterises the 
service-oriented paradigm.  This is because we concentrate on the static structure of 
systems, not on the process through which they can be dynamically configured.  

The modelling language that we have been defining in SENSORIA – SRML – of-
fers a notion of module through which composite services can be specified as assem-
blies of internal components and externally procured services [7].  In order illustrate 
and motivate the notion of module, we use a typical procurement business process 
involving a supplier SP, a warehouse WR, a local stock LS, a price look-up facility 
CT, and a customer CR.  

 
This module declares SP and LS as components.  Components are the computa-

tional units that constitute the core of the module and are typed by what we call busi-
ness roles; in the example, SP plays the business role of Supplier and LS of Stock.  A 
business role specifies the activity performed by a component in terms of a collection 
of transitions.  As an example (see [7] for an explanation of the syntax), the business 
role Stock models a behaviour pattern that is typical of a database view: 

BUSINESS ROLE Stock is  

 INTERACTIONS 
   rpl get(product):nat 

  prf set(product,nat) 
 ORCHESTRATION 

 local qoh:product→nat   
  transition  
   triggeredBy get(p) 

  sends qoh(p)  



 

  transition  
   triggeredBy set(p,n) 

  effects qoh(p)’=n  

The model provided through a business role is independent of the language in 
which the component is programmed and the platform in which it is deployed.  The 
“orchestration”, i.e. the specification of the pattern of behaviour exhibited by the 
component, is independent of the specific parties that are actually interconnected with 
it in any given run-time configuration; a component is totally independent in the sense 
that it does not invoke services of any specific co-party – it just offers an interface of 
two-way interactions in which it can participate.  Interconnections with other entities 
are established through what we call wires, as discussed below. 

Modules can identify external parties that play a role in the business process – WR, 
CT and CS.  Making certain parties external reflects looser coupling and late binding.  
For instance, making the warehouse WR an external party reflects the fact that the 
choice of warehouse should probably be made at run-time, e.g. taking into account 
properties of the customer like its location.  Every external party is typed by what we 
call a business protocol, which specifies a stateful interaction between a component 
and the corresponding party.  In SRML, this specification is given in a temporal logic 
of interactions.  As an example (once again, please see [7] for an explanation of the 
syntax used in business protocols), consider the behaviour required of a warehouse: 

BUSINESS PROTOCOL Warehouse is  

 INTERACTIONS 
  r&s check&lock 
  snd confirm 
 BEHAVIOUR  
  initially check&lock?  
  check&lock ⊃ (check&lock? ensures confirm!) 

   check&lock? ⊃ (check&lock? exceptif confirm!) 

Basically, we are stating that (1) in the initial state the warehouse is ready to re-
ceive a request for engaging in the interaction check&lock (which the wire SW con-
nects to BA – the booking agent), (2) the warehouse promises to issue confirm if a 
commitment to the deal proposed by check&lock is received within an agreed delay, 
and (3) the commitment can be revoked until the confirm is actually issued.  The 
difference with respect to business roles is that, instead of an orchestration, a business 
protocol declares the set of properties that the co-party is required to adhere to.  Oth-
erwise, both business roles and protocols share the same kind of declaration of the 
interactions in which they can be involved, what we call their signatures. 

Modules can offer an external interface for other modules to use its services – CR 
in the case at hand.  The corresponding business role specifies constraints on the in-
teractions that the module supports as a service provider such as the order in which 
they expect invocations to be made or deadlines for the user to commit. 

Finally, wires connect the components and external interfaces of a module.  In the 
case of PROCUREMENT these are CS, SS, SW and SC.  Wires are labelled by connectors 
that coordinate the interactions in which the parties are jointly involved.  In SRML, 
we model the interaction protocols involved in these connectors as separate, reusable 
entities.  Just like business roles and protocols, an interaction protocol is specified in 



 

terms of a number of interactions.  Because interaction protocols establish a relation-
ship between two parties, the interactions in which they are involved are divided in 
two subsets called roles – A and B.  The “semantics” of the protocol is provided 
through a collection of sentences – what we call interaction glue – that establish how 
the interactions are coordinated.  This may include routing events and transforming 
sent data to the format expected by the receiver.  As an example, consider the follow-
ing protocol used in the wire SS that connects Supplier and Stock: 

INTERACTION PROTOCOL Custom1 is  

 ROLE A 
  ask S1(product,nat):bool 
  tll S2(product,nat)  

   tll S3(product,nat) 
 ROLE B 
  rpl R1(product):nat 

   prf R2(product,nat) 
 COORDINATION 

 S1(p,n) = R1(p)≥n 
 S2(p,n) ⊃ R2(p,R1(p)+n)  
 R1(p)≥n ∧ S3(p,n) ⊃ R2(p,R1(p)–n)  
 R1(p)<n ⊃ ¬S3(p,n) 

The wire itself is specified in SRML in a tabular form as follows: 
SP 

Supplier   SS  LS 
Stock 

ask checkStock 
tll incStock 
tll decStock 

S1 

S2 
S3 

Custom1 
R1 

R2 
 

rpl get 
prf set 

The name bindings instantiate the two roles of the interaction protocol with Sup-
plier and Stock, respectively, thus establishing that the interactions between the two 
parties satisfy the following properties: 

 checkStock(p,n)=(get(p)≥n) 
 incStock(p,n) ⊃ set(p,get(p)+n) 
 get(p)≥n ∧ decStock(p,n) ⊃ set(p,get(p)–n)  
 get(p)<n ⊃ ¬decStock(p,n) 

That is, the boolean value returned by checkStock(p,n) as invoked by the supplier is 
computed by the local stock by checking if the value returned by get(p) is greater or 
equal to n.  The protocol also stipulates that to a request from the supplier for inc-
Stock(p,n) the local stock executes set(p,get(p)+n).  Likewise, to a request from the 
supplier for decStock(p,n) the local stock executes set(p,get(p)–n) only if get(p) re-
turns a value greater than or equal to n; otherwise, the request is not accepted. 

The fact that business protocols are specifications over a logic of interactions is 
important because it will allow us to compose modules by matching the properties 
required by an external interface of one module with those provided by another.  The 
matching involves what we call an external wire m: this is a mapping from the inter-
actions of the “requires” external interface to the interactions of the “provides” exter-
nal interface that preserves the properties, i.e. m defines an interpretation between the 
theories of the business protocols involved. 



 

 
An external wire is based on an “empty” interaction protocol, i.e. it does not super-

pose any additional coordination effects to the (internal) wires W1 and W2, it just binds 
the interactions declared in the external interfaces. 

The composition of the two modules results from the composition of the two wires 
W1 and W2 via the mapping m to provide a wire between the two components. 

  
Notice that there is no composition law on components, just on connectors (which 

extends to wires).  Components correspond to software applications, possibly imple-
mented in different languages and running in different platforms; therefore, it does not 
make sense to compose in the same way that, for instance, a compiler links a number 
of modules to produce an executable program.  This is where we see the difference 
between social and physiological complexity as already mentioned, which motivates 
the need for a different algebraic approach. 

3 The Algebraic Structure of Connectors 

An algebraic formalisation of this notion of module and module composition has been 
given in [8] from the point of view of a notion of correctness defined based on the 
theory of institutions [10].  In this paper, we will explore the algebraic structure of 
connectors in more detail and in a more general setting that does not require the level 
of detail that we used in [8].   

As motivated in Section 2, interactions constitute the core and the unifying element 
of the proposed approach to systems modelling: all the models that we work with – 
business roles, business protocols and interaction protocols – are based on structures 
of interactions.  We assume that these structures are organised in a category SIGN (of 
signatures) whose morphisms capture “part-of” relationships, i.e. a morphism 
σ:S1→S2 formalises the way a signature (structure of interactions) S1 is part of S2 up to 



 

a possible renaming of the interactions and corresponding parameters.  In order to 
support composition, we further assume that SIGN is finitely co-complete. 

The other structure that is important for interaction protocols is that of the glues; 
we assume that glues can themselves be organised in a category IGLU and that a 
functor sign:IGLU→SIGN returns, for every glue, the structure of interactions (sig-
nature) that are being coordinated by the protocol.  As a consequence, a morphism 
σ:G1→G2 of glues captures the way G1 is a sub-protocol of G2, again up to a possible 
renaming of the interactions and corresponding parameters.  That is, σ identifies the 
glue that, within G2, captures the way G1 coordinates the interactions sign(G1) as a 
part of sign(G2).  In fact, because we need to be able to compose interaction protocols, 
we assume that IGLU is also a finitely co-complete category. 

In this formal setting, every interaction protocol P consists of an interaction glue G 
together with two signature morphisms πA:roleA→sign(G) and πB:roleB→sign(G).  
The fact that the roles of the protocol are signatures, and not glues, is important be-
cause, as motivated in Section 2, wires establish interconnections between entities 
(components or external interfaces) purely through relationships between the interac-
tions in which the entities can be involved.  These relationships are “syntactic” and 
are established through the roles of the interaction protocol.  If we were to include 
properties in the roles, we would be involving the computational properties of the 
entities to which the role is connected.  More precisely, we remain agnostic as to the 
nature of the entities that we wish to interconnect.  The only assumption that we make 
is that each such entity n has a defined signature sign(n):SIGN. 

The need for separating the mechanisms available for coordinating interactions 
from the computations that entities execute internally suggests that we work with 
coordinated categories [5]; asking sign:IGLU→SIGN to be coordinated means that: 

• sign is faithful, i.e. IGLU is concrete over SIGN in the sense of [1]. 
• sign lifts colimits, i.e. given any diagram dia:I→IGLU and colimit 

(sign(Gi)→A)i:I of (dia;sign) there exists a colimit (Gi→G)i:I of dia such that 
sign(Gi→G)=(sign(Gi)→A). 

• sign has discrete structures in the sense of [1], i.e. every signature A has a ‘dis-
crete lift’ meaning that there exists iglu(A):IGLU such that, for every 
f:A→sign(G), there is f’:iglu(A)→G such that sign(f’)=f. 

These properties capture the notion of separation of ‘coordination’ from ‘computa-
tion’ in the following sense: 

• Making sign faithful means that the computational aspects do not give rise to 
other interactions than those captured through signatures. 

• Lifting colimits means that glues can be composed if their signatures can, and 
that the signature of the composed glue does not depend on the computations 
performed by the components. 

• The existence of discrete structures means that every signature A has a “reali-
sation” (a discrete lift) as a glue iglu(A) in the sense that, using A to intercon-
nect a glue G, which is achieved through a morphism f:A→sign(G), is tanta-
mount to using iglu(A) through any f’:iglu(A)→G such that sign(f’)=f.  Notice 
that, because sign is faithful, there is only one such f’, which means that f and 



 

f’ are, essentially, the same.  That is, sources of morphisms in diagrams in 
IGLU are, essentially, signatures, which is why we decided to work with 
structured morphisms in interaction protocols.  

Coordinated categories have strong algebraic properties, almost as strong as those 
of topological categories [1]: a coordinated category is topological iff sign lifts colim-
its uniquely.  Examples include specifications as theories (or theory presentations) in 
institutions [10], as well as models of concurrency [13] where signatures consist of 
process alphabets.   

Some of the properties that we will find useful are [5]:  
• The functor sign admits a left adjoint iglu:SIGN→IGLU. 
• The units of the adjunction are identities and the co-units are epis. 
• The functor sign preserves colimits. 

In order to understand the role played by interaction protocols, consider once again 
the wire SS discussed in Section 2:  

SP 
Supplier   SS  LS 

Stock 
ask checkStock 
tll incStock 
tll decStock 

S1 

S2 
S3 

Custom1 
R1 

R2 
 

rpl get 
prf set 

The wire establishes two signature morphisms: one from the ROLE_A of Custom1 
to the signature of Supplier, and the other from ROLE_B to Stock.  For instance, the 
latter is given by the following fragment of the table: 

ROLE_B µ Stock 

R1 

R2 

→ 
→ 

get 
set  

We call a connector for a wire n↔m between entities n and m in a module, a struc-
ture <µn,πA,G,πB,µm> where <πA,G,πB> is an interaction protocol P and <µn,µm> are 
the morphisms that connect the roles of P to the entities n and m.  Such a connector 
defines the following diagram in SIGN: 

 
 The interaction protocol <πA,G,πB> corresponds to the shadowed part of the dia-

gram.  Although this fragment is a co-span in SIGN, the protocol itself is not because 
it involves the glue G.  Indeed, without the computational aspects of the glue it would 
not be possible to coordinate the interactions between n and m.  That is, co-spans in 
SIGN are not expressive enough to formalise interaction protocols. 

The significance of the difference becomes apparent when we consider the compo-
sition of two interaction protocols <πA,G,πB> and <µB,H,µC>.  We know how to 
compose the corresponding co-spans in SIGN through a pushout of the shadowed 
triangle, but the pushout does not deliver us a glue:  



 

 
On the other hand, we have already seen that working with co-spans in IGLU does 

not make sense because, by allowing the roles to involve computational aspects, the 
morphisms that connect the roles of the protocol to the entities would bring in 
computational aspects of the entities into their interconnection. 

 This is the motivation for studying the properties of structures of the form 
<πA,G,πB>, which we call structured co-spans.  More precisely, our aim is to define 
and study the properties of a bicategory whose objects are signatures and whose 1-
cells consist of interaction protocols. 

4 Structured Co-spans 

In this section we define and study the algebraic properties of structured co-spans.  
We start by recalling some basic definitions and properties of bicategories but only as 
a reminder – we refer the reader to either the original paper by Bénabou [2] or the 
more accessible textbook [3]; notice that many other papers are available on this topic 
but the terminology may change slightly from the one that we use ([3]). 

We start by recalling that bicategories were introduced to consider generalisations 
of categorical constructions to the case in which the identity and composition laws are 
satisfied only “up to isomorphism”.  A bicategory V consists of: 

• A class |V| of objects (also called 0-cells) 
• For each pair <A,B> of objects, a category V(A,B) whose objects are called ar-

rows (or 1-cells) and whose morphisms are called 2-cells 
• For every triple <A,B,C> of objects, a composition law given by a (bi)functor 

;A,B,C: V(A,B)×V(B,C)→V(A,C) 
• For every object A an identity arrow 1A:A→A 

The typical axioms of categories are replaced by the existence of a number of natu-
ral isomorphisms and coherence conditions.  For simplicity, we omit these properties 
and refer the reader to [3]. We have already mentioned that typical examples of bi-
categories in computer science are (co-)spans of graphs [11,14]. 

A similar generalisation applies to functors.  Given bicategories V and W, a lax 
functor F:V→W consists of: 

• A map sending objects A of V to objects FA of W 
• Functors FA,B:V(A,B)→W(FA,FB) for every pair <A,B> of objects of V, a 
• 2-cells

! 

Ff ,g
2 :Ff;Fg→F(f;g) for every composable <f,g> in V, natural in f and g 

• 1-cells

! 

F
A

0:1FA →F1A for every object A of V 
subject to  coherence conditions [3].  A lax functor F is a pseudo-functor when all 
the

! 

Ff ,g
2  and 

! 

F
A

0  are invertible. 



 

Definition 4.1: Given an adjunction F⊣ G:D→C, where D has pushouts, we de-
fine the bicategory co-span(G) of G-structured co-spans as follows: 

• The objects are those of C 
• The arrows (1-cells) are triples <fA:A→GS,S,fB:B→GS> where S is an object 

of D and fA,fB are morphisms of C 
• A 2-cell α:<fA,S,fB>→<gA,T,gB> is a D-morphism α:S→T that makes the fol-

lowing diagram commute 

 
• Composition of <fA,S,fB> and <gB,T,gC>  

 
is <fA;Gf’B,S+BT,gC;Gg’B> obtained through the following pushout in D where 
f*B=FfB;εS and g*B=FgB;εT 

  
• The identities are <idA;ηA,FA,idA;ηA>. 

As could be expected: 
Remark 4.2: For every category C with pushouts, co-span(1C) is the well-know 

category of co-spans over C, which we denote by co-span(C). 

The following property is easily proved: 
Proposition 4.3: Let F:C→D be a functor between two categories with pushouts. 
• F extends to a lax Ḟ:co-span(C)→co-span(D) by pointwise translation. 
• Ḟ is normal, i.e. it sends identity 1-cells to identities. 
• If F preserves pushouts, F is a pseudo-functor. 



 

We are now going to analyse the lifting of adjunctions.  As established in [12], bi-
categories admit more general morphisms than lax functors – the so-called “2-sided 
enrichments”, which together with the appropriate 2-cells and 3-cells form the so-
called tricategory Caten.  The definition of adjoint one-cells makes sense in any bi-
category and, in particular, in Caten where they are characterised as follows: 

Theorem 4.4 ([12] Proposition 2.7):  A left adjoint 2-sided enrichment F:V→W is 
a pseudo-functor such that each functor FA,B: V(A,B)→W(FA,FB) has a right adjoint. 

Consider now the case in which we are given an adjunction F⊣ G:D→C, where D 
and C have pushouts: 

• Because F preserves pushouts, Ḟ is a pseudo-functor 
• Each functor ḞA,B: co-span(C)(A,B)→co-span(D)(ḞA,ḞB) has a right-adjoint 

based on the isomorphisms between the two hom-sets: 

 
Corollary 4.5: Given an adjunction F⊣ G:D→C where D and C have pushouts, 

Ḟ:co-span(C)→co-span(D) is a left adjoint 2-sided enrichment. 

Notice that nothing can be inferred from this result about the lax functor Ġ:co-
span(D)→co-span(C).  We are now going to see that co-span(G) allows us to 
strengthen the case.  

Proposition 4.6: Given an adjunction F⊣ G:D→C where D and C have pushouts, 
we define a pseudo functor F*:co-span(C)→co-span(G) as follows: 

• F* is the identity on objects 
• Every 1-cell <fA,S,fB> is mapped to <fA;ηS,FS,fB;ηs>, and the 2-cells 

α:<fA,S,fB>→<gA,T,gB> to Fα:<fA;ηS,FS,fB;ηS>→<gA;ηT,FT,gB;ηST>.  No-
tice that, being a left adjoint, F preserves colimits, which justifies that we do 
obtain a pseudo functor.  

 



 

If we consider the hom-categories, it is easy to see that we have lifted the adjunc-
tion F⊣ G:D→C to an adjunction co-span(G)(A,B)→co-span(C)(A,B).  

Proposition 4.7: F*:co-span(C)→co-span(G) is a left adjoint 2-sided enrichment.  
Moreover, because F* is the identity on objects, we obtain a right adjoint that is a lax 
functor *G:co-span(G)→co-span(C). 

It is interesting to analyse the construction of the right-adjoint:  
• *G is again the identity on objects 
• Every 1-cell <fA,S,fB> is mapped to <fA,GS,fB>, and the 2-cells 

α:<fA,S,fB>→<gA,T,gB> to Gα:<fA,GS,fB>→<gA,GT,gB>.   
Recall that the identities for structured co-spans are of the form 

<idA;ηA,FA,idA;ηA>.  Hence, *GA=ηA.  Moreover, G does not necessarily preserve 
pushouts.  This is why we cannot guarantee that *G is a pseudo-functor.  However if 
G defines a coordinated category, we know that it preserves colimits and the units of 
the adjunction are identities. 

Proposition 4.8: If F⊣ G:D→C is a coordinated category, we have an adjunction 
F*⊣ *G:co-span(G)→co-span(C) of pseudo functors. 

Consider now what happens on the side of co-span(D).  We have an obvious 
pseudo functor based on F and the functors co-span(G)(A,B)→co-span(D)(FA,FB) 
that map structured co-spans <fA,S,fB> to the co-spans <f*A,S,f*B>: 

 
These functors are isomorphisms, leading to a left adjoint 2-sided enrichment *F.  
Mapping co-spans <fA,S,fB> over D to structured co-spans <GfA,S,GfB> seems 

equally obvious, but the mapping of the composition deserves some attention.  If we 
consider <fA,S,fB>;<gB,T,gC>, the composition of the images is given by a pushout of: 

 
Because FGfB;εS=εB;fB and FGgB;εT=εB;gB, we have in fact: 



 

 
The universal properties of the colimit return a morphism S+FGBT→S+BT.  If we 

work with a coordinated category, G is faithful, which implies that the co-units are 
epis.  In this case, it is easy to see that the morphisms S+FGBT→S+BT are in fact iso-
morphisms, which makes G* a pseudo functor. 

We can now summarise our results. 
Theorem 4.9: Let F:C→D be a functor between two categories with pushouts. 
• F extends to a normal lax functor Ḟ:co-span(C)→co-span(D); if F preserves 

pushouts, Ḟ is a pseudo-functor. 
• If F has a right adjoint G:D→C: 
• Ḟ is a left adjoint 2-sided enrichment. 
• Ḟ factorises as co-span(C)

! 

F*
" # " co-span(G)

! 

*F
" # " co-span(D) where F* 

has a lax right adjoint *G 

Theorem 4.10: Let G:D→C be a coordinated category. 
• The right adjoint *G is a pseudo functor 
• *F has a pseudo right adjoint G* 
• Ḟ⊣ Ġ:co-span(D)→co-span(C) is an adjunction of pseudo-functors 

Our final result is a generalisation of the factorisation that we defined for Ḟ:co-
span(C)→co-span(D) to a general lax functor. 

Definition 4.11: Given a lax functor F:V→W, we define the bicategory VF as fol-
lows: 

• |VF|=|V| 
• VF(A,B) = W(FA,FB) 

Notice that, in the case of Ḟ:co-span(C)→co-span(D) what we obtain is a bicate-
gory whose hom-cats are of the form: 



 

 
which are isomorphic to co-span(G)(A,B) if F has a right adjoint G:D→C.  

Our last result is a canonical factorisation of left adjoint 2-sided enrichments: 
Theorem 4.12: Every lax functor F:V→W factorises as V

! 

F*
" # " VF

! 

*F
" # " W 

where F* is an identity on objects and *F an identity on hom-cats.  If F is a left ad-
joint 2-sided enrichment so is F* and its right adjoint is lax. 

 

5 Concluding Remarks 

In this paper, we have shown how the notion of interaction protocol that we are de-
veloping within the SENSORIA project used for modelling interconnections in serv-
ice-oriented systems can be given an algebraic semantics over an extension of the 
theory of co-spans.  The extension is motivated by the fact that, whereas we want the 
interaction protocol to use a rich formalism to specify the coordination mechanisms 
superposed by the glue, its interfaces should be purely “syntactic” so as to avoid any 
assumption on the computations performed by the entities being interconnected. 

More precisely, given a coordinated category sign:IGLU→SIGN, using co-
span(SIGN) for interconnections is too poor because it does not support the definition 
of coordination mechanisms, and using co-span(IGLU) is too strong because the 
interfaces involve computational aspects.  This is why we proposed to work over an 
algebraic structure co-span(sign) that is based instead on sign-structured morphisms.   

We showed how co-span(sign) constitutes a bicategory.  In fact, we investigated 
the more general issue of how the co-span construction relates to functors.  We 
showed how a functor between the base categories induces a lax-functor between the 
corresponding bicategories of co-spans, and how adjunctions give rise to adjoint 2-
sided enrichments.  This allowed us to strengthen some results on adjunctions in the 
tricategory Caten, namely by generalising the construction of co-span(sign) to a 
canonical factorisation of lax functors.  This is a line that we would like to pursue on 
its own, although the “computational” inspiration that comes from (structured) co-
spans and coordinated categories is very welcome. 

From the point of view of software-intensive system modelling, it is clear that 
structured morphisms over coordinated categories have been proving to provide a 
richer algebraic framework when it comes to formalising interconnection mecha-
nisms.  This is another avenue that we want to keep exploring in SENSORIA.  



 

Acknowledgments 

We would like to acknowledge the contribution of Antónia Lopes with whom much 
of the work around coordinated categories in general, and interaction protocols in 
particular, has been developed, and to thank our colleagues in SENSORIA, the IFIP 
WG1.3 group members and observers, and the participants of the Workshop on Ap-
plied and Computational Category Theory (ACCAT) 2007 for valuable feedback. 

 

References  

  1. J. Adámek, H. Herrlich, G. Strecker (1990) Abstract and Concrete Categories. John Wiley 
& Sons, New York Chichester Brisbane Toronto Singapore 

  2. J. Bénabou (1967) Introduction to bicategories. In: Midwest Category Seminar. LNCS, vol 
42. Springer, Berlin Heidelberg New York,pp 1–77 

  3. F. Borceux (1994) Handbook of Categorical Algebra 1. Cambridge University Press, 
Cambridge 

  4. H. Ehrig, F. Orejas, B. Braatz, M. Klein, M. Piirainen (2004) A component framework for 
system modeling based on high-level replacement systems. Software Systems Modeling 
3:114–135 

  5. J. L. Fiadeiro (2004) Categories for Software Engineering. Springer, Berlin Heidelberg 
New York 

  6. J. L. Fiadeiro (2007) Designing for software’s social complexity. IEEE Computer 
40(1):34–39  

  7. J. L. Fiadeiro, A. Lopes, L. Bocchi (2006) A formal approach to service-oriented architec-
ture.  In: M. Bravetti, M. Nunez, G. Zavattaro (eds) Web Services and Formal Methods. 
LNCS, vol 4184. Springer, Berlin Heidelberg New York, pp 193–213  

  8. J. L. Fiadeiro, A. Lopes, L. Bocchi (2007) Algebraic semantics of service component 
modules.  In: J. L. Fiadeiro, P. Y. Schobbens (eds) Algebraic Development Techniques. 
LNCS, vol 4409. Springer, Berlin Heidelberg New York, pp 37–55 

  9. J. L. Fiadeiro, A. Lopes, M. Wermelinger (2003) A mathematical semantics for architec-
tural connectors. In: R. Backhouse, J. Gibbons (eds) Generic Programming. LNCS, vol 
2793. Springer, Berlin Heidelberg New York, pp 190–234 

10. J. Goguen, R. Burstall (1992) Institutions: abstract model theory for specification and 
programming. Journal ACM 39(1):95–146 

11. P. Katis, N. Sabadini, R. F. C. Walters (1997) Bicategories of processes. Journal of Pure 
and Applied Algebra 115:141–178 

12. G. M. Kelly, A. Labella, V. Schmitt, R. Street (2002) Categories enriched on two sides. 
Journal of Pure and Applied Algebra 168:53–98 

13. V. Sassone, M. Nielsen, G. Winskel (1993) A classification of models for concurrency. In: 
E. Best (ed) CONCUR'93. LNCS, vol 7159. Springer, Berlin Heidelberg New York, pp 82-
96 

14. V. Sassone, P. Sobocinski (2005) Reactive systems over cospans. LICS’05, IEEE Com-
puter Society, pp 311–320 


